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Abstract

Transformers have demonstrated effectiveness in solving partial differential equa-
tions (PDEs). However, extending them to solve PDEs on complex geometries
remains a challenge. In this work, we propose SpiderSolver, a geometry-aware
transformer that introduces spiderweb tokenization for handling complex domain
geometry and irregularly discretized points. Our method partitions the irregular
spatial domain into spiderweb-like patches, guided by the domain boundary ge-
ometry. SpiderSolver leverages a coarse-grained attention mechanism to capture
global interactions across spiderweb tokens and a fine-grained attention mechanism
to refine feature interactions between the domain boundary and its neighboring
interior points. We evaluate SpiderSolver on PDEs with diverse domain geometries
across seven datasets, including cars, airfoils, blood flow in the human thoracic
aorta, as well as canonical cases governed by the Navier-Stokes, Darcy flow, elas-
ticity, and plasticity equations. Experimental results demonstrate that SpiderSolver
consistently achieves state-of-the-art performance across different datasets and
metrics, with better generalization ability in the OOD setting. The code is available
at https://github.com/Kai-Qi/SpiderSolver.

1 Introduction

Solving partial differential equations (PDEs) is fundamental to many computational problems in
science and engineering. Classical numerical methods involve discretizing computational domains and
solving the resulting algebraic systems. However, for domains with complex boundary geometries and
irregular discretization, these methods require complex mesh generation and incur high computational
costs. For example, computing the drag force on a car (Figure 1) requires solving the Navier-Stokes
equations with a car-shaped boundary. Classical methods discretize the computational domain into
irregular meshes or points (e.g., over 30,000 points for the Shape-Net Car dataset), leading to high
computational complexity and cost.

In recent years, there has been growing interest in applying deep learning methods to solve PDEs,
such as PINNs [1], neural operators [2, 3, 4], etc. However, most of the current methods deal with
regular computational domains. For example, the well-established FNO [3] solves PDE in rectangular
domains with uniform grids due to its implementation via the Fast Fourier Transform. To efficiently
solve PDEs with irregularly shaped domains, Geometry-Informed Neural Operator (GINO) [5] and
Geo-FNO [6] are proposed based on deforming the irregularly shaped domain into a uniform latent
mesh. Such approaches encounter difficulties with mesh transformations for complex geometries
of the computational domains. The Graph Neural Operator (GNO) [2] adopts the Graph Neural
Network [7] as a backbone by formulating the kernel integral operator as message passing on graphs,
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Figure 1: Visualization of datasets. For Shape-Net Car and AirfRANS, we estimate the surface
pressure on the car/airfoil and the surrounding air velocity based on their shapes, aiming to predict
the drag and lift forces for a driving car or a flying airplane. The object surfaces of cars, airfoils, and
blood vessels serve as PDE domain boundaries, with the interior regions surrounding the car/airfoil
surfaces or lying inside the blood vessel.

which can be directly applied to irregular meshes. 3D-GenCA [8] introduces a pre-trained 3D vision
model [9] for GNO, to encode the complex boundary of the domain. However, it does not fully
consider the complex physical relationships between boundary and interior mesh points.

Recently, Transformers [10], a widely used backbone in deep learning, has been applied to solve
PDEs, which can also be directly applied on irregular meshes. FactFormer [11], MINO [12], and
Galerkin Transformer [13] are based on the idea that the dot-product attention can be considered as
an approximation of an integral transform with a non-symmetric learnable kernel function, which
relates Transformers to the FNO. These transformers have demonstrated promising performance for
solving PDEs with complex geometry. However, massive mesh points lead to the huge computational
overhead of Transformers because the canonical attention in Transformers has quadratic complexity,
and brings challenges for Transformers to capture the complex physical relations between irregular
mesh points. Transolver [14] proposes a Physics-Attention mechanism that decomposes the dis-
cretized domain into a series of learnable slices, with mesh points exhibiting similar physical states
assigned to the same slice. Notably, the slices are learned without explicitly utilizing the geometric
information of the domain.

In this paper, we focus on designing a transformer-based PDE solver for domains with complex
boundary geometries and irregularly discretized points. The main challenges include efficient
tokenization over irregular computational domains and the integration of domain and boundary
geometry into the network design. Following this motivation, we propose SpiderSolver, a geometry-
aware Transformer. SpiderSolver uses spiderweb tokenization to partition the domain into spiderweb-
like patches, guided by spectral clustering of the boundary and the distance of interior points from
the boundary. Spiderweb tokenization partitions physical space in a more fundamental and physically
intuitive way, achieving a trade-off between computational efficiency and capturing the physical
interactions of spatial points. Based on spiderweb tokenization, as shown in Figure 2, SpiderSolver
integrates coarse-grained and fine-grained attention to capture the physical relationship between
points of interior domain and boundary surface. We evaluate our SpiderSolver on two industrial-level
design tasks and one blood simulation task, as well as canonical cases governed by the Navier-Stokes
and Darcy flow equations. These tasks are challenging since they require the model to handle various
complex boundary geometries. The experiments show that our SpiderSolver achieved state-of-the-art
results compared to other neural operators and Transformer-based PDE solvers for these tasks.

Overall, our contributions are as follows. First, we introduce a novel complex computational domain
partitioning method, Spiderweb Tokenization, which divides the domain into spiderweb-like patches.
Second, we propose SpiderSolver, a geometry-aware transformer for solving PDEs with complex
boundary geometries and discretization. SpiderSolver integrates coarse-grained and fine-grained
attention to capture the physical relationship between inner space and boundary surfaces. Third,
SpiderSolver surpasses the state-of-the-art methods in the PDE solving tasks for car and airfoil design,
the blood flow dynamics in the human thoracic aorta, as well as two fundamental PDE tasks.

2 Related Work

The deep learning methods have been widely applied to solve PDEs, which can be roughly categorized
into two paradigms. The first paradigm, such as PINNs [1], Deep Ritz [15], etc, is to approximate the
solutions of PDEs by neural networks and formalize the physical constraints (including equations,
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initial and boundary conditions) as objective functions to optimize network parameters. This kind
of method requires the exact formalization of PDEs and needs to retrain the network for new PDEs.
Another paradigm is operator learning, e.g., DeepONet [4] and FNO [3]. It is to learn the nonlinear
mapping (i.e., operator) between the function space of parameters and the function space of the PDEs’
solutions. FNO [3] approximates the solution operator by the kernel integral operator and calculates
it in the frequency domain by the fast Fourier transform (FFT). Afterward, a series of variants of
FNO are proposed. F-FNO [16] enhances model efficiency by employing factorization in the Fourier
domain. U-NO [17] and U-FNO [18] combine FNO and U-Net for multiscale problems. However,
most of these methods solve PDEs with regular computational domains.

For solving PDEs with irregularly shaped domains, Geo-FNO [6] and GINO [5] are based on the
idea of deforming the irregular input domain into a uniform latent mesh on which the FFT used in
FNO can be applied. However, such mesh transformations are difficult for complex geometries of the
computational domains, such as a car-shaped domain, resulting in performance degradation. Graph
Neural Operator (GNO) [2] formulates the FNO’s kernel integral operator as message passing on
graphs, leveraging Graph Neural Networks [7] to construct neural operators. However, it should be
noted that graph kernels are insufficient in their capacity to capture global information.

Transformers [10] have also been introduced as a backbone to solve PDEs with irregularly shaped
domains. MINO [12], FactFormer [11], and Galerkin Transformer [13] are based on the idea that
the dot-product attention can be considered as an approximation of an integral transform with a
non-symmetric learnable kernel function, which relates Transformer to the FNO. Vito [19] combines
the vision transformer [20] and the U-net [21] to construct the neural operator. To overcome the
quadratic complexity of attention, GNOT [22] and ONO [23] utilize the well-established linear
Transformers, such as Reformer [24], Performer [25]. These methods directly apply attention to
mesh points, which is computationally prohibited when the number of points is large. Transolver [14]
decomposes the discretized domain into a series of learnable slices, in which mesh points under
similar physical states are assigned to the same slice. Then Transolver applies attention to these
learnable slices to learning intrinsic physical relations.

In contrast, SpiderSolver is a geometry-aware Transformer-based PDE solver, which is designed
to partition the domain into spiderweb-like patches utilizing physical and geometric knowledge to
reduce the computation cost of attention. Besides, SpiderSolver adopts the multi-grained attention
mechanism to capture the intricate physical correlation of complex boundaries and interior points.

3 Our Proposed SpiderSolver

Problem setup. We consider the partial differential equations (PDEs) defined over a domain Ω ∈ Rd,
where d represents the dimensionality of the space. In this work, the domain Ω has general irregular
geometry and boundary, typically discretized into N mesh points, represented as G ∈ RN×d.
Specifically, G = {gi}NI

i=1 ∪ {sj}NB
j=1, where IG = {gi}NI

i=1 represents the NI interior points of Ω
(off-boundary points), and BG = {sj}NB

j=1 denotes the NB boundary points of Ω, and NB +NI = N .
Our goal is to learn a non-linear operator that outputs the physical field u to approximate physical
quantities over the geometry G.

For PDEs with domain boundaries in general irregular geometries (e.g., the boundaries shown in
Figure 1), the physical quantities at different locations within the domain are influenced by their
proximity to the boundary and the geometry of the boundary itself. In automotive aerodynamics,
the flow field exhibits stratification around the vehicle. Near the car surface, airflow adheres to
the surface geometry, while at greater distances, the velocity gradually aligns with the freestream.
The aerodynamic effect is influenced by the car’s surface curvature and angle of attack. Horizontal
surfaces, such as the roof, have less impact on the flow, whereas regions with larger angles, such as
the front windshield, significantly alter both the flow direction and speed.

Based on the above observations, we propose SpiderSolver, a geometry-aware transformer, specifically
defined as a fast PDE solver for solving PDEs over the domains with irregular geometries. As shown in
Figure 2, SpiderSolver integrates spiderweb tokenization (Figure 2 (a)) into a transformer architecture.
As will be presented in Section 3.1, spiderweb tokenization partitions the domain of PDE into
spiderweb-like patches considering the geometry of the domain boundary, and each patch is used to
define a token. Built upon the spiderweb tokenization, we design a transformer (detailed in Section
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Figure 2: Overall architecture of SpiderSolver. Spiderweb Tokenization partitions the domain into
Spiderweb-like patches. Coarse-grained Attention interacts the features over the spiderweb tokens.
Weighted Token Aggregation updates the point-wise features by the weighted combination of token
features. Fine-grained Attention enables interactions between points of boundary and near boundary.

3.2) consisting of cascaded attention blocks, and each block is composed of a coarse-grained attention
(Figure 2 (b)) over the spiderweb tokens and a fine-grained attention (Figure 2 (c)) to interact features
between points of domain boundary and their near points in the interior of domain. This transformer
is the basis of our SpiderSolver, which is learned to output the PDE solutions.

3.1 Spiderweb Tokenization over PDE Domain

Overview. To solve PDEs with complex boundary geometries, we introduce a geometry-aware
tokenization method as a foundational step in constructing our transformer. The aim is to quantize the
computational domain Ω with interior point set IG and boundary point set BG into non-overlapping
sub-regions adaptive to the geometry of domain boundary (e.g., the object surfaces in Figure 1). This
process begins with spectral clustering for the domain boundary ∂Ω to quantize the domain boundary
to sub-regions. Then the inner space of the domain Ω is partitioned based on the boundary clustering
and the distance of interior points to the boundary. We term this approach “spiderweb tokenization”
due to the spiderweb-like structure of the resulting divided sub-regions, as illustrated in Figure 3.

Figure 3: Spiderweb-like sub-region
structure from spiderweb tokenization.
Colored curves on the car surface illus-
trate spectral clustering-based partition.

Template Shape

Other Shape

Optimal 
transport-based 
Point Matching

Template Spectral Clustering

Aligned Shape Aligned Clustering

Spectral 
Clustering 
Alignment

(a)

(b)

Shape 1 Individual Clustering Aligned Clustering Shape 2 Individual Clustering Aligned Clustering

Figure 4: Optimal transport-based alignment for spectral
clustering. (a) Aligning surface points of a shape to the
template shape for clustering. (b) Comparison of individual
and aligned clustering results.

Boundary spectral clustering. Spectral clustering over the boundary leverages the eigenvalue
problem of the Laplace operator ∆, which can be defined on non-Euclidean geometry for capturing
its geometric and topological properties [26]. For the continuous domain of boundary surface
∂Ω ⊂ Rh, the eigenvalue problem is:

−∆u = λu, in ∂Ω, (1)

subject to appropriate boundary conditions. The eigenvalues λ and eigenfunctions u characterize
the intrinsic geometric structure of the boundary ∂Ω, enabling its decomposition into geometric
decomposed sub-regions. These eigenvectors u are used to embed the data into a low-dimensional
space. Specifically, the Laplacian operator can be approximated by constructing the affinity matrix
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over nearest neighbors (10 neighbors) graph using points or mesh vertices on the domain boundary.
Then we use k-means clustering on the eigenvectors of the normalized Laplacian matrix associated
with the mB smallest eigenvalues, to group ∂Ω into mB clusters. Spectral clustering leverages the
graph structure of surface points to capture global, shape-aware connectivity beyond local geometry.
See Appendix A for implementation details of spectral clustering.

Aligned boundary clustering for different instances of object surface. As shown in Figure 4 (b)
and Figure 10 (Appendix B), individual clustering of different instances of an object results in
unaligned clustering. We devise an aligned clustering approach by transferring the clustering of a
template shape to the remaining instances of the boundary shape. As shown in Figure 4 (a), we
first align all other shapes to a randomly selected reference shape using the entropic regularization
optimal transport problem solved by the Sinkhorn algorithm [27]. We then average these aligned
shapes to obtain a template shape, on which spectral clustering is performed. Finally, the clustering
labels from the template shape are transferred to the other instances of the object. Here, the reference
shape is only used for alignment, while the template shape serves as the basis for spectral clustering.
Therefore, given a new instance of object, we only need to align its points to template shape points to
derive its point clustering. This above strategy to align PDE boundaries to the boundary template
shape can accomplish the varying shapes of boundary geometry for a given type of geometry, e.g.,
car, airfoil. Please refer to Figure 9 in Appendix B for the example of template shape.

Spiderweb tokenization. Based on aligned boundary clustering, we further divide the inner space
of Ω into sub-regions Tpq with p = 1, 2, . . . ,mB and q = 1, 2, . . . ,mI , as shown in Figures 3 and
2 (a). Spectral clustering applied to the boundary BG yields mB clusters, therefore BG =

⋃mB

p=1 Cp
with Cp denoting the p-th cluster of the boundary. As shown in Figure 3, interior PDE domain is
divided into sub-regions, and each sub-region Tpq includes the interior point with its closest point on
domain boundary belonging to p-th boundary cluster, and its signed distance function (SDF) values
to domain boundary within a range (dq−1, dq], with d0 = 0. This region is expressed as:

Tpq =
{
g ∈ IG | SDF(g) ∈ (dq−1, dq], s

∗
j ∈ Cp, s∗j = argmin

sj∈BG

∥g − sj∥
}
. (2)

We determine the range of (dq−1, dq] by ensuring an equal number of points falling within each
interval (dq−1, dq]. In this way, we partition the whole PDE domain into M = mBmI + mB

sub-regions with mBmI sub-regions in the interior domain and mB sub-regions on the boundary.
Each sub-region is taken as the domain of a token.

Notes: The spiderweb-tokenization method is inherently geometry-aware, as explained below. Firstly,
it utilizes the geometric information of boundary to partition the domain effectively. Secondly, by
optimal transport-based point alignment, it ensures that the clustering of object surfaces, i.e., domain
boundaries, remains consistent across different instances. This alignment enables a well-structured
tokenization of PDE domain, even when boundary shapes vary. As a result, the geometrically aligned
tokens allow transformers to function as PDE solvers that inherently account for boundary geometry.

3.2 Transformer Design for SpiderSolver

Based on spiderweb tokenization (Figure 2 (a)), we define SpiderSolver (Figure 2) as a transformer
defined over spiderweb tokenization, with SpiderAtten layers integrating coarse-grained (Figure 2 (b))
and fine-grained attentions (Figure 2 (c)). The coarse-grained attention facilitates interactions among
spiderweb-like tokens. The fine-grained attention serves as a finer-level complement, capturing
interactions between boundary points and their near interior points adjacent to the boundary.

As shown in Figure 2, we summarize the overall process of SpiderSolver. First, a linear embedding
maps the input G ∈ RN×d or with the observed physical quantity, to initial feature x0 ∈ RN×C .
Next, x0 passes sequentially through the L SpiderAtten blocks (Figure 2 (d)). The l-th (l ∈ [0, L−1])
SpiderAtten block is defined as:

f l = Spiderweb-Tokenization
(
xl
)
,

x̃l+1 = xl + T2P
(
Coarse-AT

(
f l
)
,xl

)
+ Fine-AT

(
LN

(
xl
))

,

xl+1 = FeedForward
(
LN

(
x̃l+1

))
+ x̃l+1,

(3)

where the “Coarse-AT” refers to coarse-grained attention, “Fine-AT” refers to fine-grained attention,
“LN” denotes layerNorm, and xl, x̃l+1 ∈ RN×C , f l ∈ RM×C . The T2P operator transforms the
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token features back to update the point-wise features. The “FeedForward” operator consists of two
linear layers with a non-linear activation in between. The operation Spiderweb-Tokenization(xl)
is defined as the concatenation of average pooled features of xl over spiderweb-token domains
Tpq, for p ∈ [1,mB ], q ∈ [1,mI ], together with mB additional feature by average feature pool-
ing over mB boundary clusters. This coarse-level tokenization facilitates the fast self-attention
computation from the interactions of N points to M tokens.

After L SpiderAtten blocks, a linear embedding layer over xL is applied to obtain the output physical
quantities, i.e., the PDE solution. We next introduce the operators of Coarse-AT(·), T2P(·,·), Fine-
AT(·) of Equation (3).

3.2.1 Coarse-grained Attention (Coarse-AT)

The coarse-grained attention (Figure 2 (b)), denoted as Coarse-AT in Equation (3), is defined over the
M tokens of the spiderweb tokenization of the PDE domain. For the l-th SpiderAtten block, with the
token-level feature f l ∈ RM×C , we apply the self attention, denoted as A(·):

f̂ l = A(f l) = [A1(f
l); · · · ;Ah(f

l)]W l
0, where Ai(f

l) = Softmax
(
QiK

⊤
i /

√
dk

)
Vi, (4)

to conduct multi-head attention, where dk denotes the dimension of key vectors, [·] denotes concate-
nation, Ti = Linear(f l,W l

T,i) for Ti ∈ {Qi,Ki, Vi}, i = 1, · · · , h, and h denotes the number of
heads. “Linear” refers to a linear layer and generates Q,K, V,∈ RM×C in attention. Note that, the
self-attention is conducted over the spiderweb tokens instead of all the interior points of PDE domain.
Thus, the output of the operator Coarse-AT is f̂ l, i.e., the coarse-grained attention feature.

3.2.2 From Token to Point-Wise Features (T2P)

After coarse-grained attention, the attended token features f̂ l = Coarse-AT(f l) will be transformed
into point-wise features and added to the corresponding point-wise features xl. Let xl

I ∈ RNI×C ,
xl
B ∈ RNB×C be the point-wise features xl in the interior and on the domain boundary respectively.

Let f̂ lI ∈ RmBmI×C and f̂ lB ∈ RmB×C be the spiderweb token features f̂ l of the interior and
boundary tokens respectively. The updated point-wise features are computed based on the weighted
token aggregation, which globally aggregates all the token features to compute the point-wise update,
formulated as:

x̂l
I = ηl f̂ lI , x̂

l
B = ξlB f̂

l
B + ξlI f̂

l
I , where ηl = Linear(xl

I), ξ
l
B = Linear(xl

B), ξ
l
I = Linear(xl

I), (5)

where the three “Linear” layers are respectively with learnable parameters W l
I ,W

l
B and W l

I2B , and
generates ηl ∈ RNI×mBmI , ξlB ∈ RNB×mB , ξlI ∈ RNB×mBmI as weighting matrix to combine
spiderweb token features. Therefore, the operator T2P outputs updated features [x̂l

I ; x̂
l
B ]. It facilitates

the point-wise feature updating by the coarse-grained attention features over spiderweb tokens.

3.2.3 Fine-grained attention (Fine-AT)

The fine-grained attention (Figure 2 (c)) is designed to enhance the interaction between features of
points located on boundary and points near boundary. This design is motivated by the observation
that as points get closer to boundary, their physical characteristics are increasingly influenced by the
boundary geometry. In practical applications, crucial physical quantities, such as the drag coefficient
of a car and the lift coefficient of an airfoil are derived from the features on or near the boundary.

To effectively capture these boundary-related interactions, fine-grained attention is introduced to
facilitate feature interactions between the domain boundary points BG and their nearest interior
domain neighboring points in the set of TB = {g ∈ IG|SDF(g) ∈ (d0, d1]}. The corresponding
features of these boundary and near-boundary interior points in TB are concatenated to form a
combined feature representation xF . The attention is then applied to this representation to capture
the underlying physical dependencies by A(xF ), which is the output of the operator Fine-AT.

3.2.4 Network Training and Testing

The proposed transformer contains the learnable parameters in the two embedding layers and L
SpiderAtten blocks in Equation (3). The network is trained based on the relative L2-norm loss
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between the network output and the ground-truth PDE solutions over the training set [14]. In the
training phase, spiderweb tokenization is performed over the training dataset as a data pre-processing
procedure. In the testing phase, given a new instance of the PDE geometric domain and/or boundary
condition, the PDE domain is divided into token sub-regions by aligned spectral clustering, and then
the SpiderSolver outputs the PDE solution based on the spiderweb tokenization.

4 Experiments

We evaluate SpiderSolver on five datasets spanning industrial, biomedical, and fundamental PDE
tasks. The template shapes of Shape-Net Car and AirfRANS are visualized in Figure 9 in Appendix B.
As the Blood Flow, Bounded Navier-Stokes and Darcy Flow datasets have fixed geometries, optimal
transport-based alignment is not required. See Appendix C for more details on five datasets.

Table 1: Results on Shape-Net Car and AirfRANS datasets. Vol:
error of surrounding physics field; Surf: error of surface physics
field. CD, CL: error of drag and lift coefficients; ρD, ρL: Spear-
man’s rank correlation of drag and lift coefficients.

Methods
Shape-Net Car AirfRANS

Vol ↓ Surf ↓ CD ↓ ρD ↑ Vol ↓ Surf ↓ CL ↓ ρL ↑

Simple MLP 0.0512 0.1304 0.0307 0.9496 0.0081 0.0200 0.2108 0.9932
G-SAGE [28] 0.0461 0.1050 0.0270 0.9695 0.0087 0.0184 0.1476 0.9964
PointNet [29] 0.0494 0.1104 0.0298 0.9583 0.0253 0.0996 0.1973 0.9949
G-U-Net [30] 0.0471 0.1102 0.0226 0.9725 0.0076 0.0146 0.1677 0.9944
MG-Net [31] 0.0354 0.0781 0.0168 0.9840 0.0214 0.0387 0.2252 0.9945
GNO [2] 0.0383 0.0815 0.0172 0.9834 0.0269 0.0405 0.2016 0.9934
Galerkin [13] 0.0339 0.0878 0.0179 0.9764 0.0074 0.0159 0.2336 0.9957
Geo-FNO [6] 0.1670 0.2378 0.0664 0.8280 0.0361 0.0820 0.6614 0.9257
GNOT [32] 0.0329 0.0798 0.0178 0.9833 0.0049 0.0152 0.1992 0.9942
GINO [5] 0.0386 0.0810 0.0184 0.9826 0.0297 0.0482 0.1821 0.9958
3D-GeoCA [8] 0.0319 0.0779 0.0159 0.9842 / / / /
Transolver [14] 0.0228 0.0793 0.0129 0.9916 0.0025 0.0080 0.1026 0.9977
SpiderSolver 0.0210 0.0738 0.0100 0.9928 0.0017 0.0043 0.0741 0.9988

Shape-Net Car [33] consists
of 889 simulated samples
based on Reynolds-Average
Navier-Stokes equations, with
car shapes from the ShapeNet
“car” category [34]. Each sample
includes velocity and pressure
fields solved via a finite element
method over 32,186 mesh points.
Using irregularly discretized car
and surrounding space as input,
the model is trained to predict
these fields, from which the
drag coefficient is subsequently
derived. The shapes of cars ran-
domly selected from Shape-Net
Car are visualized in Figure 7 in
Appendix B.

AirfRANS [35] comprises 1,000
high-fidelity simulations over 32,000-point meshes of 4- and 5-digit NACA airfoils, with variations
in shape, Reynolds number, and angle of attack. Using irregularly discretized airfoil and surrounding
space as input, the model is trained to predict velocity, pressure, and viscosity fields, from which lift
coefficient is computed. The shapes of airfoils are visualized in Figure 8 in Appendix B.

Blood Flow dataset [36] consists of 500 simulations of blood flow in a fixed human thoracic aorta
geometry, by the Navier-Stokes equations. Each sample varies in inlet and outlet conditions, and is
discretized over a tetrahedral mesh with 1,656 spatial nodes and 121 time steps. The model is trained
to predict the velocity field of the flow, using pressure at the inlets and outlets.

Transolver
(Relative 𝐿𝐿2: 0.0210)

Ours
(Relative 𝐿𝐿2 : 0.0109)

Ground Truth
(Drag coefficient:  0.2595) Transolver

(Drag coefficient: 0.2574)
Ours 

(Drag coefficient: 0.2596)

𝑝𝑝

𝑣𝑣

Transolver
(Lift coefficient : 0.9063)

Ours 
(Lift coefficient :  0.9168)

Ground Truth 
(Lift coefficient : 0.9390)

Ground Truth (t = 0.49s)

(a) (b) (c)

𝑝𝑝

𝑣𝑣

Figure 5: Examples from three datasets. The first column shows the ground truth. In (a), (b), and (c),
the first row presents the predictions by Transolver and our model, while the second row displays the
point-wise L2 norm of the difference between ground truth and predictions.

Bounded Navier-Stokes dataset with multiple separate boundaries [37] simulates 2D fluid flow
through a pipe containing several fixed pillar-like obstacles, resulting in multiple disconnected
boundaries. Despite the presence of separate boundaries, the SDF at each point is uniquely defined as
the minimum distance to all boundary components. See Appendix C for more details on datasets.
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Darcy Flow dataset [3] considers the steady-state of the 2-d Darcy Flow equation on the unit box. In
the Darcy Flow dataset, we take the spatial outer rectangle boundary as the boundary to compute
clustering and SDF for tokenization. See Appendix C for more details on datasets.

Elasticity and plasticity datasets. Elasticity [6] models a unit cell with an arbitrary void, governed
by the incompressible Rivlin–Saunders constitutive law. Plasticity [6] considers a block impacted by
a rigid die, governed by an elasto-plastic constitutive model with time-dependent deformation.

Implementation details. To ensure that our model parameters are comparable to other

Table 2: Results on Blood
Flow dataset.

Methods Velocity ↓
Simple MLP 0.3080
DeepONet [4] 0.8926
POD-D [38] 0.3742
Geo-FNO [6] 0.1209
GNOT [32] 0.0411
NORM [36] 0.0453
Geo-FNO [6] 0.1209
3D-GeoCA [8] 0.2863
GINO [5] 0.1864
Transolver [14] 0.0438
SpiderSolver 0.0322

Transformer-based models, such as Transolver, we set the number
of layers as 8 and the channel of hidden features as 256 or 512,
depending on the number of observed quantities of input data. All
experiments are performed on a GeForce RTX 4090 GPU. See
Appendix C for more details.

Compared methods and metrics. We compare SpiderSolver with
more than 18 baselines. For the Shape-Net Car and AirfRANS, we
evaluate the estimation error of physical fields in the PDE domain
(Vol), domain boundary surface (Surf), drag coefficient (CD) and lift
coefficient (CL) using the relative L2 except that we follow [35, 14]
to use MSE for the Vol and Surf on the AirfRANS dataset. We
additionally use Spearman’s rank correlations of drag and lift coef-
ficients, respectively in the Shape-Net Car and AirfRANS datasets.
For the other datasets, we use the relative L2 error as the metric. See
Appendix E for details.

4.1 Main Results

Results on Shape-Net Car. As shown in Table 1, SpiderSolver outperforms various methods. The
Spearman’s rank correlation indicates that our predicted drag coefficients better match the true
ranking. Figure 11 in Appendix B shows an example of spiderweb tokenization by SpiderSolver.

Results on AirfRANS. As shown in Table 1, SpiderSolver reduces the MSE of the volume and
surface physics fields by 32.0% and 46.3%, compared to Transolver. Figures 12 and 13 in Appendix
B show an example of spiderweb tokenization by SpiderSolver and the patches learned by Transolver.

Results on Blood Flow. As shown in Table 2, SpiderSolver achieves state-of-the-art performance.
Figure 5 (c) visualizes the predicted velocity fields.

Table 3: Generalization in OOD on AirfRANS.

Methods
Reynolds OOD Angles OOD

CL ↓ ρL ↑ CL ↓ ρL ↑
Simple MLP 0.6205 0.9578 0.4128 0.9572
G-SAGE [28] 0.4333 0.9707 0.2538 0.9894
PointNet [29] 0.3836 0.9806 0.4425 0.9784
G-U-Net [30] 0.4664 0.9645 0.3756 0.9186
GNO [2] 0.4408 0.9878 0.3038 0.9836
Galerkin [13] 0.4615 0.9862 0.3814 0.9821
GNOT [32] 0.3268 0.9865 0.3497 0.9863
GINO [5] 0.4180 0.9645 0.2583 0.9923
Transolver [14] 0.3889 0.9911 0.2490 0.9940
SpiderSolver 0.2291 0.9922 0.1062 0.9941

Results on Bounded Navier-Stokes and Darcy
Flow. SpiderSolver outperforms various methods
on both Bounded Navier-Stokes and Darcy flow
datasets. See Tables 13 and 14 in Appendix F for
results. Darcy Flow dataset is defined on a reg-
ular quadrilateral domain, and both the Bounded
Navier-Stokes and Darcy Flow datasets use uni-
form grids. Although SpiderSolver is designed
for complex boundaries and irregular grids, it re-
mains applicable to such settings. Figure 14 in Ap-
pendix B shows two examples of spiderweb tok-
enization on Bounded Navier-Stokes dataset. For
the Bounded Navier–Stokes dataset, SpiderSolver
applies spectral clustering to all obstacle surfaces,
where coarse-grained attention directly captures in-
teractions among tokens. As shown in Figure 14 (Appendix B), the resulting interior partitions align
well with obstacle geometry, enabling attention maps to encode mutual influences between obstacles.
Ablation results further show that merging obstacle surface tokens reduces accuracy (relative L2

error 0.0432), while explicit obstacle token modeling in SpiderSolver achieves superior performance
(relative L2 error 0.0376).

Results on elasticity and plasticity datasets As shown in Table 15 in Appendix F, SpiderSolver
consistently outperforms all baselines, achieving the lowest relative L2 error on both datasets.

8



Generalization to Reynolds number and airfoil angle variations on AirfRANS. We assess the
generalizability of SpiderSolver in two scenarios using AirfRANS [35]. (1) Reynolds extrapolation
(Reynolds OOD): the training set includes samples with Reynolds between 3 and 5 million, while
the Reynolds of the test set spans 2 to 3 and 5 to 6 million. (2) Angle of attack extrapolation
(Angles OOD): the training set covers angles from −2.5◦ to 12.5◦, and the test set includes angles
from −5◦ to −2.5◦ and 12.5◦ to 15◦. Table 3 shows the metrics for the OOD experiments on
AirfRANS dataset. The results demonstrate that our proposed SpiderSolver achieves consistently
better out-of-distribution generalization on the AirfRANS dataset.

Table 4: Generalization to shape variations of
cars on Shape-Net Car dataset.

Methods
Shape-Net Car

Vol ↓ Surf ↓ CD ↓ ρD ↑
Transolver [14] 0.0660 0.191 0.0735 0.9142
SpiderSolver 0.0510 0.161 0.0550 0.9222

Generalization to shape variations of cars on
ShapeNet-Car. We compute the average point-wise
Euclidean distance from each car shape to the tem-
plate shape, and then select the 200 nearest shapes
for training and the 100 farthest shapes for testing.
The results are reported in Table 4. SpiderSolver
achieves good out-of-distribution generalization to
shape variations of cars on ShapeNet-Car. In Ap-
pendix D, we analyze the diversity of car geometries,
and we further visualize how prediction error varies with different distances to the template shape,
but observe no clear correlation between model accuracy and shape distance to template shape.

4.2 Ablation Study and Model Analysis

Effects of key components of the network. We conducted the ablation study on the key components
in Table 5. Referring to Equation (3), “w/o Coarse-A” denotes our SpiderSolver without the Coarse-
AT and the T2P operator, and “w/o Fine-AT” denotes SpiderSolver without Fine-AT operator.
“T2P-local” refers to T2P operator in Equation (5) that is computed locally in each spiderweb token.
Specifically, in “T2P-local”, Equation (5) is computed locally for each spiderweb token to generate
the updated feature for the points belonging to the token. As shown in Table 5, removing Coarse-AT
and Fine-AT considerably degrades the model’s performance. Compared with removing Fine-AT,
the performance drop when Coarse-AT is removed is more remarkable, highlighting its crucial role.
Table 12 in Appendix E compares the runtime of SpiderSolver with and without Fine-AT.

Table 5: Ablation study of key components of SpiderSolver.

Ablation methods
Shape-Net Car AirfRANS Blood Flow

Vol ↓ Surf ↓ CD ↓ ρD ↑ Vol ↓ Surf ↓ CL ↓ ρL ↑ Velo ↓
T2P-local 0.0218 0.0741 0.0114 0.9881 0.0032 0.0055 0.0717 0.9989 0.0345
w/o Fine-AT 0.0236 0.0896 0.0136 0.9891 0.0022 0.0099 0.1013 0.9986 0.0347
w/o Coarse-AT 0.0324 0.0962 0.0204 0.9765 0.1258 0.0101 0.1576 0.9962 0.0634
w/o Coarse-AT and Fine-AT 0.0645 0.2390 0.0629 0.8585 0.1917 0.5314 0.1793 0.9915 0.0874
SpiderSolver 0.0214 0.0725 0.0096 0.9957 0.0016 0.0039 0.0665 0.9984 0.0322

Ablation study on reference shape selection. The reference shape serves only to provide a consistent
indexing, and it does not affect the geometry of the resulting template shape. As shown in Table 6,
our model exhibits strong robustness to the choice of reference shape on Shape-Net Car, consistently
outperforming Transolver across different reference settings. Furthermore, spectral clustering results
across five reference shapes demonstrate high consistency, with Dice of 0.9975 and IoU of 0.9951.
Dice and IoU are computed based on the intersection and union of the five clusterings.

Analysis of hyper-parameters on validation set. We compare the performance and number of
parameters of models with varying feature channels C and network layers L in Figure 6, and the
varying mI and mB in Table 8. Ours consistently outperforms Transolver across different C and L.

Robustness to noisy boundary points. To evaluate the robustness of spiderweb tokenization to noisy
boundaries, we introduced Gaussian perturbations with varying noise levels to the car surface point
cloud. As shown in Table 7, the spectral clustering and SDF-based partitioning preserve domain
structure under perturbations. Furthermore, model evaluation on Shape-Net Car confirms that the
robustness of patch partitioning directly contributes to stable performance against noisy boundary
conditions.
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Table 6: Ablation study on selection of the reference shape for Shape-Net Car.

Shapes Vol ↓ Surf ↓ CD ↓ ρD ↑
Reference shape 1 0.0215 0.0730 0.0095 0.9934
Reference shape 2 0.0212 0.0721 0.0103 0.9935
Reference shape 3 0.0215 0.0725 0.0105 0.9921
Reference shape 4 0.0210 0.0727 0.0103 0.9934
Shape used in Table 1 0.0210 0.0738 0.0100 0.9928
Mean 0.0212 0.0728 0.0101 0.9930
Standard Deviation 0.0002 0.0006 0.0003 0.0005

Table 7: Robustness of spiderweb tokenization and model performance under noisy boundary
perturbations on Shape-Net Car (σ is the noise standard deviation).

σ Dice ↑ IoU ↑ Vol ↓ Surf ↓ CD ↓ ρD ↑
0.0001 1.0000 1.000 0.0210 0.0738 0.0100 0.9928
0.001 0.9994 0.9987 0.0217 0.0739 0.0103 0.9924
0.01 0.9868 0.9743 0.0230 0.0790 0.0119 0.9919
0.03 0.9534 0.9135 0.0310 0.0829 0.0135 0.9901
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Figure 6: Performance of our model and Transolver
on the Blood Flow dataset with varying channels C
and layers L (point size ∝ model size).

Table 8: Ablation study of SpiderSolver with
varying mI and mB on the validation set.

(mI ,mB)
AirfRANS Blood Flow

Vol ↓ Surf ↓ CL ↓ ρL ↑ Velo ↓
(2, 2) 0.0026 0.0130 0.0885 0.9987 0.0372
(4, 2) 0.0021 0.0101 0.0818 0.9988 0.0366
(2, 4) 0.0019 0.0064 0.0751 0.9989 0.0359
(6, 2) 0.0020 0.0079 0.0624 0.9990 0.0352
(2, 6) 0.0019 0.0075 0.0583 0.9988 0.0350

Computational cost. On the Shape-Net Car dataset, SpiderSolver has 4.05M parameters and the
network inference time for one PDE is 0.058s, compared with the 3.86M and 0.022s respectively by
previous state-of-the-art method Transolver [14]. Note that it takes around 50 minutes [33] required
by the traditional k-epsilon turbulence simulations. See Appendix E for details on inference time.

5 Conclusion, Limitations and Future Work

Conclusion and impact statement. This paper proposed a novel transformer SpiderSolver, to solve
PDEs with complex domain geometry. SpiderSolver is based on the proposed spiderweb tokenization
and integrates coarse-grained and fine-grained attention. Experiments on five datasets demonstrate its
superiority. This work has made a fundamental contribution to the transformer architecture design
in scientific computation, and may have an impact on the fast computation of numeric solutions to
PDEs with complex boundaries, in the applications of science and engineering problems.

Limitations and future work. SpiderSolver depends on the boundary and is currently not applicable
to PDEs with open-boundary domains. Moreover, it is currently applied to PDE with boundary shapes
of one type of objects. In future work, we plan to extend the framework to multiple classes of shape
boundaries, possibly by making the network parameters aware to different geometric classes. We
also plan to extend it to be equivariant to the geometry transform of PDE boundary and domain.
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A Implementation Details of Spectral Clustering

The process of spectral clustering [39] can be summarized in three main stages (clusters = k):

Step 1: Constructing the Affinity Matrix. Given the input data points (x1, x2, x3, . . . , xn), the
algorithm begins by treating all points as nodes in a graph. The similarity between these nodes is then
quantified and stored in an affinity matrix W by K-Nearest Neighbors (KNN) method. The process is
as follows:

wij = wji =

exp

(
−∥xi − xj∥2

2σ2

)
, if xi ∈ KNN(xj) or xj ∈ KNN(xi)

0, otherwise

Step 2: Constructing the Laplacian Matrix. We use the normalized Laplacian matrix, defined as
follows:

L = I −D−1/2WD−1/2

where I is the identity matrix, W is the affinity matrix, and D = diag(d1, ..., dn) , di =
∑n

j=1 wi,j .

Step 3: Computation of Eigenvectors and Clustering Completion. First, compute the first k
eigenvectors (u1, · · · ,uk) of the normalized Laplacian matrix L, forming the eigenvector matrix
U ∈ Rn×k. Second, denote U = (y1, · · · ,yn)

⊤, where each yi ∈ Rk corresponds to the i th row
of U . Third, cluster the points yi (i = 1, · · · , n) in Rk with the k-means algorithm into clusters
C1, · · · , Ck.

We employ standard SpectralClustering function from the scikit-learn library, configured as follows:
SpectralClustering(n_clusters=clusters, affinity=‘nearest_neighbors’, random_state=42).

B Visualization of Template Shapes, Boundary Clustering and Spiderweb
Tokenization

In this section, we present visualizations of the template shapes of Shape-Net Car and AirfRANS,
together with examples of surface clustering and spiderweb tokenization.

Figure 7: Eight randomly selected shapes from the Shape-Net Car dataset.

Figures 7 and 8 show the eight randomly selected shapes from the Shape-Net Car and AirfRANS,
respectively. Figure 9 shows the template shapes of the Shape-Net Car and AirfRANS. Figure 10
shows the clustering of instances of cars in the Shape-Net Car, with individual clustering (i.e.,
separately clustering each car surface) and our aligned clustering method. The results demonstrated
that our proposed aligned clustering can cluster different instances of cars with aligned clusters
including the cluster indexes highlighted by different colors.

Figure 11 shows the point sets of different spiderweb tokens for an instance of a car in the Shape-Net
Car dataset. Each row of Figure 11 shows the tokens corresponding to the same cluster of car surface,
with increasing SDF values to the domain boundary, i.e., the car surface, from left to right. We can
observe that the different tokens contain point sets with geometric structures resembling the shape of
segments of a car surface.
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Figure 8: Eight randomly selected shapes from the AirfRANS dataset.

Figure 9: Template shapes of the Shape-Net Car dataset (left) and AirfRANS dataset (right).

Figure 10: Clustering of car surface (i.e., the PDE domain boundary) by conducting spectral clustering
on separate cars (denoted as individual clustering), and our proposed aligned clustering.

Figures 12 and 14 show an example of spiderweb tokenization of an instance of the AirfRANS and
the Bounded Navier-Stokes dataset, respectively. Different colors highlight different tokens, which

15



Cluster 1

Cluster 2

Cluster 3

Cluster 4

Cluster 5

Cluster 6

Figure 11: Point sets of different spiderweb tokens on an instance of car. The p-th row visualizes the
point sets belonging to tokens Tp,q, q = 1, · · · ,mq for the p-th (p = 1, · · · ,mp) cluster of the car
surface.

Figure 12: An example of spiderweb tokenization for an airfoil with different tokens highlighted by
different colors.

well split the point sets surrounding the airfoil into sub-regions. As presented in Section 3.1.2, the
determination of width, i.e., [dq−1, dq] of each token, is to ensure that the regions with [dq−1, dq]
for q = 1, · · · ,mq contain the same number of points, thus adaptive to the different density of
point clouds. For comparison, Figure 13 shows representative patches learned by Transolver on the
AirfRANS dataset.
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Figure 13: Representative patches learned by Transolver on the AirfRANS dataset. Colors indicate
the magnitude of the weights of patches.

Figure 14: Spiderweb tokenization for Bounded Navier-Stokes dataset highlighted by different colors.
Left: mB = 2, mI = 5; Right: mB = 4, mI = 5.

C Detailed Descriptions of Five Datasets and More Implementation Details of
Experiments

Shape-Net Car dataset. This dataset is designed to simulate the behavior of a car traveling at a speed
of 72 km/h, using realistic physical parameters and applying the Reynolds-averaged Navier-Stokes
(RANS) equations for airflow modeling. The input models are derived from the “car” category in
ShapeNet [34], with modifications to remove elements like side mirrors, spoilers, and tires, focusing
more on the vehicle’s aerodynamic properties. High-resolution spatial grids are used to solve the
Navier-Stokes equations, simulating airflow for a 10-second duration. The time-averaged velocity
and pressure fields are obtained by averaging the results from the last 4 seconds of the simulation.
Each simulation involves degrees of freedom ranging from 600k to 700k, and each run takes around
50 minutes to complete. A finite element Navier-Stokes solver resolves the fluid dynamics, using the
k-epsilon turbulence model and SUPG stabilization technique [40]. This setup accurately represents
the flow around the vehicle, capturing complex phenomena such as boundary layers and vortex
shedding at the surface.
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For the Shape-Net Car dataset, the space is discretized into 32186 mesh points. Overall, a total of 889
samples with different car shapes are generated to simulate. 789 samples are used for training, and
the other 100 samples are for testing, which follows that of the Transolver [14]. The model is trained
to predict the velocity and pressure value for each point, then the drag coefficient can be calculated
based on these estimated physical fields.

For the Shape-Net Car dataset, the input dimension of our model is 32186×7, where 32186 represents
the number of discretized points in the PDE domain, and 7 corresponds to the point coordinates, SDF
values, normal vectors of boundary points and direction vectors of interior points. The output of our
model is 32186×4, where 32186 represents the number of discretized points in the PDE domain, and
4 corresponds to the wind field of interior points and the pressure of boundary points (car surface).
The drag coefficient can be calculated based on these predicted physics quantities.

AirfRANS dataset. AirfRANS [35] contains high-fidelity simulation data for RANS equations on
airfoils that are the 4 and 5-digit series of the National Advisory Committee for Aeronautics. Each
case is discretized into 32,000 mesh points. By changing the airfoil shape, Reynolds number, and
angle of attack, AirfRANS provides 1000 samples, where 720 samples are used for training, 80
samples are used for validation, and 200 for the test set. The model is trained to predict the air
velocity, pressure, and viscosity for each point, and calculate the lift coefficient. AirfRANS includes
high-fidelity simulation data for RANS equations applied to both the NACA 4-digit and 5-digit series
airfoils. Specifically, 1000 simulations were run, each defined by the airfoil, Reynolds number, and
angle of attack. The goal of the simulations is to reflect realistic conditions, with the Mach number
capped at 0.3 and the Reynolds number ranging from 2 million to approximately 6 million. The angle
of attack varies from -5° to 15°. The simulations were performed using the steady-state RANS solver
simpleFOAM with the SIMPLEC algorithm [41], combined with the k-ω SST turbulence model
[42], until the lift and drag coefficients converged.

For the AirfRANS dataset, the input dimension of our model is 32000× 7, where 7 corresponds to
the point coordinates, inlet velocity, SDF values, normal vectors of boundary points, and direction
vectors of interior points. The output of our model is in size of 32000× 4, where 32000 represents
the number of discretized points in the PDE domain, and 4 corresponds to the wind field of interior
points, the pressure of boundary points (airfoil surface), and turbulent viscosity of interior points. We
aim to estimate the lift coefficient of airfoils, as well as the pressure on both interior and boundary
points.

Blood Flow dataset. Blood Flow [36] contains the simulation data of the Navier-Stokes equations for
the blood flow dynamics in the human thoracic aorta. In this dataset, the computational domains are
the same, i.e., the human thoracic aorta, but the pressure and velocity at the inlet/outlets are given 500
different samples as boundary conditions. The spatial domain is represented by a tetrahedral mesh
with 1656 nodes and the temporal domain is discrete with 121 temporal time points. 400 samples
are used as training data, 50 samples are used as validation data and the remaining 50 as test data.
The model is trained to output the velocity field of the blood flow. This dataset contains simulation
data for the Navier-Stokes equations modeling blood flow dynamics in the human thoracic aorta. The
aorta has one inlet (ascending aorta) and five outlets (descending aorta, left/right subclavian arteries,
and left/right common carotid arteries), with velocity boundary conditions at the inlet and pressure
boundary conditions at the outlets. The dataset describes the time-varying velocity and pressure over
one cardiac cycle (1.2 s). Blood is modeled as a homogeneous Newtonian fluid with a density of
1060 kg/m3 and a viscosity of 0.0035N·s/m2, assuming laminar flow in the aorta and rigid vessel
walls with no-slip conditions. A total of 500 velocity/pressure curves are used as inputs, and the
velocity field is simulated as the output using COMSOL Multiphysics [36].

For the Blood Flow dataset, we aim to predict the velocity field at the interior points of the aorta using
pressure values at the inlets and outlets of the aorta. The geometry of the aorta remains consistent
across samples, eliminating the need for aligned boundary clustering for different instances of the
object surface. For the Blood Flow dataset, the spatial domain is represented by a tetrahedral mesh
with 1,656 nodes, and the velocity field is characterized by a dimension of 1656× 1× 3. Pressure
values at the two inlets and four outlets are recorded across 121 time steps, with a variable dimension
of 1×121×6. The first two dimensions of the above two variables are replicated to match each other,
and they are concatenated along the third dimension, yielding a variable dimension of 1656×121×9.
This is then resized to 1656× 1089 and used as input to our model. The output of the model has a
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dimension of 1656× 363, and it is resized to 1656× 121× 3, representing the predicted velocity
field at each point across the 121 time steps.

Bounded Navier-Stokes dataset. The Bounded Navier-Stokes dataset simulates incompressible
dye flow governed by the Navier-Stokes equations, with a Reynolds number of 256. At this regime,
flow instability leads to periodic vortex shedding and the formation of a Kármán vortex street [43]
behind cylindrical obstacles. The presence of multiple cylinders and downstream obstructions induces
complex interactions that challenge predictive models. To generate the data, [37] run simulations
over 105 steps with fixed cylinder positions but varying initial conditions. From each trajectory,
multiple frames are extracted and randomly partitioned into training and test sets. The numerical
solver employs a finite difference scheme (MAC method) with CIP-based advection, enabling high-
resolution flow capture while minimizing numerical dissipation.

The model predicts the physical field at the 10th time step based on the initial conditions. A total
of 1,000 training sequences, 200 validation sequences and 200 test sequences are used at a spatial
resolution of 64×64. Despite the presence of separate boundaries, the signed distance function (SDF)
at each point is uniquely defined as the minimum distance to all boundary components. Consequently,
our SDF-based spiderweb tokenization produces non-overlapping partitions, even in such complex
domains.

Darcy Flow dataset. The Darcy Flow equation is a second-order elliptic PDE, which is defined as

−∇ · (a(x)∇u(x)) = f(x), x ∈ (0, 1)2,

u(x) = 0, x ∈ ∂(0, 1)2,
(6)

where f(x) is the forcing function, a(x) is the diffusion coefficient, and u(x) is the density of fluid.
We use the same parameter settings for the Darcy Flow equation as in FNO [3]. The diffusion
coefficient a(x) is generated from Ψ♯N (0, (−∆+ 9I)−2) with zero Neumann boundary conditions
on the Laplacian operator ∆. The Ψ♯ is the point-wise push-forward operator that takes the value of
12 if x > 0, and 3 elsewhere. We learn the mapping from a(x) to the steady state u(x), fixing the
forcing term f(x) = 1. We use 1000, 200, and 200 pairs of a(x) and u(x) in the train, validation,
and test sets, respectively. The Darcy Flow equation dataset is set to four resolutions, i.e., s = 85,
where s represents that both the a(x) and u(x) are discretized into s× s grid.

For the Darcy Flow Dataset, the coefficient a(x) results in disconnected multi-regions. In such a
dataset, we can take the spatial outer rectangle boundary as the boundary to compute clustering and
SDF for tokenization.

Table 9 shows more implementation details for the network structure and network training.

Table 9: Settings of hyper-parameters in the SpiderSolver network and SpiderSolver training.

Dataset mI mB L h C dk Loss Epochs LR Optimizer Batch Size

Shape-Net Car 5 4 8 8 256 32 Relative L2 200 0.001 Adam 1
AirfRANS 5 4 8 8 256 32 Relative L2 400 0.001 Adam 1
Blood Flow 5 6 8 8 512 64 Relative L2 500 0.001 Adam 10
Bounded Navier-Stokes 4 4 8 8 256 32 Relative L2 200 0.0005 Adam 10
Darcy Flow 8 8 8 8 256 32 Relative L2 1000 0.001 Adam 4

Elasticity dataset. The Elasticity dataset consists of simulations on unit cells with arbitrary voids
at the center, where the bottom edge is clamped and tension is applied on the top. Each case takes
as input a tensor of shape 972× 2 representing the 2D positions of discretized points, and outputs
the corresponding stress field in the shape of 972× 1. A total of 1000 training samples and 200 test
samples are provided, obtained using a finite element solver with about 100 quadratic quadrilateral
elements. The inputs are represented as point clouds of size around 1000, and the outputs correspond
to the stress fields. This dataset features an unstructured input format, which is designed to evaluate
the capability of models to handle irregular geometries.

Plasticity dataset. The Plasticity dataset is constructed from plastic forging problems, where a block
of material is impacted by a rigid die with random shapes sampled from spline interpolations. The
simulations are performed on a 101× 31 structured mesh with 20 time steps, resulting in 900 training
samples and 80 test samples. Each case takes as input the die shape discretized into a structured mesh
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of size 101× 31, and outputs the deformation of each mesh point over 20 time steps in a tensor of
shape 20× 101× 31× 4, containing the deformation in four directions. The outputs correspond to
the deformation fields induced by time-dependent die motions. This dataset emphasizes temporal
dynamics and structured mesh inputs, providing a challenging benchmark for models that combine
spatial and temporal learning.

D Shape Distribution of Shape-Net Car and Error Analysis across Shape
Distance

In this section, we quantify shape variation using the distance between each car and the template
shape, and analyze the distribution of car geometries. We further visualize how prediction error varies
with shape differences, but observe no clear correlation between shape distance and model accuracy.

Distance from each car shape to the template shape. We align each shape to the template shape
and compute the average point-wise Euclidean distance from all 789 training car surfaces to the
template shape, as summarized in Table 10.

Table 10: Distance to template shape

Cases Distance (meter)
Min 0.03254
Max 0.6296
Mean 0.1802
Standard Deviation 0.09741
Top 200 closest distances [0.03254, 0.1031]
Top 100 farthest distances [0.3005, 0.6296]

The template shape serves as an intermediate reference for aligning and clustering different car
geometries. Figure 15 presents the template shape, along with the four nearest and four farthest
shapes to the template shape, respectively. The distance to the template is computed as the average
point-wise Euclidean distance following optimal transport (OT) alignment. As shown in Figure 1,
this distance metric captures shape variation across the Shape-Net Car dataset.

Figure 15: Template shape and closest and farthest four shapes to the template shape, with distances
(meters) in parentheses.

Shape distribution of cars on Shape-Net Car dataset. To characterize the shape distribution, we
visualize the distances from training shapes to the template shape using a histogram and a Q-Q plot
in Figure 16. The histogram reveals a right-skewed distribution with a gradually decaying tail, while
the Q-Q plot indicates significant deviation from normality in the upper quantiles, suggesting heavier-
than-Gaussian tails. Note: A Q-Q plot assesses whether a dataset follows a reference distribution by
comparing their quantiles. In the context of heavy-tailed detection, a pronounced upward deviation
of the upper quantiles from the reference line indicates that the data exhibits heavier tails than the
reference (e.g., normal) distribution.

Analyzing error across shape distance of cars. We further analyze how prediction error varies
with the distance to the template shape on the test set, as shown in Figure 17 (ours) and Figure 18
(Transolver). For the prediction of our model, the two shapes farthest from the template ( 0.5 m) do
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Figure 16: The histogram and Q-Q plot of different distances to template shape of Shape-Net Car
Dataset.

not yield the highest prediction errors. No clear correlation is observed between shape distance and
prediction accuracy.

Figure 17: Our model’s testing error with different car distance to template shape on Shape-Net Car
Dataset.

Figure 18: Transolver’s testing error with different car distance to template shape on Shape-Net Car
Dataset.

E Inference Time and Evaluation Metrics

Inference time. The inference time of our model comprises the spiderweb tokenization (includes
optimal transport-based matching) and the network forward pass. Spectral clustering is only per-
formed once for each shape during training; during inference, cluster labels are propagated from
the template shape to the test shape via optimal transport-based boundary points correspondences.
For the Shape-Net Car dataset, spectral clustering is performed on 3,586 surface points using only
the top mB eigenvectors of the Laplacian matrix (e.g., 6 eigenvectors for mB = 6), which keeps
the computational cost manageable. We report the model inference time in Table 11. Note that
the prediction commonly takes around 50 minutes, which is required by the traditional k-epsilon
turbulence simulations.

Comparison of models with and without Fine-AT. We also compare the inference time of the
model with and without the Fine-AT on the Shape-Net Car dataset, as shown in Table 12.
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Table 11: Inference time and number of parameters on the Shape-Net Car dataset.

Different terms SpiderSolver (Ours) Transolver

Time of spectral clustering (only model training) 0.26s N/A
Number of surface points of car 3586 3586
Time of point matching via optimal transport 0.012s N/A
Time of interior domain partition before model forward 0.0032s N/A
Time of model forward 0.043s 0.022s

Total inference time 0.058s 0.022s
Number of parameters 4050340 3860804

Table 12: Comparison of Inference time of Fine-AT on the Shape-Net Car dataset.

Setting Model Forward time (s) Total Inference time (s)

SpiderSolver (Ours) w/o Fine-AT 0.032 0.047
SpiderSolver (Ours) w/ Fine-AT 0.043 0.058

Since our evaluation is based on practical tasks of different datasets, we include several design-
oriented metrics for physics fields, which will be introduced as follows.

Relative L2 error for physics fields. The relative L2 error L(u, û) between the true physics field u
and the model’s predicted field û is calculated as follows:

L(u, û) =
∥u− û∥2
∥u∥2

. (7)

Drag and lift coefficients. For the Shape-Net Car and AirfRANS datasets, drag and lift coefficients
are computed from the estimated physics fields. For unit-density fluids, the coefficients are given by:

C =
2

v2A

(∫
∂Ω

p(ω)
(
n̂(ω) · î(ω)

)
dω +

∫
∂Ω

τ(ω) · î(ω) dω
)
, (8)

where v is the inlet flow velocity, A is the reference area, and ∂Ω is the object surface. The pressure
p, the outward unit normal n̂, the flow direction î, and the wall shear stress τ are defined as usual.
The shear stress τ is typically much smaller than the pressure term and can be approximated by the
air velocity near the surface [44]. We use the setting of drag and lift coefficient from Transolver [14].

Spearman’s rank correlation for drag and lift coefficients. Given K test samples, let the true drag
or lift coefficients be D = {D1, . . . , DK} and the predicted coefficients be D̂ = {D̂1, . . . , D̂K}.
The Spearman rank correlation is computed by ranking both sets of coefficients and then calculating
the Pearson correlation between the ranks [14]:

ρ =
cov(R(D), R(D̂))

σR(D)σR(D̂)

, (9)

where R is the ranking function, cov denotes covariance of the ranks, and σ is the standard deviation.
Higher ρ indicates better alignment between the predicted and true coefficients [45].

F Results on Bounded Navier-Stokes, Darcy Flow, elasticity and plasticity
datasets

Tables 13 and 14 show the results on Bounded Navier-Stokes and Darcy Flow, respectively. Table 15
shows the results on Elasticity and Plasticity datasets.
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Table 13: The results on the Bounded Navier-Stokes dataset.

Methods Relative L2 error ↓
FNO [3] 0.0472
GNOT [32] 0.0589
Galerkin [13] 0.4908
Factformer [11] 0.0452
Transolver [14] 0.0555
DeepLag [37] 0.0382
SpiderSolver 0.0376

Table 14: The results on the Darcy Flow dataset.

Methods Relative L2 error ↓
FNO [3] 0.0108
WMT [46] 0.0082
GEO-FNO [6] 0.0108
F-FNO [16] 0.0077
Galerkin [13] 0.0084
LSM [47] 0.0065
Transolver [14] 0.0068
SpiderSolver 0.0064

G More Visualization Results on Shape-Net Car and Blood Flow

Figure 19 visualizes the Shape-Net Car estimation results by Transolver and our model. The visual
results demonstrate that our approach achieved less error in the estimation of physical fields, especially
the press value in the car surfaces.

Figure 20 visualizes the blood flow estimation results by different compared methods. The estimation
absolution error, i.e., the point-wise L2 norm of the difference between ground truth and prediction
values of different models, is highlighted by heatmaps. The visual results demonstrate that our
approach achieved less error in the estimation of physical fields.

Transolver
(Drag coefficient: 0.2556)

Ground Truth
(Drag coefficient: 0.2561)

Ground Truth
(Drag coefficient: 0.2590)

Ground Truth
(Drag coefficient: 0.2404)

Transolver
(Drag coefficient: 0.2627)

Transolver
(Drag coefficient: 0.2466)

Ours 
(Drag coefficient: 0.2559)

Ours 
(Drag coefficient: 0.2589)

Ours 
(Drag coefficient: 0.2427)

Ours 
Estimation error maps

Transolver
Estimation error maps

Ours 
Estimation error maps

Transolver
Estimation error maps

Ours 
Estimation error maps

Transolver
Estimation error maps

Figure 19: Comparisons of the Shape-Net Car estimation by Transolver and our model, with the
estimation error maps, i.e., point-wise L2 norm of the difference between ground truth and prediction.
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Table 15: The results (Relative L2 error) on the Elasticity and Plasticity datasets.

Methods Elasticity ↓ Plasticity ↓
LSM 0.0218 0.0025
GALERKIN 0.0240 0.0120
OFORMER 0.0183 0.0017
GNOT 0.0086 0.0336
ONO 0.0118 0.0048
Transolver 0.0064 0.0012

SpiderSolver 0.0061 0.0011
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Figure 20: Comparisons of the blood flow estimation by different methods, with the estimation error
maps, i.e., point-wise L2 norm of the difference between ground truth and prediction.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: See abstract and introduction section for details.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: See Conclusion section for details.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: No theoretical result.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: See the Experiments section and Appendix for details.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Justification: We will release the codes after possible publication.
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• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
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• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.
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parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: See the Experiments section and Appendix for details.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
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material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: The error bars are not reported because it would be too computationally
expensive.
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: See the Experiments section and Appendix for details.

Guidelines: See section Experiments.

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have read the code of ethics carefully and ensure there is no violation.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: See Conclusion section for details.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: There are no contents concerning safeguards.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: We were unable to find the license for the datasets we used.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: There are no new assets introduced in the paper.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: There is no Crowdsourcing and Research with Human Subjects in this paper.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer:[NA]
Justification: There are no potential risks as far as we are concerned.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The LLM is used only for writing, editing, or formatting purposes.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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