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ABSTRACT

In continual learning, knowledge must be preserved and re-used between tasks,
requiring a balance between maintaining good transfer to future tasks and mini-
mizing forgetting of previously learned ones. As several practical algorithms have
been devised to address the continual learning setting, the natural question of pro-
viding reliable risk certificates has also been raised. Although there are results
for specific settings and algorithms on the behavior of memory stability, generally
applicable upper bounds on learning plasticity are few and far between.
In this work, we extend existing PAC-Bayes bounds for online learning and time-
uniform offline learning to the continual learning setting. We derive general upper
bounds on the cumulative generalization loss applicable for any task distribution
and learning algorithm as well as oracle bounds for Gibbs posteriors and compare
their effectiveness for several different task distributions. We demonstrate empir-
ically that our approach yields non-vacuous bounds for several continual learning
problems in vision, as well as tight oracle bounds on linear regression tasks. To the
best of our knowledge, this is the first general upper bound on learning plasticity
for continual learning.

1 INTRODUCTION

Continual learning is a machine learning setting in which collections of examples, known as tasks,
arrive sequentially. These tasks may be different skills and capabilities, represent changes in the data
distribution over time, or encapsulate different contexts or environments. Since tasks change over
time, continual learning is also referred to as incremental learning or lifelong learning. Due to the
limited model capacity and the sequential nature of the continual learning setting, issues often arise
in adapting the model to new tasks as they appear while also preserving its performance on previous
tasks and thus avoiding Catastrophic Forgetting (Goodfellow et al., 2015; Kirkpatrick et al., 2017),
where performance on previous tasks degrades significantly as the model adapts to new tasks. This
dilemma is a facet of the trade-off between learning plasticity and memory stability (Wang et al.,
2024a), two key aspects of the learner’s behavior during the continual learning process.

There are several methods and algorithms aiming to effectively resolve this tradeoff in various con-
tinual learning scenarios (see Wang et al. (2024a)), such as via regularization (Kirkpatrick et al.,
2017), replay of data from previous tasks (Rebuffi et al., 2017) or other methods. Due to the in-
herent trade-off between forgetting and forward transfer, metrics to evaluate continual learning al-
gorithms differ. Common metrics include the average accuracy of the model for all previous tasks,
memory stability measures such as forgetting, and learning plasticity measures such as intransigence
(Chaudhry et al., 2018), forward transfer and cumulative error incurred in each task.

While several empirical methods aimed to tackle the challenges of continual learning have been
proposed in recent years, there are significantly fewer theoretical works aiming to analyze the prop-
erties of continual learning problems and provide estimates or guarantees on overall performance.
Some works (Evron et al., 2022; Doan et al., 2021; Benavides-Prado & Riddle, 2022) focus on un-
derstanding the behavior of forgetting, an interesting topic in and of itself, while other works (Lin
et al., 2023; Li et al., 2024; Bennani & Sugiyama, 2020; Zhao et al., 2024; Levinstein et al., 2025)
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focus on average model loss for specific settings such as continual linear regression or the Neural
Tangent Kernel (NTK) regime (e.g. very wide neural networks). One promising direction to de-
rive more general performance guarantees is the PAC-Bayes framework (McAllester, 1999; Catoni,
2004; Alquier, 2024). Existing upper bounds on meta-learning (Pentina & Lampert, 2015; Amit &
Meir, 2018; Balcan et al., 2019; Chen et al., 2023) and online learning (Haddouche & Guedj, 2022)
offer guarantees for the loss on unseen tasks as well as the online setting that serves as a special
case of continual learning. A recent paper by Friedman & Meir (2025) derived general PAC-Bayes
bounds on forgetting in the continual learning setting. To the best of our knowledge, however, there
are no PAC-Bayes bounds for the cumulative loss in the continual learning setting. The cumulative
loss and plasticity in general has received a surge of interest in recent years (Wang et al., 2024b;
Dohare et al., 2024; Kumar et al., 2025).

In this work, we extend existing PAC-Bayes bounds for online learning (Haddouche & Guedj, 2022)
and time-uniform offline learning (Haddouche & Guedj, 2023; Chugg et al., 2023) to the continual
learning setting, allowing us to derive the first (to our knowledge) algorithm-agnostic risk certificates
for learning plasticity via the cumulative loss. We derive bounds applicable for bounded and sub-
Gaussian losses for offline and online continual learning. Equation 3, for instance, suggests that
if we continually re-train a model daily over a year, only a few dozen examples are required to
provide effective high-probability risk certificates for the expected cumulative loss. We also analyze
our bounds as oracle bounds and compare their effectiveness for several different task distributions
to provide additional insights into the relationship between forward transfer, model complexity and
task similarity. We demonstrate empirically that our approach yields non-vacuous bounds for several
continual learning problems in vision, as well as tight oracle bounds on linear regression tasks.

2 BACKGROUND

2.1 PAC-BAYES BOUNDS

We provide here a brief, high-level overview of several key notions related to PAC-Bayes bounds.
For a more complete introduction including detailed proofs, see Alquier (2024). In the classi-
cal supervised learning setting, the learner attempts to learn an unknown data distribution D via a
training dataset of size m, S = {z1, . . . , zm} where zi ∈ Z . A standard assumption is that the
training dataset is sampled i.i.d. from D. A learning algorithm assigns a probability to each hypoth-
esis h in hypothesis class H (a deterministic algorithm selects a single hypothesis). A loss function
` : Z → R+ ∪ {0} (e.g. classification error) is used to measure the performance of a learning
algorithm. Since D is unknown, the expected risk L(h,D) , Ez∼D`(h, z) cannot be minimized
directly, and so a generalization bound would upper bound the gap between it and the empirical
loss L̂(h, S) = 1

m

∑m
i=1 `(h, zi). PAC-Bayes bounds provide an upper bound on this gap with high

probability w.r.t. the empirical sample S. A classic example is Catoni’s bound (Catoni, 2004)
Theorem 2.1. (Catoni’s single task bound) Assume ∀h ∈ H, z ∈ D, `(h, z) ∈ [0,K]. Let P ∈
M(H) be some data-free prior distribution over H. Then, for any λ > 0, for any δ ∈ (0, 1), with
probability at least 1− δ over the choice of S, uniformly for all posteriors Q ∈M(H),

L(Q,D) ≤ L̂(Q,S) +
1

λ
DKL(Q||P ) +

λK2

8m
+

log 1/δ

λ
.

Of note is that this upper bound applies uniformly over all posteriors, implying that we can optimize
the r.h.s. w.r.t. the posteriorQ, and that the bound strongly depends on a given data-free prior. Recent
work such as Pérez-Ortiz et al. (2021) showed that using a part of the training set to learn the prior
can lead to tighter bounds in practice. Notably, all of the training data may be used for finding the
posterior Q. While we will not go over the full proof structure for Catoni’s bound, we note that
there are three main components: (1) Markov’s inequality (2) A change-of-measure inequality e.g.
(Donsker & Varadhan, 1975) (3) Hoeffding’s inequality or extensions thereof. These components or
some variation of them are common elements used for most PAC-Bayes bounds.

2.2 CONTINUAL LEARNING AND PAC-BAYES BOUNDS

In order to obtain upper bounds on the cumulative loss for continual learning, we must first define
a sufficient theoretical framework for describing the learning process in question. Figure 1 provides
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an overview of the continual learning process using the same symbolic terminology described be-
low. We follow a similar framework as Haddouche & Guedj (2022; 2023), adapted to the continual

Figure 1: Depiction of the continual learning process. A data-free prior P is adapted to task D1

via an empirical sample S1 ∼ Dm1 , resulting in posterior Q1. The posterior’s expected (test) loss
L(Q1,D1) is added to the cumulative loss. Q1 serves as the new prior for the next task D2 and so
on until we reach a final posterior QT . The cumulative loss is the sum of errors for all tasks.

learning setting by changing each task from a single example to a set of i.i.d. samples.

Framework Consider a data space Z = X × Y defined as pairs or inputs and outputs, i.e. zi =
(xi, yi) ∈ Z , where xi ∈ X , yi ∈ Y . We fix an integer sample size m > 0. For our continual
learning process, we consider a finite sequence of tasks of length T , where each task t ∈ [T ] is
associated with an unknown data distribution Dt. We assume that for each task t we are given
an i.i.d. sample of size m from the corresponding data distribution, St ∈ Dmt . Our complete
data sample is therefore composed of the sequence (St)

T
t=1 , (S1, S2, . . . , ST ). We make no

assumptions regarding the relation between tasks or the length of the task sequence, and our results
are applicable for any T > 0. We denote our hypothesis space H such that h ∈ H is a function
h : X → Y and denote the space of probability distributions overH asM1(H).

We set a sequence of priors, starting with a data-free prior distribution P1 = P ∈ M1(H), and
(Pt)t≥2 such that each Pt ∈ M1(H) is Ft−1-measurable, with (Ft)t≥0 being an adapted filtra-
tion to (St)

T
t=1. We denote (Qt)

T
t=1 a sequence of posterior distributions such that Qt is absolutely

continuous w.r.t. Pt. Similarly to Haddouche & Guedj (2022), we introduce the notion of stochas-
tic kernels (Rivasplata et al., 2020) as data-dependent measures within the PAC-Bayes framework,
allowing us to define bounds with data-dependent priors. We denote ΣH the σ-algebra onH.
Definition 1. (Stochastic Kernels) A stochastic kernel from S ∈ Zm to H is defined as a mapping
Q : Zm × ΣH → [0, 1] where (1) For any B ∈ ΣH, the function S → Q(S,B) is measurable. (2)
For any S ∈ Zm , the function B → Q(S,B) is a probability measure overH.

Stochastic kernels allow us to refer to a distribution dependent on dataset S, marking QS = Q(S, ·).
Definition 2. A sequence of stochastic kernels (Pt)

T
t=1 is called an online predictive sequence if (1)

For all t ≥ 1, S ∈ Zm, Pt(S, ·) is Ft−1-measurable and (2) for all t ≥ 2, Pt(S, ·) is absolutely
continuous w.r.t.Pt−1(S, ·). We will also use the notation P1:t to denote such a kernel.

This definition of online predictive sequences allows for the description of a stochastic kernel (and
posterior distribution for hypotheses) that changes as new tasks arrive sequentially, and can be used
to describe a variety of continual learning algorithms.
Definition 3. A loss function ` : H×Z → R+∪{0} is a function mapping a hypothesis h and data
sample z to the set of nonnegative numbers. The expected loss for h ∈ H isL(h,D) , Ez∈D`(h, z).
The empirical loss of a hypothesis w.r.t. a sample S ∈ Zm is L̂(h, S) , 1

m

∑m
j=1 `(h, zj).

We assume for the sake of convenience that the loss function `(h, z) is task-agnostic, but our results
are applicable even if the loss function depends on the task identifier. We restate the main result
of Haddouche & Guedj (2022) for online learning using our terminology in Theorem A.1. Finally,
we define the cumulative loss (CuL) and the average loss (AL). We note that this paper will focus
on the cumulative loss, corresponding to notions such as forward transfer (FWT), intransigence and
learning plasticity rather than the average loss (corresponding to average accuracy). For a more in-
depth overview of these metrics, see Wang et al. (2024a). We note that both metrics refer to expected
(test) errors.

3



Published as a conference paper at ICLR 2026

Definition 4. For a given online predictive sequence (Qt), a sequence of tasks D1, . . . ,DT , and a
sample S1:T = (S1, . . . , ST ) ∼ Dm1 × . . .×DmT , the cumulative loss (CuL) is defined as

CuL((Qt)
T
t=1) =

T∑
t=1

[L(Qt,S1:t
,Dt)|Ft−1] ,

T∑
t=1

Eht∼Qt,S1:t [Ezt∼Dt [`(ht, zt)|Ft−1]].

The Average loss (AL) is defined as

AL(QT ) =

T∑
t=1

L(QT,S1:T
,Dt) ,

T∑
t=1

EhT∼QT,S1:T [Ezt∼Dt [`(hT , zt)].

As we can see from the definitions, the CuL is measured w.r.t. the entire predictive sequence
sequentially, and can be extended to new tasks by simply adding an additional element for task
T + 1. The AL, on the other hand, is measured retroactively for a single posterior w.r.t. all tasks,
must be re-calculated from scratch for each new task, and requires additional memory propor-
tional to the number of tasks in order to estimate the expected loss for each task. We note that
both terms differ from the meta-learning loss, that can be expressed (for unknown task DT+1) as
MetaL(QT ) , EST+1∼DmT+1

[L(QT (S1:T+1),Dt+1)]. Unlike CuL and AL, the meta-learning loss
considers the loss on a future task rather than past or current performance. We note that this frame-
work allows for the derivation of risk certificates for both offline continual learning, where samples
for each task are given as a batch, and online continual learning, where each sample is given sequen-
tially and cannot be re-used.

2.3 OTHER RELATED WORK

Continual learning In recent years, there have been several prominent papers focused on under-
standing forgetting and average error in the context of continual learning. Evron et al. (2022) as
well as Lin et al. (2023) and Li et al. (2024) provide upper bounds and equations that describe ex-
pected behavior for sets of noisy linear regression tasks. Factors such as the number of parameters
vs the number of samples, task relationships and task order are all relevant parts of forgetting. Other
works such as Bennani & Sugiyama (2020) and Doan et al. (2021) provide upper bounds on average
and cumulative errors for the Stochastic Gradient Descent (SGD) algorithm as well as the Orthog-
onal Gradient Descent (OGD) (Farajtabar et al., 2020) algorithm, for models that correspond to the
Neural Tangent Kernel (NTK) regime. Friedman & Meir (2025) provide general PAC-Bayes upper
bounds on average error that are applicable regardless of optimization method, task structure and
hypothesis class for bounded loss functions. Our bounds instead focus on the cumulative loss, a
measure of learning plasticity. Unlike results for the NTK regime, our bounds are algorithm and
architecture agnostic.

Meta-learning There are numerous similarities between continual and meta-learning.We note that
in meta-learning data from previous tasks remains accessible, and tasks are usually assumed to
be taken from a single task-generating distribution. Pentina & Lampert (2015) as well as Amit
& Meir (2018) derive PAC-Bayes bounds for the meta-learning loss described above for bounded
loss functions. Other relevant works consider the cumulative loss and overall regret in the meta-
learning problem from a convex optimization perspective; Balcan et al. (2019) show upper bounds
for variants of the online SGD algorithm and follow-the-leader methods under some assumptions on
loss convexity and the parameter space. We note that follow-the-leader methods require access to
data from previous task, making their application to continual learning problems difficult.

Continual Meta-learning Chen et al. (2023) consider the problem of continual meta-learning,
where a meta-parameter is updated based on past and current task data and task-specific parameters
can only access data from the current task. For loss functions bounded in [0, 1] and several base-
learner algorithms, they derive upper bound on excess risk incurred in both the static and shifting
environments. Interestingly, the meta-algorithm used does not require data from past tasks, allowing
its application in continual learning, unlike follow-the-leader methods. In contrast to the above
methods, our general bounds are applicable for both offline and online continual learning, regardless
of optimization algorithm, model architecture and task environment.
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3 UPPER BOUNDS ON CUMULATIVE LOSS

Assumption 1. The loss function `(h, z) is either: (1) upper bounded by constantK or (2) isK sub-
Gaussian. Formally, ∀h ∈ H, z ∈ Z, `(h, z) ∈ [0,K] or Ez∼Di

[
et(`(h,z)−Ez∼Di`(h,z))

]
≤ eKt2 .

We note that Assumption 1 only applies to the loss used for the upper bound calculation. Some
relevant examples include classification loss, cross entropy loss with non-zero minimal class prob-
ability, and any light-tailed unbounded loss. First, we extend the result of Theorem A.1 to the
continual learning setting (m > 1) and to sub-Gaussian losses.

Corollary 3.1. Under Assumption 1, for any λ > 0, for any set of T tasks, for any online predictive
sequence of priors (Pt), for any sequence of stochastic kernels (Qt) with probability at least 1 − δ
over the draw of (S1, . . . , ST ) ∼ Dm1 × . . . × DmT , we have that the following holds for the data-
dependent measures Pt(S1:t, ·), Qt(S1:t, ·),

1

T
CuL((Qt)

T
t=1) ≤ 1

T

T∑
t=1

L̂(Qt(S1:t), St) +
1

λT

T∑
t=1

KL(Qt(S1:t)||Pt(S1:t))

+
λK2

m
+

log(1/δ)

λT
.

(1)

The full proof is in Appendix A, and follows a similar outline to Theorem A.1 but adapted to the
continual learning setting. In particular, unlike the online setting, if we have m � T , the r.h.s.
converges to the l.h.s. as m → ∞, similarly to the standard PAC-Bayes bounds. This result is a
straightforward extension of Theorem A.1 and requires no new technical tools.

Since the prior sequence may be data-dependent, we can select P1 = P and Pt(S1:t) = Qt−1(S1:t),
similarly to Haddouche & Guedj (2022), giving us a KL-divergence term that depends on the change
in the posterior between subsequent tasks. We note that while the posterior stochastic kernel Qt−1
must be Ft−2-measurable and is therefore independent of St, the measure Qt−1(S1:t, ·) can use
St in equation 1. In practical terms, this means that for models with task-specific parameters (i.e.
parameters that are used only for specific tasks), KL-divergence can be measured w.r.t. only shared
parameters. This may serve to lower the overall KL-divergence, as task-specific parameters can be
used to specialize a more general model that varies little between tasks.

While Corollary 3.1 is a useful upper bound, equation 1 has terms in the r.h.s. that do not converge
to the l.h.s. as the number of tasks T increases, namely the term λK2/m. In the context of continual
learning, upper bounds that converge as the number of tasks increases are vastly preferable as they
converge even if the number of samples per task is fixed. In order to achieve such bounds, we must
make some additional assumptions on our tasks. Specifically, we assume that the loss function is
upper bounded by a constant, and that the number of samples per task is not much smaller than the
number of tasks, i.e. m�

√
T .

Theorem 3.2. Under the same setup as Corollary 3.1, assuming `(h, z) ∈ [0,K], for any predictive
sequence of posteriors (Qt), for any δ2 ∈ (0, 1], with probability at least 1 − δ over the draw of
(S1, . . . , ST ) ∼ Dm1 × . . .×DmT , the following holds for measures Pt(S1:t), Qt(S1:t)

1

T
CuL((Qt)

T
t=1) ≤ 1

T

T∑
t=1

L̂(Qt(S1:t), St) +
1

λ

T∑
t=1

KL(Qt(S1:t)||Pt(S1:t))

+
1

λ
log
{

(1− δ2)eλK
√

log(1/δ2)/2mT + δ2e
λK
}

+
log(1/δ)

λ
.

(2)

Specifically, we can set λ = T
√
T

K , δ2 = e−T
√
T , resulting in

1

T
CuL((Qt)

T
t=1) ≤ 1

T

T∑
t=1

L̂(Qt(S1:t), St) +
K

T
√
T

T∑
t=1

KL(Qt(S1:t)||Qt−1(S1:t))

+
K 4
√
T√

2m
+
K(1 + log(1/δ))

T
√
T

,

(3)
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where Q0 = P , meaning that as long as m >
√
T/2 the r.h.s. converges to the l.h.s. as m,T →∞.

This result gives us an upper bound that converges as more tasks are added, provided that we have
sufficient samples per task. It also suggests a good rule of thumb for effective continual learning -
the number of samples per task should exceed the square root of the number of total tasks.

Proof of Theorem 3.2 appears in Appendix A. This Theorem uses a careful analysis of task and
posterior dependencies that is specific to online and continual learning, as well as bad-event analysis
that is not commonly utilized in the context of PAC-Bayes bounds.

4 ORACLE BOUNDS FOR SPECIFIC SETTINGS

Corollary 3.1 and Theorem 3.2 provide general upper bounds that are applicable for a wide variety of
tasks and continual learning algorithms, but their generality makes detailed analysis more difficult.
In order to better demonstrate these results and compare them for different settings, we derive and
compare oracle upper bounds on the Gibbs posterior.
Definition 5. Recall the Gibbs posterior distribution and the expected Gibbs posterior distribution,
for t ≥ 1, λ > 0, for Q̂λ0 = Qλ0 = P ,

Q̂λt (h) ∝ e−λL̂(h,St)Q̂λt−1(h), Qλt (h) ∝ e−λEzt∼Dt`(h,zt)Qλt−1(h).

The main advantage of the Gibbs posterior is that it removes the KL-divergence terms from the r.h.s.
of equation 1 (as can be seen, for example, in Lemma A.4). This property allows us to derive upper
bounds on the cumulative loss for the sequence of expected Gibbs posteriors. We note that while
these bounds refer to the expected Gibbs posterior and discuss the limit where m,T → ∞, they
originate from a non-asymptotic bound appearing in Appendix A. Equivalent bounds for empirical
Gibbs posteriors can be derived by changing the final condition to be taken w.r.t. the empirical loss
on the training set.
Theorem 4.1. For any λ > 0, assuming (1) Qt = Qλt is the expected Gibbs posterior. (2) P1 = P
is a data-free measure overH. (3) ∀t > 1 : Pt = Qt−1 = Qλt−1 (4)H is a compact, bounded subset
of Rd. (5) ∀t ∈ [2, T ], the total expected loss

∑t
i=1 L(h,Di) has a strict global minimum at h∗1:t

and is twice continuously differentiable w.r.t.h. Under Assumption 1, we have

lim
m,T→∞

1

T
CuL((Qλt )Tt=1) ≤ lim

T→∞

1

T

T∑
t=2

L(h∗1:t−1,Dt). (4)

The full proof is provided in Appendix A and relies mainly on Laplace’s method (Hwang, 1980;
Shun & McCullagh, 1995), which is rarely used for PAC-Bayes bounds. We note that under different
strict minimum assumptions we can derive another useful oracle bound,
Corollary 4.2. For any λ > 0, assuming (1) Qt = Qλt is the expected Gibbs posterior. (2) P1 = P
is a data-free measure overH (3) ∀t > 1 : Pt = Qt−1 = Qλt−1 (4)H is a compact, bounded subset
of Rd. (5) ∀t ∈ [2, T ], the expected loss L(h,Dt−1) has a strict global minimum at h∗t−1 and is
twice continuously differentiable w.r.t.h. Under Assumption 1, we have

lim
m→∞

1

T
CuL((Qλt )Tt=1) ≤ 1

T

T∑
t=2

L(h∗t−1,Dt) +
1

T
L(P,D1). (5)

In both cases, we see that the CuL can be upper bounded by the loss of a predictor obtained from
previous tasks. Using these oracle bounds, we can compare the cumulative loss for several different
continual learning setups and contrast the effects of task similarity between them.
Assumption 2. (Lipchitz loss) For non-negative GH and metric d(·, ·) (e.g. Wasserstein distance),

∀i, j, h ∈ H, |L(h,Di)− L(h,Dj)| ≤ GHd(Di,Dj).

This assumption implies that similarities in the task distribution are reflected in the loss function.
Assumption 3. For each task Dt, the optimal (minimum) loss L∗t is a achievable via a hypothesis
of dimension dt. Additionally, for any two tasks Di,Dj , if d = dim(H) ≥ di + dj , i.e.H is over-
parametrized, then there exists h∗i,j ∈ H ⊆ Rd such thatL(h∗i,j) = minh∈H (L(h,Di) + L(h,Dj)).
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This assumption aims to link model complexity and representation power, stating that given enough
parameters, it is possible to find a hypothesis achieving minimal loss and that given more parameters,
we can find optimal hypotheses on the average loss. Taking into account all of our assumptions, we

(a) Scenario 2 (b) Scenario 3 (c) Scenario 4

Figure 2: Depictions of scenarios 2, 3 and 4. In scenario 2 we alternate between two task distribu-
tions. In scenario 3 we take T/2 tasks from one distribution and another T/2 from a second one. In
scenario 3, each new task is of distance at most r from the previous one, and any two tasks are at
distance at most 2φ from each other.

can provide oracle bounds for several different scenarios in terms of task similarities and ordering.

1. If ∀t, Dt = D1, i.e. we have different samples from the same task distribution, we have

lim
m→∞

1

T
CuL((Qλt )Tt=1) ≤ L∗1 +O

(
1

T

)
.

2. If tasks alternate between distributions D1 and D2, we have that if d ≥ d1 + d2, we also
obtain the optimal (minimal) result

lim
m→∞

1

T
CuL((Qλt )Tt=1) ≤ L

∗
1 + L∗2

2
+O

(
1

T

)
,

and otherwise we have (via Theorem 4.1)

lim
m→∞

1

T
CuL((Qλt )Tt=1) ≤ minh {L(h,D1) + L(h,D2)}

2
+

1

2
GHd(D1,D2) +O

(
1

T

)
≤ min {L∗1,L∗2}+ GHd(D1,D2) +O

(
1

T

)
.

3. If the first T/2 tasks are from D1 and the second half are from D2, we have

lim
m→∞

1

T
CuL((Qλt )Tt=1) ≤

{
L∗1+L

∗
2

2 +O
(
1
T

)
d ≥ d1 + d2

L∗1+L
∗
2

2 +O
(
1
T

)
+ 1

T GHd(D1,D2) d < d1 + d2

4. If tasks change gradually and do not differ significantly from one another, or more formally,
if ∀t, d(Dt,D0) ≤ φ and ∀t < T, d(Dt,Dt+1) ≤ r, r < φ, we have

lim
m→∞

1

T
CuL((Qλt )Tt=1) ≤ 1

T

T∑
t=1

L∗t + rGH +O

(
1

T

)
.

These results imply that (given limited capacity) task order can significantly impact the cumulative
error. This is not particularly surprising, as existing results on the expected loss and forgetting in
continual learning also demonstrate that task order and relatedness are a major factor in overall error,
but it is not immediate to deduce that this should also be the case for the cumulative loss. These
results also demonstrate that sufficiently over-parametrized models can overcome issues such as task
order and learn each task effectively.

5 EMPIRICAL DEMONSTRATION

In this section we demonstrate the utility of our bounds from Sections 3 and 4. We study the efficacy
of our bounds several simple (but non-trivial) environments with varied task similarity.
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Table 1: Average and final cumulative error percentage for vision tasks. Lower is better.

Domain Method CuL Bound (equation 3) Error @t = 120 Bound @t = 120

Perm.-MNIST EWC 1.0± 0.0 10.6± 0.2 1.0± 0.0 5.1± 0.2
VI 15.5± 0.1 17.9± 0.1 4.7± 0.1 6.8± 0.1

Split-MNIST EWC 0.9± 0.0 4.2± 0.1 0.9± 0.1 2.5± 0.1
VI 17.6± 0.4 19.4± 0.3 5.1± 0.3 7.5± 0.5

Split-CIFAR10 EWC 34.4± 0.2 47.9± 0.5 34.7± 0.9 39.7± 1.4
VI 49.8± 0.1 52.2± 0.2 49.5± 0.1 52.5± 0.2

Table 2: Average and final cumulative error percentage and forgetting for Split-ImageNet on 3
random seeds. Lower is better, a random model achieves 98% cumulative error.

Domain Method CuL Bound (equation 3) Forgetting

Split-ImageNet EWC 33.5± 0.2 40.1± 0.3 5.7± 0.4
SGD 34.8± 0.3 41.4± 0.4 7.8± 0.1
Replay 55.7± 0.7 62.5± 0.4 2.8± 0.1

5.1 VISION-BASED TASKS

In order to examine the bounds of Corollary 3.1 and Theorem 3.2, we made use of a few well-
known computer vision tasks in the context of continual learning, namely: (1) Permuted-MNIST
(Goodfellow et al., 2015), a domain-incremental problem (De Lange et al., 2021) where a random
permutation is applied on each image for each task. (2) Split-MNIST (Zenke et al., 2017), a se-
quential set of binary classification tasks constructed from the MNIST (LeCun et al., 1998) dataset.
(3) Split-CIFAR10 (Zenke et al., 2017), a sequential set of binary classification tasks constructed
from the CIFAR-10 (Krizhevsky et al., 2009) dataset. (4) Split-ImageNet, a sequential set of binary
classification tasks constructed from the ImageNet (Deng et al., 2009) dataset.

We used both variational inference (VI) (Hoffman et al., 2013) and Elastic Weight Consolidation
(EWC) (Kirkpatrick et al., 2017) in our experiments. For Split-ImageNet, we also examined SGD
with and without experience replay. Detail on the prior and posterior distributions used is available
in Appendix B. We note that there is no significant computational or memory overhead required for
bound calculation and no additional samples are required besides the training set.

We used convolutional neural networks (CNNs), with T = 120 tasks in total for all domains. We
measured the average cumulative error 1

T CuL((Qλt )Tt=1), approximated via a held-out test set for
each task, and its upper bound based on equation 3 across 5 random seeds, reporting standard error
and the average value. We also report the loss and upper bound for the final task. A full detailing of
hyper-parameters and the experimental setup is available in Appendix B.

Tables 1, 2 detail the error percentage (error out of 100%, similar to accuracy percentage) for both
VI and EWC models on all tasks, as well as the cumulative error and average test forgetting (see
definition of forgetting measure (FM) in Wang et al. (2024a)) as well as Appendix B) for Split-
ImageNet. The values reported are for both the average cumulative error and the error at the stopping
point. Figure 3 shows the average cumulative loss and the upper bound as a function of the number
of tasks for the split-MNIST task. We note that the values reported in the first two columns of Table
1 correspond to the final values of Figure 3, and that the last two columns correspond to only the
error and bound for the final task in the continual learning process. Looking over the results, we
see that the bound is very tight for VI, and somewhat looser for EWC. This is to be expected, to an
extent, as the VI algorithm aims to optimize the r.h.s. of equation 3 w.r.t. the posterior distributions,
whereas for EWC the bound is not directly linked to the learning process. Across all settings, we see
that the bound becomes increasingly tight as the number of tasks increases, owing to both the fact
that several terms in equation 3 decrease in proportion to the number of tasks, and to the tendency
of the KL-divergence term to decrease during the continual learning process - as we experience
additional tasks, the posterior for the previous taskQt−1 that serves as the prior for taskDt becomes
an increasingly better informed and predictive prior, resulting in a tighter upper bound. With the
exception of the VI algorithm for the split-CIFAR10 task, all of our empirical upper bounds are
non-vacuous, with several of them being tight enough to provide a useful risk certificate, especially
if we consider only later tasks. The upper bounds for average cumulative error tend to suffer for
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early tasks, possibly due to the randomness of the training process for the first few tasks. This is
somewhat encouraging within the context of continually retraining a complex model to handle new
data, as the forward transfer would be weighted towards generalizing on new tasks, and our bounds
are consistently tighter (empirically) for later tasks in a sequence.

(a) VI (b) EWC

Figure 3: Average CuL percentage and upper bound over time for split-MNIST. Error bars represent
standard error over 5 random seeds. A random predictor would have 50% average loss.

5.2 ORACLE BOUNDS

While the oracle bounds (4, 5) are already useful, as can be seen in the explicit oracle bounds for
specific scenarios, verifying and comparing the bounds empirically may provide additional insights.
To that end, we considered equation 4 and equation 5 in several simple scenarios that correspond to
the specific theoretical scenarios discussed in Section 4. We utilized linear regression tasks following
a similar setup as discussed in Lin et al. (2023) (a linear ground truth (Belkin et al., 2018; Evron
et al., 2022) with the true weight vector for each task being a subset of all features) while varying the
model between over and under-parametrized linear regression, and simple 2 layer fully connected
(FC) neural networks (with a wide hidden layer to approximately adhere to the NTK regime (Jacot
et al., 2018; Bennani & Sugiyama, 2020)). In order to approximate posterior sampling from the
Gibbs posterior, we used the Stochastic Gradient Langevin Dynamic (SGLD) (Neal, 2011; Welling
& Teh, 2011) algorithm in our experiments. The full detail of task construction and model and
training hyper-parameters is available in Appendix B, alongside detailed numeric results.

(a) Task swap (b) Task alternating

Figure 4: Average cumulative loss, oracle bound (equation 4) and average model error over time for
under-parametrized linear regression. (a) task changes at t = 100 (b) tasks alternate.

Figure 4 compares scenarios 2 and 3 for under-parametrized linear regression, with each task char-
acterized by a different true weight vector. We can clearly see that task order matters significantly
for both the cumulative loss and the average model loss. Specifically, we see that for cumulative
loss, a single swap is significantly better than alternating between two tasks. This result agrees with
the obtained theoretical bound. As can be seen for average model loss from the expected behavior
detailed in Lin et al. (2023) (that agrees with the empirical average model loss for most of the con-
tinual learning process), a sudden task swap results in a sudden significant increase in average error
that is slowly corrected, whereas alternating tasks quickly stabilize to a constant average error.

Figure 5 contrasts over and under-parametrized 2 layer neural networks on a sequence of gradually
changing tasks corresponding to scenario 4 of Section 4. Each task corresponds to a generating
linear weight vector, and adjacent tasks have similar weight vectors (see Appendix B). We can see
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(a) Under-parametrized (b) Over-parametrized

Figure 5: CuL, oracle bound (equation 4) and average model error over time for linear regression
with gradually changing tasks. (a) Under-parametrized model (b) over-parametrized model.

that in the over-parametrized regime, cumulative error remains near constant and the upper bound
is nearly exact. In the under-parametrized regime, however, we see a gradual decrease as the model
stabilizes. In both cases, the average error tends to increase with the number of tasks (though it is
lower in the over-parametrized setting), likely due to the increasing distance between tasks resulting
from the random walk process. We note that our bounds are several orders of magnitude tighter in
this setting compared to NTK-based generalization bounds for SGD (Bennani & Sugiyama, 2020).

6 LIMITATIONS AND FUTURE WORK

In this work, we derived several upper bounds on the cumulative error for both general hypothesis
classes and for the Gibbs posterior. Our bounds offer tight risk certificates when the number of
samples per task is large as well as in several concrete scenarios for the oracle bounds. Our results
assume that the loss is either bounded or is sub-Gaussian, though extensions to heavy-tailed losses
similarly to Haddouche & Guedj (2023) may be possible. The assumption of a strict global minimum
can be relaxed to allow for a finite number of global minima. We note that our derived oracle bounds
are taken w.r.t. the expected Gibbs posterior. Equivalent bounds can be derived w.r.t. empirical Gibbs
posterior by modifying our assumptions on the global minimum to apply in expectation.

While our results are applicable for both offline and online continual learning, we acknowledge that
for offline continual learning the cumulative error is often less relevant than the average error. A
common assumption in this setting is an unbounded number of training samples per task, making
learning plasticity irrelevant as any task can be learned from scratch. We also note that in the online
continual learning setting, if task boundaries are blurry or unknown, the number of samples per task
m and the number of tasks T must be approximated in order to use our bounds.

Our PAC-Bayes bounds contain complexity terms (KL-divergence) that may be difficult to scale for
large models with many parameters. While this is not an issue in our oracle bounds, it is a concern
for the general bounds such as equation 5. While there is some work in the context of PAC-Bayes
bounds with other divergence measures (Bégin et al., 2016; Amit et al., 2022; Kuzborskij et al.,
2024), this can be a potential limiting factor in applying our results for large model classes, though
model-compression bounds (Lotfi et al., 2022) may serve as an avenue to overcome this limit.

We tested and verified our theoretical results on two main algorithms for several simple computer
vision benchmarks, yielding non-vacuous bounds on the cumulative test error. As we can see in
Tables 1, 2, the risk certificate is not always tight. We note that in most cases, the VI bound is nearly
tight whereas the upper bounds for deterministic methods tend to be looser. This is somewhat unsur-
prising as the VI training objective attempts to directly optimize the r.h.s. of the upper bound.. As our
main focus was measuring the efficacy of our upper bounds, we focused mostly on relatively small
neural networks and classification problems. While encouraging, our preliminary experiments only
used vision datasets, and we only examined our bounds on VI methods, EWC and experience re-
play algorithms. A more comprehensive empirical analysis of common continual learning methods,
combined with applying some of the recent insights into obtaining tight risk certificates via PAC-
Bayes bounds (Pérez-Ortiz et al., 2021), may yield further insights into the practical application of
PAC-Bayes bounds for cumulative loss in continual learning for larger models.
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REPRODUCIBILITY STATEMENT

Proofs for all Theorems and Corollaries is available in Appendix A. All required assumptions appear
in both the main text and the Appendix. Code for reproducing the experiments is available as part of
the supplementary material and a more detailed explanation of the experimental setting and hyper-
parameters is available in Appendix B. All data sources are publicly available and code is available
on github.
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A PROOFS

Theorem A.1. (Haddouche & Guedj (2022), Theorem 2.3) Assuming ∀h ∈ H, z ∈ Z, `(h, z) ∈
[0,K], for online learning (m = 1), for any distribution µ over tasks [T ], any λ > 0 and any online
predictive sequence (Pt), for any sequence of stochastic kernels (Qt), we have with probability at
least 1 − δ over the sample S = (z1, . . . , zt) ∼ µ the following, holding for the data-dependent
measures Qt,S , Qt(S, ·), Pt,S , Pt(S, ·),

T∑
t=1

Eht∼Qt,S [Ezt∼µ[`(ht, zt)|Ft−1]] ≤
T∑
t=1

(
Eht∼Qt,S [`(ht, zt)] +

1

λ
KL(Qt,S ||Pt,S)

)
+
λTK2

2
+

log(1/δ)

λ
.

Corollary A.2. Restatement of Corollary 3.1: Under Assumption 1, for any λ > 0, for any set of T
tasks, for any online predictive sequence of priors (Pt), for any sequence of stochastic kernels (Qt)
with probability at least 1− δ over the draw of (S1, . . . , ST ) ∼ Dm1 × . . .× DmT , we have that the
following holds for the data-dependent measures Pt(S1:t, ·), Qt(S1:t, ·),

1

T

T∑
t=1

[L(Qt(S1:t),Dt)|Ft−1] ≤ 1

T

T∑
t=1

L̂(Qt(S1:t), St) +
1

λT

T∑
t=1

KL(Qt(S1:t)||Pt(S1:t))

+
λK2

m
+

log(1/δ)

λT

Proof. We begin by applying the main Theorem of Rivasplata et al. (2020) with Q0 = P1 ⊗ . . . ⊗
PT , Q = Q1 ⊗ . . .⊗QT , and with

F (S = S1 ⊗ . . .⊗ ST , h = h1 ⊗ . . .⊗ hT ) =
λ′

T

(
T∑
t=1

Ezt∼Dt [`(ht, zt)|Ft−1]−
T∑
t=1

L̂(ht, St)

)
.

Reorganizing terms, we have with probability at least 1− δ (over the draw of S = S1 ⊗ . . .⊗ ST ),

1

T

T∑
t=1

Eht∼Qt(S1:t)[Ezt∼Dt [`(ht, zt)|Ft−1]] ≤ 1

T

T∑
t=1

L̂(Qt(S1:t), St)

+
1

λ′

T∑
t=1

KL(Qt(S1:t)||Pt(S1:t))

+
1

λ′
log ξT +

log(1/δ)

λ′

(6)

where
ξT = ESEh∼Q0

[
eF (S,h)

]
.

We then apply a similar Lemma D.2 of Haddouche & Guedj (2022) (with tasks instead of single
examples) that yields

ξT =

T∏
t=1

ES1,...,StEht∼Pt
[
eλ
′/T (Ezt∼Dt [`(ht,zt)|Ft−1]−L̂(ht,St))

]
,

and applying Hoeffding’s Lemma for bounded losses or the exponential moment bound for sub-
Gaussian random variables we have

ξT ≤ e
λ′2K2

mT .
Combined with equation 6, we have as follows:

1

T

T∑
t=1

Eht∼Qt(S1:t)[Ezt∼Dt [`(ht, zt)|Fti−1]] ≤ 1

T

T∑
t=1

L̂(Qt(S1:t), Si)

+
1

λ′

T∑
t=1

KL(Qt(S1:t)||Pt(S1:t))

+
λ′K2

mT
+

log(1/δ)

λ′
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Picking λ′ = λT completes the proof.

Theorem A.3. Restatement of Theorem 3.2: Under the same setup as Corollary 3.1, assuming
`(h, z) ∈ [0,K], for any predictive sequence of posteriors (Qt), for any δ2 ∈ (0, 1], with probability
at least 1 − δ over the draw of (S1, . . . , ST ) ∼ Dm1 × . . . × DmT , the following holds for the data-
dependent measures Pt(S1:t), Qt(S1:t)

1

T

T∑
t=1

[L(Qt(S1:t),Dt)|Ft−1] ≤ 1

T

T∑
t=1

L̂(Qt(S1:t), St) +
1

λ

T∑
t=1

KL(Qt(S1:t)||Pt(S1:t))

+
1

λ
log
{

(1− δ2)eλK
√

log(1/δ2)/2mT + δ2e
λK
}

+
log(1/δ)

λ

Proof. Starting from equation 6 with

F (S = S1⊗. . .⊗ST , h = h1⊗. . .⊗hT ) = λ

(
1

T

T∑
t=1

Ezi∼Dt [`(ht, zt)|Ft−1]− 1

T

T∑
t=1

L̂(ht, St)

)
for convenience, we have

1

T

T∑
t=1

Eht∼Qt(S1:t)[Ezt∼Dt [`(ht, zt)|Ft−1]] ≤ 1

T

T∑
t=1

L̂(Qt(S1:t), St)

+
1

λ

T∑
t=1

KL(Qt(S1:t)||Pt(S1:t))

+
1

λ
log ξT +

log(1/δ)

λ

Since each element of 1
mT

∑T
t=1

∑m
j=1 `(h, ztj) is bounded in range [0,K/mT ], we can apply

Hoeffding’s Lemma on each task; we first apply Markov’s inequality: for s, ε > 0

Pr(F (S = S1 ⊗ . . .⊗ ST , h = h1 ⊗ . . .⊗ hT ) ≥ ε) = Pr(esF (S,h) ≥ esε)

≤ e−sεES,hesλ(
1
T

∑T
t=1 Ezt∼Dt [`(ht,zt)|Ft−1]− 1

T

∑T
t=1 L̂(ht,St)).

Since we assume that the expected loss is Ft−1-measurable, this equals

= e−sε
T∏
t=1

ES1,...,StEh1,...,hte
sλ( 1

T Ezt∼Dt [`(ht,zt)]−
1
mT

∑m
i=1 `(ht,zt,i)).

Since we assume data from each task is drawn i.i.d. we have

= e−sε
T∏
t=1

ES1,...,St−1
Eh1,...,ht−1

m∏
i=1

ESt,hte
sλ( 1

mT Ezt∼Dt [`(ht,zt)]−
1
mT `(ht,zt,i))

≤ e−sε
T∏
t=1

m∏
i=1

es
2(λK/mT )2/8

= e
sλ2K2

8mTε .
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Where the last inequality is due to applying Hoeffding’s Lemma on each element in the product.
Minimizing s, we have

Pr(F (S = S1 ⊗ . . .⊗ ST , h = h1 ⊗ . . .⊗ hT ) ≥ ε) ≤ e−
ε2mT
λ2K2 , δ2.

Moving terms around, we get

ε = λK

√
log(1/δ2)

2mT
.

We can then split ξT = ESEh∼Q0

[
eF (S,h)

]
into two events with appropriate probabilities, with one

event (the good event, with probability 1− δ2) fulfilling this inequality and the other (the bad event,
with probability at most δ2) violating it giving us an upper limit F (S, h) ≤ λK, giving us

ξT ≤ (1− δ2)eλK
√

log(1/δ2)/2mT + δ2e
λK .

Plugging in this inequality in equation 6 completes the proof.

Lemma A.4. Under the same setting as Theorem 3.1, assuming that

1. Qt = Q̂λt is the empirical Gibbs measure

2. P1 = P is a data-free measure

3. ∀t > 1 : Pt = Qt−1 = Q̂λt−1

we have

ES1,...,ST

1

T

T∑
t=1

[L(Q̂λt (S1:t),Dt)|Ft−1] ≤ ES1,...,ST

1

T

T∑
t=1

L̂(Q̂λt−1(S1:t−1), St) +
λK2

m
(7)

Proof. Starting from Theorem 3.1 (in expectation), we begin by decomposing the KL-divergence
under our assumptions:

1

λT
KL(Q̂λt ||Q̂λt−1) =

1

λT
Eh∼Q̂λt

log
e−λL̂(h,St)

Eh∼Q̂λt−1
e−λL̂(h,St)

 (8)

= − 1

T
L̂(Q̂λt , St)−

1

λT
logEh∼Q̂λt−1

e−λL̂(h,St)

Applying this equality to Theorem 3.1, we have

1

T

T∑
t=1

ES1,...,Si [L(Q̂λt (S1:t),Dt)|Ft−1] ≤ − 1

λT

T∑
t=1

ES1,...,St logEh∼Q̂λt−1
e−λL̂(h,St) +

λK2

m

(9)

Applying Jensen’s inequality on

− 1

λT
logEh∼Q̂λt−1

e−λL̂(h,St) ≤ 1

T
L̂(Q̂λt−1, St)

for all t ∈ [1, T ] completes the proof.

Theorem A.5. Restatement of Theorem 4.1: For any λ > 0, assuming

1. Qt = Qλt is the expected Gibbs measure

2. P1 = P is a data-free measure overH

3. ∀t > 1 : Pt = Qt−1 = Qλt−1

4. H is a compact, bounded subset of Rd.
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5. ∀t ∈ [2, T ], the total expected loss
∑t
i=1 L(h,Di) has a strict global minimum at h∗1:t and

is twice continuously differentiable w.r.t. h.

,we have

lim
m,T→∞

1

T

T∑
t=1

[L(Qλt ,Dt)|Ft−1] ≤ lim
T→∞

1

T

T∑
t=2

L(h∗1:t−1,Dt)

Proof. We begin with the change-of-measure inequality; for any λ > 0 and any measurable function
f : H×DM → R, for any prior and posterior P,Q, for any sample S ∼ DM a.s.

− 1

λ
logEh∼P e−λf(h,S) ≤ Eh∼Q(S)f(h, S) +

1

λ
KL(Q(S)||P )

Taking an expectation over S and using Jensen’s inequality, we have

−ES∼DMEh∼Q(S)f(h, S) ≤ 1

λ
logES∼DMEh∼P e−λf(h,S) +

1

λ
ES∼DMKL(Q(S)||P )

Choosing Q = Qλ1 ⊗ . . .⊗QλT , P = P ⊗Qλ1 ⊗ . . .⊗QλT−1 as well as

f(S = S1⊗. . .⊗ST , h = h1⊗. . .⊗hT ) = −

(
1

T

T∑
t=1

Ezt∼Dt [`(ht, zt)|Ft−1]− 1

T

T∑
t=1

L̂(ht, St)

)
yields

1

T

T∑
t=1

[L(Qλt ,Dt)|Ft−1] ≤ 1

T

T∑
t=1

ESt∼Dmt [L̂(Qλt , St)|Ft−1]

+
1

λ′
logESEh1,...,hT∼P,,...,QλT−1

eλ
′/T (

∑T
t=1(Ezt∼Dt [`(ht,zt)|Ft−1]−L̂(ht,St)))

+
1

λ′

T∑
t=1

KL(Qλt ||Qλt−1)

(10)

Using Hoeffding’s Lemma for bounded losses or the exponential moment bound for sub-Gaussian
random variables, we get

1

T

T∑
t=1

[L(Qλt ,Dt)|Ft−1] ≤ 1

T

T∑
t=1

ESt∼Dmt [L̂(Qλt , St)|Ft−1] +
λ′K2

mT
+

1

λ′

T∑
t=1

KL(Qλt ||Qλt−1)

Picking λ′ = λT and decomposing the KL-divergence as before, we get

1

T

T∑
t=1

[L(Qλt ,Dt)|Ft−1] ≤ 1

T

T∑
t=1

(
ESt∼Dmt [L̂(Qλt , St)− L(Qλt ,Dt)|Ft−1]

)
+
λK2

m
− 1

λT

T∑
t=1

logEh∼Qλt−1
e−λL(h,Dt)

(11)

by unrolling the last term according to the definition of the Gibbs posterior, i.e.

Eh∼Qλt−1
e−λL(h,Dt) =

Eh∼Qλt−2
e−λL(h,Dt)−λL(h,Dt−1)

Eh∼Qλt−2
e−λL(h,Dt−1)

= . . . =
Eh∼P e−λ

∑t−1
j=1 L(h,Dj)

Eh∼P e−λ
∑t−1
j=1 L(h,Dj)−λL(h,Dt)

,
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we get

1

T

T∑
t=1

[L(Qλt ,Dt)|Ft−1] ≤ 1

T

T∑
t=1

(
ESt∼Dmt [L̂(Qλt , St)− L(Qλt ,Dt)|Ft−1]

)
+
λK2

m
− 1

λT
logEh∼Pλe−λL(h,D1)

+
1

λT

T∑
t=2

log
Eh∼P e−λ

∑t−1
j=1 L(h,Dj)

Eh∼P e−λ
∑t−1
j=1 L(h,Dj)−λL(h,Dt)

(12)

Suppose thatH is a compact, bounded subset of Rd. Assuming that L(h,Dj) is twice continuously
differentiable w.r.t. h for all j, we can apply Laplace’s method (Shun & McCullagh, 1995) on both
numerator and denominator. Let

M1:t−1(h) ,
1

i− 1

t−1∑
j=1

L(h,Dj),

h∗1:t−1 , arg min
h∈H

M1:t−1(h) = arg min
h∈H

t−1∑
j=1

L(h,Dj)

, then marking M ′′1:t−1 = detM ′′1:t−1(h∗1:t−1)| the determinant of the Hessian matrix, we have the
Taylor expansion

1

λT

T∑
t=2

log
Eh∼P e−λ

∑t−1
j=1 L(h,Dj)

Eh∼P e−λ
∑t−1
j=1 L(h,Dj)−λL(h,Dt)

=

1

λT

T∑
t=2

log

(
2π

λ(t−1)

)d/2 1√
M′′

1:t−1

e
−λ

∑t−1
j=1
L(h∗1:t−1,Dj)

R(
2π

λ(t−1)

)d/2 1√
M′′

1:t−1

e
−λ

∑t−1
j=1
L(h∗

1:t−1
,Dj)−λL(h∗1:t−1

,Dt)

R

where R = 1 + J2
2λ(t−1)M ′′1:t−1

+ . . .+O((λ(t− 1))−r−1.

Due to setting the same function to seek an optimum for in both the numerator and denominator
(with differing reminder). Since most of the elements of both numerator and denominator are the
same, we have (in the limit where λ→∞)

1

λT

T∑
t=2

log
Eh∼P e−λ

∑t−1
j=1 L(h,Dj)

Eh∼P e−λ
∑t−1
j=1 L(h,Dj)−λL(h,Dt)

=
1

λT

T∑
t=2

log eλL(h
∗
1:t−1,Di) =

1

T

T∑
t=2

L(h∗1:t−1,Dt)

combined with equation 12 we have (in the limit)

1

T

T∑
t=1

[L(Qλt ,Dt)|Ft−1] ≤ 1

T

T∑
t=1

(
ESt∼Dmt [L̂(Qλt , St)− L(Qλt ,Dt)|Ft−1]

)
+
λK2

m
− 1

λT
logEh∼Pλe−λL(h,D1) +

1

T

T∑
t=2

L(h∗1:t−1,Dt)

(13)

Taking λ =
√
m/T , we have

lim
m,T→∞

1

T

T∑
t=1

[L(Qλt ,Dt)|Ft−1] ≤ lim
T→∞

1

T

T∑
t=2

L(h∗1:t−1,Dt) + lim
T→∞

1

T
L(P,D1)

Corollary A.6. Restatement of Corollary 4.2: For any λ > 0, assuming

1. Qt = Qλt is the expected Gibbs measure
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2. P1 = P is a data-free measure overH

3. ∀t > 1 : Pt = Qt−1 = Qλt−1

4. H is a compact, bounded subset of Rd.

5. ∀t ∈ [2, T ], the expected loss L(h,Dt−1) has a strict global minimum at h∗t−1 and is twice
continuously differentiable w.r.t. h.

we have

lim
m→∞

1

T

T∑
t=1

[L(Qλt ,Dt)|Ft−1] ≤ 1

T

T∑
t=2

L(h∗t−1,Dt) +
1

T
L(P,D1)

Proof. Via unrolling the last term in equation 11 once we get

1

T

T∑
t=1

[L(Qλi ,Dt)|Ft−1] ≤ 1

T

T∑
t=1

(
ESt∼Dmt [L̂(Qλt , St)− L(Qλt ,Dt)|Ft−1]

)
+
λK2

m
− 1

λT
logEh∼P e−λL(h,D1)

+
1

λT

T∑
t=2

log
Eh∼Qλt−2

e−λL(h,Dt−1)

Eh∼Qλt−2
e−λL(h,Dt−1)−λL(h,Dt)

(14)

Using similar arguments of Laplace’s approximation, we get for λ =
√
m,

lim
m→∞

1

T

T∑
t=1

[L(Qλi ,Dt)|Ft−1] ≤ 1

T

T∑
t=2

L(h∗t−1,Dt) +
1

T
L(P,D1)

Corollary A.7. Under the same conditions as Theorem 4.1, if we also have that

∀i, j, h ∈ H, |L(h,Di)− L(h,Dj)| ≤ GHd(Di,Dj)
for some non-negative GH and metric d(·, ·), then

lim
m,T→∞

1

T

T∑
t=1

[L(Qλt ,Dt)|Ft−1]

≤ lim
m,T→∞

 1

T

T∑
t=2

1

t− 1
min
h∈H

t−1∑
j=1

L(h,Dj) +
GH
T

T∑
t=2

1

t− 1

t−1∑
j=1

d(Dj ,Dt) +O

(
1

T

)
where the O

(
1
T

)
term is 1

T L(P,D1).

Proof. Starting from equation 13, we decompose

L(h∗1:t−1,Dt) =
t− 1

t− 1
L(h∗1:t−1,Dt) +

1

t− 1

t−1∑
j=1

L(h∗1:t−1,Dj)−
1

t− 1

t−1∑
j=1

L(h∗1:t−1,Dj)

=
1

t− 1

t−1∑
j=1

L(h∗1:t−1,Dj) +
1

t− 1

t−1∑
j=1

(
L(h∗1:t−1,Dt)− L(h∗1:t−1,Dj)

)
≤ 1

t− 1

t−1∑
j=1

L(h∗1:t−1,Dj) +
1

t− 1

t−1∑
j=1

∣∣L(h∗1:t−1,Dt)− L(h∗1:t−1,Dj)
∣∣

By the definition of h∗1:t−1,

=
1

t− 1
min
h∈H

t−1∑
j=1

L(h,Dj) +
1

t− 1

t−1∑
j=1

∣∣L(h∗1:t−1,Dt)− L(h∗1:t−1,Dj)
∣∣

20



Published as a conference paper at ICLR 2026

≤ 1

t− 1
min
h∈H

t−1∑
j=1

L(h,Dj) +
GH
t− 1

t−1∑
j=1

d(Dt,Dj) (15)

Using equation 15 to upper bound each loss in equation 13 and taking the limit completes the proof.

21



Published as a conference paper at ICLR 2026

B APPENDIX - EMPIRICAL SETTING AND HYPER-PARAMETERS

All experiments were run on local hardware with an NVIDIA GeForce 4090 GPU and an Intel i9
CPU. All results were run for 5 random seeds and averages and standard error were reported in all
tables. Anonymized code is available in the supplementary material and full code on github.

B.1 PSEUDO-CODE FOR BOUND CALCULATION

Algorithm 1 Continual learning training and bound calculation for VI
function CONTINUAL-LEARN(S1, . . . , ST , P )

Choose algorithmic parameters λ1, . . . , λT
Let Q̂1:0(h) , P (h)
for each task t from 1 to T do

Update Q̂1:t via

Q̂1:t = argmin
Q1:t

{
L̂(Q1:t, St) +

1

λt
DKL(Q1:t||Q̂1:t−1)

}
Update upper bound for (test) CuL based on equation 1 or 3

return Q̂1:T , upper bound

Algorithm 2 Continual learning training and bound calculation for deterministic methods
function CONTINUAL-LEARN(S1, . . . , ST , P )

Choose algorithmic hyper-parameters θ, bound parameters λ1, . . . , λT , σ
initialize model weights w0

Let Q̂1:0 , N (w0, σ
2Id)

for each task t from 1 to T do
Update model weights wt via the algorithm Aθ(w0, . . . , wt−1, St)

Let Q̂1:t =, N (wt, σ
2Id)

Update upper bound for (test) CuL based on equation 1 or 3.
return wT , upper bound

B.2 POSTERIOR CONSTRUCTION

For the variational inference (VI) (Hoffman et al., 2013) algorithm, both the prior and posterior
distributions were multivariate Gaussian distributions on model parameters.

For deterministic methods such as EWC, a posterior distribution is constructed after training by
adding Multivariate Gaussian noise, i.e. Q̂1:t = N (wt, σ

2Id), where wt ∈ Rd is the weight vector
given as output after task Dt.

B.3 VISION DATASETS

For all vision tasks except Split-ImageNet, we used a convolutional neural network consisting of
convolution blocks each consisting of 64 two-dimensional convolutions, max-pooling and tanh acti-
vations. The convolution blocks are then followed by a fully connected layer and an additional tanh
activation. Reported results also use a linear classification head for each task, but results without
separate classification heads per task were not significantly different. In all cases, training for a task
consisted of a single pass over all training examples, and expected error for a task is estimated via a
held-out test set.

For both MNIST-based tasks, we used two convolution blocks of 5 × 5 convolutions and the linear
layer contained 400 neurons. For the CIFAR10-based task, we used three convolution blocks of 3×3
convolutions and the linear layer contained 800 neurons. For Split-ImageNet, we used a pre-trained
ResNet-18 (He et al., 2016) model.

For permuted-MNIST, we used a different pixel permutation per task, and each task involved 10-
way classification. All 60000 training samples were used for training with a batch size of 128. The
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learning rate was static at 1e−3 and the λ parameter was set to 1e−5. For split-MNIST, each task
involved half of the labels (at random) chosen as positive and half as negative. This is a minor
departure from the standard split-MNIST problem where 5 different binary classification tasks are
created and their loss is averaged, but the overall behavior is similar. All other hyper-parameters
were set identically to permuted-MNIST. For split-CIFAR10, task construction was the same as
split-MNIST but on the CIFAR10 dataset. All 50000 training samples were used for training with
a batch size of 256. The learning rate was static at 1e−3 and the λ parameter was set to 5e−4.
For split-ImageNet, each task contained a disjoint subset of 50 classes, and the λ parameter was
set to 1e−7. The notion of forgetting measured and reported for split-ImageNet is the average test
forgetting, defined as

FM(ht,D1, . . . ,Dt−1) =
1

t− 1

t−1∑
j=1

max
i∈[1,t−1]

{a(hi,Dj)− a(ht,Dj)},

where a(h,Dt) is the test accuracy on task t. This measure can be written in terms of the loss
function as

FM(ht,D1, . . . ,Dt−1) =
1

t− 1

t−1∑
j=1

max
i∈[1,t−1]

{`(ht,Dj)− `(hi,Dj)}.

For VI, we used Markov Chain Monte Carlo (MCMC) estimation with 3 draws from the posterior,
and the prior was a multivariate Gaussian with noise σ2

0 = 5e−2 and posterior noise σ2
t = 1e−4.

For EWC, the σ2 parameter used for posterior construction was set as 1e−4, and the regularization
weight was set at λEWC = 100 for all datasets except Split-ImageNet, and λEWC = 40 for Split-
ImageNet. For experience replay, a replay buffer of size 1000 was used. Training was done using the
Adam optimizer (Kingma & Ba, 2015) except for Split-ImageNet, where SGD with weight decay of
1e−4 was used. Hyper-parameters were chosen via manual trial and error using a held-out validation
set.

(a) VI (b) EWC

Figure 6: Average cumulative loss percentage and upper bound over time for permuted-MNIST.
Error bars represent standard error over 5 random seeds. A random predictor would have 50%
average cumulative loss.

B.4 ORACLE BOUND EXPERIMENTS

Tasks were constructed as linear regression tasks of the form Yt = XT
t w
∗
t + εt, where each element

in Xt follows standard Gaussian distribution N(0, 1), and εt ∼ N(0, σ2Id) with σ = 0.3. Test data
is drawn without noise Yt = XT

t w
∗
t . All elements in w∗t follows standard Gaussian distribution

N(0, 1). Like in Lin et al. (2023), for the linear case the true weight vector for each task w∗t is
partially zeroed out (we zero out 80% of the weights) to construct zero-filled features for different
tasks. For non-linear experiments we use all input dimensions.

For the task swap setting, we use the same weight w∗1 until t = 100, then swap to tasks with weight
w∗2 until t = T = 200. For the alternating task setting, we alternate between w∗1 and w∗2 . For the
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Figure 7: Average cumulative loss percentage and upper bound over time for split-CIFAR10 and
the EWC algorithm. Error bars represent standard error over 5 random seeds. A random predictor
would have 50% average cumulative loss.

gradual change setting, we draw an initial normalized w∗1 (||w∗1 ||22 = 1), and for any new task we
update w∗t+1 = (w∗t + ε)/||w∗t + ε||22, where εt ∼ N(0, (0.3)2Id).

We ran SGLD (Apache 2.0) for 20 iterations on each task, with an initial temperature of 3e−3 and
halving temperature after each epoch. The learning rate was constant at 1e−3. We generated 2048
training samples per task and 400 test samples. The training batch size for SGLD was fixed at 128.
We used a total of T = 200 tasks for all settings. Loss is measured via the mean square error (MSE).

(a) Swap (b) Alternating

Figure 8: Average cumulative loss, oracle bound equation 4 and average model error over time for
linear regression with Under-parametrized non-linear models. (a) Task swap (b) Alternating tasks.
Cumulative loss and the oracle bound converge to similar values.

For linear experiments, we used w∗t ∈ R600 and xt ∈ R3000. For non-linear (deep) experiments,
we used w∗t ∈ R10, using a fully connected neural network with one hidden layer with ReLU
activations. For the under-parametrized experiments, the hidden layer was of dimension 100, and
for the over-parametrized experiments, the hidden layer was of dimension 4000.

C LLM USAGE

LLMs were used during the editing process of the paper for punctuation and checking for grammat-
ical errors.
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Table 3: Average and final cumulative error (MSE) percentage for oracle datasets. Lower is better.

Domain Method Cumulative error Bound (equation 4) Average error

Swap Linear over-parametrized 10.3± 0.2 19.0± 0.3 572.7± 10.8
Swap Deep under-parametrized 0.11± 0.01 0.15± 0.01 2.72± 0.47
Swap Deep over-parametrized 0.01± 0.00 0.01± 0.00 0.12± 0.00

Alternating Linear over-parametrized 280.1± 5.4 520.8± 10.3 398.3± 8.1
Alternating Deep under-parametrized 0.11± 0.01 0.16± 0.01 2.02± 0.21
Alternating Deep over-parametrized 0.01± 0.00 0.01± 0.00 0.12± 0.00

Gradual Linear over-parametrized 4.7± 0.2 8.2± 0.4 7.8± 1.1
Gradual Deep under-parametrized 0.10± 0.00 0.12± 0.01 0.19± 0.02
Gradual Deep over-parametrized 0.01± 0.00 0.01± 0.00 0.10± 0.00
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