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ABSTRACT

Temporally localizing actions in videos is one of the key components for video
understanding. Learning from weakly-labeled data is seen as a potential solu-
tion towards avoiding expensive frame-level annotations. Different from other
works which only depend on visual-modality, we propose to learn richer audio-
visual representation for weakly-supervised action localization. First, we propose
a multi-stage cross-attention mechanism to collaboratively fuse audio and visual
features, which preserves the intra-modal characteristics. Second, to model both
foreground and background frames, we construct an open-max classifier which
treats the background class as an open-set. Third, for precise action localiza-
tion, we design consistency losses to enforce temporal continuity for the action-
class prediction, and also help with foreground-prediction reliability. Extensive
experiments on two publicly available video-datasets (AVE and ActivityNet1.2)
show that the proposed method effectively fuses audio and visual modalities, and
achieves the state-of-the-art results for weakly-supervised action localization.

1 INTRODUCTION

The goal of this paper is to temporally localize actions and events of interest in videos with weak-
supervision. In the weakly-supervised setting, only video-level labels are available during the train-
ing phase to avoid expensive and time-consuming frame-level annotation. This task is of great
importance for video analytics and understanding. Several weakly-supervised methods have been
developed for it (Nguyen et al., 2018; Paul et al., 2018; Narayan et al., 2019; Shi et al., 2020; Jain
et al., 2020) and considerable progress has been made. However, only visual information is ex-
ploited for this task and audio modality has been mostly overlooked. Both, audio and visual data
often depict actions from different viewpoints (Guo et al., 2019). Therefore, we propose to explore
the joint audio-visual representation to improve the temporal action localization in videos.

A few existing works (Tian et al., 2018; Lin et al., 2019; Xuan et al., 2020) have attempted to fuse
audio and visual modalities to localize audio-visual events. These methods have shown promising
results, however, these audio-visual events are essentially actions that have strong audio cues, such
as playing guitar, and dog barking. Whereas, we aim to localize wider range of actions related to
sports, exercises, eating etc. Such actions can also have weak audio aspect and/or can be devoid of
informative audio (e.g. with unrelated background music). Therefore, it is a key challenge to fuse
audio and visual data in a way that leverages the mutually complementary nature while maintaining
the modality-specific information.

In order to address this challenge, we propose a novel multi-stage cross-attention mechanism. It
progressively learns features from each modality over multiple stages. The inter-modal interaction
is allowed at each stage only through cross-attention, and only at the last stage are the visually-
aware audio features and audio-aware visual features concatenated. Thus, an audio-visual feature
representation is obtained for each snippet in videos.

Separating background from actions/events is a common problem in temporal localization. To this
end, we also propose: (a) foreground reliability estimation and classification via open-max classifier
and (b) temporal continuity losses. First, for each video snippet, an open-max classifier predicts
∗Qualcomm AI Research is an initiative of Qualcomm Technologies, Inc.
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scores for action and background classes, which is composed of two parallel branches for action
classification and foreground reliability estimation. Second, for precise action localization with
weak supervision, we design temporal consistency losses to enforce temporal continuity of action-
class prediction and foreground reliability.

We demonstrate the effectiveness of the proposed method for weakly-supervised localization of both
audio-visual events and actions. Extensive experiments are conducted on two video datasets for
localizing audio-visual events (AVE1) and actions (ActivityNet1.22). To the best of our knowledge,
it is the first attempt to exploit audio-visual fusion for temporal localization of unconstrained actions
in long videos.

2 RELATED WORK

Our work relates to the tasks of localizing of actions and events in videos, as well as to the regime
of multi-model representation learning.

Weakly-supervised action localization: Wang et al. (2017) and Nguyen et al. (2018) employed
multiple instance learning (Dietterich et al., 1997) along with attention mechanism to localize ac-
tions in videos. Paul et al. (2018) introduced a co-activity similarity loss that looks for similar
temporal regions in a pair of videos containing a common action class. Narayan et al. (2019) pro-
posed center loss for the discriminability of action categories at the global-level and counting loss
for separability of instances at the local-level. To alleviate the confusion due to background (non-
action) segments, Nguyen et al. (2019) developed the top-down class-guided attention to model
background, and (Yu et al., 2019) exploited temporal relations among video segments. Jain et al.
(2020) segmented a video into interpretable fragments, called ActionBytes, and used them effec-
tively for action proposals. To distinguish action and context (near-action) snippets, Shi et al. (2020)
designed the class-agnostic frame-wise probability conditioned on the attention using conditional
variational auto-encoder. Luo et al. (2020) proposed an expectation-maximization multi-instance
learning framework where the key instance is modeled as a hidden variable. All these works have
explored various ways to temporally differentiate action instances from the near-action background
by exploiting only visual modality, whereas we additionally utilize audio modality for the same
objective.

Audio-visual event localization: The task of audio-visual event localization, as defined in the lit-
erature, is to classify each time-step into one of the event classes or background. This is different
from action localization, where the goal is to determine the start and the end of each instance of
the given action class. In (Tian et al., 2018), a network with audio-guided attention was proposed,
which showed prototypical results for audio-visual event localization, and cross-modality synchro-
nized event localization. To utilize both global and local cues in event localization, Lin et al. (2019)
conducted audio-visual fusion in both of video-level and snippet-level using multiple LSTMs. As-
suming single event videos, Wu et al. (2019) detected the event-related snippet by matching the
video-level feature of one modality with the snippet-level feature sequence of the other modality.
Contrastingly, our cross-attention is over the temporal sequences from both the modalities and does
not assume single-action videos. In order to address the temporal inconsistency between audio
and visual modalities, Xuan et al. (2020) devised the modality sentinel, which filters out the event-
unrelated modalities. Encouraging results have been reported, however, the localization capability
of these methods has been shown only for the short fixed-length videos with distinct audio cues.
Differently, we aim to fuse audio and visual modalities in order to also localize actions in long,
untrimmed and unconstrained videos.

Deep multi-modal representation learning: Multi-modal representation learning methods aim to
obtain powerful representation ability from multiple modalities (Guo et al., 2019). With the ad-
vancement of deep-learning, many deep multi-modal representation learning approaches have been
developed. Several methods fused features from different modalities in a joint subspace by outer-
product (Zadeh et al., 2017), bilinear pooling (Fukui et al., 2016), and statistical regularization (Aytar
et al., 2017). The encoder-decoder framework has also been exploited for multi-modal learning for
image-to-image translation (Huang et al., 2018) and to produce musical translations (Mor et al.,

1https://github.com/YapengTian/AVE-ECCV18
2http://activity-net.org/download.html
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Figure 1: The proposed architecture has two parts: modality fusion and open-max classification.
(a) Fusion by multi-stage cross-attention: The input audio (U ) and visual (V ) features are embedded
by the two fully-connected layers fu and fv , and passed through the multiple stages of the cross-
attention. At the tth stage, the attended audio-visual embeddings, X(t)

att,u and X(t)
att,v , are calculated

using the results from the previous stages through dense skip connections, and activated by a non-
linear function. Here, c© and +© denote concatenation and summation operations. This figure shows
2-stage case. The dense skip connections of two stages are depicted as green and yellow arrows,
respectively. At the last stage, two attended features are concatenated. (b) Open-max classifier takes
the concatenated audio-visual features as input and generates classification scores for action classes
and background. More detailed description is given in Appendix C.

2018). Another category of approaches aim to disjointly learn the features of each modality under
cross-modality constraints such as cross-modal ranking (Frome et al., 2013; Lazaridou et al., 2015;
Kiros et al., 2014) or feature distance (Pan et al., 2016; Xu et al., 2015; Liong et al., 2016). Our
approach belongs to this category and uses cross-correlation as cross-modality constraint. Cross-
correlation has been exploited to generate visual features attended by text for visual question an-
swering (Kim et al., 2017; Yu et al., 2017). It has also been used to obtain cross-attention for
few-shot learning (Hou et al., 2019) and image-text matching (Lee et al., 2018; Wei et al., 2020).
In our work, we adopt the cross-correlation to generate both of audio and visual features attended
by each other. The most similar to our cross-attention mechanism is the cross-attention module of
Hou et al. (2019), which computes cross-correlation spatially between features maps of two images
(sample and query). Whereas, our cross-attention is designed for video and is computed between
two temporal sequences of different modalities.

3 METHODOLOGY

In this section, we introduce the proposed framework for weakly-supervised action and event local-
ization. Fig. 1 illustrates the complete framework. We first present the multi-stage cross-attention
mechanism to generate the audio-visual features in Sec. 3.1. Then, we explain open-max classifica-
tion to robustly distinguish the actions3 from unknown background in 3.2. Finally, in Sec. 3.3, we
describe the training loss including two consistency losses designed to enforce temporal continuity
of the actions and background.

Problem statement: We suppose that a set of videos only with the corresponding video-level labels
are given for training. For each video, we uniformly sample L non-overlapping snippets, and then
extract the audio features U = (ul)Ll=1 ∈ Rdu×L with a pre-trained network, where ul is the du
dimensional audio feature representation of the snippet l. Similarly, the snippet-wise visual features
V = (vl)Ll=1 ∈ Rdv×L are also extracted. The video-level label is represented as c ∈ {0, 1, . . . , C},
where C is the number of action classes and 0 denotes the background class. Starting from the audio
and visual features, our approach learns to categorize each snippet into C + 1 classes and hence
localizes actions in weakly-supervised manner.

3.1 MULTI-STAGE CROSS-ATTENTION MECHANISM

While multiple modalities can provide more information than a single one, the modality-specific
information may be reduced while fusing different modalities. To reliably fuse the two modalities,

3For brevity we refer both action and event as action.
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we develop the multi-stage cross-attention mechanism where features are separately learned for
each modality under constraints from the other modality. In this way, the learned features for each
modality encodes the inter-modal information, while preserving the exclusive and meaningful intra-
modal characteristics.

As illustrated in Fig. 1, we first encode the input features U and V to Xu = (xlu)Ll=1 and Xv =
(xlv)Ll=1 via the modality-specific fully-connected (FC) layers fu and fv , where xlu and xlv are in
Rdx . After that, we compute the cross-correlation of Xu and Xv to measure inter-modal relevance.
To reduce the gap of the heterogeneity between the two modalities, we use a learnable weight matrix
W ∈ Rdx×dx and compute the cross-correlation as

Λ = XT
uWXv (1)

where Λ ∈ RL×L. Note that xlu and xlv are l2-normalized before computing the cross-correlation.

In the cross-correlation matrix, a high correlation coefficient means that the corresponding audio
and visual snippet features are highly relevant. Accordingly, the lth column of Λ corresponds to the
relevance of xlv to L audio snippet features. Based on this, we generate the cross-attention weights
Au and Av by the column-wise soft-max of Λ and ΛT , respectively. Then, for each modality, the
attention weights are used to re-weight the snippet features to make them more discriminative given
the other modality. Formally, the attention-weighted features X̃u and X̃v are obtained by

X̃u = XuAu and X̃v = XvAv. (2)

Note that each modality guides the other one through the attention weights. This is to ensure the
meaningful intra-modal information is well-preserved while applying the cross-attention.

To extensively delve into cross-modal information, we repeatedly apply the cross-attention multiple
times. However, during the multi-stage cross-attention, the original modality-specific characteristics
may be over-suppressed. To prevent this, we adopt the dense skip connection (Huang et al., 2017).
More specifically, at stage t, we obtain the attended audio features by

X
(t)
att,u = tanh(

t−1∑
i=0

X
(i)
att,u + X̃(t)

u ) (3)

where X(0)
att,u is Xu, and tanh(·) denotes the hyperbolic tangent activation function. Similar to

X
(t)
att,u, the attended visual features X(t)

att,v are generated for the visual modality.

At the last stage te, we concatenate the attended audio and visual features to yield audio-visual
features,

Xatt = [X
(te)
att,u; X

(te)
att,v ] (4)

where te is empirically set to 2 which will be discussed in the ablation studies in Section 4.3.

Discussion Applying the cross-attention (Eq. 2) brings the audio and visual embeddings closer,
while the skip connections (Eq. 3) enforce modality specific information, more so with dense skip
connections. Using both the cross-attention and the dense skip connections alternatively over mul-
tiple stages, we progressively learn optimal embeddings for fusion. Learning in this way, we aim to
achieve right amount of compatibility between the two embeddings while preserving the modality
specific information, in order to optimize for the training objective.

3.2 OPEN-MAX CLASSIFICATION

Video segments can be dichotomized into foreground actions and background. For precise action
localization, distinguishing the background from the actions is important as well as categorizing the
action classes. However, unlike action classes, the background class comprises of extremely diverse
types of non-actions. Therefore, it is not possible to train for the wide range of background classes
that the model may confront at the test time.

To resolve this problem, we address the background as an open set (Dietterich, 2017; Bendale &
Boult, 2016). As illustrated in Fig. 1, we construct an open-max classifier on top of the multi-
stage cross-attentional feature fusion. Specifically, the open-max classifier consists of two parallel
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Figure 2: Visualization of class activation sequences for the target actions in two example videos:
The ground-truth segments are shown in (a). The class activation sequences obtained without Lcont

and Lpseu are shown in (b), which improve and get better aligned to the ground-truth segments when
these continuity losses are used as shown in (c). The activation is depicted in gray-scale, where lower
intensity indicates more strong activation.

FC layers for action classification and foreground reliability estimation. The attended audio-visual
feature xlatt, where l = 1, . . . , L, is fed snippet-wise into the open-max classifier. The first FC
layer outputs a snippet-wise activation vector hl = [hl(1), . . . , hl(C)] for C action classes, which is
converted to probability scores, plac by soft-max function.

Simultaneously, the second FC layer is applied on xlatt, followed by a sigmoid function to estimate
its foreground reliability, µl ∈ [0, 1]. The foreground reliability, µl, is the probability of snippet
l belonging to any action class. The low reliability indicates that no action occurs in the snippet.
Therefore, we compute the probability for the background class as the complement of µl, by plbg =

1− µl.

Lastly, the open-max classifier outputs the probability distribution pl over C + 1 classes including
the background and C actions as

pl = [plbg; µlplac]. (5)

3.3 TRAINING LOSS

Next, we describe the loss functions to train our model. The actions or foreground do not abruptly
change over time. To impose this constraint, we devise two types of temporal continuity losses.

Foreground continuity loss: Foreground continuity implies two important properties for neighbor-
ing snippets: (a) similar foreground reliability in a class-agnostic way, and (b) consistent open-max
probabilities for a target foreground class.

The first of the two constraints is imposed via class-agnostic foreground continuity:

µl
ag =

1

B + 1

B/2∑
i=−B/2

G(i)µl−i (6)

where G(i) is a Gaussian window of width B + 1 to apply temporal smoothing over foreground re-
liability around lth snippet. For the second constraint, temporal Gaussian smoothing is applied over
open-max probability of video-level ground-truth action class, ĉ, to obtain class-specific foreground
continuity:

µl
sp =

1

B + 1

B/2∑
i=−B/2

G(i) pl−i(ĉ) (7)

Finally, the foreground continuity loss is defined as:

Lcont =
1

L

L∑
l=1

|µl − µl
ag|+ |µl − µl

sp|. (8)

The foreground continuity loss imposes temporal continuity of foreground, and hence also helps in
separating background from the action classes.
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Table 1: Ablation for multi-stage cross-attention. The results for different stages of the cross-
attention are reported for the AVE and ActivityNet1.2 datasets. The comparison with the uni-modal
approach shows the impact of leveraging the multi-modality and the cross-attention.

Uni-modal Multi-modal

Audio Visual 0-stage 1-stage 2-stage 3-stage

AVE Accuracy (%) 32.1 45.2 65.0 75.0 77.1 75.6

ActivityNet1.2 mAP@IoU (%)

0.5 12.3 38.3 37.6 42.1 44.8 39.5
0.6 10.9 32.9 32.4 35.3 37.8 33.8
0.7 9.7 25.4 26.7 29.5 30.8 27.9
0.8 7.6 19.2 19.4 20.8 22.5 20.9

Avg. 7.8 22.1 22.0 24.1 26.0 23.3

Pseudo localization loss: Here, we consider the action or background class continuity, which im-
plies that the open-max probabilities, pl, agrees with the classification of neighbouring snippets.
This can be used to obtain the pseudo label for snippet l. We first average the open-max prediction
of N neighbor snippets and itself, ql = 1

N+1

∑l+N/2
i=l−N/2 p

i. We set ĉl = arg maxc(q
l(c)) as the

pseudo label, but only retain it when the largest class probability of ql is higher than a predefined
threshold τ . Accordingly, the pseudo localization loss is formulated by

Lpseu =
1

L

L∑
l=1

1(max(ql) ≥ τ)(− log pl(ĉl)) (9)

Total loss: Additionally, we employ the multiple instance learning (MIL) and co-activity similarity
(CAS) losses (Paul et al., 2018). The final loss L is defined by

L = Lmil + αLcas + βLcont + γLpseu (10)
where Lmil and Lcas denote MIL and CAS losses, respectively. For details see Appendix D.

Figs. 2 (b) and (c) compare the class activation sequences along the temporal axis for the target
classes between the models trained without and with the two consistency losses, respectively. We
see that class activations are more continuous in the model with the consistency losses.

4 EXPERIMENTS

In this section, we provide experimental analysis and comparative evaluation to show the effective-
ness of the proposed method. More experiments and qualitative results are in the Appendix.

4.1 DATASETS AND EVALUATION METHOD

Datasets: We evaluate our approach on Audio-Visual Event (AVE) and ActivityNet1.2 datasets.

AVE dataset is constructed for audio-visual event localization, which contains 3,339 training and
804 testing videos, each lasting 10 seconds with event annotation per second. There are 28 audio-
visual event categories covering a wide range of domains, such as animal and human actions, vehicle
sounds, and music performance. Each event category has both audio and visual aspects, e.g. church
bell, baby crying, man speaking etc.

ActivityNet1.2 is a temporal action localization dataset with 4,819 train and 2,383 validation videos,
which in the literature is used for evaluation. It has 100 action classes of wider variety than AVE
dataset, with on an average 1.5 instances per video. The average length of the videos in this dataset
is 115 seconds, often with weak audio cues, which makes action localization as well as leveraging
audio harder.

Evaluation metric: We follow the standard evaluation protocol of each dataset. For the AVE
dataset, we report snippet-wise event prediction accuracy. For the ActivityNet1.2 dataset, we gen-
erate the action segments (start and end time) from snippet-wise prediction (details are described
in the following section), and then measure mean average precision (mAP) at different intersection
over union (IoU) thresholds.

6



Published as a conference paper at ICLR 2021

Table 2: Ablations for the consistency losses and open-max classifier. Consistency losses: The
lower part of the table shows the impact of each of the two consistency losses, when used with the
open-max classifier. Open-max vs soft-max: The results for the soft-max are also shown, which
demonstrates the advantage of foreground/background modelling by the open-max classification on
both the datasets. The model with 2-stage cross-attention is used.

Method Lcont Lpseu
AVE ActivityNet1.2 [mAP@IoU (%)]

Accuracy (%) 0.5 0.6 0.7 0.8 Avg.

Soft-Max S-I X 68.5 39.4 35.7 30.7 19.8 23.8

Open-Max
O-I X 64.9 39.9 33.7 23.8 14.3 20.3
O-II X 75.9 44.1 37.4 31.1 22.4 25.7
O-III X X 77.1 44.8 37.8 30.8 22.5 26.0

Figure 3: Visualization of the action localization result for an example video from ActivityNet1.2.
The ground truth is shown in (a), highlighted in green. The localization and the class activation
sequence of the visual-only model are shown in (b) and (c), respectively. Finally, the localization
and the class activation sequence for the proposed audio-visual method are shown in (d) and (e).

4.2 FEATURE EXTRACTION AND IMPLEMENTATION DETAILS

Feature extraction: We use the I3D network (Carreira & Zisserman, 2017) and the ResNet152
architecture (He et al., 2016) to extract the visual features for ActivityNet1.2 and AVE, respec-
tively. The I3D network is pre-trained on Kinetics-400 (Kay et al., 2017), and the features consist
of two components: RGB and optical flow. The ResNet 152 is pre-trained on the ImageNet (Rus-
sakovsky et al., 2015), and the features are extracted from the last global pooling layer. To extract
the audio features, we use the VGG-like network (Hershey et al., 2017), which is pre-trained on the
AudioSet (Gemmeke et al., 2017), for both AVE and ActivityNet1.2 datasets.

Implementation Details: We set dx to 1,024, and the LeakyRelu and hyperbolic tangent functions
are respectively used for the activation of modality-specific layers and cross-attention modules. In
training, the parameters are initialized with Xavier method (Glorot & Bengio, 2010) and updated by
Adam optimizer (Kingma & Ba, 2015) with the learning rate of 10−4 and the batch size of 30. Also,
the dropout with a ratio of 0.7 is applied for the final attended audio-visual features. In the loss, the
hyper parameters are set as B = 4, α = 0.8, β = 0.8 and γ = 1.

Localization at test time: For event localization at test time, i.e. snippet classification, each snippet
l is classified into one of event classes (including background) by arg maxc p

l(c), where pl is the
open-max probability of snippet l. For action localization, we follow the two-stage thresholding
scheme of (Paul et al., 2018). The first threshold is applied to filter out the classes that have video-
level scores less than the average over all the classes. The second threshold is applied along the
temporal axis to obtain the start and the end of each action instance.

4.3 ABLATION ANALYSIS

Multi-stage cross-attention: To evaluate the effectiveness of the multi-stage cross-attention in
audio-visual fusion, we compare two uni-modal methods (audio or visual) and four multi-modal
methods with different stages (0-3 stages) on the AVE and ActivityNet1.2 datasets in Table 1. The
pseudo-label losses and the open-max classifiers are used in all six cases. In the uni-modal methods,
the input feature is embedded using an FC layer, and then fed into the open-max classifier. The
0-stage method denotes a naive fusion, where audio and visual features are fused by simple con-
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Table 3: Impact of dense skip con-
nections: Ablation studies on dense
skip connection in terms of average of
mAP@[0.5:0.05:0.95] for the Activi-
tyNet1.2 dataset. For 2-stage model, no,
skip, and dense connections are verified.

Method Avg. mAP

w/o skip connection 24.1
w/ skip connection 24.9
w/ dense skip connection 26.0

Table 4: Comparison of the number of FLOPS and
the average mAP@[0.5:0.05:0.95] on the ActivityNet1.2
dataset for visual-only, 1-stage, and 2-stage models. dx×
dx are the dimensions for the cross-correlation matrixW .

Method dx No. FLOPS Avg. mAP

Visual-only 1024 2.3×106 22.1
1-stage 1024 3.5×106 24.1
2-stage 1024 4.0×106 26.0

Visual-only 512 1.2×106 21.0
2-stage 512 1.7×106 25.9

catenation. Even this naive fusion yields higher performance than the uni-modal methods on the
AVE dataset. However, that is not the case with more challenging task of the action localization on
ActivityNet1.2 dataset. Furthermore, all the later stages improve considerably over 0-stage and the
uni-modal cases, for the both datasets. The 2-stage cross-attention achieves the best performance
for the both datasets (more in Appendix A). Interestingly, even with the minimal audio cue in Ac-
tivityNet1.2 (avg. mAP of audio only is 7.8%), the proposed audio-visual features improve the avg.
mAP over visual-only and naive fusion (0-stage) models by 4%.

Fig. 3 shows the qualitative results of the proposed and visual-only models given an example of the
ActivityNet1.2 dataset. At the beginning of the video, a performer is shown without any activity.
The visual-only model incorrectly predicts the beginning part as a target action while our proposed
model correctly predicts it as background. Also, the visual-only model cannot catch the action at the
last part of the video since it is visually similar across the frames and has minimal visual activity.
Whereas, our model correctly recognizes the last part as an action, owing to the multi-stage cross-
attention of effective fusion of the two modalities. More qualitative results are in Appendix E.

Consistency losses: We show the ablation over the two proposed losses, Lcont and Lpseu, while
using Open-Max classifier and 2-stage cross-attention, in the lower part of the Table 2. We denote
the method with only Lcont loss by O-I and with only Lpseu loss by O-II. The proposed method (O-
III) with both of the losses performs the best suggesting the importance of both of the losses. Further,
O-II outperforms O-I by a big margin on both the datasets, implying that the pseudo localization
loss is more critical for the action localization (more in Appendix B.1). This result demonstrates
that guiding temporal continuity is essential in the long untrimmed videos as well as the short ones.

Open-max classifier: We compare the open-max classifier with the soft-max classifier where the
last FC layer outputs activations for C + 1 classes are normalized by the soft-max function. As the
background is considered a closed set in the soft-max approach, the foreground continuity loss is not
available. The soft-max is denoted by S-I in Table 2. Both O-II and O-III versions of the open-max
outperform the S-I method with the soft-max. The O-III method improves the accuracy by 8.6% on
the AVE dataset and the avg. mAP by 2.2% on the ActivityNet1.2 dataset. For further analysis see
Appendix B.2. This shows the advantage of modelling background with the open-max classifier.

Dense skip connections: We evaluate the impact of dense skip connections in Table 3 for 2-stage
model on the ActivityNet1.2. Compared to no skip connection, performance is improved with the
skip connections, and further boosted with the dense skip connection to avg. mAP of 26.0%. This
shows preserving the modality specific information leads to better fusion and action localization.

4.4 MODEL EFFICIENCY

Though we successfully leverage the audio modality to improve action localization performance,
the added modality leads to increased computational cost. The trade-off between efficiency and
performance due to the fusion with audio modality is demonstrated in Table 4. When using feature
dimension, dx =1024, the fusion increases the computation over visual-only method by about 52%
and 74% after 1-stage and 2-stage, respectively. When we reduce dx to 512, the visual-only model
gets affected while the 2-stage model maintains its performance at 25.9%. Thanks to the effective-
ness of the proposed fusion, even with smaller dx its avg. mAP is well above that of video-only
model with dx = 1024, while using about 26% less computation (1.7 MFLOPS vs 2.3 MFLOPS).
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Table 5: Comparison of the proposed method with the state-of-the-art fully and weakly-supervised
methods (separated by ‘/’) on the AVE dataset. Snippet-level accuracy (%) is reported.

Method Tian et al. (2018) Lin et al. (2019) Owens & Efros (2018) Xuan et al. (2020) Proposed

Accuracy (%) 74.7 / 73.1 75.4 / 74.2 72.3 / 68.8 77.1 / 75.7 - / 77.1

Table 6: Comparison of our method with the state-of-the-art action localization methods on the
ActivityNet1.2 dataset. The mAPs (%) at different IoU thresholds and average mAP across the IoU
thresholds are reported. † indicates audio-visual models. ?experiment done using author’s code.

Method Supervision mAP@IoU (%)

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 Avg.

Zhao et al. (2017) Full 41.3 38.8 35.9 32.9 30.4 27.0 22.2 18.2 13.2 6.1 26.6

Paul et al. (2018) Weak 37.0 33.5 30.4 25.7 16.6 12.7 10.0 7.0 4.2 1.5 18.0
Liu et al. (2019b) Weak 37.1 33.4 29.9 26.7 23.4 20.3 17.2 13.9 9.2 5.0 21.6
Liu et al. (2019a) Weak 36.8 - - - - 22.0 - - - 5.6 22.4
Jain et al. (2020) Weak 39.4 - - - 15.4 - - - - - -
Shi et al. (2020) Weak 41.0 37.5 33.5 30.1 26.9 23.5 19.8 15.5 10.8 5.3 24.4
Luo et al. (2020) Weak 37.4 - - - 23.1 - - - 2.0 - 20.3

Tian et al. (2018)†? Weak 15.4 13.9 12.5 11.2 10.2 9.1 7.6 5.7 1.6 0.3 8.8
Naive fusion (0-stage)† Weak 41.2 38.4 34.8 31.8 26.3 17.0 5.6 2.2 0.8 0.2 19.8
Naive fusion (0-stage)† + CL Weak 39.4 37.0 33.5 30.6 27.7 23.6 20.0 13.6 3.0 0.6 22.9

Ours† Weak 44.8 42.1 37.8 34.2 30.8 26.7 22.5 15.9 4.0 1.0 26.0
Ours† (efficient) Weak 45.0 41.8 38.3 34.0 29.7 26.3 22.1 15.7 4.7 1.0 25.9

4.5 COMPARISON WITH THE STATE-OF-THE-ART

Audio-visual event localization: In Table 5, we compare the proposed method with the recent fully
and weakly-supervised methods on the AVE dataset for audio-visual event localization task. In the
weakly-supervised setting, our method performs better than all of the existing methods at least by
1.4%. Note that, even though learned in weak-supervision, our approach achieves a comparable
accuracy (77.1%) to the fully-supervised accuracy of the state-of-the-art method (Xuan et al., 2020).

Temporal action localization: In Table 6, we apply the proposed method to weakly-supervised
action localization in long duration videos of the ActivityNet1.2 dataset. We report results for our
method as well as its efficient version from Section 4.4. The mAP scores at varying IoU thresholds
are compared with the current state-of-the-art methods. Both our method and its efficient version
achieve the highest mAPs for 8 out of 10 IoU thresholds, and outperform all of the previous methods
with the avg. mAP of 26.0%. We also significantly outperform the audio-visual based method
of Tian et al. (2018) by the avg. mAP of 17.2%. Additionally, we compare with two naive fusions
without the cross-attention (0-stage, SoftMax) with and without the continuity losses (denoted as
CL in the Table), both are bettered comfortably by our method. This demonstrates that the effective
fusion of audio and visual modalities is critical for action localization. Furthermore, our approach
is even comparable to the fully-supervised method in (Zhao et al., 2017).

5 CONCLUSION

We presented a novel approach for weakly-supervised temporal action localization in videos. In
contrast to other methods, we leveraged both audio and visual modalities for this task. This is the
first attempt at audio-visual localization of unconstrained actions in long videos. To collaboratively
fuse audio and visual features, we developed the multi-stage cross-attention mechanism that also
preserves the characteristics specific to each modality. We proposed to use the open-max classifier
to model the action foreground and background, in absence of temporal annotations. Our model
learns to classify video snippets via two consistency losses that enforce continuity for foreground
reliability and open-max probabilities for action classes and the background. We conducted exten-
sive experiments to analyze each of the proposed components and demonstrate their importance.
Our method outperforms the state-of-the-art results on both AVE and ActivityNet1.2 datasets.
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A ANALYSIS ON MULTI-STAGE CROSS-ATTENTION

In this section, we conduct extensive analysis for the impact of the multiple stages and dense skip
connection of the proposed cross-attention mechanism. Tables 7 and 8 show the experimental re-
sults.

Training multiple stages of cross-attention: As shown in the Table 1, the 3-stage model suffers
from performance drop. To analyze this, in Table 7, we compare 2- and 3-stage models on each
of ‘w/o skip connection’, ‘w/ skip connection’, and ‘w/ dense skip connection’. Without the skip
connection, 3-stage model improves over 2-stage model, which is intuitively expected. With the skip
connection, avg. mAP of 3-stage model drops compared to 2-stage model, from 24.9% to 23.2%.
But, when the third stage is appended to the trained (and now frozen) stages of 2-stage model, the
avg. mAP is maintained at 24.9%. Similarly, with the dense skip connection, training the entire
3-stage model end-to-end leads to degraded performance. But, when training the model frozen
till the second stage the drop is much less. The fact that, in 3-stage model, better performance is
obtained when training with first two stages frozen compared to training end-to-end, shows that the
optimization gets hard in the latter. Therefore, we conclude that though the third stage helps without
the skip connections, due to harder optimization with more stages and (dense) skip connections,
2-stage model is the optimal choice.

Table 7: Comparing 2-stage and 3-stage models: Training of 3-stage model is analyzed with skip
connections in comparison to the 2-stage model.

Method Model Avg. mAP

w/o skip connection 2-stage 24.1
3-stage 24.7

w/ skip connection
2-stage 24.9
3-stage 23.2
3-stage (frozen till 2nd stage) 24.9

w/ dense skip connections
2-stage 26.0
3-stage 23.3
3-stage (frozen till 2nd stage) 25.2

Table 8: Need for multi-stage: Ablation study on the size of the dimension for the cross-correlation
matrixW ∈ Rdx,u×dx,v for 1-stage model on the AVE dataset. 2-stage model withW ∈ R1024×1024

is the proposed.

Method dx,u dx,v Accuracy(%)

1-stage

128 512 72.7
128 1024 73.2
128 2048 73.7
512 512 74.8
512 1024 74.8
512 2048 74.7

1024 512 73.2
1024 1024 75.0
1024 2048 75.0
2048 512 73.7
2048 1024 74.3
2048 2048 74.4

2-stage 1024 1024 77.1

Need for multi-stage cross-attention: In Table 8, we experiment with 1-stage model, varying the
size of dimensions (dx,u and dx,v) of the cross-correlation matrix W on the AVE dataset. We tried
several hyper-parameter settings in 1-stage model, but none of them could outperform the default
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setting (dx,u = 1024, dx,v = 1024) of 2-stage model even with more parameters. Instead of
increasing the parameters in 1-stage model itself, when an additional stage is added (i.e. a weight
matrix learned with a non-linear activation function) better performance is achieved. Indeed, it is
often not trivial to replace a sequence of non-linear functions with another non-linear function as we
experimentally observe here. The intention behind the multi-stage is also to extensively delve into
cross-modal information, progressively learning the embeddings for each modality.

B ANALYSIS FOR CONSISTENCY LOSSES AND OPEN-MAX CLASSIFICATION

B.1 ANALYSIS OF CONSISTENCY LOSSES ON DIFFERENT STAGE MODELS

In Table 9, we conduct the analysis for the consistency losses for 0, 1 and 3-stage models as well as
the chosen 2-stage model.

Effect of losses on different stage models: The impact of continuity losses is analogous on 1-, 2-
and 3-stage models. Each of the two continuity losses help, but the pseudo localization loss (Lpseu) is
more effective. Also, there is further benefit of using them together for almost all the IoU thresholds
and stages. In 0-stage model, i.e. without the cross-attention, O-II shows the highest snippet-level
performance on the AVE dataset, but the lowest temporal action localization performance on the
ActivityNet1.2 dataset. From this, we understand that Lpseu has difficulty in achieving continuity
when audio and visual features are overly heterogeneous. Consequently, clear benefit is observed
when the cross-attention is used.

Interdependence of cross-attention and pseudo localization loss: When comparing the O-I of
all 0-3 stage models, we see that the performance improvement by stacking the cross-attention is
marginal, and the pseudo localization is critical to the performance. This follows from Eq. 9, where
Lpseu is only activated at snippet lwhen classification over its neighboring snippets does not strongly
agree on the action class or background. To analyze this, we check how frequently Lpseu is activated
when cross-attention is not used and when it is used. For 0-stage model, without continuity losses,
Lpseu is activated on 11.1% snippets of the ActivityNet1.2 training set. The same frequency is 38.2%
for 2-stage model, again without the continuity losses. This shows that when the cross-attention is
used, more often the open-max classification of a snippet fails to strongly agree with its neighbors.
Therefore, the pseudo localization loss is much needed to enforce the continuity.

Table 9: For 0-3 stage models, ablation analysis on consistency losses for open-max (O-0, O-I, O-II,
and O-III) classifiers on the AVE and the ActivityNet1.2 datasets. O-III of 2-stage is the proposed.

Method Lcont Lpseu
AVE ActivityNet1.2 [mAP@IoU (%)]

Accuracy (%) 0.5 0.6 0.7 0.8 Avg.

0-stage
O-I X 57.7 42.8 35.9 27.6 7.2 21.0
O-II X 66.8 29.4 25.3 20.5 13.6 16.5
O-III X X 65.0 37.6 32.4 26.7 19.4 22.0

1-stage
O-I X 64.6 39.8 33.4 27.4 13.0 21.9
O-II X 73.7 41.5 34.9 28.4 20.9 24.0
O-III X X 75.0 42.1 35.3 29.5 20.8 24.1

2-stage
O-I X 64.9 39.9 33.7 23.8 14.3 20.3
O-II X 75.9 44.1 37.4 31.1 22.4 25.7
O-III X X 77.1 44.8 37.8 30.8 22.5 26.0

3-stage
O-I X 66.2 38.4 31.8 25.5 17.7 21.5
O-II X 74.3 39.8 33.7 27.9 20.7 23.2
O-III X X 74.6 39.5 33.8 27.9 20.9 23.3

B.2 ANALYSIS OF LOSSES AND OPEN-MAX CLASSIFICATION ON 2-STAGE MODEL

In Table 10, we conduct more extensive analysis for the consistency losses and the open-max clas-
sifier. Specifically, we replace the open-max classification approach with soft-max one. Then, for
both classifiers with the 2-stage cross-attention, we ablate the foreground continuity or pseudo local-
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ization losses where CAS and MIL losses are commonly used. First, the performance gap between
S-0 and O-0, where only CAS and MIL losses are used, shows the difficulty of learning two parallel
branches in weakly-supervised manner. However, when adding the pseudo localization loss, (S-I
and O-II), the open-max classification approach is further improved than the soft-max. Hence, the
pseudo labels reduce the fallacious action classification of snippets and are more effective on the
open-set background modeling than the closed-set modeling.

Next, O-I and O-II shows higher performance than O-0. Similarly, S-I is superior to S-0. This
indicates that erroneous classifications are suppressed by the correctly classified neighbors when
using the consistency losses. Also, comparing O-I and O-II, the pseudo localization loss gives more
performance improvement. This is because the pseudo localization loss addresses the consistency
of classification scores of all the classes including background, while the foreground continuity loss
smoothens foreground reliability being class-agnostic or only for the target class. For all of the IoU
thresholds (except 0.7), O-III, open-max classification with both of the consistency losses, yields the
highest performance. Therefore, all of the proposed open-max classification and consistency losses
are effective to temporal action or event localization in videos.

Table 10: Ablation analysis of 2-stage model on consistency losses for soft-max (S-0 and S-I) and
open-max (O-0, O-I, O-II, and O-III) classifiers on the AVE and the ActivityNet1.2 datasets. O-III
of is the proposed.

Method Lcont Lpseu
AVE ActivityNet1.2 [mAP@IoU (%)]

Accuracy (%) 0.5 0.6 0.7 0.8 Avg.

S-0 62.1 36.4 28.4 22.7 15.8 19.6
S-I X 68.5 39.4 35.7 30.7 19.8 23.8
O-0 60.4 35.4 27.5 22.9 12.7 18.7
O-I X 64.9 39.9 33.7 23.8 14.3 20.3
O-II X 75.9 44.1 37.4 31.1 22.4 25.7
O-III X X 77.1 44.8 37.8 30.8 22.5 26.0

C DETAILS OF THE PROPOSED ARCHITECTURE

Layer/Operation No. parameters Input Output

fu + LeakyRelu du × dx U Xu ∈ Rdx×L

fv + LeakyRelu dv × dx V Xv ∈ Rdx×L

W (1) dx × dx Xu, Xv X̃
(1)
u ∈ Rdx×L, X̃(1)

v ∈ Rdx×L

Dense Connection + Tanh - Xu, Xv , X̃(1)
u , X̃(1)

v X
(1)
att,u ∈ Rdx×L, X(1)

att,v ∈ Rdx×L

W (2) dx × dx X
(1)
att,u, X(1)

att,v X̃
(2)
u ∈ Rdx×L, X̃(2)

v ∈ Rdx×L

Dense Connection + Tanh - Xu, Xv , X(1)
att,u, X(1)

att,v , X̃(2)
u , X̃(2)

v X
(2)
att,u ∈ Rdx×L, X(2)

att,v ∈ Rdx×L

Concatenation - X
(2)
att,u, X(2)

att,v Xatt ∈ R2dx×L

fac + Soft-Max 2dx × C Xatt (plac)
L
l=1 ∈ RC×L

fµ + Sigmoid 2dx × 1 Xatt (µl)Ll=1 ∈ R1×L

D MULTIPLE INSTANCE LOSS AND CO-ACTIVITY SIMILARITY LOSS

We apply multiple-instance learning loss for classification. The prediction score corresponding to a
class is computed as the average of its top k activations over the temporal dimension. Co-activity
similarity loss (CASL) (Paul et al., 2018) is computed over two snippet sequences from a pair of
videos, to have higher similarity when the videos have a common class.

E QUALITATIVE EVALUATION

We provide additional qualitative results for action localization on the ActivityNet1.2 dataset. Fig. 4
compares the proposed method with the method trained on visual modality (‘Visual-only’). The
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(a) Cheerleading

(b) Playing violin

(c) Grooming horse

(d) Playing field hockey

Figure 4: Qualitative results for action localization. Ground-truth (green), prediction by the visual-
only method (orange), and prediction by the proposed method (blue) are shown. Class activation
sequences are visualized below each prediction, darker shade means higher activation.

open-max classifier and total loss function are commonly used for both. In Figs. 4(a) and (b), be-
cause the videos are static in visual modality, the background segments in early parts of videos are
miss-localized as actions in the visual-only model. Contrarily, proposed method distinguishes the
background based on the action-related audio (cheerleading music and violin sound). In Fig. 4(c),
the brushing sound is overlapped with the loud human narration lasting throughout videos. Nev-
ertheless, the proposed method effectively extracts the crucial audio cues and fuses them with the
visual ones. In Fig. 4(d), even though the early part of the action is visually occluded by large logos,
our method exactly localizes the action. Also, for all of the class activation sequences, the activations
by the proposed method are more consistently high for actions. This means that our collaboration
of audio and visual modalities is more robust in distinguishing foreground from background.

Fig. 5 illustrates the cases where audio degrades the performance. Fig. 5 (a) shows an example
video for action class ‘playing violin’. The violin sound of the soloist and the band is intermingled
in the video. In the end, the sound of violin continues making our model predict the action but since
camera focuses on the band, the ground-truth does not include those frames. Fig. 5 (b) shows an
example of action ‘using parallel bars’. Here the repeated background music is irrelevant to action,
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(a) Due to ground-truth labelling confined to visual modality

(b) Due to background music repeated for a long time

Figure 5: Examples where localization performance is degraded by audio.

therefore the class activation is bit off in the last part. However, thanks to the visual modality, the
prediction is still reasonable.
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