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Abstract

Predicting causal structure from time series data is crucial for understanding complex phe-
nomena in physiology, brain connectivity, climate dynamics, and socio-economic behaviour.
Causal discovery in time series is hindered by the combinatorial complexity of identifying
true causal relationships, especially as the number of variables and time points grow. A
common approach to simplify the task is the so-called ordering-based methods. Traditional
ordering methods inherently limit the representational capacity of the resulting model. In
this work, we fix this issue by leveraging multiple valid causal orderings, instead of a single
one as standard practice. We propose DOTS (Diffusion Ordered Temporal Structure), us-
ing diffusion-based causal discovery for temporal data. By integrating multiple orderings,
DOTS effectively recovers the transitive closure of the underlying directed acyclic graph
(DAG), mitigating spurious artifacts inherent in single-ordering approaches. We formalise
the problem under standard assumptions such as stationarity and the additive noise model,
and leverage score matching with diffusion processes to enable efficient Hessian estima-
tion. Extensive experiments validate the approach. Empirical evaluations on synthetic and
real-world datasets demonstrate that DOTS outperforms state-of-the-art baselines, offering
a scalable and robust approach to temporal causal discovery. On synthetic benchmarks
spanning d=3−6 variables, T=200−5,000 samples and up to three lags, DOTS improves
mean window-graph F1 from 0.63 (best baseline) to 0.81. On the CausalTime real-world
benchmark (Medical, AQI, Traffic; d=20−36), it attains the highest average summary-graph
F1 while halving runtime relative to graph-optimisation methods. These results establish
DOTS as a scalable and accurate solution for temporal causal discovery. Code is available
at https://anonymous.4open.science/r/dots-TMLR.

1 Introduction

Understanding cause-effect relationships from time series data is essential in fields like biology (Marbach et al.,
2009), neuroscience (Friston et al., 2003), climate science (Runge et al., 2019), and economics (Pamfil et al.,
2020), where uncovering how one event influences another can lead to valuable insights and better predictions.
A key challenge in temporal causal discovery (Granger, 1969; Peters et al., 2013; Nauta et al., 2019; Runge,
2020) is the combinatorial complexity—there are many possible ways that variables can influence each other,
making it difficult to identify the true causal structure. The goal is to discover a temporal Directed Acyclic
Graph (DAG), G, representing these relationships. The core problem is illustrated in Figure 1.

Causal ordering approaches (Verma & Pearl, 1990; Friedman & Koller, 2003; Bühlmann et al., 2014; Rolland
et al., 2022b; Sanchez et al., 2023) offer a scalable alternative to direct graph estimation by constraining the
search space, reducing it from a full adjacency matrix to a set of ordered permutations. While this reduction
scales efficiently with respect to the number of variables and samples, it compromises representational power:
a single causal ordering can imply extra edges, spurious artifacts, that are absent in the original DAG. In
other words, committing to a single arbitrary ordering has an inherent downside: every node is deemed a
potential ancestor of all subsequent nodes, creating spurious edges that must be pruned heuristically. To
mitigate this, existing methods employ a two-step process, wherein a feature selection post-processing step
prunes spurious artifacts introduced by the ordering.
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Figure 1: Temporal causal discovery estimates, from raw time series data (left), the underlying temporal
causal DAG G (right).

Crucially, a DAG generally admits multiple valid orderings consistent with edge directions. Each ordering
contributes complementary information about the underlying causal structure. By systematically generating
and aggregating information from diverse orderings, we can filter out the spurious artifacts specific to any
single, arbitrary ordering choice. As we aggregate more orderings, we converge towards the transitive closure
(G+) of the underlying temporal DAG. G+ contains all true direct edges present in G. While G+ also includes
edges representing indirect causal pathways, it represents the stable, necessary ancestral relationships to
recover the true graph. Therefore, harnessing several orderings increases both precision and recall and does
so without incurring the combinatorial cost of full graph search. Our central insight is to embrace this
multiplicity rather than fight it.

The benefit of multiple orderings hinges on access to a diverse collection of valid orderings. Naïve resampling
or greedy heuristics tend to revisit near-duplicate permutations. We address this limitation by drawing on
denoising diffusion models (Song & Ermon, 2019; Ho et al., 2020; Sanchez et al., 2023). Once trained
to approximate the data score, a single diffusion network delivers Hessian estimates at many noise scales;
applying a leaf-detection rule at each scale yields a fresh ordering. Because different scales emphasise different
frequency bands of the data, the resulting orderings cover the search space more uniformly. Moreover,
diffusion training amortises computation—after one network fit we can sample hundreds of orderings without
retraining—making the approach viable for datasets that are large w.r.t. variables and samples. Finally,
causal ordering approaches have not been extensively explored for temporal causal discovery, but their
principles naturally extend to time-dependent data. The temporal dimension provides an inherent set of
causal orderings, each contributing incremental insights.

Building on these ideas, we introduce DOTS (Diffusion-Ordered Temporal Structure), the first temporal
causal discovery algorithm that systematically aggregates multiple diffusion-generated orderings. Our contri-
butions are three-fold:

(i) We establish theoretically and empirically that aggregating multiple causal orderings to estimate the
transitive closure (G+) provides a more robust foundation for temporal causal discovery than tradi-
tional single-ordering approaches, effectively filtering spurious edges arising from arbitrary ordering
choices.

(ii) We introduce DOTS, a novel algorithm leveraging multi-scale diffusion models to efficiently generate
the diverse set of causal orderings required for robust aggregation in the temporal domain.

(iii) We provide extensive benchmarks, adapting several static ordering methods for temporal data
and demonstrating the superior performance of the multi-ordering strategy implemented by DOTS
against both these adapted methods and state-of-the-art temporal causal discovery baselines on
synthetic and real-world datasets.
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The rest of the paper is organised as follows. Section 2 reviews notation and identifiability assumptions.
Section 3 establishes the theoretical foundations of multi-ordering aggregation, and Section 4 presents the
DOTS algorithm in detail. Section 5 shows experimental results. Relevant literature is discussed in Section 6.
Section 7 concludes the paper.

2 Preliminaries

2.1 Notation

We present in Table 1 a description of all the symbols in the manuscript.

Table 1: Summary of notation used throughout the paper.

Symbol Meaning / role in the paper

x ∈ Rd Random vector of d variables; component i is xi.
xt

i, xt Value / vector at time index t.
d Number of variables (dimensionality).
T Number of observed time steps.
τ Time lag; xt−τ

i →xt
j .

τmax Maximum lag included in A.
k ∈ {0, . . . , kmax} Diffusion (noise-scale) timestep.
kmax Final diffusion step (fully noised).
π Causal ordering (topological permutation).
πi Variable at position i in ordering π.
G (Temporal) causal DAG.
G+ Transitive closure of G.
A ∈ {0, 1}d(τmax+1)×d(τmax+1) Temporal adjacency matrix to be learned.
p(x) Data distribution (density).
ϵθ(x, k) Neural network estimating ∇x log p(x) at scale k.
x̃k Noisy version of x at diffusion step k.
q(x̃k |x, k) Forward noising distribution.
fj Structural function generating xj from its parents.
ϵt

j Independent noise term for xt
j .

P aGt (xt
j) Parent set of xt

j in the temporal DAG.
Ch(xj) Children of node xj .
Hi,j

(
log p(x)

)
(i, j)-entry of Hessian of log p(x) (score Jacobian).

E(π) Edge set implied by ordering π.
E

(m)
agg Intersection of edge sets from m sampled orderings.

T Set of temporally valid edges (causes precede effects).
E

(m,T )
agg Aggregated edge set restricted to T .

Wij Fraction of sampled orderings where edge i→j appears (vote matrix).
Ãij Soft transitive-closure entry after thresholding W .
θ Threshold for vote-matrix aggregation (0 < θ ≤ 1).
αk Variance-preserving coefficient in the forward diffusion process.

2.2 Problem Definition

We aim to discover the causal structure among d variables arranged in a temporal setting. Let xt ∈ Rd

denote a vector-valued random variable at time t, with components
(
xt

1, . . . , xt
d

)
. A temporal directed acyclic

graph (temporal DAG) Gt then describes the causal relationships among these variables, where each node
corresponds to a component xt

i, and the directed edges represent causal links between variables at the same
time or across time steps (Eichler, 2012). We now introduce standard assumptions for causal discovery from
time series:
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Assumption 1 (Temporal DAG). The true causal structure of the data can be represented by a temporal DAG
Gt. This graph includes lagged edges of the form xt−τ

i → xt
j (for τ > 0) and contemporaneous edges xt

i → xt
j .

This assumption effectively captures the temporal priority principle (Hume, 1904; Rankin & McCormack,
2013; Assaad et al., 2022) where causes precede effects in time. For any pair

(
xt−τ

i , xt
j

)
, an edge xt−τ

i → xt
j

indicates that the value of xi at time (t− τ) influences xj at time t. This forbids backward-in-time causation
and helps simplify structure learning since the search space is smaller.
Assumption 2 (Stationarity). The causal relationships in Gt remain invariant over time; that is, both the
causal links and their strengths remain unchanged for all values of t.
Assumption 3 (Time Series Models with Independent Noise (TiMINo)). The structural causal model follows
a temporal additive noise formulation:

xt
j = fj

(
PaGt(xt

j)
)

+ ϵt
j , (1)

where PaGt(xt
j) denotes the set of parent variables of xt

j in Gt, fj is a nonlinear function, and ϵt
j is an

independent noise term. TiMINo (Peters et al., 2013) essentially extends the additive noise model (ANM)
framework to time series.
Assumption 4 (Causal Sufficiency). All common causes of observed variables are measured; that is, there
are no unobserved confounders that influence multiple components simultaneously.

2.3 Objective

Given an observational multivariate timeseries dataset D ∈ RT ×d containing T timesteps of d variables,
our goal is to learn the temporal adjacency structure A ∈ {0, 1}d(τmax+1)×d(τmax+1), where τmax denotes the
maximum lag that is being captured in the adjacency matrix. Each entry of A encodes whether there is a
directed edge from xt−τ

i to xt
j for 0 ≤ τ ≤ τmax. Note that τ = 0 indicates a contemporaneous link xt

i → xt
j .

2.4 Key Identifiability Results

Under stationarity, the additive noise assumption, and causal sufficiency, Peters et al. (2013) show that
temporal causal relationships become identifiable if the data follow a restricted structural equation model
in which each noise term is statistically independent and no directed cycles exist within a single time slice.
Specifically, their Time Series Models with Independent Noise (TiMINo) framework demonstrates that both
lagged and instantaneous effects can be recovered uniquely, provided the functional form and noise distribu-
tions meet certain identifiability criteria (e.g., linear non-Gaussian or nonlinear Gaussian).

2.5 Causal ordering

Causal search over the space of DAGs is an NP-hard problem (Chickering, 1996). Traditional approaches
leverage heuristic search strategies to navigate the combinatorial space of potential DAG structures. Order-
based search offers a simpler and more effective alternative. By shifting the search from graph structures
to node orderings, the strategy exploits the fact that, for a given ordering, identifying the highest-scoring
network is not NP-hard. Such causal ordering approaches reduce the search space and inherently satisfy
the acyclicity constraints. This bypasses the need for explicit acyclicity checks during the search. These
methods find a particular causal ordering of the nodes, i.e., a list of nodes such that a node in the ordering
can be a parent only of the nodes appearing after it in the exact ordering. Causal ordering is also known as
topological ordering or a causal list in the causal discovery literature (Peters et al., 2017). Formally, causal
ordering of a DAG G is defined as a non-unique permutation π of d nodes. Hence, a given node in π always
appears before its descendants in the list. Or more formally, πi < πj ⇐⇒ j ∈ De(xi) where De(xi) are the
descendants of the ith node in G (Appendix B in Peters et al. (2017)).
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2.6 Causal ordering via score matching

Rolland et al. (2022b) propose that the score of an ANM with distribution p(x) can be used to estimate the
causal ordering by finding leaves. Leaves are nodes of DAG G that do not possess children. Rolland et al.
(2022b) propose a method to find leaves based on the derivative of the ANM log density (also called score).
An analytical expression for the score of an ANM from Equation 1 is

∇xj
log p(x) = ∂ log pu (xj − fj)

∂xj
−

∑
i∈Ch(xj)

∂fi

∂xj

∂ log pu (xi − fi)
∂x

, (2)

where Ch(xj) denotes the children of xj . Using this analytical equation of∇xj
log p(x), Rolland et al. (2022b)

derive the following condition used to find leaf nodes. Given a nonlinear ANM with a noise distribution pu

and a leaf node j, assuming that ∂2 log pu

∂x2 = a, where a is a constant, then

VarD [Hj,j(log p(x))] = 0. (3)

This rule is based on the score’s Jacobian (or Hessian of the log distribution). Hj,j(log p(x)) is used in
Rolland et al. (2022b) to propose a causal ordering algorithm that iteratively finds and removes leaf nodes
from the dataset. Rolland et al. (2022b) re-compute the score’s Jacobian with a kernel-based estimation
method at each iteration.

2.7 Approximating the score’s Jacobian via diffusion training

Instead of computing log p(x) via a kernel-based estimation (Li & Turner, 2018; Rolland et al., 2022a), we
follow Sanchez et al. (2023) and estimate the score’s Jacobian with diffusion models (Song & Ermon, 2019;
Ho et al., 2020). This estimation is based on a diffusion process that progressively corrupts x with Gaussian
noise over timesteps k ∈ {0, . . . , kmax}. Let x̃k be the noisy version of x at diffusion step k. A neural network
ϵθ(x̃k, k) is trained to denoise x̃k back to x, thereby approximating the true score ∇x log p(x). Formally,
this can be written as:

Ex∼p(x), x̃k∼q(x̃k|x,k)

∥∥∥ϵθ

(
x̃k, k

)
− ∇x̃k log p

(
x̃k | k

)∥∥∥2
,

where q(x̃k | x, k) defines the forward noising process. Once trained, ϵθ effectively yields ∇x log p(x) at
various noise scales k, which can be used to estimate the Hessian for causal discovery. Noise at multiple
scales explores regions of low data density (Song & Ermon, 2019).

The score’s Jacobian can be approximated by learning the score ϵθ with denoising diffusion training of
neural networks and back-propagating (Rumelhart et al., 1986)1 from the output to the input variables. The
quantity can be written, for an input data point x ∈ Rd, as

Hi,j log p(x) ≈ ∇i,jϵθ(x, k), (4)

where ∇i,jϵθ(x, k) means the ith output of ϵθ is backpropagated to the jth input. The diagonal of the
Hessian in Equation 4 can be used for finding leaf nodes as in Equation 3. We use masking (Sanchez et al.,
2023) to iteratively find and remove leaf nodes, without retraining the score.

3 Theory: temporal structure from multiple causal orderings

Causal ordering methods, illustrated in Figure 2, traditionally rely on a single ordering for inferring the full
DAG in causal discovery. A single causal graph does not contain sufficient information to reliably infer the
DAG, since each node is considered a cause for all subsequent nodes. Therefore, pruning methods are used
to remove the spurious edges (Bühlmann et al., 2014). With infinite data a perfect conditional-independence
oracle could delete the spurious edges and retain the true ones. In practice we face finite samples, noisy

1The Jacobian of a neural network can be efficiently computed with auto-differentiation libraries such as functorch (Hor-
ace He, 2021).
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Figure 2: A DAG can be represented as an ordered list following the causal direction. A node in the ordering
can cause any subsequent node. Searching over the space of permutations is more efficient than searching
over the 2D space of matrices. However, topologically sorting nodes reduces the amount of information in
the representation of causal relationships.

tests and high dimensionality. Starting from an over-dense candidate set inflates both kinds of statistical
error: (i) false positives remain whenever a test fails to reject a truly absent edge (type-II error), and (ii)
false negatives appear when a test mistakenly deletes a true edge (type-I error) because that edge co-varies
with many irrelevant ancestors in the initial ordering. Hence a single ordering often yields a fragile estimate
whose quality varies wildly with sample size and noise level. In contrast, leveraging multiple causal orderings
provides a richer representation of the underlying structure. Exploiting multiple valid causal orderings from
data naturally follows from the fact that a given DAG typically admits more than one linear ordering,
consistent with its structure.

Rather than committing to a single topological sort, estimating multiple valid orderings can offer a more
complete representation of ancestor–descendant relationships. In doing so, we can aggregate local adjacency
constraints from each ordering and thereby recover, asymptotically, the transitive closure of the DAG—the
minimal set of edges that preserves causal reachability. This perspective avoids over-specifying the order of
variables that are not causally linked and reduces the risk of introducing extra edges that do not exist in the
underlying temporal DAG.

3.1 Recovering DAG structure from a complete set of causal orderings

We now investigate how the topological orderings of a DAG relate to its underlying structure. The central
takeaway is that the collection of all topological orderings of a DAG uniquely determines the transitive closure
G+, which is a robust representation of the graph’s reachability structure. Topological orderings capture
the reachability relation of the graph—a partial order—but multiple DAGs can share the same reachability
relation and, consequently, the same set of topological orderings.

In a DAG G, every topological ordering is a linear extension of the reachability relation R. A key insight from
order theory is that a finite partial order is uniquely determined by the intersection of its linear extensions.
This idea is formalized in the following proposition:
Proposition 1 (Reconstruction of the Transitive Closure). Let G = (V, E) be a DAG, and let L be the set
of all its topological orderings. Define a binary relation ≺ on V by:

x ≺ y ⇐⇒ x appears before y in every π ∈ L.

Then:

(i) ≺ is a strict partial order on V (irreflexive and transitive).

(ii) For all x, y ∈ V ,

x ≺ y ⇐⇒ there exists a directed path from x to y in G with x ̸= y.

Thus, ≺ matches the edges of the transitive closure G+.
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(iii) Consequently, aggregating all topological orderings in L recovers G+, but not necessarily the original
DAG G.

Sketch of Proof. We prove part (2) by establishing the equivalence:

• (⇒): If there is a directed path from x to y in G with x ̸= y, then every topological ordering π ∈ L
must place x before y to respect the direction of edges. Hence, x ≺ y.

• (⇐): Suppose x ≺ y but no directed path from x to y exists in G with x ̸= y. Since G is a DAG
and no path exists from x to y, adding the edge (y, x) to G does not introduce a cycle (otherwise, a
path from x to y would exist, contradicting the assumption). In this modified DAG, there exists a
topological ordering with y before x, contradicting x ≺ y. Thus, a directed path from x to y must
exist in G.

This shows that ≺ corresponds to the strict reachability relation, i.e., the edges of G+. Since distinct DAGs
can share the same G+, the original G cannot be uniquely recovered from L.

Example 1. Let G1 = (V, E1) with V = {a, b, c} and E1 = {(a, b), (b, c)}, and let G2 = (V, E2) with
E2 = {(a, b), (b, c), (a, c)}. Both DAGs share the same set of topological orderings: {a, b, c}. In G1, the
ordering respects a → b and b → c; in G2, the additional edge (a, c) is consistent with the order. The
transitive closure for both is G+

1 = G+
2 = (V, {(a, b), (b, c), (a, c)}). Thus, from the common ordering alone,

we recover G+
1 (or G+

2 ) but cannot distinguish between G1 and G2.

Aggregating all topological orderings of a DAG G yields its transitive closure G+ because the relation ≺
captures all pairs of nodes connected by a directed path. However, since distinct DAGs can share the same
transitive closure, the original edge set E remains ambiguous. This highlights a fundamental limit: while
topological orderings reveal the reachability structure of the graph, they do not specify the precise topology
of the DAG.

3.2 Ordering aggregation and recovery of temporal structure

In causal discovery, we do not know a priori the total number of valid causal orderings that a resulting DAG
will admit. The number of causal orderings is not only related to the number of variables but also to the edge
topology and density. Therefore, we next explore how aggregating a subset of the total orderings improves
structure estimation. Empirical evidence, shown in Figure 3, suggests that enumerating all topological sorts
is unnecessary to achieve strong performance, as a relatively small subset of randomly sampled orderings
can suffice for accurate structure recovery.

To formalize the benefit of multiple orderings, assume that for each valid causal ordering π of a DAG G,
we obtain an edge set E(π) that corresponds to the directed edges implied by that ordering. Define the
aggregated edge set over the intersection of m orderings as

E(m)
agg =

m⋂
i=1

E(πi).

Then, under the assumption that each valid ordering provides complementary information about the true
ancestral relations, following Proposition 1, we have

lim
m→M

E(m)
agg = G+,

where G+ denotes the transitive closure of the true edge set E of G and where M is the number of possible
orderings for G.
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To validate this idea, we generate random temporal DAGs and use Kahn’s algorithm (Kahn, 1962) to list
all possible orderings with topological sorting. Then, we estimate the transitive closure for each DAG and
compare it with the estimated E

(m)
agg as we increase m for each DAG. We compare the estimated and true

transitive closure via F1 score. In Figure 3, we show the percentage of orderings m
M ∗ 100 used with respect

to the F1 score. For our data, we observe that ∼40% of all orderings is generally enough to recover the
transitive closure with high F1 score.

Figure 3: Impact of multiple causal orderings on DAG recovery. A single (or few) ordering (left) may include
extra or spurious edges, whereas aggregating multiple orderings (right) more accurately recovers the full
transitive closure of the underlying DAG.

3.3 Incorporating Temporal Constraints

Temporal constraints are critical when recovering causal structure from time series data. Following the
temporal priority principle; causes precede effects, in time. This principle forbids backward-in-time causation
and simplifies structure learning.

To incorporate this constraint into edge aggregation, we restrict the aggregated edge set to include only
temporal edges satisfying t− τ < t. Formally, let

T = { (xt−τ
i , xt

j) | τ ≥ 0, t− τ < t }

denote the set of all temporally valid edges. Then, define the temporally constrained aggregated edge set as

E(m,T )
agg = E(m)

agg ∩ T .

This filtering ensures that only edges adhering to the temporal priority principle are retained, thereby
excluding any spurious backward-in-time connections and further enhancing the reliability of the recovered
DAG. Empirically, as illustrated in Figure 3, adding the temporal constraint decreases the number of causal
orderings required to estimate the causal structure for a given F1 score.
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In summary, integrating temporal constraints into the aggregation of multiple causal orderings is both a
natural extension of, and an efficient strategy for, structure learning in time series data. By leveraging the
inherent temporal priority principle—where causes always precede effects—we effectively filter and refine
the aggregated edge set, ensuring that only temporally valid connections are retained. This dual approach
not only enhances the robustness of the recovered causal structure by capturing complementary ancestral
information across orderings but also streamlines the learning process, as it reduces the effective search space
and mitigates spurious dependencies.

While our empirical validation demonstrates the theoretical potential of aggregating multiple causal orderings
for recovering the transitive closure of a DAG, it is important to note that this evaluation was performed
on known graphs where all valid causal orderings were available and the total number of orderings was
predetermined. Orderings were selected uniformly at random from this complete set. We further note that
for practical applications, an algorithm may generate very similar orderings, thereby limiting the diversity
necessary for robust structure recovery. In the following section, we explore methods to induce sufficient
variability in the generated orderings, enabling the aggregation process to remain both effective and efficient
in recovering the true causal structure.

4 A Diffusion-Based Approach for Temporal Discovery

We introduce DOTS, a method that utilises diffusion processes to recover multiple valid causal orderings
in temporal data. Our approach, illustrated in Figure 4, integrates both a frequency domain perspective
and multi-scale causal ordering to capture the complex structure of temporal relationships. We refer to
our notation (Section 2.1), distinguishing between time lags (τ), diffusion timesteps (k), and the indices for
causal orderings (π).

4.1 Why diffusion steps capture different frequency components?

Different diffusion steps k capture distinct aspects of the data which can be seen from a frequency perspective.
Consider a forward diffusion process (e.g., DDPM (Ho et al., 2020)), which decomposes each observation at
step k as

xk = √
αk x0 +

√
1− αk ϵ, ϵ ∼ N (0, I).

Taking the Fourier transform yields

F (xk) = √
αk F (x0) +

√
1− αk F (ϵ).

As k varies from 0 to kmax, the contribution of noise increases gradually from negligible to dominant. High
values of k emphasize low-frequency components because the added noise, although broad-spectrum, tends
to “smear out” fine details and learning will be made easier by learning low-frequency components. In
contrast, small k values preserve lower frequency components and the neural network needs to focus on
higher-frequency details for reducing the loss function value. Figure 5 schematically illustrates how each k
emphasizes different frequency components; large k reveals coarse causal links and small k highlights finer
edges. This multi-scale view enables the network to focus on spectral components most impacted by noise
at each scale. Similar conclusions were drawn based on observations in the imaging domain (Kascenas et al.,
2023).

4.2 Lag-Embedded Representation of Time Series

The diffusion model is trained on the lag-embedded representation of the time series. Lag-embedding is a
common technique from dynamical systems theory to capture temporal dependencies (Takens, 1981). Let
X = [x1, . . . , xT ]⊤ ∈ RT ×d denote the raw sequence with d variables and T time steps. We construct a
lag-embedded matrix

D =
[

xt, xt−1, . . . , xt−τmax
]T −1

t=τmax
∈ R(T −τmax)×d(τmax+1).
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Lag-Embedded Time-Series Data
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Figure 4: DOTS pipeline for temporal causal discovery. We start with lag-embedded time-series data, apply
diffusion-based single-order discovery, then extend to multiple orderings and aggregate them. The final
temporal DAG below shows an example with three variables over three timesteps.

Each column of D now refers to a specific variable–lag pair xt−τ
i .This representation feeds the diffusion

network; temporal precedence is enforced later when we discard any edge that points backwards in time.
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√
1− αkF (ϵ)

√
αkF (x0
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k → 0
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√
1− αkF (ϵ)

√
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Figure 5: Frequency emphasis of diffusion steps. A forward diffusion step decomposes xk = √αkx0 +√
1− αk ϵ. As can be seen in the Fourier domain, high values of k emphasize learning of low-frequency while

low values of k force the network to focus on high-frequency components.

Incorporating temporal information For temporal data with lags τ , each variable is indexed as xt
i,

and potential edges include both lagged (xt−τ
i → xt

j) and contemporaneous (xt
i → xt

j) relationships. A single
diffusion model is trained on the lag-embedded dataset D ∈ R(T −τmax)×(d×τmax), and the leaf-finding process
is applied in the same manner, ensuring that each node is treated as a time-indexed variable. This strategy
enforces a temporal DAG that captures both lagged and instantaneous dependencies.

4.3 Multi-Scale Causal Orderings

Each diffusion step k corresponds to a distinct noise regime, and consequently, the Hessian Hx log p(x) com-
puted at each k reveals different adjacency constraints. Large k values tend to highlight broad, low-frequency
cause–effect relationships, while small k values accentuate fine-grained, high-frequency interactions.

Multiple orderings at different k. Instead of relying on a single noise scale, we execute a causal ordering
algorithm at several discrete diffusion steps {k1, . . . , kS}. Each execution yields a causal ordering, denoted
by π, which reflects the partial order implied by that particular k. This process generates multiple orderings
π1, . . . , πS , thereby capturing the multi-scale structure inherent in the data. We then identify leaf nodes via
the diagonal of the Hessian, following the approach of Rolland et al. (2022b) and (Sanchez et al., 2023).

Causal ordering with a Hessian from diffusion training. After training a diffusion model ϵθ(x, k),
we approximate the partial derivatives as

Hi,j log p(x) ≈ ∂

∂xj

[
ϵθ(x, k)

]
i
,

for each k. The diagonal entries Hi,i exhibit lower variance for leaf nodes than for non-leaf nodes (Rolland
et al., 2022b; Sanchez et al., 2023). To identify a leaf node, we: (i) Estimate H(x, k) on a mini-batch of
data D. (ii) Identify the variable xℓ with the lowest diagonal variance Var

[
Hℓ,ℓ

]
. (iii) Remove xℓ from the

distribution by masking out the variables in the input as done with DiffAN masking (Sanchez et al., 2023).
This procedure is repeated until all variables are assigned an order, yielding a complete causal ordering π.
Repeating this process for each chosen k produces the set {π1, . . . , πS}.

After this procedure, the set {π1, . . . , πS} can be aggregated as described in Section 4.4. In essence, each
πs represents a valid causal ordering that reflects the partial order constraints emphasized at its respective
diffusion timestep ks. By uniting these multi-scale perspectives, the DOTS algorithm produces a final
temporal DAG that captures both coarse (low-frequency) and fine (high-frequency) causal interactions.
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Algorithm 1 Estimating Multi-Scale Causal Orderings.
Require:

D∈RT ×d ▷ observational time-series
τmax ▷ largest lag to consider
ϵθ(·, k) ▷ A trained diffusion model approximating ∇ log p(x) at k ∈ [0, kmax]
K = {k1, . . . , kS} ▷ selected noise scales

Ensure: orders ▷ List of valid causal orderings
1: function DOTS(D,K, τmax)
2: orders← ∅
3: for all k ∈ K do
4: V ← {xτ

i | i = 1 . . . d, τ = 0 . . . τmax} ▷ lag-embedded nodes
5: π ← [ ] ▷ ordering for this scale
6: while V ̸= ∅ do
7: Hdiag← HessianDiagVar

(
ϵθ,D[:, V ], k

)
8: L← arg minv∈V Hdiag[v] ▷ leaf(s)
9: π ← [L |π]

10: V ← V \ L
11: end while
12: orders← orders ∪ {π}
13: end for
14: return orders
15: end function

4.4 Aggregating Multiple Orderings

Section 3 showed that taking the intersection of all topological sorts of a DAG G yields its transitive closure
G+, which is in general a superset of G. Because enumerating every ordering is infeasible, we combine a
finite sample of orderings in two simple steps.

Soft voting. From S orderings {π1, . . . , πS} obtained at diffusion steps k1:S we form a vote matrix Wij =
S−1 ∑

s 1{(i→ j) ∈ πs}. Thresholding at θ ∈ (0, 1] produces the soft transitive closure Ãij = 1{Wij ≥ θ}.
The extremes θ = 0 and θ = 1 reduce to the plain union and the hard intersection, respectively; intermediate
values let us balance recall against precision.

CAM pruning. The matrix Ã can still contain indirect or spurious edges. We refine it with the likeli-
hood–based pruning routine of Bühlmann et al. (2014), removing edges that do not improve the predictive
loss of the child variable given its other parents. The result is our final estimate Â. This procedure is
commonly used across most causal ordering approaches from Section 6.1.

Practical reliability. Soft voting has the appealing property that any edge appearing in every sampled
ordering is retained, whereas edges that never appear are discarded automatically. When (i) the sampler
generates a diverse set of valid orderings and (ii) the sample size is large enough for CAM’s tests to be
informative, Ã approximates G+ increasingly well and the pruning step tends to eliminate the remaining
indirect links, often recovering G exactly in practice.

5 Experiments

5.1 Setup

Our experimental framework prioritizes replication of results, modularity, and ease of extension. These are
features found in the Snakemake (Mölder et al., 2021) workflow management system, that forms a base for
our experimental setup. Snakemake has previously been used for benchmarking purposes in (non-temporal)
causal discovery (Rios et al., 2021), from which we draw inspiration. Our codebase is accessible online2.

2https://anonymous.4open.science/r/dots-TMLR
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5.2 Data

Simulations. Our synthetic Data Generating Process (DGP) is based on the work of Beaumont et al.
(2021) and Lawrence et al. (2020). Our experimental setup involves DGPs with the following properties:
sample size (observed time steps) T ∈ {200, 1000, 2000, 5000}, number of graph nodes d ∈ {3, 4, 5, 6}, lag size
τ ∈ {1, 2, 3}. In addition, all setups use non-linear causal mechanisms (piecewise linear and trigonometric)
and incorporate the same noise distribution ϵ ∼ N (0, [0.01, 0.05]). Each setting has been repeated 10
times to obtain robust results. Causal mechanisms and relationships are invariant across time (i.e. they are
stationary).

Borrowing the notation from Lawrence et al. (2020), a set of temporal causal links T generated in the DGP
is defined as follows:

Tt,τ := {Xi(t− τ)→ Xj(t)|i, j ∈ {1, . . . , d}} , (5)

with t denoting time index. Note that we do not consider instantaneous links in our experiments (τ > 0),
but do allow for autoregressive relationships (i = j). We also fix the lag size τ across all relationships within
any single dataset to isolate and study the influence of τ on algorithmic performance.

Real datasets. We also perform experiments on datasets closer to real-life complexities. To achieve this,
we incorporate CausalTime (Cheng et al., 2024), a realistic benchmark for time series causal discovery.
CausalTime provides three datasets: Air Quality Index (AQI), Traffic, and Medical. The AQI data consist
of 36 variables, whereas Traffic and Medical have 20. In terms of sample size, all datasets provide T=40
observations over time, and every such a set of observations is repeated 480 times. Since DOTS requires
a large sample size to perform well, we combine all 480 repeats of the observations into a single dataset of
length T=19 200. We apply the same pre-processing procedure to all three datasets.

• AQI: hourly PM2.5 readings from N=36 monitoring stations across China (T=8760). A geographical
distance kernel supplies a sparse prior graph.

• Traffic: average speed measured every 5 min at N=20 loop detectors in the San-Francisco Bay Area
(T=52 116); the prior graph again follows pairwise distance.

• Medical: N=20 vital-sign and chart-event channels extracted from 1000 MIMIC-IV ICU stays, re-
sampled to 2-h resolution (T=600 on average).

5.3 Algorithms

We compare our proposed method to the following baselines:

• Dummy: Returns a fully-connected temporal DAG as a naive estimation.

• CAM (Bühlmann et al., 2014): Fits additive noise models with restricted maximum likelihood and
sparsity-based pruning.

• SCORE (Rolland et al., 2022a): Uses score-matching to estimate the Hessian variance for iterative leaf
removal.

• DAS (Montagna et al., 2023b): Scalable ANM ordering via efficient Hessian diagonal estimation.

• NoGAM (Montagna et al., 2023a): Generalizes ANM ordering without Gaussian noise assumptions,
leveraging kernelized score estimates.

• PCMCI (Runge, 2020): Employs lagged conditional-independence tests for constraint-based discovery
in autocorrelated time series.

• PCMCI+ (Runge, 2020): Extends PCMCI with additional conditioning to control false positives.

• VARLiNGAM (Hyvärinen et al., 2010): Combines linear VAR modeling with non-Gaussian ICA to
recover a unique causal order.
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• DYNOTEARS (Pamfil et al., 2020): Casts temporal DAG learning as a single continuous optimization
with an acyclicity constraint.

• TCDF (Nauta et al., 2019): Trains temporal convolutional networks and validates edges via in-silico
interventions.

• TiMINo (Peters et al., 2013): Applies additive-noise regressions with independence tests on residuals
for both lagged and instant effects.

• DiffAN (Sanchez et al., 2023): Uses denoising diffusion models to approximate the score Jacobian for
fast, retraining-free causal ordering.

While the score-matching algorithms (CAM, SCORE, DAS, NoGAM) were not developed for temporal tasks,
we still include them in our experiments due to our proposed method’s strong roots in score-matching. To
make the use of the score-matching methods more appropriate in this temporal setting, we post-process
their predicted graphs by removing the edges that defy the arrow of time. This mild addition is indicated
by the ‘-C’ suffix added to the name of the methods in question (e.g. CAM-C) when reporting the results
in Section 5.6.

5.4 Graph Representation

Temporal causal graphs can be represented at different granularities (Assaad et al., 2022):

• Window Causal Graph: Restricts the full time causal graph to a finite lag window τmax, rep-
resenting only edges from xt−τ

i to xt
j for τ ≤ τmax. This trades off completeness for computational

feasibility.

• Summary Causal Graph: Aggregates causal relationships across time without specifying exact
lag indices, creating a more compact but less detailed representation as lagged and contemporaneous
edges are represented the same way. In addition, autocorrelated variables are represented with self-
loops.

5.5 Evaluation

The assumption that SCMs are invariant across time (stationarity) results in repeated causal links. Therefore,
we focus on the correctness of the predicted edges that terminate at (non-lagged) time t, that is Tt,τ . We
then compare predicted edges to the ground truth and calculate True Positives (TP), False Positives (FP)
and False Negatives (FN), from which we obtain Recall, Precision and F1 metrics as follows:

Recall = TP

TP + FN
, Precision = TP

TP + FP
, F1 = 2× Recall× Precision

Recall + Precision , (6)

as per (Assaad et al., 2022). We report F1 on window and summary graphs (F1W and F1S , respectively)
as the main metric of interest, but we also supplement our results with Recall and Precision (both window
and summary variants).

5.6 Results

5.6.1 Simulations

Figures 6 and 7 show the main results (averages and 95% confidence intervals). In both cases (window and
summary graphs), DOTS shows very strong and robust performance across different sample sizes, numbers
of features and lag sizes. Apart from a clear separation from the competition, DOTS is also one of the
few methods that keep improving in larger sample sizes (T = 5000). Score-matching methods and PCMCI
family perform comparatively, with another diffusion-based method (DiffAN-C ) coming out on top among
these, showing the advantage of diffusion models in strongly nonlinear tasks. VARLiNGAM, DYNOTEARS
and TCDF struggle to outperform the naive baseline that predicts fully-connected DAGs, suggesting their
leniency towards linear settings.
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Figure 6: F1 scores on simulated window graphs (F1W ). TiMINo does not provide F1W .
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Figure 7: F1 scores on simulated summary graphs (F1S).

Figure 8 shows average running times of all methods across the simulations. DOTS places in the middle
among the competitors, providing strong prediction performance at no extra computational costs as compared
to baselines. The runtime of DOTS also scales well that shows its promise in high-dimensional tasks.
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Figure 8: Average runtime of each algorithm in seconds obtained on synthetic data. Note the logarithmic
scale on the y axis.

5.6.2 Real Datasets

Table 2 summarises the main findings. Two broad trends emerge.
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1. Overall difficulty. Average F1S rarely exceeds 0.45, far below synthetic baselines, underscoring the gap
between toy DGPs and real dynamics. Constraint-based PCMCI loses precision on the noisier Medical
subset, while score-based DYNOTEARS collapses on AQI potentially due to its linearity assumption.

2. Best-in-class methods. Among approaches with functional assumption, TiMINo, which leverages the
same function assumptions as DOTS, excels on the Medical data. VARLiNGAM dominates the spatial
datasets, hinting that weak non-Gaussianities suffice for identifiability when the linear VAR fit is adequate.
Our method (DOTS) is within one standard error of the leader on every subset and wins on the aggregate
mean, validating the multi-ordering strategy.

Qualitatively, failures tend to cluster around long-range edges (large spatial distance in AQI/Traffic or
cross-system interactions in Medical). Future work should explore explicit distance-aware regularisation and
non-stationary mechanisms to close this performance gap.

Table 2: F1S (higher is better) on CausalTime. Best and second best per column are highlighted. SCORE,
DAS and NoGAM have been excluded due to exceeded memory allocation limits.

Method Medical AQI Traffic Avg. ↑

CAM-C 0.413 0.351 0.304 0.356
PCMCI/PCMCI+ 0.427 0.382 0.372 0.393
VARLiNGAM 0.457 0.464 0.391 0.437
DYNOTEARS 0.107 0.010 0.315 0.144
TCDF 0.286 0.218 0.000 0.168
DiffAN-C 0.313 0.356 0.282 0.317
TiMINo 0.553 0.429 0.340 0.441
DOTS (ours) 0.548 0.457 0.349 0.451

5.6.3 Ablation on the number of orderings

We now study how the number of causal orderings influence the predictive performance of DOTS. Our
theoretical results in Section 3 consider the case where all valid causal orderings are present. In Figure 3,
we study the impact of the number of orderings in an ideal scenario where all causal orderings are known.
DOTS generates a small, finite set of orderings based on a heuristic: using different diffusion timesteps (k).
Therefore, we run this experiment to validate that, indeed, orderings derived from different k are effective
in improving performance.

To investigate this, we run DOTS on synthetic data (T = 5000) generated from a 3-node graph with τ = 1.
We repeat the experiment 500 times. The results are shown in Figure 9. Sampling a single causal ordering
is underperforming as more instances are needed to arrive at the right graph. On the other hand, as few
as four orderings show a substantial performance improvement, which is on the same performance level as
ten orderings. Moving further to 15 instances shows a mild improvement, beyond which the performance
plateaus. Overall, selecting the number of sampled causal orderings clearly has a large effect on method
predictive performance, and while exploring more orderings may guarantee better performance, staying in
the range of 4–10 may often strike the right balance between computational cost and delivered performance.
The asymptotic gains are in agreement with the theoretical results presented in Figure 3.

False positives (spurious edges) are pruned more effectively because conflicting orderings rarely vote for the
same incorrect link, while false negatives (missed true edges) are rescued when at least one ordering captures
the correct ancestor–descendant relation. These findings empirically substantiate our theoretical claim from
Section 3: aggregating multiple orderings provides a robust consensus estimate of the transitive closure,
correcting errors that any single ordering may introduce.
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Figure 9: The relationship between prediction performance (F1W ) and the number of explored causal
orderings in DOTS.

6 Related work

6.1 Ordering-Based Causal Discovery

Representing a DAG by one of its valid topological orderings (Verma & Pearl, 1990) reduces structure learn-
ing to a permutation search followed by edge selection. Early work framed this idea as a discrete optimisation
problem: greedy MCMC over permutations (Friedman & Koller, 2003), hill-climbing with dynamic program-
ming (Teyssier & Koller, 2005), arc-reversal searches (Park & Klabjan, 2017), and restricted-MLE procedures
such as CAM (Bühlmann et al., 2014). More recent combinatorial schemes enforce sparsity via ℓ0-penalised
likelihoods, yielding the “sparsest permutation” estimators with provable consistency guarantees (Raskutti
& Uhler, 2018; Solus et al., 2021; Lam et al., 2022). Reinforcement-learning formulations further cast the
permutation search as a sequential decision process, amortising exploration across datasets (Wang et al.,
2021).

Beyond score optimisation, identifiability can be strengthened by exploiting distributional or algebraic asym-
metries. In linear additive models, sequentially peeling off leaf nodes from the precision matrix recovers the
causal order under heteroscedastic noise assumptions (Ghoshal & Honorio, 2018; Chen et al., 2019). De-
terministic functional constraints are handled by Determinism-aware GES (DGES), which first clusters exact
relations and then performs exact search within each cluster, using determinism itself as an unambiguous
ordering cue (Li et al., 2024). Non-Gaussianity offers an alternative route: LiNGAM identifies a unique
ordering via independent-component analysis, a principle extended to functional data in Func-LiNGAM
(Shimizu et al., 2006).

Scalability to high-dimensional, nonlinear settings has recently been advanced through continuous relax-
ations and deep generative models. CaPS estimates Hessian diagonals of the log-likelihood to iteratively
detect leaves, unifying linear and nonlinear mechanisms and accelerating pruning with a “parent score” met-
ric (Xu et al., 2024). Recent advances in ordering-based causal discovery further refine score-based estimation
strategies. SCORE (Rolland et al., 2022a) leverages score matching techniques to iteratively identify and
remove leaf nodes, specifically utilizing variance estimates of the Hessian diagonal. Building upon similar
principles, DAS (Montagna et al., 2023b) enhances scalability by efficiently estimating Hessian diagonals,
significantly reducing computational overhead. Additionally, NoGAM (Montagna et al., 2023a) generalizes
ordering-based approaches beyond Gaussian noise assumptions, employing kernelized score estimates to ac-
commodate a wider range of data distributions. DiffAN trains a denoising diffusion model to approximate
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the score-function Jacobian, introducing a deciduous update rule that circumvents network retraining during
iterative leaf removal, thus scaling ordering discovery to hundreds of variables (Sanchez et al., 2023). To-
gether, these developments illustrate a shift from discrete combinatorics to differentiable optimisation, while
preserving the core insight that a well-chosen causal ordering sharply narrows the search for a faithful DAG.
None of these works explore combining multiple valid causal orderings to recover the full adjacency matrix.

6.2 Hessian of the Log-likelihood

Estimating H(log p(x)) is the most expensive task of the ordering algorithm. Our baseline (Rolland et al.,
2022b) propose an extension of Li & Turner (2018) which utilises Stein’s identity over an RBF kernel
(Schölkopf & Smola, 2002). Rolland et al.’s method cannot obtain gradient estimates at positions out of the
training samples. Therefore, evaluating the Hessian over a subsample of the training dataset is impossible.
Other promising kernel-based approaches rely on spectral decomposition to solve this (Shi et al., 2018) issue
and constitute promising future directions. Most importantly, computing the kernel matrix is expensive for
memory and computation on n. There are, however, methods (Achlioptas et al., 2001; Halko et al., 2011; Si
et al., 2017) that help to scale kernel techniques not considered in the present work. Other approaches are
also possible with deep likelihood methods such as normalising flows (Durkan et al., 2019; Dinh et al., 2016)
and further computing the Hessian via backpropagation. This would require two backpropagation passes
giving O(d2) complexity and be less scalable than denoising diffusion. Indeed, preliminary experiments
proved impractical in our high-dimensional settings.

We use DPMs because they can efficiently approximate the Hessian with a single backpropagation pass while
allowing Hessian evaluation on a subsample of the training dataset. It has been shown (Song & Ermon, 2019)
that denoising diffusion can better capture the score than simple denoising (Vincent, 2011) because noise at
multiple scales explores regions of low data density.

6.3 Causal Discovery for Time Series

Granger’s seminal definition of causality for time series—past X improves the prediction of future Y —still
underpins most modern approaches (Granger, 1969). Structural causal models (SCMs) extend this idea
to permit intervention semantics, latent variables, and cycles (Bongers et al., 2021). Constraint-based
algorithms such as PCMCI and its refinement PCMCI+ adapt the PC procedure to lagged conditional-
independence testing, enabling scalable false-discovery control in autocorrelated, high-dimensional settings
(Runge, 2020). Functional-form assumptions provide stronger identifiability: TiMINo employs additive-noise
regressions with independence tests on residuals (Peters et al., 2013), while VARLiNGAM couples a linear
VAR with non-Gaussian errors and independent-component analysis to recover causal ordering (Hyvärinen
et al., 2010).

Score-based and deep-learning methods further relax linearity and stationarity. DYNOTEARS casts struc-
ture learning as a single differentiable optimisation problem over lagged and contemporaneous edges with
an acyclicity constraint (Pamfil et al., 2020). TCDF trains attention-based CNNs and validates candidates
through in-silico interventions (Nauta et al., 2019), whereas CausalFormer augments Transformers with
causality-aware attention to handle long sequences (Kong & Lu, 2024). Continuous-time dynamics can now
be unveiled with sparse Neural ODEs that yield interpretable differential systems from irregular samples
(Aliee et al., 2023). Information-theoretic criteria such as transfer entropy generalise Granger tests to non-
linear interactions, though density estimation remains costly in high dimensions (Schreiber, 2000). Recent
surveys emphasise persistent challenges—hidden confounders, non-stationarity, and computation at scale
(Gong et al., 2023; Assaad et al., 2022; Moraffah et al., 2021). Our method advances the field by com-
bining the statistical rigour of functional approaches with the scalability of continuous optimisation while
accommodating nonlinearities typical of real-world data.
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7 Conclusion

In this work, we introduced DOTS, a diffusion-based approach leveraging multiple causal orderings to address
the challenge of temporal causal discovery. While previous single-ordering methods were primarily developed
in the context of static causal discovery, our work extends the causal ordering framework explicitly to the
temporal setting. This temporal context inherently incorporates the causal temporality principle, where
variables can only causally influence future variables, not past ones. Unlike traditional single-ordering meth-
ods, DOTS effectively captures complementary information by aggregating multiple valid causal orderings,
thereby reconstructing the transitive closure of the underlying temporal DAG. We formalized the theoret-
ical benefits of this multi-ordering strategy, demonstrating its capacity to mitigate spurious dependencies
and enhance robustness in causal inference. Our empirical results on both synthetic and real-world datasets
clearly illustrate the superiority of DOTS compared to existing state-of-the-art baselines in terms of accuracy
and scalability. By exploiting the inherent frequency domain characteristics of diffusion steps, our method
provides nuanced insights into both coarse and fine-grained temporal causal interactions. Future research
directions include exploring additional aggregation strategies for causal orderings, extending our method to
non-stationary environments, and further optimizing computational efficiency for large-scale applications.
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A Order theory definitions

Here, we establish the foundational definitions used in order theory.
Definition 1 (Partial Order). Let V be a set. A binary relation ≤ on V is a partial order if, for all
x, y, z ∈ V , it satisfies:

(i) Reflexivity: x ≤ x.

(ii) Antisymmetry: If x ≤ y and y ≤ x, then x = y.

(iii) Transitivity: If x ≤ y and y ≤ z, then x ≤ z.

The pair (V,≤) is called a partially ordered set (or poset).
Definition 2 (Strict Partial Order). A binary relation ≺ on V is a strict partial order if it is:

(i) Irreflexive: For all x ∈ V , x ̸≺ x.

(ii) Transitive: If x ≺ y and y ≺ z, then x ≺ z.

Definition 3 (Linear Extension). For a poset (V,≤), a linear extension is a total order ⪯ on V such that
if x ≤ y, then x ⪯ y for all x, y ∈ V . That is, ⪯ extends ≤ into a total ordering consistent with the partial
order.
Definition 4 (Reachability Relation). For a directed graph G = (V, E), the reachability relation R ⊆ V ×V
is defined as:

(x, y) ∈ R ⇐⇒ there exists a directed path from x to y in G.

If G is a DAG, R is a partial order on V (reflexive, antisymmetric, and transitive), as every vertex is reachable
from itself via a trivial path.
Definition 5 (Transitive Closure). For a directed graph G = (V, E) with reachability relation R, the
transitive closure of G is the graph:

G+ = (V, E+),

where:
E+ = {(x, y) ∈ V × V : (x, y) ∈ R and x ̸= y}.

Thus, G+ contains an edge (x, y) if and only if there is a non-trivial directed path from x to y in G, excluding
self-loops.
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B Supplementary Results

B.1 Alternative metrics

Figures 10 and 11 supplement our main simulation results. In these, we report precision and recall on both
window and summary graphs. The most important observation here is that the top-performing methods
almost never provide non-existent edges (i.e. high precision), but some undetected edges still remain (i.e.
recall lower than 1). Future work could focus on improving edge detection while maintaining high precision
levels.
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Figure 10: Precision and recall (higher is better) on simulated window graphs. TiMINo does not provide
window graphs.
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Figure 11: Precision and recall (higher is better) on simulated summary graphs.
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B.2 Effect of the temporal constraint

Figure 12 shows the influence of the temporal constraint applied to score-matching methods to ensure they
return a graph that respects the arrow of time. Most methods show some mild performance improvement
and mostly in higher precision. Interestingly, diffusion-based methods (DiffAN and DOTS) do not exhibit
such a benefit, which could be partly due to already high precision achieved even without the constraint (i.e.
not much room for further improvement).
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Figure 12: The effect of the temporal constraint on the performance of score-matching algorithms.
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C Experimental Details

C.1 Hyperparameters

We summarise the most important hyperparameters used in conjunction with the methods in Table 3. For
the rest of the hyperparameters not mentioned here, we deferred to their default values, which can be found
in their respective implementations as per Table 4.

In addition, most methods have a hyperparameter that corresponds to the maximum lag size, though can
be named differently in their implementations (τmax in PCMCI/PCMCI+, lags in VARLiNGAM, p in
DYNOTEARS, max_lag in TiMINo). This hyperparameter can have a non-trivial effect on method’s per-
formance. In order to decrease our experiments’ dependence on hyperparameter tuning, we set this hy-
perparameter to the true lag value τ in the simulations since we have access to the ground truth. In real
data settings (CausalTime), we set the value to 1. Note that some methods (CAM, SCORE, DAS, No-
GAM, DiffAN, DOTS) implement this hyperparameter implicitly by creating τ × d lagged variables based
on provided data.

While sampling 10 causal orderings in DOTS is a reasonable default (n_ord), we increase it to 20 when
processing CausalTime to better showcase our method’s potential.

Table 3: Summary of hyperparameters of all methods used in the experiments.

Method Hyperparameters
CAM alpha = 0.05
SCORE α = 0.05, ηG = 0.001, ηH = 0.001
DAS α = 0.05, ηG = 0.001, ηH = 0.001
NoGAM α = 0.05, ηG = 0.001, ηH = 0.001

ridgeα = 0.01, ridgeγ = 0.1
PCMCI/PCMCI+ α = 0.05, test ∈ {par_corr, cmi_knn}, τmin = 1
VARLiNGAM α = 0.05, criterion = bic, prune = true
DYNOTEARS λw = 0.05, λa = 0.05, w_threshold = 0.01
TCDF epochs = 5000, layers = 2, lr = 0.01

kernel_size = 4, dilation = 4, significance = 0.8
DiffAN steps = 100, nn_depth = 3, batch_size = 1024

early_stop = 300, lr = 0.001
TiMINo α = 0.05
DOTS steps = 100, nn_depth = 3, batch_size = 1024

early_stop = 300, lr = 0.001, n_ord = 10

C.2 Implementations of algorithms

Table 4: Summary of source code used to run the methods in the experiments.

Method Source
CAM/SCORE/DAS/NoGAM dodiscover: https://github.com/py-why/dodiscover
PCMCI/PCMCI+ tigramite: https://github.com/jakobrunge/tigramite
VARLiNGAM lingam: https://github.com/cdt15/lingam
DYNOTEARS causalnex: https://github.com/mckinsey/causalnex
TCDF https://github.com/M-Nauta/TCDF
DiffAN https://github.com/vios-s/DiffAN
TiMINo https://github.com/ckassaad/causal_discovery_for_time_series/blob/master/baselines/scripts_R/timino.R
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