PAC-BAYES BOUNDS FOR CUMULATIVE LOSS IN CONTINUAL LEARNING

Anonymous authors

Paper under double-blind review

ABSTRACT

In continual learning, knowledge must be preserved and re-used between tasks, requiring a balance between maintaining good transfer to future tasks and minimizing forgetting of previously learned ones. As several practical algorithms have been devised to address the continual learning setting, the natural question of providing reliable risk certificates has also been raised. Although there are results for specific settings and algorithms on the behavior of memory stability, generally applicable upper bounds on learning plasticity are few and far between.

In this work, we extend existing PAC-Bayes bounds for online learning and timeuniform offline learning to the continual learning setting. We derive general upper bounds on the cumulative generalization loss applicable for any task distribution and learning algorithm as well as oracle bounds for Gibbs posteriors and compare their effectiveness for several different task distributions. We demonstrate empirically that our approach yields non-vacuous bounds for several continual learning problems in vision, as well as tight oracle bounds on linear regression tasks. To the best of our knowledge, this is the first general upper bound on learning plasticity for continual learning.

1 Introduction

Continual learning is a machine learning setting in which collections of examples, known as tasks, arrive sequentially. These tasks may be different skills and capabilities, represent changes in the data distribution over time, or encapsulate different contexts or environments. Since tasks change over time, continual learning is also referred to as incremental learning or lifelong learning. Due to the limited model capacity and the sequential nature of the continual learning setting, issues often arise in adapting the model to new tasks as they appear while also preserving its performance on previous tasks and thus avoiding *Catastrophic Forgetting* (Goodfellow et al., 2015; Kirkpatrick et al., 2017), where performance on previous tasks degrades significantly as the model adapts to new tasks. This dilemma is a facet of the trade-off between learning plasticity and memory stability (Wang et al., 2024), two key aspects of the learner's behavior during the continual learning process.

There are several methods and algorithms aiming to effectively resolve this tradeoff in various continual learning scenarios (see Wang et al. (2024)), such as via regularization (Kirkpatrick et al., 2017), replay of data from previous tasks (Rebuffi et al., 2017) or other methods. Due to the inherent trade-off between forgetting and forward transfer, metrics to evaluate continual learning algorithms differ. Common metrics include the average accuracy of the model for all previous tasks, memory stability measures such as forgetting, and learning plasticity measures such as intransigence (Chaudhry et al., 2018), forward transfer and cumulative error incurred in each task.

While several empirical methods aimed to tackle the challenges of continual learning have been proposed in recent years, there are significantly fewer theoretical works aiming to analyze the properties of continual learning problems and provide estimates or guarantees on overall performance. Some works (Evron et al., 2022; Doan et al., 2021; Benavides-Prado & Riddle, 2022) focus on understanding the behavior of forgetting, an interesting topic in and of itself, while other works (Lin et al., 2023; Bennani & Sugiyama, 2020; Zhao et al., 2024; Levinstein et al., 2025) focus on average model loss for specific settings such as continual linear regression or the Neural Tangent Kernel (NTK) regime (e.g. very wide neural networks). One promising direction to derive more general performance guarantees is the PAC-Bayes framework (McAllester, 1999; Catoni, 2004; Alquier,

2024). Existing upper bounds on meta-learning (Pentina & Lampert, 2015; Amit & Meir, 2018) and online learning (Haddouche & Guedj, 2022) offer guarantees for the loss on unseen tasks as well as the online setting that serves as a special case of continual learning. A recent paper by Friedman & Meir (2025) derived general PAC-Bayes bounds on forgetting in the continual learning setting. To the best of our knowledge, however, there are no PAC-Bayes bounds for the cumulative loss in the continual learning setting. The cumulative loss is of particular interest for continual re-training: given an initial model, we would like to update it incrementally as new data becomes available or the overall environment changes gradually. In this scenario, we would like to provide guarantees on the model's performance and loss as tasks change, ideally with few samples for each task.

In this work, we extend existing PAC-Bayes bounds for online learning (Haddouche & Guedj, 2022) and time-uniform offline learning (Haddouche & Guedj, 2023; Chugg et al., 2023) to the continual learning setting, allowing us to derive the first (to our knowledge) algorithm-agnostic risk certificates for learning plasticity via the cumulative loss. We derive bounds applicable for bounded and sub-Gaussian losses for offline and online continual learning. Equation 3, for instance, suggests that if we continually re-train a model daily over a year, only a few dozen examples are required to provide effective high-probability risk certificates for the expected cumulative loss. We also analyze our bounds as oracle bounds and compare their effectiveness for several different task distributions to provide additional insights into the relationship between forward transfer, model complexity and task similarity. We demonstrate empirically that our approach yields non-vacuous bounds for several continual learning problems in vision, as well as tight oracle bounds on linear regression tasks.

2 BACKGROUND

In order to obtain upper bounds on the cumulative loss for continual learning, we must first define a sufficient theoretical framework for describing the learning process in question. Figure 1 provides an overview of the continual learning process using the same symbolic terminology described below. We follow a similar framework as Haddouche & Guedj (2022; 2023), adapted to the continual

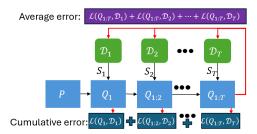


Figure 1: Depiction of the continual learning process. A data-free prior P is adapted to task \mathcal{D}_1 via an empirical sample $S_1 \sim \mathcal{D}_1^m$, resulting in posterior Q_1 . The posterior's expected (test) loss $\mathcal{L}(Q_1, \mathcal{D}_1)$ is added to the cumulative loss. Q_1 serves as the new prior for the next task \mathcal{D}_2 and so on until we reach a final posterior $Q_{1:T}$. The cumulative loss is the sum of errors for all tasks.

learning setting by changing each task from a single example to a set of i.i.d. samples.

Framework Consider a data space $\mathcal{Z} = \mathcal{X} \times \mathcal{Y}$ defined as pairs or inputs and outputs, i.e. $z_i = (x_i, y_i) \in \mathcal{Z}$, where $x_i \in \mathcal{X}, y_i \in \mathcal{Y}$. We fix an integer sample size m > 0. For our continual learning process, we consider a finite sequence of tasks of length T, where each task $t \in [T]$ is associated with an unknown data distribution \mathcal{D}_t . We assume that for each task t we are given an i.i.d. sample of size m from the corresponding data distribution, $S_t \in \mathcal{D}_t^m$. Our complete data sample is therefore composed of the sequence $(S_t)_{t=1}^T \triangleq (S_1, S_2, \dots, S_T)$. We make no assumptions regarding the relation between tasks or the length of the task sequence, and our results are applicable for any T > 0. We denote our hypothesis space \mathcal{H} such that $h \in \mathcal{H}$ is a function $h : \mathcal{X} \to \mathcal{Y}$ and denote the space of probability distributions over \mathcal{H} as $\mathcal{M}_1(\mathcal{H})$.

We set a sequence of priors, starting with a data-free prior distribution $P_1 = P \in \mathcal{M}_1(\mathcal{H})$, and $(P_t)_{t \geq 2}$ such that each $P_t \in \mathcal{M}_1(\mathcal{H})$ is \mathcal{F}_{t-1} -measurable, with $(\mathcal{F}_t)_{t \geq 0}$ being an adapted filtration to $(S_t)_{t=1}^T$. We denote $(Q_t)_{t=1}^T$ a sequence of posterior distributions such that Q_t is absolutely

continuous w.r.t. P_t . Similarly to Haddouche & Guedj (2022), we introduce the notion of stochastic kernels (Rivasplata et al., 2020) as data-dependent measures within the PAC-Bayes framework, allowing us to define bounds with data-dependent priors. We denote $\Sigma_{\mathcal{H}}$ the σ -algebra on \mathcal{H} .

Definition 1. (Stochastic Kernels) A stochastic kernel from $S \in \mathbb{Z}^m$ to \mathcal{H} is defined as a mapping $Q: \mathbb{Z}^m \times \Sigma_{\mathcal{H}} \to [0,1]$ where (1) For any $B \in \Sigma_{\mathcal{H}}$, the function $S \to Q(S,B)$ is measurable. (2) For any $S \in \mathbb{Z}^m$, the function $B \to Q(S,B)$ is a probability measure over \mathcal{H} .

Stochastic kernels allow us to refer to a distribution dependent on dataset S, marking $Q_S = Q(S, \cdot)$.

Definition 2. A sequence of stochastic kernels $(P_t)_{t=1}^T$ is called an *online predictive sequence* if (1) For all $t \geq 1$, $S \in \mathbb{Z}^m$, $P_t(S, \cdot)$ is \mathcal{F}_{t-1} -measurable and (2) for all $t \geq 2$, $P_t(S, \cdot)$ is absolutely continuous w.r.t. $P_{t-1}(S, \cdot)$. We will also use the notation $P_{1:t}$ to denote such a kernel.

This definition of online predictive sequences allows for the description of a stochastic kernel (and posterior distribution for hypotheses) that changes as new tasks arrive sequentially, and can be used to describe a variety of continual learning algorithms.

Definition 3. A loss function $\ell: \mathcal{H} \times \mathcal{Z} \to \mathbb{R}^+ \cup \{0\}$ is a function mapping a hypothesis h and data sample z to the set of nonnegative numbers. The expected loss for $h \in \mathcal{H}$ is $\mathcal{L}(h, \mathcal{D}) \triangleq \mathbb{E}_{z \in \mathcal{D}} \ell(h, z)$. The empirical loss of a hypothesis w.r.t. a sample $S \in \mathcal{Z}^m$ is $\hat{\mathcal{L}}(h, S) \triangleq \frac{1}{m} \sum_{j=1}^m \ell(h, z_j)$.

We assume for the sake of convenience that the loss function $\ell(h,z)$ is task-agnostic, but our results are applicable even if the loss function depends on the task identifier. In Appendix A, we restate the main result of Haddouche & Guedj (2022) using our terminology in Theorem A.1. The l.h.s. of the bound represents the online loss incurred on each example z_t by the posterior trained on the sequence (z_1, \ldots, z_t) . For each task, we are given one new sample and update the posterior.

Finally, we define the cumulative loss (CuL) and the average loss (AL). We note that this paper will focus on the cumulative loss, corresponding to notions such as forward transfer (FWT), intransigence and learning plasticity rather than the average loss (corresponding to average accuracy). For a more in-depth overview of these metrics, see Wang et al. (2024). We note that both metrics refer to expected (test) errors.

Definition 4. For a given online predictive sequence (Q_t) , a sequence of tasks $\mathcal{D}_1, \ldots, \mathcal{D}_T$, and a sample $S_{1:T} = (S_1, \ldots, S_T) \sim \mathcal{D}_1^m \times \ldots \times \mathcal{D}_T^m$, the *cumulative loss (CuL)* is defined as

$$CuL((Q_t)_{t=1}^T) = \sum_{t=1}^T [\mathcal{L}(Q_{t,S_{1:t}}, \mathcal{D}_t) | \mathcal{F}_{t-1}] \triangleq \sum_{t=1}^T \mathbb{E}_{h_t \sim Q_{t,S_{1:t}}} [\mathbb{E}_{z_t \sim \mathcal{D}_t} [\ell(h_t, z_t) | \mathcal{F}_{t-1}]].$$

The Average loss (AL) is defined as

$$\operatorname{AL}(Q_T) = \sum_{t=1}^T \mathcal{L}(Q_{T,S_{1:T}}, \mathcal{D}_t) \triangleq \sum_{t=1}^T \mathbb{E}_{h_T \sim Q_{T,S_{1:T}}} [\mathbb{E}_{z_t \sim \mathcal{D}_t} [\ell(h_T, z_t)].$$

As we can see from the definitions, the CuL is measured w.r.t. the entire predictive sequence sequentially, and can be extended to new tasks by simply adding an additional element for task T+1. The AL, on the other hand, is measured retroactively for a single posterior w.r.t. all tasks, must be re-calculated from scratch for each new task, and requires additional memory proportional to the number of tasks in order to estimate the expected loss for each task. We note that both terms differ from the meta-learning loss, that can be expressed (for unknown task \mathcal{D}_{T+1}) as $\mathrm{MetaL}(Q_T) \triangleq \mathbb{E}_{S_{T+1} \sim \mathcal{D}_{T+1}^m}[\mathcal{L}(Q_T(S_{1:T+1}), \mathcal{D}_{t+1})]$. Unlike CuL and AL, the meta-learning loss considers the loss on a future task rather than past or current performance. We note that this framework allows for the derivation of risk certificates for both offline continual learning, where samples for each task are given as a batch, and online continual learning, where each sample is given sequentially and cannot be re-used.

3 UPPER BOUNDS ON CUMULATIVE LOSS

Assumption 1. The loss function $\ell(h,z)$ is either: (1) upper bounded by constant K or (2) is K sub-Gaussian. Formally, $\forall h \in \mathcal{H}, z \in \mathcal{Z}, \ell(h,z) \in [0,K]$ or $\mathbb{E}_{z \sim \mathcal{D}_i} \left[e^{t(\ell(h,z) - \mathbb{E}_{z \sim \mathcal{D}_i} \ell(h,z))} \right] \leq e^{Kt^2}$.

First, we extend the result of Theorem A.1 to the continual learning setting (m > 1) and to sub-Gaussian losses.

Corollary 3.1. Under Assumption 1, for any $\lambda > 0$, for any set of T tasks, for any online predictive sequence of priors (P_t) , for any sequence of stochastic kernels (Q_t) with probability at least $1 - \delta$ over the draw of $(S_1, \ldots, S_T) \sim \mathcal{D}_1^m \times \ldots \times \mathcal{D}_T^m$, we have that the following holds for the data-dependent measures $P_t(S_{1:t}, \cdot), Q_t(S_{1:t}, \cdot)$,

$$\frac{1}{T} \text{CuL}((Q_t)_{t=1}^T) \le \frac{1}{T} \sum_{t=1}^T \hat{\mathcal{L}}(Q_t(S_{1:t}), S_t) + \frac{1}{\lambda T} \sum_{t=1}^T \text{KL}(Q_t(S_{1:t}) || P_t(S_{1:t})) + \frac{\lambda K^2}{m} + \frac{\log(1/\delta)}{\lambda T}.$$
(1)

The full proof is in Appendix A, and follows a similar outline to Theorem A.1 but adapted to the continual learning setting. In particular, unlike the online setting, if we have $m\gg T$, the r.h.s. converges to the l.h.s. as $m\to\infty$, similarly to the standard PAC-Bayes bounds. This result is a straightforward extension of Theorem A.1 and requires no new technical tools.

Since the prior sequence may be data-dependent, we can select $P_1 = P$ and $P_t(S_{1:t}) = Q_{t-1}(S_{1:t})$, similarly to Haddouche & Guedj (2022), giving us a KL-divergence term that depends on the change in the posterior between subsequent tasks. We note that while the posterior stochastic kernel Q_{t-1} must be \mathcal{F}_{t-2} -measurable and is therefore independent of S_t , the measure $Q_{t-1}(S_{1:t},\cdot)$ can use S_t in equation 1. In practical terms, this means that for models with task-specific parameters (i.e. parameters that are used only for specific tasks), KL-divergence can be measured w.r.t. only shared parameters. This may serve to lower the overall KL-divergence, as task-specific parameters can be used to specialize a more general model that varies little between tasks.

While Corollary 3.1 is a useful upper bound, equation 1 has terms in the r.h.s. that do not converge to the l.h.s. as the number of tasks T increases, namely the term $\lambda K^2/m$. In the context of continual learning, upper bounds that converge as the number of tasks increases are vastly preferable. In order to achieve such bounds, we must make some additional assumptions on our tasks. Specifically, we assume that the loss function is upper bounded by a constant, and that the number of samples per task is not much smaller than the number of tasks, i.e. $m \gg \sqrt{T}$.

Theorem 3.2. Under the same setup as Corollary 3.1, assuming $\ell(h, z) \in [0, K]$, for any predictive sequence of posteriors (Q_t) , for any $\delta_2 \in (0, 1]$, with probability at least $1 - \delta$ over the draw of $(S_1, \ldots, S_T) \sim \mathcal{D}_1^m \times \ldots \times \mathcal{D}_T^m$, the following holds for measures $P_t(S_{1:t}), Q_t(S_{1:t})$

$$\frac{1}{T} \text{CuL}((Q_t)_{t=1}^T) \le \frac{1}{T} \sum_{t=1}^T \hat{\mathcal{L}}(Q_t(S_{1:t}), S_t) + \frac{1}{\lambda} \sum_{t=1}^T \text{KL}(Q_t(S_{1:t}) || P_t(S_{1:t}))
+ \frac{1}{\lambda} \log \left\{ (1 - \delta_2) e^{\lambda K \sqrt{\log(1/\delta_2)/2mT}} + \delta_2 e^{\lambda K} \right\} + \frac{\log(1/\delta)}{\lambda}.$$
(2)

Specifically, we can set $\lambda = \frac{T\sqrt{T}}{K}$, $\delta_2 = e^{-T\sqrt{T}}$, resulting in

$$\frac{1}{T} \text{CuL}((Q_t)_{t=1}^T) \le \frac{1}{T} \sum_{t=1}^T \hat{\mathcal{L}}(Q_t(S_{1:t}), S_t) + \frac{K}{T\sqrt{T}} \sum_{t=1}^T \text{KL}(Q_t(S_{1:t}) || Q_{t-1}(S_{1:t}))
+ \frac{K\sqrt[4]{T}}{\sqrt{2m}} + \frac{K(1 + \log(1/\delta))}{T\sqrt{T}},$$
(3)

where $Q_0=P$, meaning that as long as $m>\sqrt{T}/2$ the r.h.s. converges to the l.h.s. as $m,T\to\infty$. This result gives us an upper bound that converges as more tasks are added, provided that we have sufficient samples per task. It also suggests a good rule of thumb for effective continual learning the number of samples per task should exceed the square root of the number of total tasks.

Proof of Theorem 3.2 appears in Appendix A. This Theorem uses a careful analysis of task and posterior dependencies that is specific to online and continual learning, as well as bad-event analysis that is not commonly utilized in the context of PAC-Bayes bounds.

4 ORACLE BOUNDS FOR SPECIFIC SETTINGS

Corollary 3.1 and Theorem 3.2 provide general upper bounds that are applicable for a wide variety of tasks and continual learning algorithms, but their generality makes detailed analysis more difficult. In order to better demonstrate these results and compare them for different settings, we derive and compare oracle upper bounds on the Gibbs posterior.

Definition 5. Recall the *Gibbs posterior* distribution and the *expected Gibbs posterior* distribution, for $t \ge 1$, $\lambda > 0$, for $\hat{Q}_0^{\lambda} = Q_0^{\lambda} = P$,

$$\hat{Q}_t^{\lambda}(h) \propto e^{-\lambda \hat{L}(h,S_t)} \hat{Q}_{t-1}^{\lambda}(h), \quad Q_t^{\lambda}(h) \propto e^{-\lambda \mathbb{E}_{z_t \sim \mathcal{D}_t} \ell(h,z_t)} Q_{t-1}^{\lambda}(h).$$

The main advantage of the Gibbs posterior is that it removes the KL-divergence terms from the r.h.s. of equation 1 (as can be seen, for example, in Lemma A.4). This property allows us to derive upper bounds on the cumulative loss for the sequence of expected Gibbs posteriors. We note that while these bounds refer to the expected Gibbs posterior and discuss the limit where $m,T\to\infty$, they originate from a non-asymptotic bound appearing in Appendix A. Equivalent bounds for empirical Gibbs posteriors can be derived by changing the final condition to be taken w.r.t. the empirical loss on the training set.

Theorem 4.1. For any $\lambda > 0$, assuming (1) $Q_t = Q_t^{\lambda}$ is the expected Gibbs posterior. (2) $P_1 = P$ is a data-free measure over \mathcal{H} . (3) $\forall t > 1 : P_t = Q_{t-1} = Q_{t-1}^{\lambda}$ (4) \mathcal{H} is a compact, bounded subset of \mathbb{R}^d . (5) $\forall t \in [2,T]$, the total expected loss $\sum_{i=1}^t \mathcal{L}(h,\mathcal{D}_i)$ has a strict global minimum at $h_{1:t}^*$ and is twice continuously differentiable w.r.t. h. Under Assumption 1, we have

$$\lim_{m,T\to\infty} \frac{1}{T} \operatorname{CuL}((Q_t^{\lambda})_{t=1}^T) \le \lim_{T\to\infty} \frac{1}{T} \sum_{t=2}^T \mathcal{L}(h_{1:t-1}^*, \mathcal{D}_t). \tag{4}$$

The full proof is provided in Appendix A and relies mainly on Laplace's method (Hwang, 1980; Shun & McCullagh, 1995), which is rarely used for PAC-Bayes bounds. We note that under different strict minimum assumptions we can derive another useful oracle bound,

Corollary 4.2. For any $\lambda > 0$, assuming (1) $Q_t = Q_t^{\lambda}$ is the expected Gibbs posterior. (2) $P_1 = P$ is a data-free measure over \mathcal{H} (3) $\forall t > 1 : P_t = Q_{t-1} = Q_{t-1}^{\lambda}$ (4) \mathcal{H} is a compact, bounded subset of \mathbb{R}^d . (5) $\forall t \in [2,T]$, the expected loss $\mathcal{L}(h,\mathcal{D}_{t-1})$ has a strict global minimum at h_{t-1}^* and is twice continuously differentiable w.r.t. h. Under Assumption 1, we have

$$\lim_{m \to \infty} \frac{1}{T} \operatorname{CuL}((Q_t^{\lambda})_{t=1}^T) \le \frac{1}{T} \sum_{t=2}^T \mathcal{L}(h_{t-1}^*, \mathcal{D}_t) + \frac{1}{T} \mathcal{L}(P, \mathcal{D}_1).$$
 (5)

In both cases, we see that the CuL can be upper bounded by the loss of a predictor obtained from previous tasks. Using these oracle bounds, we can compare the cumulative loss for several different continual learning setups and contrast the effects of task similarity between them.

Assumption 2. (Lipchitz loss) For some non-negative $\mathcal{G}_{\mathcal{H}}$ and metric $d(\cdot,\cdot)$,

$$\forall i, j, h \in \mathcal{H}, \quad |\mathcal{L}(h, \mathcal{D}_i) - \mathcal{L}(h, \mathcal{D}_j)| \leq \mathcal{G}_{\mathcal{H}} d(\mathcal{D}_i, \mathcal{D}_j).$$

This assumption implies that similarities in the task distribution are reflected in the loss function.

Assumption 3. For each task \mathcal{D}_t , the optimal (minimum) loss \mathcal{L}_t^* is a achievable via a hypothesis of dimension d_t . Additionally, for any two tasks $\mathcal{D}_i, \mathcal{D}_j$, if $d = \dim(\mathcal{H}) \geq d_i + d_j$, i.e. \mathcal{H} is overparametrized, then there exists $h_{i,j}^* \in \mathcal{H} \subseteq \mathbb{R}^d$ such that $\mathcal{L}(h_{i,j}^*) = \min_{h \in \mathcal{H}} (\mathcal{L}(h, \mathcal{D}_i) + \mathcal{L}(h, \mathcal{D}_j))$.

This assumption aims to link model complexity and representation power, stating that given enough parameters, it is possible to find a hypothesis achieving minimal loss and that given more parameters, we can find optimal hypotheses on the average loss. Taking into account all of our assumptions, we can provide oracle bounds for several different scenarios in terms of task similarities and ordering.

1. If $\forall t$, $\mathcal{D}_t = \mathcal{D}_1$, i.e. we have different samples from the same task distribution, we have

$$\lim_{m \to \infty} \frac{1}{T} \operatorname{CuL}((Q_t^{\lambda})_{t=1}^T) \le \mathcal{L}_1^* + O\left(\frac{1}{T}\right).$$

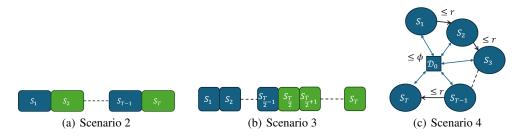


Figure 2: Depictions of scenarios 2, 3 and 4. In scenario 2 we alternate between two task distributions. In scenario 3 we take T/2 tasks from one distribution and another T/2 from a second one. In scenario 3, each new task is of distance at most r from the previous one, and any two tasks are at distance at most 2ϕ from each other.

2. If tasks alternate between distributions \mathcal{D}_1 and \mathcal{D}_2 , we have that if $d \geq d_1 + d_2$, we also obtain the optimal (minimal) result

$$\lim_{m \to \infty} \frac{1}{T} \mathrm{CuL}((Q_t^{\lambda})_{t=1}^T) \leq \frac{\mathcal{L}_1^* + \mathcal{L}_2^*}{2} + O\left(\frac{1}{T}\right),$$

and otherwise we have (via Theorem 4.1)

$$\lim_{m \to \infty} \frac{1}{T} \operatorname{CuL}((Q_t^{\lambda})_{t=1}^T) \le \frac{\min_h \left\{ \mathcal{L}(h, \mathcal{D}_1) + \mathcal{L}(h, \mathcal{D}_2) \right\}}{2} + \frac{1}{2} \mathcal{G}_{\mathcal{H}} d(\mathcal{D}_1, \mathcal{D}_2) + O\left(\frac{1}{T}\right)$$

$$\le \min \left\{ \mathcal{L}_1^*, \mathcal{L}_2^* \right\} + \mathcal{G}_{\mathcal{H}} d(\mathcal{D}_1, \mathcal{D}_2) + O\left(\frac{1}{T}\right).$$

3. If the first T/2 tasks are from \mathcal{D}_1 and the second half are from \mathcal{D}_2 , we have

$$\lim_{m \to \infty} \frac{1}{T} \mathrm{CuL}((Q_t^{\lambda})_{t=1}^T) \leq \begin{cases} \frac{\mathcal{L}_1^* + \mathcal{L}_2^*}{2} + O\left(\frac{1}{T}\right) & d \geq d_1 + d_2 \\ \frac{\mathcal{L}_1^* + \mathcal{L}_2^*}{2} + O\left(\frac{1}{T}\right) + \frac{1}{T} \mathcal{G}_{\mathcal{H}} d(\mathcal{D}_1, \mathcal{D}_2) & d < d_1 + d_2 \end{cases}$$

4. If tasks change gradually and do not differ significantly from one another, or more formally, if $\forall t, \quad d(\mathcal{D}_t, \mathcal{D}_0) \leq \phi$ and $\forall t < T, \quad d(\mathcal{D}_t, \mathcal{D}_{t+1}) \leq r, r < \phi$, we have

$$\lim_{m \to \infty} \frac{1}{T} \operatorname{CuL}((Q_t^{\lambda})_{t=1}^T) \le \frac{1}{T} \sum_{t=1}^T \mathcal{L}_t^* + r \mathcal{G}_{\mathcal{H}} + O\left(\frac{1}{T}\right).$$

These results imply that (given limited capacity) task order can significantly impact the cumulative error. This is not particularly surprising, as existing results on the expected loss and forgetting in continual learning also demonstrate that task order and relatedness are a major factor in overall error, but it is not immediate to deduce that this should also be the case for the cumulative loss.

5 EMPIRICAL DEMONSTRATION

In this section we demonstrate the utility of our bounds from Sections 3 and 4. We study the efficacy of our bounds several simple (but non-trivial) environments with varied task similarity.

5.1 VISION-BASED TASKS

In order to examine the bounds of Corollary 3.1 and Theorem 3.2, we made use of a few well-known computer vision tasks in the context of continual learning, namely: (1) Permuted-MNIST (Goodfellow et al., 2015), a domain-incremental problem (De Lange et al., 2021) where a random permutation is applied on each image for each task. (2) Split-MNIST (Zenke et al., 2017), a sequential set of binary classification tasks constructed from the MNIST (LeCun et al., 1998) dataset. (3) Split-CIFAR10 (Zenke et al., 2017), a sequential set of binary classification tasks constructed

Table 1: Average and final cumulative error percentage for vision tasks. Lower is better.

Domain	Method	CuL	Bound (equation 3)	Error $@t = 120$	Bound $@t = 120$
PermMNIST	EWC VI	1.0 ± 0.0 15.5 ± 0.1	10.6 ± 0.2 17.9 ± 0.1	$1.0 \pm 0.0 \\ 4.7 \pm 0.1$	5.1 ± 0.2 6.8 ± 0.1
Split-MNIST	EWC VI	0.9 ± 0.0 17.6 ± 0.4	4.2 ± 0.1 19.4 ± 0.3	$0.9 \pm 0.1 \\ 5.1 \pm 0.3$	$2.5 \pm 0.1 \\ 7.5 \pm 0.5$
Split-CIFAR10	EWC VI	34.4 ± 0.2 49.8 ± 0.1	47.9 ± 0.5 52.2 ± 0.2	34.7 ± 0.9 49.5 ± 0.1	39.7 ± 1.4 52.5 ± 0.2

Table 2: Average and final cumulative error percentage and forgetting for Split-ImageNet on 3 random seeds. Lower is better, a random model achieves 98% cumulative error.

Domain	Method	CuL	Bound (equation 3)	Forgetting
Split-ImageNet	EWC	33.5 ± 0.2	40.1 ± 0.3	5.7 ± 0.4
	SGD	34.8 ± 0.3	41.4 ± 0.4	7.8 ± 0.1
	Replay	55.7 ± 0.7	62.5 ± 0.4	2.8 ± 0.1

from the CIFAR-10 (Krizhevsky et al., 2009) dataset. (4) Split-ImageNet, a sequential set of binary classification tasks constructed from the ImageNet (Deng et al., 2009) dataset.

We used both a variational inference (VI) (Hoffman et al., 2013) algorithm on the r.h.s. of equation 3, with multivariate Gaussian prior and posterior distributions on model parameters, and Elastic Weight Consolidation (EWC) (Kirkpatrick et al., 2017), a deterministic continual learning algorithm that tries to balance forgetting and forward transfer. For Split-ImageNet, we also examined SGD with and without experience replay. Since EWC and SGD output deterministic parameters for each task, a posterior distribution is constructed by adding Multivariate Gaussian noise, i.e. $\hat{Q}_{1:t} = \mathcal{N}(w_t, \sigma^2 I_d)$, where $w_t \in \mathcal{R}^d$ is the weight vector given as output after task \mathcal{D}_t . Calculating the upper bound terms adds a computational cost per task proportional to calculating the training loss plus the number of model parameters. Since each term in the bound can be calculated online after training for a specific task, there is no additional memory overhead and no additional samples are required besides the training set. We used convolutional neural networks (CNNs), with T=120 tasks in total for all domains. We measured the average cumulative error $\frac{1}{T}\mathrm{CuL}((Q_{\lambda}^{\lambda})_{t=1}^T)$, approximated via a held-out test set for each task, and its upper bound based on equation 3 across 5 random seeds, reporting standard error and the average value. We also report the loss and upper bound for the final task. A full detailing of hyper-parameters and the experimental setup is available in Appendix B.

Tables 1, 2 detail the error percentage (error out of 100%, similar to accuracy percentage) for both VI and EWC models on all tasks, as well as the cumulative error and average test forgetting (see definition of forgetting measure (FM) in Wang et al. (2024)) as well as Appendix B) for Split-ImageNet. The values reported are for both the average cumulative error and the error at the stopping point. Figure 3 shows the average cumulative loss and the upper bound as a function of the number of tasks for the split-MNIST task. We note that the values reported in the first two columns of Table 1 correspond to the final values of Figure 3, and that the last two columns correspond to only the error and bound for the final task in the continual learning process. Looking over the results, we see that the bound is very tight for VI, and somewhat looser for EWC. This is to be expected, to an extent, as the VI algorithm aims to optimize the r.h.s. of equation 3 w.r.t. the posterior distributions, whereas for EWC the bound is not directly linked to the learning process. Across all settings, we see that the bound becomes increasingly tight as the number of tasks increases, owing to both the fact that several terms in equation 3 decrease in proportion to the number of tasks, and to the tendency of the KL-divergence term to decrease during the continual learning process - as we experience additional tasks, the posterior for the previous task Q_{t-1} that serves as the prior for task \mathcal{D}_t becomes an increasingly better informed and predictive prior, resulting in a tighter upper bound. With the exception of the VI algorithm for the split-CIFAR10 task, all of our empirical upper bounds are non-vacuous, with several of them being tight enough to provide a useful risk certificate, especially if we consider only later tasks. The upper bounds for average cumulative error tend to suffer for early tasks, possibly due to the randomness of the training process for the first few tasks. This is somewhat encouraging within the context of continually retraining a complex model to handle new

data, as the forward transfer would be weighted towards generalizing on new tasks, and our bounds are consistently tighter (empirically) for later tasks in a sequence.

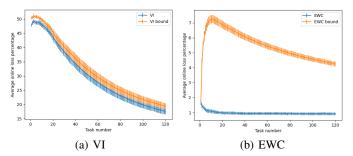


Figure 3: Average CuL percentage and upper bound over time for split-MNIST. Error bars represent standard error over 5 random seeds. A random predictor would have 50% average loss.

5.2 Oracle bounds

While the oracle bounds (4, 5) are already useful, as can be seen in the explicit oracle bounds for specific scenarios, verifying and comparing the bounds empirically may provide additional insights. To that end, we considered equation 4 and equation 5 in several simple scenarios that correspond to the specific theoretical scenarios discussed in Section 4. We utilized linear regression tasks following a similar setup as discussed in Lin et al. (2023) (a linear ground truth (Belkin et al., 2018; Evron et al., 2022) with the true weight vector for each task being a subset of all features) while varying the model between over and under-parametrized linear regression, and simple 2 layer fully connected (FC) neural networks (with a wide hidden layer to approximately adhere to the NTK regime (Jacot et al., 2018; Bennani & Sugiyama, 2020)). In order to approximate posterior sampling from the Gibbs posterior, we used the Stochastic Gradient Langevin Dynamic (SGLD) (Neal, 2011; Welling & Teh, 2011) algorithm in our experiments. The full detail of task construction and model and training hyper-parameters is available in Appendix B, alongside detailed numeric results.

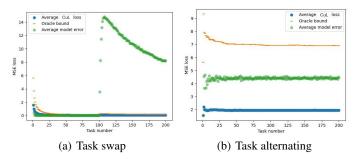


Figure 4: Average cumulative loss, oracle bound (equation 4) and average model error over time for under-parametrized linear regression. (a) task changes at t=100 (b) tasks alternate.

Figure 4 compares scenarios 2 and 3 for under-parametrized linear regression, with each task characterized by a different true weight vector. We can clearly see that task order matters significantly for both the cumulative loss and the average model loss. Specifically, we see that for cumulative loss, a single swap is significantly better than alternating between two tasks. This result agrees with the obtained theoretical bound. As can be seen for average model loss from the expected behavior detailed in Lin et al. (2023) (that agrees with the empirical average model loss for most of the continual learning process), a sudden task swap results in a sudden significant increase in average error that is slowly corrected, whereas alternating tasks quickly stabilize to a constant average error.

Figure 5 contrasts over and under-parametrized 2 layer neural networks on a sequence of gradually changing tasks corresponding to scenario 4 of Section 4. Each task corresponds to a generating linear weight vector, and adjacent tasks have similar weight vectors (see Appendix B). We can see

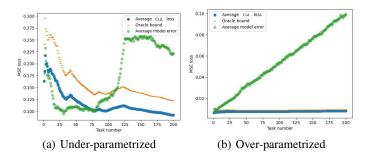


Figure 5: CuL, oracle bound (equation 4) and average model error over time for linear regression with gradually changing tasks. (a) Under-parametrized model (b) over-parametrized model.

that in the over-parametrized regime, cumulative error remains near constant and the upper bound is nearly exact. In the under-parametrized regime, however, we see a gradual decrease as the model stabilizes. In both cases, the average error tends to increase with the number of tasks (though it is lower in the over-parametrized setting), likely due to the increasing distance between tasks resulting from the random walk process. We note that our bounds are several orders of magnitude tighter in this setting compared to NTK-based generalization bounds for SGD (Bennani & Sugiyama, 2020).

6 LIMITATIONS AND FUTURE WORK

In this work, we derived several upper bounds on the cumulative error for both general hypothesis classes and for the Gibbs posterior. Our bounds offer tight risk certificates when the number of samples per task is large as well as in several concrete scenarios for the oracle bounds. Our results assume that the loss is either bounded or is sub-Gaussian, though extensions to heavy-tailed losses similarly to Haddouche & Guedj (2023) may be possible. The assumption of a strict global minimum can be relaxed to allow for a finite number of global minima. We note that our derived oracle bounds are taken w.r.t. the expected Gibbs posterior. Equivalent bounds can be derived w.r.t. empirical Gibbs posterior by modifying our assumptions on the global minimum to apply in expectation.

While our results are applicable for both offline and online continual learning, we acknowledge that for offline continual learning the cumulative error is often less relevant than the average error. A common assumption in this setting is an unbounded number of training samples per task, making learning plasticity irrelevant as any task can be learned from scratch. We also note that in the online continual learning setting, if task boundaries are blurry or unknown, the number of samples per task m and the number of tasks T must be approximated in order to use our bounds.

Our PAC-Bayes bounds contain complexity terms (KL-divergence) that may be difficult to scale for large models with many parameters. While this is not an issue in our oracle bounds, it is a concern for the general bounds such as equation 5. While there is some work in the context of PAC-Bayes bounds with other divergence measures (Bégin et al., 2016; Amit et al., 2022; Kuzborskij et al., 2024), this can be a potential limiting factor in applying our results for large model classes, though model-compression bounds (Lotfi et al., 2022) may serve as an avenue to overcome this limit.

We tested and verified our theoretical results on two main algorithms for several simple computer vision benchmarks, yielding non-vacuous bounds on the cumulative test error. As we can see in Tables 1, 2, the risk certificate is not always tight. We note that in most cases, the VI bound is nearly tight whereas the upper bounds for deterministic methods tend to be looser. This is somewhat unsurprising as the VI training objective attempts to directly optimize the r.h.s. of the upper bound. As our main focus was measuring the efficacy of our upper bounds, we focused mostly on relatively small neural networks and classification problems. While encouraging, our preliminary experiments only used vision datasets, and we only examined our bounds on VI methods, EWC and experience replay algorithms. A more comprehensive empirical analysis of common continual learning methods, combined with applying some of the recent insights into obtaining tight risk certificates via PAC-Bayes bounds (Pérez-Ortiz et al., 2021), may yield further insights into the practical application of PAC-Bayes bounds for cumulative loss in continual learning for larger models.

REPRODUCIBILITY STATEMENT

Proofs for all Theorems and Corollaries is available in Appendix A. All required assumptions appear in both the main text and the Appendix. Code for reproducing the experiments is available as part of the supplementary material and a more detailed explanation of the experimental setting and hyperparameters is available in Appendix B. All data sources are publicly available and code to generate the datasets per task is available in the supplementary material.

REFERENCES

- Pierre Alquier. User-friendly introduction to pac-bayes bounds. *Foundations and Trends*® *in Machine Learning*, 17(2):174–303, 2024. ISSN 1935-8237. doi: 10.1561/2200000100.
- Ron Amit and Ron Meir. Meta-learning by adjusting priors based on extended pac-bayes theory. In *International Conference on Machine Learning*, pp. 205–214. PMLR, 2018.
- Ron Amit, Baruch Epstein, Shay Moran, and Ron Meir. Integral probability metrics pac-bayes bounds. *Advances in Neural Information Processing Systems*, 35:3123–3136, 2022.
- Luc Bégin, Pascal Germain, François Laviolette, and Jean-Francis Roy. Pac-bayesian bounds based on the rényi divergence. In *Artificial Intelligence and Statistics*, pp. 435–444. PMLR, 2016.
- Mikhail Belkin, Siyuan Ma, and Soumik Mandal. To understand deep learning we need to understand kernel learning. In *International Conference on Machine Learning*, pp. 541–549. PMLR, 2018.
- Diana Benavides-Prado and Patricia Riddle. A theory for knowledge transfer in continual learning. In *Conference on Lifelong Learning Agents*, pp. 647–660. PMLR, 2022.
- Mehdi Abbana Bennani and Masashi Sugiyama. Generalisation guarantees for continual learning with orthogonal gradient descent. In 4th Lifelong Machine Learning Workshop at ICML 2020, 2020.
- Olivier Catoni. A PAC-Bayesian approach to adaptive classification. preprint 840, 2004.
- Arslan Chaudhry, Puneet K Dokania, Thalaiyasingam Ajanthan, and Philip HS Torr. Riemannian walk for incremental learning: Understanding forgetting and intransigence. In *Proceedings of the European conference on computer vision (ECCV)*, pp. 532–547, 2018.
- Ben Chugg, Hongjian Wang, and Aaditya Ramdas. A unified recipe for deriving (time-uniform) pac-bayes bounds. *Journal of Machine Learning Research*, 24(372):1–61, 2023.
- Matthias De Lange, Rahaf Aljundi, Marc Masana, Sarah Parisot, Xu Jia, Aleš Leonardis, Gregory Slabaugh, and Tinne Tuytelaars. A continual learning survey: Defying forgetting in classification tasks. *IEEE transactions on pattern analysis and machine intelligence*, 44(7):3366–3385, 2021.
- Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical image database. In *2009 IEEE conference on computer vision and pattern recognition*, pp. 248–255. Ieee, 2009.
- Thang Doan, Mehdi Abbana Bennani, Bogdan Mazoure, Guillaume Rabusseau, and Pierre Alquier. A theoretical analysis of catastrophic forgetting through the ntk overlap matrix. In *International Conference on Artificial Intelligence and Statistics*, pp. 1072–1080. PMLR, 2021.
- Itay Evron, Edward Moroshko, Rachel Ward, Nathan Srebro, and Daniel Soudry. How catastrophic can catastrophic forgetting be in linear regression? In *Conference on Learning Theory*, pp. 4028–4079. PMLR, 2022.
- Lior Friedman and Ron Meir. Data-dependent and oracle bounds on forgetting in continual learning. In *Proceedings of The 4nd Conference on Lifelong Learning Agents*, 2025.
- Ian J Goodfellow, Mehdi Mirza, Aaron Courville, and Yoshua Bengio. An empirical investigation of catastrophic forgetting in gradient-based neural networks. *stat*, 1050:4, 2015.
- Maxime Haddouche and Benjamin Guedj. Online pac-bayes learning. *Advances in Neural Information Processing Systems*, 35:25725–25738, 2022.
- Maxime Haddouche and Benjamin Guedj. Pac-bayes generalisation bounds for heavy-tailed losses through supermartingales. *Transactions on Machine Learning Research*, 2023.
 - Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 770–778, 2016.

- Matthew D Hoffman, David M Blei, Chong Wang, and John Paisley. Stochastic variational inference. *the Journal of machine Learning research*, 14(1):1303–1347, 2013.
 - Chii-Ruey Hwang. Laplace's method revisited: weak convergence of probability measures. *The Annals of Probability*, pp. 1177–1182, 1980.
 - Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and generalization in neural networks. *Advances in neural information processing systems*, 31, 2018.
 - Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua Bengio and Yann LeCun (eds.), 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015. URL http://arxiv.org/abs/1412.6980.
 - James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcoming catastrophic forgetting in neural networks. *Proceedings of the national academy of sciences*, 114(13):3521–3526, 2017.
 - Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.
 - Ilja Kuzborskij, Kwang-Sung Jun, Yulian Wu, Kyoungseok Jang, and Francesco Orabona. Betterthan-kl pac-bayes bounds. In *The Thirty Seventh Annual Conference on Learning Theory*, pp. 3325–3352. PMLR, 2024.
 - Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to document recognition. *Proceedings of the IEEE*, 86(11):2278–2324, 1998.
 - Ran Levinstein, Amit Attia, Matan Schliserman, Uri Sherman, Tomer Koren, Daniel Soudry, and Itay Evron. Optimal rates in continual linear regression via increasing regularization. *arXiv* preprint arXiv:2506.06501, 2025.
 - Sen Lin, Peizhong Ju, Yingbin Liang, and Ness B. Shroff. Theory on forgetting and generalization of continual learning. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), *International Conference on Machine Learning, ICML 2023, 23-29 July 2023, Honolulu, Hawaii, USA*, volume 202 of *Proceedings of Machine Learning Research*, pp. 21078–21100. PMLR, 2023.
 - Sanae Lotfi, Marc Finzi, Sanyam Kapoor, Andres Potapczynski, Micah Goldblum, and Andrew G Wilson. Pac-bayes compression bounds so tight that they can explain generalization. *Advances in Neural Information Processing Systems*, 35:31459–31473, 2022.
 - David A McAllester. Pac-bayesian model averaging. In *Proceedings of the twelfth annual conference on Computational learning theory*, pp. 164–170, 1999.
 - Radford Neal. Mcmc using hamiltonian dynamics. *Handbook of Markov Chain Monte Carlo*, pp. 113–162, 2011.
 - Anastasia Pentina and Christoph H Lampert. Lifelong learning with non-iid tasks. *Advances in Neural Information Processing Systems*, 28, 2015.
 - María Pérez-Ortiz, Omar Rivasplata, John Shawe-Taylor, and Csaba Szepesvári. Tighter risk certificates for neural networks. *Journal of Machine Learning Research*, 22(227):1–40, 2021.
 - Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H Lampert. icarl: Incremental classifier and representation learning. In *Proceedings of the IEEE conference on Computer Vision and Pattern Recognition*, pp. 2001–2010, 2017.
 - Omar Rivasplata, Ilja Kuzborskij, Csaba Szepesvári, and John Shawe-Taylor. Pac-bayes analysis beyond the usual bounds. *Advances in Neural Information Processing Systems*, 33:16833–16845, 2020.

Zhenming Shun and Peter McCullagh. Laplace approximation of high dimensional integrals. Jour-nal of the Royal Statistical Society Series B: Statistical Methodology, 57(4):749–760, 1995. Liyuan Wang, Xingxing Zhang, Hang Su, and Jun Zhu. A comprehensive survey of continual learning: Theory, method and application. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024. Max Welling and Yee W Teh. Bayesian learning via stochastic gradient langevin dynamics. In Proceedings of the 28th international conference on machine learning (ICML-11), pp. 681–688. Citeseer, 2011. Friedemann Zenke, Ben Poole, and Surya Ganguli. Continual learning through synaptic intelligence. In International conference on machine learning, pp. 3987–3995. PMLR, 2017. Xuyang Zhao, Huiyuan Wang, Weiran Huang, and Wei Lin. A statistical theory of regularization-based continual learning. In Forty-first International Conference on Machine Learning, 2024.

A PROOFS

Theorem A.1. (Haddouche & Guedj (2022), Theorem 2.3) Assuming $\forall h \in \mathcal{H}, z \in \mathcal{Z}, \ell(h, z) \in [0, K]$, for online learning (m = 1), for any distribution μ over tasks [T], any $\lambda > 0$ and any online predictive sequence (P_t) , for any sequence of stochastic kernels (Q_t) , we have with probability at least $1 - \delta$ over the sample $S = (z_1, \ldots, z_t) \sim \mu$ the following, holding for the data-dependent measures $Q_{t,S} \triangleq Q_t(S, \cdot), P_{t,S} \triangleq P_t(S, \cdot)$,

$$\begin{split} \sum_{t=1}^T \mathbb{E}_{h_t \sim Q_{t,S}} [\mathbb{E}_{z_t \sim \mu}[\ell(h_t, z_t) | \mathcal{F}_{t-1}]] &\leq \sum_{t=1}^T \left(\mathbb{E}_{h_t \sim Q_{t,S}}[\ell(h_t, z_t)] + \frac{1}{\lambda} \text{KL}(Q_{t,S} || P_{t,S}) \right) \\ &+ \frac{\lambda T K^2}{2} + \frac{\log(1/\delta)}{\lambda}. \end{split}$$

Corollary A.2. Restatement of Corollary 3.1: Under Assumption 1, for any $\lambda > 0$, for any set of T tasks, for any online predictive sequence of priors (P_t) , for any sequence of stochastic kernels (Q_t) with probability at least $1 - \delta$ over the draw of $(S_1, \ldots, S_T) \sim \mathcal{D}_1^m \times \ldots \times \mathcal{D}_T^m$, we have that the following holds for the data-dependent measures $P_t(S_{1:t}, \cdot), Q_t(S_{1:t}, \cdot)$,

$$\frac{1}{T} \sum_{t=1}^{T} [\mathcal{L}(Q_t(S_{1:t}), \mathcal{D}_t) | \mathcal{F}_{t-1}] \leq \frac{1}{T} \sum_{t=1}^{T} \hat{\mathcal{L}}(Q_t(S_{1:t}), S_t) + \frac{1}{\lambda T} \sum_{t=1}^{T} \text{KL}(Q_t(S_{1:t}) | | P_t(S_{1:t})) + \frac{\lambda K^2}{m} + \frac{\log(1/\delta)}{\lambda T}$$

Proof. We begin by applying the main Theorem of Rivasplata et al. (2020) with $Q^0 = P_1 \otimes \ldots \otimes P_T$, $Q = Q_1 \otimes \ldots \otimes Q_T$, and with

$$F(S = S_1 \otimes \ldots \otimes S_T, h = h_1 \otimes \ldots \otimes h_T) = \frac{\lambda'}{T} \left(\sum_{t=1}^T \mathbb{E}_{z_t \sim \mathcal{D}_t} [\ell(h_t, z_t) | \mathcal{F}_{t-1}] - \sum_{t=1}^T \hat{\mathcal{L}}(h_t, S_t) \right).$$

Reorganizing terms, we have with probability at least $1 - \delta$ (over the draw of $S = S_1 \otimes \ldots \otimes S_T$),

$$\frac{1}{T} \sum_{t=1}^{T} \mathbb{E}_{h_{t} \sim Q_{t}(S_{1:t})} [\mathbb{E}_{z_{t} \sim \mathcal{D}_{t}} \left[\ell(h_{t}, z_{t}) | \mathcal{F}_{t-1} \right] \right] \leq \frac{1}{T} \sum_{t=1}^{T} \hat{\mathcal{L}}(Q_{t}(S_{1:t}), S_{t})
+ \frac{1}{\lambda'} \sum_{t=1}^{T} \text{KL}(Q_{t}(S_{1:t}) || P_{t}(S_{1:t}))
+ \frac{1}{\lambda'} \log \xi_{T} + \frac{\log(1/\delta)}{\lambda'}$$
(6)

where

$$\xi_T = \mathbb{E}_S \mathbb{E}_{h \sim Q^0} \left[e^{F(S,h)} \right].$$

We then apply a similar Lemma D.2 of Haddouche & Guedj (2022) (with tasks instead of single examples) that yields

$$\xi_T = \prod_{t=1}^T \mathbb{E}_{S_1, \dots, S_t} \mathbb{E}_{h_t \sim P_t} \left[e^{\lambda'/T(\mathbb{E}_{z_t \sim \mathcal{D}_t}[\ell(h_t, z_t) | \mathcal{F}_{t-1}] - \hat{\mathcal{L}}(h_t, S_t))} \right],$$

and applying Hoeffding's Lemma for bounded losses or the exponential moment bound for sub-Gaussian random variables we have

$$\xi_T \le e^{\frac{\lambda'^2 K^2}{mT}}.$$

Combined with equation 6, we have as follows:

$$\frac{1}{T} \sum_{t=1}^{T} \mathbb{E}_{h_{t} \sim Q_{t}(S_{1:t})} [\mathbb{E}_{z_{t} \sim \mathcal{D}_{t}} \left[\ell(h_{t}, z_{t}) | \mathcal{F}_{ti-1} \right] \right] \leq \frac{1}{T} \sum_{t=1}^{T} \hat{\mathcal{L}}(Q_{t}(S_{1:t}), S_{i})
+ \frac{1}{\lambda'} \sum_{t=1}^{T} \text{KL}(Q_{t}(S_{1:t}) || P_{t}(S_{1:t}))
+ \frac{\lambda' K^{2}}{mT} + \frac{\log(1/\delta)}{\lambda'}$$

Picking $\lambda' = \lambda T$ completes the proof.

Theorem A.3. Restatement of Theorem 3.2: Under the same setup as Corollary 3.1, assuming $\ell(h,z) \in [0,K]$, for any predictive sequence of posteriors (Q_t) , for any $\delta_2 \in (0,1]$, with probability at least $1-\delta$ over the draw of $(S_1,\ldots,S_T) \sim \mathcal{D}_1^m \times \ldots \times \mathcal{D}_T^m$, the following holds for the data-dependent measures $P_t(S_{1:t}), Q_t(S_{1:t})$

$$\begin{split} \frac{1}{T} \sum_{t=1}^{T} [\mathcal{L}(Q_{t}(S_{1:t}), \mathcal{D}_{t}) | \mathcal{F}_{t-1}] &\leq \frac{1}{T} \sum_{t=1}^{T} \hat{\mathcal{L}}(Q_{t}(S_{1:t}), S_{t}) + \frac{1}{\lambda} \sum_{t=1}^{T} \text{KL}(Q_{t}(S_{1:t}) | | P_{t}(S_{1:t})) \\ &+ \frac{1}{\lambda} \log \left\{ (1 - \delta_{2}) e^{\lambda K} \sqrt{\log(1/\delta_{2})/2mT} + \delta_{2} e^{\lambda K} \right\} \\ &+ \frac{\log(1/\delta)}{\lambda} \end{split}$$

Proof. Starting from equation 6 with

$$F(S = S_1 \otimes \ldots \otimes S_T, h = h_1 \otimes \ldots \otimes h_T) = \lambda \left(\frac{1}{T} \sum_{t=1}^T \mathbb{E}_{z_i \sim \mathcal{D}_t} [\ell(h_t, z_t) | \mathcal{F}_{t-1}] - \frac{1}{T} \sum_{t=1}^T \hat{\mathcal{L}}(h_t, S_t) \right)$$

for convenience, we have

$$\frac{1}{T} \sum_{t=1}^{T} \mathbb{E}_{h_{t} \sim Q_{t}(S_{1:t})} [\mathbb{E}_{z_{t} \sim \mathcal{D}_{t}} \left[\ell(h_{t}, z_{t}) | \mathcal{F}_{t-1} \right]] \leq \frac{1}{T} \sum_{t=1}^{T} \hat{\mathcal{L}}(Q_{t}(S_{1:t}), S_{t}) \\
+ \frac{1}{\lambda} \sum_{t=1}^{T} \text{KL}(Q_{t}(S_{1:t}) || P_{t}(S_{1:t})) \\
+ \frac{1}{\lambda} \log \xi_{T} + \frac{\log(1/\delta)}{\lambda}$$

Since each element of $\frac{1}{mT}\sum_{t=1}^{T}\sum_{j=1}^{m}\ell(h,z_{tj})$ is bounded in range [0,K/mT], we can apply Hoeffding's Lemma on each task; we first apply Markov's inequality: for $s,\epsilon>0$

$$\Pr(F(S = S_1 \otimes \ldots \otimes S_T, h = h_1 \otimes \ldots \otimes h_T) \ge \epsilon) = \Pr(e^{sF(S,h)} \ge e^{s\epsilon})$$

$$\le e^{-s\epsilon} \mathbb{E}_{S,h} e^{s\lambda \left(\frac{1}{T} \sum_{t=1}^T \mathbb{E}_{z_t \sim \mathcal{D}_t} [\ell(h_t, z_t) | \mathcal{F}_{t-1}] - \frac{1}{T} \sum_{t=1}^T \hat{\mathcal{L}}(h_t, S_t)\right)}.$$

Since we assume that the expected loss is \mathcal{F}_{t-1} -measurable, this equals

$$=e^{-s\epsilon}\prod_{t=1}^T\mathbb{E}_{S_1,\dots,S_t}\mathbb{E}_{h_1,\dots,h_t}e^{s\lambda\left(\frac{1}{T}\mathbb{E}_{z_t\sim\mathcal{D}_t}[\ell(h_t,z_t)]-\frac{1}{mT}\sum_{i=1}^m\ell(h_t,z_{t,i})\right)}.$$

Since we assume data from each task is drawn iid we have

$$\begin{split} &=e^{-s\epsilon}\prod_{t=1}^T\mathbb{E}_{S_1,\dots,S_{t-1}}\mathbb{E}_{h_1,\dots,h_{t-1}}\prod_{i=1}^m\mathbb{E}_{S_t,h_t}e^{s\lambda\left(\frac{1}{mT}\mathbb{E}_{z_t\sim\mathcal{D}_t}[\ell(h_t,z_t)]-\frac{1}{mT}\ell(h_t,z_{t,i})\right)}\\ &\leq e^{-s\epsilon}\prod_{t=1}^T\prod_{i=1}^me^{s^2(\lambda K/mT)^2/8}\\ &=e^{\frac{s\lambda^2K^2}{8mT\epsilon}}. \end{split}$$

Where the last inequality is due to applying Hoeffding's Lemma on each element in the product. Minimizing s, we have

$$\Pr(F(S = S_1 \otimes \ldots \otimes S_T, h = h_1 \otimes \ldots \otimes h_T) \ge \epsilon) \le e^{-\frac{\epsilon^2 m_T}{\lambda^2 K^2}} \triangleq \delta_2.$$

Moving terms around, we get

$$\epsilon = \lambda K \sqrt{\frac{\log(1/\delta_2)}{2mT}}.$$

We can then split $\xi_T = \mathbb{E}_S \mathbb{E}_{h \sim Q^0} \left[e^{F(S,h)} \right]$ into two events with appropriate probabilities, with one event (the good event, with probability $1 - \delta_2$) fulfilling this inequality and the other (the bad event, with probability at most δ_2) violating it giving us an upper limit $F(S,h) \leq \lambda K$, giving us

$$\xi_T \le (1 - \delta_2)e^{\lambda K\sqrt{\log(1/\delta_2)/2mT}} + \delta_2 e^{\lambda K}.$$

Plugging in this inequality in equation 6 completes the proof.

Lemma A.4. Under the same setting as Theorem 3.1, assuming that

- 1. $Q_t = \hat{Q}_t^{\lambda}$ is the empirical Gibbs measure
- 2. $P_1 = P$ is a data-free measure
- 3. $\forall t > 1 : P_t = Q_{t-1} = \hat{Q}_{t-1}^{\lambda}$

we have

$$\mathbb{E}_{S_1,\dots,S_T} \frac{1}{T} \sum_{t=1}^{T} [\mathcal{L}(\hat{Q}_t^{\lambda}(S_{1:t}), \mathcal{D}_t) | \mathcal{F}_{t-1}] \le \mathbb{E}_{S_1,\dots,S_T} \frac{1}{T} \sum_{t=1}^{T} \hat{\mathcal{L}}(\hat{Q}_{t-1}^{\lambda}(S_{1:t-1}), S_t) + \frac{\lambda K^2}{m}$$
(7)

Proof. Starting from Theorem 3.1 (in expectation), we begin by decomposing the KL-divergence under our assumptions:

$$\frac{1}{\lambda T} \mathrm{KL}(\hat{Q}_t^{\lambda} || \hat{Q}_{t-1}^{\lambda}) = \frac{1}{\lambda T} \mathbb{E}_{h \sim \hat{Q}_t^{\lambda}} \left[\log \frac{e^{-\lambda \hat{\mathcal{L}}(h, S_t)}}{\mathbb{E}_{h \sim \hat{Q}_{t-1}^{\lambda}} e^{-\lambda \hat{\mathcal{L}}(h, S_t)}} \right]$$
(8)

$$= -\frac{1}{T}\hat{\mathcal{L}}(\hat{Q}_t^{\lambda}, S_t) - \frac{1}{\lambda T} \log \mathbb{E}_{h \sim \hat{Q}_{t-1}^{\lambda}} e^{-\lambda \hat{\mathcal{L}}(h, S_t)}$$

Applying this equality to Theorem 3.1, we have

$$\frac{1}{T} \sum_{t=1}^{T} \mathbb{E}_{S_{1},...,S_{t}} [\mathcal{L}(\hat{Q}_{t}^{\lambda}(S_{1:t}), \mathcal{D}_{t}) | \mathcal{F}_{t-1}] \leq -\frac{1}{\lambda T} \sum_{t=1}^{T} \mathbb{E}_{S_{1},...,S_{t}} \log \mathbb{E}_{h \sim \hat{Q}_{t-1}^{\lambda}} e^{-\lambda \hat{\mathcal{L}}(h,S_{t})} + \frac{\lambda K^{2}}{m}$$
(9)

Applying Jensen's inequality on

$$-\frac{1}{\lambda T}\log \mathbb{E}_{h \sim \hat{Q}_{t-1}^{\lambda}} e^{-\lambda \hat{\mathcal{L}}(h,S_t)} \leq \frac{1}{T} \hat{\mathcal{L}}(\hat{Q}_{t-1}^{\lambda},S_t)$$

for all $t \in [1, T]$ completes the proof.

Theorem A.5. Restatement of Theorem 4.1: For any $\lambda > 0$, assuming

- 1. $Q_t = Q_t^{\lambda}$ is the expected Gibbs measure
- 2. $P_1 = P$ is a data-free measure over \mathcal{H}
- 3. $\forall t > 1 : P_t = Q_{t-1} = Q_{t-1}^{\lambda}$
- 4. \mathcal{H} is a compact, bounded subset of \mathbb{R}^d .

5. $\forall t \in [2,T]$, the total expected loss $\sum_{i=1}^{t} \mathcal{L}(h,\mathcal{D}_i)$ has a strict global minimum at $h_{1:t}^*$ and is twice continuously differentiable w.r.t. h.

,we have

$$\lim_{m,T\to\infty} \frac{1}{T} \sum_{t=1}^{T} [\mathcal{L}(Q_t^{\lambda}, \mathcal{D}_t) | \mathcal{F}_{t-1}] \leq \lim_{T\to\infty} \frac{1}{T} \sum_{t=2}^{T} \mathcal{L}(h_{1:t-1}^*, \mathcal{D}_t)$$

Proof. We begin with the change-of-measure inequality; for any $\lambda > 0$ and any measurable function $f: \mathcal{H} \times \mathcal{D}^M \to \mathbb{R}$, for any prior and posterior P, Q, for any sample $S \sim \mathcal{D}^M$ a.s.

$$-\frac{1}{\lambda}\log \mathbb{E}_{h\sim P}e^{-\lambda f(h,S)} \le \mathbb{E}_{h\sim Q(S)}f(h,S) + \frac{1}{\lambda}\mathrm{KL}(Q(S)||P)$$

Taking an expectation over S and using Jensen's inequality, we have

$$-\mathbb{E}_{S \sim \mathcal{D}^M} \mathbb{E}_{h \sim Q(S)} f(h, S) \leq \frac{1}{\lambda} \log \mathbb{E}_{S \sim \mathcal{D}^M} \mathbb{E}_{h \sim P} e^{-\lambda f(h, S)} + \frac{1}{\lambda} \mathbb{E}_{S \sim \mathcal{D}^M} \text{KL}(Q(S) || P)$$

Choosing $Q=Q_1^\lambda\otimes\ldots\otimes Q_T^\lambda, P=P\otimes Q_1^\lambda\otimes\ldots\otimes Q_{T-1}^\lambda$ as well as

$$f(S = S_1 \otimes \ldots \otimes S_T, h = h_1 \otimes \ldots \otimes h_T) = -\left(\frac{1}{T} \sum_{t=1}^T \mathbb{E}_{z_t \sim \mathcal{D}_t} [\ell(h_t, z_t) | \mathcal{F}_{t-1}] - \frac{1}{T} \sum_{t=1}^T \hat{\mathcal{L}}(h_t, S_t)\right)$$

yields

$$\frac{1}{T} \sum_{t=1}^{T} [\mathcal{L}(Q_t^{\lambda}, \mathcal{D}_t) | \mathcal{F}_{t-1}] \leq \frac{1}{T} \sum_{t=1}^{T} \mathbb{E}_{S_t \sim \mathcal{D}_t^m} [\hat{\mathcal{L}}(Q_t^{\lambda}, S_t) | \mathcal{F}_{t-1}]
+ \frac{1}{\lambda'} \log \mathbb{E}_S \mathbb{E}_{h_1, \dots, h_T \sim P, \dots, Q_{T-1}^{\lambda}} e^{\lambda'/T(\sum_{t=1}^{T} (\mathbb{E}_{z_t \sim \mathcal{D}_t} [\ell(h_t, z_t) | \mathcal{F}_{t-1}] - \hat{\mathcal{L}}(h_t, S_t)))}
+ \frac{1}{\lambda'} \sum_{t=1}^{T} \text{KL}(Q_t^{\lambda} || Q_{t-1}^{\lambda})$$
(10)

Using Hoeffding's Lemma for bounded losses or the exponential moment bound for sub-Gaussian random variables, we get

$$\frac{1}{T} \sum_{t=1}^{T} [\mathcal{L}(Q_t^{\lambda}, \mathcal{D}_t) | \mathcal{F}_{t-1}] \leq \frac{1}{T} \sum_{t=1}^{T} \mathbb{E}_{S_t \sim \mathcal{D}_t^m} [\hat{\mathcal{L}}(Q_t^{\lambda}, S_t) | \mathcal{F}_{t-1}] + \frac{\lambda' K^2}{mT} + \frac{1}{\lambda'} \sum_{t=1}^{T} \mathrm{KL}(Q_t^{\lambda} || Q_{t-1}^{\lambda})$$

Picking $\lambda' = \lambda T$ and decomposing the KL-divergence as before, we get

$$\frac{1}{T} \sum_{t=1}^{T} [\mathcal{L}(Q_t^{\lambda}, \mathcal{D}_t) | \mathcal{F}_{t-1}] \leq \frac{1}{T} \sum_{t=1}^{T} \left(\mathbb{E}_{S_t \sim \mathcal{D}_t^m} [\hat{\mathcal{L}}(Q_t^{\lambda}, S_t) - \mathcal{L}(Q_t^{\lambda}, \mathcal{D}_t) | \mathcal{F}_{t-1}] \right) + \frac{\lambda K^2}{m} - \frac{1}{\lambda T} \sum_{t=1}^{T} \log \mathbb{E}_{h \sim Q_{t-1}^{\lambda}} e^{-\lambda \mathcal{L}(h, \mathcal{D}_t)}$$
(11)

by unrolling the last term according to the definition of the Gibbs posterior, i.e.

$$\mathbb{E}_{h \sim Q_{t-1}^{\lambda}} e^{-\lambda \mathcal{L}(h, \mathcal{D}_t)} = \frac{\mathbb{E}_{h \sim Q_{t-2}^{\lambda}} e^{-\lambda \mathcal{L}(h, \mathcal{D}_t) - \lambda \mathcal{L}(h, \mathcal{D}_{t-1})}}{\mathbb{E}_{h \sim Q_{t-2}^{\lambda}} e^{-\lambda \mathcal{L}(h, \mathcal{D}_t)}}$$
$$= \dots = \frac{\mathbb{E}_{h \sim P} e^{-\lambda \sum_{j=1}^{t-1} \mathcal{L}(h, \mathcal{D}_j)}}{\mathbb{E}_{h \sim P} e^{-\lambda \sum_{j=1}^{t-1} \mathcal{L}(h, \mathcal{D}_j) - \lambda \mathcal{L}(h, \mathcal{D}_t)}},$$

we get

$$\frac{1}{T} \sum_{t=1}^{T} [\mathcal{L}(Q_t^{\lambda}, \mathcal{D}_t) | \mathcal{F}_{t-1}] \leq \frac{1}{T} \sum_{t=1}^{T} \left(\mathbb{E}_{S_t \sim \mathcal{D}_t^m} [\hat{\mathcal{L}}(Q_t^{\lambda}, S_t) - \mathcal{L}(Q_t^{\lambda}, \mathcal{D}_t) | \mathcal{F}_{t-1}] \right) \\
+ \frac{\lambda K^2}{m} - \frac{1}{\lambda T} \log \mathbb{E}_{h \sim P^{\lambda}} e^{-\lambda \mathcal{L}(h, \mathcal{D}_1)} \\
+ \frac{1}{\lambda T} \sum_{t=2}^{T} \log \frac{\mathbb{E}_{h \sim P} e^{-\lambda \sum_{j=1}^{t-1} \mathcal{L}(h, \mathcal{D}_j)}}{\mathbb{E}_{h \sim P} e^{-\lambda \sum_{j=1}^{t-1} \mathcal{L}(h, \mathcal{D}_j) - \lambda \mathcal{L}(h, \mathcal{D}_t)}}$$
(12)

Suppose that \mathcal{H} is a compact, bounded subset of \mathbb{R}^d . Assuming that $\mathcal{L}(h, \mathcal{D}_j)$ is twice continuously differentiable w.r.t. h for all j, we can apply Laplace's method (Shun & McCullagh, 1995) on both numerator and denominator. Let

$$M_{1:t-1}(h) \triangleq \frac{1}{i-1} \sum_{j=1}^{t-1} \mathcal{L}(h, \mathcal{D}_j),$$

$$h_{1:t-1}^* \triangleq \arg\min_{h \in \mathcal{H}} M_{1:t-1}(h) = \arg\min_{h \in \mathcal{H}} \sum_{i=1}^{t-1} \mathcal{L}(h, \mathcal{D}_j)$$

, then marking $M_{1:t-1}'' = \det M_{1:t-1}''(h_{1:t-1}^*)|$ the determinant of the Hessian matrix, we have the Taylor expansion

$$\frac{1}{\lambda T} \sum_{t=2}^{T} \log \frac{\mathbb{E}_{h \sim P} e^{-\lambda \sum_{j=1}^{t-1} \mathcal{L}(h, \mathcal{D}_j)}}{\mathbb{E}_{h \sim P} e^{-\lambda \sum_{j=1}^{t-1} \mathcal{L}(h, \mathcal{D}_j) - \lambda \mathcal{L}(h, \mathcal{D}_t)}} =$$

$$\frac{1}{\lambda T} \sum_{t=2}^{T} \log \frac{\left(\frac{2\pi}{\lambda(t-1)}\right)^{d/2} \frac{1}{\sqrt{M_{1:t-1}''}} e^{-\lambda \sum_{j=1}^{t-1} \mathcal{L}(h_{1:t-1}^*, \mathcal{D}_j)}}{\left(\frac{2\pi}{\lambda(t-1)}\right)^{d/2} \frac{1}{\sqrt{M_{1:t-1}''}} e^{-\lambda \sum_{j=1}^{t-1} \mathcal{L}(h_{1:t-1}^*, \mathcal{D}_j) - \lambda \mathcal{L}(h_{1:t-1}^*, \mathcal{D}_t)}}{R}}$$

where
$$R = 1 + \frac{J_2}{2\lambda(t-1)M''_{1,r}} + \ldots + O((\lambda(t-1))^{-r-1})$$
.

Due to setting the same function to seek an optimum for in both the numerator and denominator (with differing reminder). Since most of the elements of both numerator and denominator are the same, we have (in the limit where $\lambda \to \infty$)

$$\frac{1}{\lambda T} \sum_{t=2}^{T} \log \frac{\mathbb{E}_{h \sim P} e^{-\lambda \sum_{j=1}^{t-1} \mathcal{L}(h, \mathcal{D}_{j})}}{\mathbb{E}_{h \sim P} e^{-\lambda \sum_{j=1}^{t-1} \mathcal{L}(h, \mathcal{D}_{j}) - \lambda \mathcal{L}(h, \mathcal{D}_{t})}} = \frac{1}{\lambda T} \sum_{t=2}^{T} \log e^{\lambda \mathcal{L}(h_{1:t-1}^{*}, \mathcal{D}_{t})} = \frac{1}{T} \sum_{t=2}^{T} \mathcal{L}(h_{1:t-1}^{*}, \mathcal{D}_{t})$$

combined with equation 12 we have (in the limit)

$$\frac{1}{T} \sum_{t=1}^{T} [\mathcal{L}(Q_t^{\lambda}, \mathcal{D}_t) | \mathcal{F}_{t-1}] \leq \frac{1}{T} \sum_{t=1}^{T} \left(\mathbb{E}_{S_t \sim \mathcal{D}_t^m} [\hat{\mathcal{L}}(Q_t^{\lambda}, S_t) - \mathcal{L}(Q_t^{\lambda}, \mathcal{D}_t) | \mathcal{F}_{t-1}] \right) \\
+ \frac{\lambda K^2}{m} - \frac{1}{\lambda T} \log \mathbb{E}_{h \sim P^{\lambda}} e^{-\lambda \mathcal{L}(h, \mathcal{D}_1)} + \frac{1}{T} \sum_{t=2}^{T} \mathcal{L}(h_{1:t-1}^*, \mathcal{D}_t) \tag{13}$$

Taking $\lambda = \sqrt{m/T}$, we have

$$\lim_{m,T\to\infty} \frac{1}{T} \sum_{t=1}^{T} [\mathcal{L}(Q_t^{\lambda}, \mathcal{D}_t) | \mathcal{F}_{t-1}] \leq \lim_{T\to\infty} \frac{1}{T} \sum_{t=2}^{T} \mathcal{L}(h_{1:t-1}^*, \mathcal{D}_t) + \lim_{T\to\infty} \frac{1}{T} \mathcal{L}(P, \mathcal{D}_1)$$

Corollary A.6. Restatement of Corollary 4.2: For any $\lambda > 0$, assuming

1. $Q_t = Q_t^{\lambda}$ is the expected Gibbs measure

2. $P_1 = P$ is a data-free measure over \mathcal{H}

3.
$$\forall t > 1 : P_t = Q_{t-1} = Q_{t-1}^{\lambda}$$

- 4. \mathcal{H} is a compact, bounded subset of \mathbb{R}^d .
- 5. $\forall t \in [2, T]$, the expected loss $\mathcal{L}(h, \mathcal{D}_{t-1})$ has a strict global minimum at h_{t-1}^* and is twice continuously differentiable w.r.t. h.

we have

$$\lim_{m \to \infty} \frac{1}{T} \sum_{t=1}^{T} [\mathcal{L}(Q_t^{\lambda}, \mathcal{D}_t) | \mathcal{F}_{t-1}] \le \frac{1}{T} \sum_{t=2}^{T} \mathcal{L}(h_{t-1}^*, \mathcal{D}_t) + \frac{1}{T} \mathcal{L}(P, \mathcal{D}_1)$$

Proof. Via unrolling the last term in equation 11 once we get

$$\frac{1}{T} \sum_{t=1}^{T} [\mathcal{L}(Q_{i}^{\lambda}, \mathcal{D}_{t}) | \mathcal{F}_{t-1}] \leq \frac{1}{T} \sum_{t=1}^{T} \left(\mathbb{E}_{S_{t} \sim \mathcal{D}_{t}^{m}} [\hat{\mathcal{L}}(Q_{t}^{\lambda}, S_{t}) - \mathcal{L}(Q_{t}^{\lambda}, \mathcal{D}_{t}) | \mathcal{F}_{t-1}] \right) \\
+ \frac{\lambda K^{2}}{m} - \frac{1}{\lambda T} \log \mathbb{E}_{h \sim P} e^{-\lambda \mathcal{L}(h, \mathcal{D}_{1})} \\
+ \frac{1}{\lambda T} \sum_{t=2}^{T} \log \frac{\mathbb{E}_{h \sim Q_{t-2}^{\lambda}} e^{-\lambda \mathcal{L}(h, \mathcal{D}_{t-1})}}{\mathbb{E}_{h \sim Q_{t-2}^{\lambda}} e^{-\lambda \mathcal{L}(h, \mathcal{D}_{t-1}) - \lambda \mathcal{L}(h, \mathcal{D}_{t})}}$$
(14)

Using similar arguments of Laplace's approximation, we get for $\lambda = \sqrt{m}$,

$$\lim_{m \to \infty} \frac{1}{T} \sum_{t=1}^{T} [\mathcal{L}(Q_i^{\lambda}, \mathcal{D}_t) | \mathcal{F}_{t-1}] \leq \frac{1}{T} \sum_{t=2}^{T} \mathcal{L}(h_{t-1}^*, \mathcal{D}_t) + \frac{1}{T} \mathcal{L}(P, \mathcal{D}_1)$$

Corollary A.7. Under the same conditions as Theorem 4.1, if we also have that

$$\forall i, j, h \in \mathcal{H}, \quad |\mathcal{L}(h, \mathcal{D}_i) - \mathcal{L}(h, \mathcal{D}_i)| < \mathcal{G}_{\mathcal{H}} d(\mathcal{D}_i, \mathcal{D}_i)$$

for some non-negative $\mathcal{G}_{\mathcal{H}}$ and metric $d(\cdot, \cdot)$, then

$$\lim_{m,T\to\infty} \frac{1}{T} \sum_{t=1}^{T} [\mathcal{L}(Q_t^{\lambda}, \mathcal{D}_t) | \mathcal{F}_{t-1}]$$

$$\leq \lim_{m,T\to\infty} \left[\frac{1}{T} \sum_{t=2}^{T} \frac{1}{t-1} \min_{h\in\mathcal{H}} \sum_{j=1}^{t-1} \mathcal{L}(h, \mathcal{D}_j) + \frac{\mathcal{G}_{\mathcal{H}}}{T} \sum_{t=2}^{T} \frac{1}{t-1} \sum_{j=1}^{t-1} d(\mathcal{D}_j, \mathcal{D}_t) + O\left(\frac{1}{T}\right) \right]$$

where the $O\left(\frac{1}{T}\right)$ term is $\frac{1}{T}\mathcal{L}(P,\mathcal{D}_1)$.

Proof. Starting from equation 13, we decompose

$$\mathcal{L}(h_{1:t-1}^*, \mathcal{D}_t) = \frac{t-1}{t-1} \mathcal{L}(h_{1:t-1}^*, \mathcal{D}_t) + \frac{1}{t-1} \sum_{j=1}^{t-1} \mathcal{L}(h_{1:t-1}^*, \mathcal{D}_j) - \frac{1}{t-1} \sum_{j=1}^{t-1} \mathcal{L}(h_{1:t-1}^*, \mathcal{D}_j)$$

$$= \frac{1}{t-1} \sum_{j=1}^{t-1} \mathcal{L}(h_{1:t-1}^*, \mathcal{D}_j) + \frac{1}{t-1} \sum_{j=1}^{t-1} \left(\mathcal{L}(h_{1:t-1}^*, \mathcal{D}_t) - \mathcal{L}(h_{1:t-1}^*, \mathcal{D}_j) \right)$$

$$\leq \frac{1}{t-1} \sum_{j=1}^{t-1} \mathcal{L}(h_{1:t-1}^*, \mathcal{D}_j) + \frac{1}{t-1} \sum_{j=1}^{t-1} \left| \mathcal{L}(h_{1:t-1}^*, \mathcal{D}_t) - \mathcal{L}(h_{1:t-1}^*, \mathcal{D}_j) \right|$$

By the definition of $h_{1:t-1}^*$,

$$= \frac{1}{t-1} \min_{h \in \mathcal{H}} \sum_{j=1}^{t-1} \mathcal{L}(h, \mathcal{D}_j) + \frac{1}{t-1} \sum_{j=1}^{t-1} \left| \mathcal{L}(h_{1:t-1}^*, \mathcal{D}_t) - \mathcal{L}(h_{1:t-1}^*, \mathcal{D}_j) \right|$$

1026	1 $t-1$ C_{-} $t-1$	
1027	$\leq \frac{1}{t-1} \min_{h \in \mathcal{H}} \sum_{j=1}^{t-1} \mathcal{L}(h, \mathcal{D}_j) + \frac{\mathcal{G}_{\mathcal{H}}}{t-1} \sum_{j=1}^{t-1} d(\mathcal{D}_t, \mathcal{D}_j)$	(15)
1028	$t-1$ $h\in\mathcal{H}$ $\sum_{j=1}^{\infty}$ $t-1$ $\sum_{j=1}^{\infty}$	

Using equation 15 to upper bound each loss in equation 13 and taking the limit completes the proof.

B APPENDIX - EMPIRICAL SETTING AND HYPER-PARAMETERS

All experiments were run on local hardware with an NVIDIA GeForce 4090 GPU and an Intel i9 CPU. All results were run for 5 random seeds and averages and standard error were reported in all tables. Anonymized code is available in the supplementary material.

B.1 PSEUDO-CODE FOR BOUND CALCULATION

Algorithm 1 Continual learning training and bound calculation for VI

```
function CONTINUAL-LEARN(S_1, \ldots, S_T, P)
Choose algorithmic parameters \lambda_1, \ldots, \lambda_T
Let \hat{Q}_{1:0}(h) \triangleq P(h)
for each task t from 1 to T do
Update \hat{Q}_{1:t} via
```

$$\hat{Q}_{1:t} = \arg\min_{Q_{1:t}} \left\{ \hat{\mathcal{L}}(Q_{1:t}, S_t) + \frac{1}{\lambda_t} D_{\text{KL}}(Q_{1:t} || \hat{Q}_{1:t-1}) \right\}$$

Update upper bound for (test) CuL based on equation 1 or 3 **return** $\hat{Q}_{1:T}$, upper bound

Algorithm 2 Continual learning training and bound calculation for deterministic methods

```
function CONTINUAL-LEARN(S_1, \ldots, S_T, P)

Choose algorithmic hyper-parameters \theta, bound parameters \lambda_1, \ldots, \lambda_T, \sigma initialize model weights w_0

Let \hat{Q}_{1:0} \triangleq \mathcal{N}(w_0, \sigma^2 I_d)

for each task t from 1 to T do

Update model weights w_t via the algorithm \mathcal{A}_{\theta}(w_0, \ldots, w_{t-1}, S_t)

Let \hat{Q}_{1:t} = \triangleq \mathcal{N}(w_t, \sigma^2 I_d)

Update upper bound for (test) CuL based on equation 1 or 3.

return w_T, upper bound
```

B.2 VISION DATASETS

For all vision tasks except Split-ImageNet, we used a convolutional neural network consisting of convolution blocks each consisting of 64 two-dimensional convolutions, max-pooling and tanh activations. The convolution blocks are then followed by a fully connected layer and an additional tanh activation. Reported results also use a linear classification head for each task, but results without separate classification heads per task were not significantly different.

For both MNIST-based tasks, we used two convolution blocks of 5×5 convolutions and the linear layer contained 400 neurons. For the CIFAR10-based task, we used three convolution blocks of 3×3 convolutions and the linear layer contained 800 neurons. For Split-ImageNet, we used a pre-trained ResNet-18 (He et al., 2016) model.

For permuted-MNIST, we used a different pixel permutation per task, and each task involved 10-way classification. All 60000 training samples were used for training with a batch size of 128. The learning rate was static at $1e^{-3}$ and the λ parameter was set to $1e^{-5}$. For split-MNIST, each task involved half of the labels (at random) chosen as positive and half as negative. This is a minor departure from the standard split-MNIST problem where 5 different binary classification tasks are created and their loss is averaged, but the overall behavior is similar. All other hyper-parameters were set identically to permuted-MNIST. For split-CIFAR10, task construction was the same as split-MNIST but on the CIFAR10 dataset. All 50000 training samples were used for training with a batch size of 256. The learning rate was static at $1e^{-3}$ and the λ parameter was set to $5e^{-4}$. For split-ImageNet, each task contained a disjoint subset of 50 classes, and the λ parameter was set to $1e^{-7}$. The notion of forgetting measured and reported for split-ImageNet is the average test

forgetting, defined as

$$FM(h_t, \mathcal{D}_1, \dots, \mathcal{D}_{t-1}) = \frac{1}{t-1} \sum_{j=1}^{t-1} \max_{i \in [1, t-1]} \{ a(h_i, \mathcal{D}_j) - a(h_t, \mathcal{D}_j) \},$$

where $a(h, \mathcal{D}_t)$ is the test accuracy on task t. This measure can be written in terms of the loss function as

$$FM(h_t, \mathcal{D}_1, \dots, \mathcal{D}_{t-1}) = \frac{1}{t-1} \sum_{j=1}^{t-1} \max_{i \in [1, t-1]} \{\ell(h_t, \mathcal{D}_j) - \ell(h_i, \mathcal{D}_j)\}.$$

For VI, we used Markov Chain Monte Carlo (MCMC) estimation with 3 draws from the posterior, and the prior was a multivariate Gaussian with noise $\sigma_0^2=5e^{-2}$ and posterior noise $\sigma_t^2=1e^{-4}$. For EWC, the σ^2 parameter used for posterior construction was set as $1e^{-4}$, and the regularization weight was set at $\lambda_{\rm EWC}=100$ for all datasets except Split-ImageNet, and $\lambda_{\rm EWC}=40$ for Split-ImageNet. For experience replay, a replay buffer of size 1000 was used. Training was done using the Adam optimizer (Kingma & Ba, 2015) except for Split-ImageNet, where SGD with weight decay of $1e^{-4}$ was used. Hyper-parameters were chosen via manual trial and error using a held-out validation set

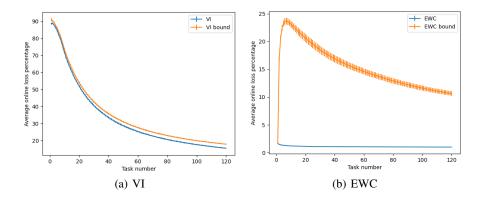


Figure 6: Average cumulative loss percentage and upper bound over time for permuted-MNIST. Error bars represent standard error over 5 random seeds. A random predictor would have 50% average cumulative loss.

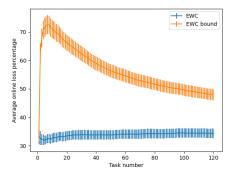


Figure 7: Average cumulative loss percentage and upper bound over time for split-CIFAR10 and the EWC algorithm. Error bars represent standard error over 5 random seeds. A random predictor would have 50% average cumulative loss.

B.3 ORACLE BOUND EXPERIMENTS

Tasks were constructed as linear regression tasks of the form $Y_t = X_t^T w_t^* + \epsilon_t$, where each element in X_t follows standard Gaussian distribution N(0,1), and $\epsilon_t \sim N(0,\sigma^2 I_d)$ with $\sigma = 0.3$. Test data

 is drawn without noise $Y_t = X_t^T w_t^*$. All elements in w_t^* follows standard Gaussian distribution N(0,1). Like in Lin et al. (2023), for the linear case the true weight vector for each task w_t^* is partially zeroed out (we zero out 80% of the weights) to construct zero-filled features for different tasks. For non-linear experiments we use all input dimensions.

For the task swap setting, we use the same weight w_1^* until t=100, then swap to tasks with weight w_2^* until t=T=200. For the alternating task setting, we alternate between w_1^* and w_2^* . For the gradual change setting, we draw an initial normalized w_1^* ($||w_1^*||_2^2=1$), and for any new task we update $w_{t+1}^*=(w_t^*+\epsilon)/||w_t^*+\epsilon||_2^2$, where $\epsilon_t\sim N(0,(0.3)^2I_d)$.

We ran SGLD (Apache 2.0) for 20 iterations on each task, with an initial temperature of $3e^{-3}$ and halving temperature after each epoch. The learning rate was constant at $1e^{-3}$. We generated 2048 training samples per task and 400 test samples. The training batch size for SGLD was fixed at 128. We used a total of T=200 tasks for all settings. Loss is measured via the mean square error (MSE).

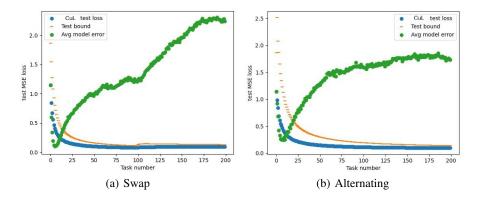


Figure 8: Average cumulative loss, oracle bound equation 4 and average model error over time for linear regression with Under-parametrized non-linear models. (a) Task swap (b) Alternating tasks. Cumulative loss and the oracle bound converge to similar values.

For linear experiments, we used $w_t^* \in \mathbb{R}^{600}$ and $x_t \in \mathbb{R}^{3000}$. For non-linear (deep) experiments, we used $w_t^* \in \mathbb{R}^{10}$, using a fully connected neural network with one hidden layer with ReLU activations. For the under-parametrized experiments, the hidden layer was of dimension 100, and for the over-parametrized experiments, the hidden layer was of dimension 4000.

Table 3: Average and final cumulative error (MSE) percentage for oracle datasets. Lower is better.

Domain	Method	Cumulative error	Bound (equation 4)	Average error
Swap	Linear over-parametrized	10.3 ± 0.2	19.0 ± 0.3	572.7 ± 10.8
Swap	Deep under-parametrized	0.11 ± 0.01	0.15 ± 0.01	2.72 ± 0.47
Swap	Deep over-parametrized	0.01 ± 0.00	0.01 ± 0.00	0.12 ± 0.00
Alternating	Linear over-parametrized	280.1 ± 5.4	520.8 ± 10.3	398.3 ± 8.1
Alternating	Deep under-parametrized	0.11 ± 0.01	0.16 ± 0.01	2.02 ± 0.21
Alternating	Deep over-parametrized	0.01 ± 0.00	0.01 ± 0.00	0.12 ± 0.00
Gradual	Linear over-parametrized	4.7 ± 0.2	8.2 ± 0.4	7.8 ± 1.1
Gradual	Deep under-parametrized	0.10 ± 0.00	0.12 ± 0.01	0.19 ± 0.02
Gradual	Deep over-parametrized	0.01 ± 0.00	0.01 ± 0.00	0.10 ± 0.00

C LLM USAGE

LLMs were used during the editing process of the paper for punctuation and checking for grammatical errors.