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ABSTRACT

In continual learning, knowledge must be preserved and re-used between tasks,
requiring a balance between maintaining good transfer to future tasks and mini-
mizing forgetting of previously learned ones. As several practical algorithms have
been devised to address the continual learning setting, the natural question of pro-
viding reliable risk certificates has also been raised. Although there are results
for specific settings and algorithms on the behavior of memory stability, generally
applicable upper bounds on learning plasticity are few and far between.

In this work, we extend existing PAC-Bayes bounds for online learning and time-
uniform offline learning to the continual learning setting. We derive general upper
bounds on the cumulative generalization loss applicable for any task distribution
and learning algorithm as well as oracle bounds for Gibbs posteriors and compare
their effectiveness for several different task distributions. We demonstrate empir-
ically that our approach yields non-vacuous bounds for several continual learning
problems in vision, as well as tight oracle bounds on linear regression tasks. To the
best of our knowledge, this is the first general upper bound on learning plasticity
for continual learning.

1 INTRODUCTION

Continual learning is a machine learning setting in which collections of examples, known as tasks,
arrive sequentially. These tasks may be different skills and capabilities, represent changes in the data
distribution over time, or encapsulate different contexts or environments. Since tasks change over
time, continual learning is also referred to as incremental learning or lifelong learning. Due to the
limited model capacity and the sequential nature of the continual learning setting, issues often arise
in adapting the model to new tasks as they appear while also preserving its performance on previous
tasks and thus avoiding Catastrophic Forgetting (Goodfellow et al.| 2015; [Kirkpatrick et al.,|2017),
where performance on previous tasks degrades significantly as the model adapts to new tasks. This
dilemma is a facet of the trade-off between learning plasticity and memory stability (Wang et al.,
2024), two key aspects of the learner’s behavior during the continual learning process.

There are several methods and algorithms aiming to effectively resolve this tradeoff in various con-
tinual learning scenarios (see [Wang et al.| (2024)), such as via regularization (Kirkpatrick et al.,
2017), replay of data from previous tasks (Rebuffi et al., [2017) or other methods. Due to the in-
herent trade-off between forgetting and forward transfer, metrics to evaluate continual learning al-
gorithms differ. Common metrics include the average accuracy of the model for all previous tasks,
memory stability measures such as forgetting, and learning plasticity measures such as intransigence
(Chaudhry et al., 2018)), forward transfer and cumulative error incurred in each task.

While several empirical methods aimed to tackle the challenges of continual learning have been
proposed in recent years, there are significantly fewer theoretical works aiming to analyze the prop-
erties of continual learning problems and provide estimates or guarantees on overall performance.
Some works (Evron et al., 2022; |Doan et al., 2021} Benavides-Prado & Riddle, 2022) focus on un-
derstanding the behavior of forgetting, an interesting topic in and of itself, while other works (Lin
et al.}2023;|Bennani & Sugiyamal 2020;|Zhao et al.| [2024} |Levinstein et al., 2025) focus on average
model loss for specific settings such as continual linear regression or the Neural Tangent Kernel
(NTK) regime (e.g. very wide neural networks). One promising direction to derive more general
performance guarantees is the PAC-Bayes framework (McAllester, [1999; (Catonil, |2004; Alquier,
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[2024). Existing upper bounds on meta-learning (Pentina & Lampert, 2015} [Amit & Meir, 2018) and
online learning (Haddouche & Guedj, [2022)) offer guarantees for the loss on unseen tasks as well as
the online setting that serves as a special case of continual learning. A recent paper by
(2025) derived general PAC-Bayes bounds on forgetting in the continual learning setting.
To the best of our knowledge, however, there are no PAC-Bayes bounds for the cumulative loss in
the continual learning setting. The cumulative loss is of particular interest for continual re-training:
given an initial model, we would like to update it incrementally as new data becomes available or
the overall environment changes gradually. In this scenario, we would like to provide guarantees on
the model’s performance and loss as tasks change, ideally with few samples for each task.

In this work, we extend existing PAC-Bayes bounds for online learning (Haddouche & Guedj},[2022))
and time-uniform offline learning (Haddouche & Guedj| [2023}; |[Chugg et al.,[2023) to the continual
learning setting, allowing us to derive the first (to our knowledge) algorithm-agnostic risk certificates
for learning plasticity via the cumulative loss. We derive bounds applicable for bounded and sub-
Gaussian losses for offline and online continual learning. Equation [3] for instance, suggests that
if we continually re-train a model daily over a year, only a few dozen examples are required to
provide effective high-probability risk certificates for the expected cumulative loss. We also analyze
our bounds as oracle bounds and compare their effectiveness for several different task distributions
to provide additional insights into the relationship between forward transfer, model complexity and
task similarity. We demonstrate empirically that our approach yields non-vacuous bounds for several
continual learning problems in vision, as well as tight oracle bounds on linear regression tasks.

2 BACKGROUND

In order to obtain upper bounds on the cumulative loss for continual learning, we must first define
a sufficient theoretical framework for describing the learning process in question. Figure T provides
an overview of the continual learning process using the same symbolic terminology described be-
low. We follow a similar framework as[Haddouche & Guedj| (2022} [2023)), adapted to the continual
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Figure 1: Depiction of the continual learning process. A data-free prior P is adapted to task D,
via an empirical sample S; ~ D7", resulting in posterior ();. The posterior’s expected (test) loss
L£(Q1,D) is added to the cumulative loss. ()1 serves as the new prior for the next task D and so
on until we reach a final posterior QJ1.7. The cumulative loss is the sum of errors for all tasks.

learning setting by changing each task from a single example to a set of i.i.d. samples.

Framework Consider a data space Z = X x ) defined as pairs or inputs and outputs, i.e. z; =
(zi,9;) € Z, where z; € X,y; € ). We fix an integer sample size m > 0. For our continual
learning process, we consider a finite sequence of tasks of length T, where each task ¢ € [T] is
associated with an unknown data distribution D;. We assume that for each task ¢ we are given
an i.i.d. sample of size m from the corresponding data distribution, S; € Dj;*. Our complete
data sample is therefore composed of the sequence (S;)L; = (S1,S5,...,597). We make no
assumptions regarding the relation between tasks or the length of the task sequence, and our results
are applicable for any 7" > 0. We denote our hypothesis space H such that h € H is a function
h: X — Y and denote the space of probability distributions over H as M (H).

We set a sequence of priors, starting with a data-free prior distribution P, = P € M;(H), and
(P;)¢>2 such that each P, € M (H) is F;_1-measurable, with (F;);>0 being an adapted filtra-
tion to (S;)7_;. We denote (Q;)Z_; a sequence of posterior distributions such that Q; is absolutely
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continuous w.r.t. P;. Similarly to Haddouche & Guedj| (2022)), we introduce the notion of stochas-
tic kernels (Rivasplata et al., [2020) as data-dependent measures within the PAC-Bayes framework,
allowing us to define bounds with data-dependent priors. We denote >4, the o-algebra on H.

Definition 1. (Stochastic Kernels) A stochastic kernel from S € Z™ to ‘H is defined as a mapping
Q : 2™ x Xy — [0, 1] where (1) For any B € X4, the function S — Q(S, B) is measurable. (2)
For any S € Z™ , the function B — Q(.S, B) is a probability measure over H.

Stochastic kernels allow us to refer to a distribution dependent on dataset .S, marking Qs = Q(S, -).

Definition 2. A sequence of stochastic kernels (P;)7_, is called an online predictive sequence if (1)
Forallt > 1, S € Z™, P(S,-) is F;_1-measurable and (2) for all ¢ > 2, P;(S, ) is absolutely
continuous w.r.t. P;_1(S, -). We will also use the notation P;.; to denote such a kernel.

This definition of online predictive sequences allows for the description of a stochastic kernel (and
posterior distribution for hypotheses) that changes as new tasks arrive sequentially, and can be used
to describe a variety of continual learning algorithms.

Definition 3. A loss function ¢ : H x Z — RT U {0} is a function mapping a hypothesis /» and data
sample z to the set of nonnegative numbers. The expected loss for h € H is L(h, D) 2 E.cpl(h, 2).
The empirical loss of a hypothesis w.r.t. a sample S € Z™ is L(h, S) £ = 3" (h, z;).

We assume for the sake of convenience that the loss function ¢(h, z) is task-agnostic, but our results
are applicable even if the loss function depends on the task identifier. In Appendix [Al we restate
the main result of [Haddouche & Guedj| (2022) using our terminology in Theorem[A.1] The Lh.s.
of the bound represents the online loss incurred on each example z; by the posterior trained on the
sequence (21, ..., z;). For each task, we are given one new sample and update the posterior.

Finally, we define the cumulative loss (CuL) and the average loss (AL). We note that this paper will
focus on the cumulative loss, corresponding to notions such as forward transfer (FWT), intransi-
gence and learning plasticity rather than the average loss (corresponding to average accuracy). For
a more in-depth overview of these metrics, see [Wang et al.| (2024). We note that both metrics refer
to expected (test) errors.

Definition 4. For a given online predictive sequence (Q);), a sequence of tasks Dy, ..., D, and a
sample S1.7 = (S1,...,57) ~ D" x ... x DI, the cumulative loss (CuL) is defined as
T T
Cul((Q)iZy) = X IL(Q151.0: POFi-1] 2 Y _Enny s, [, [(hr, 20) | Fial):
t=1 t=1

The Average loss (AL) is defined as
T

T
AL(Qr) =) L(Qr.5,:: D) £ Y EnynQrs, , [Baon, [, 22)].
t=1

= t=1

As we can see from the definitions, the CuL is measured w.r.t. the entire predictive sequence
sequentially, and can be extended to new tasks by simply adding an additional element for task
T + 1. The AL, on the other hand, is measured retroactively for a single posterior w.r.t. all tasks,
must be re-calculated from scratch for each new task, and requires additional memory propor-
tional to the number of tasks in order to estimate the expected loss for each task. We note that
both terms differ from the meta-learning loss, that can be expressed (for unknown task Dz, ;) as
MetaL(Qr) = ]ESTHN@T@rl [£(QT1(S1:741); Dty1)]- Unlike CuL and AL, the meta-learning loss
considers the loss on a future task rather than past or current performance. We note that this frame-
work allows for the derivation of risk certificates for both offline continual learning, where samples
for each task are given as a batch, and online continual learning, where each sample is given sequen-
tially and cannot be re-used.

3  UPPER BOUNDS ON CUMULATIVE LOSS

Assumption 1. The loss function £(h, z) is either: (1) upper bounded by constant K or (2) is K sub-
Gaussian. Formally, Vh € H, 2 € Z,0(h, 2) € [0, K] or E,.p, [e({(h?)~Eenpi th2))] < ekt
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First, we extend the result of Theorem [A.T] to the continual learning setting (m > 1) and to sub-
Gaussian losses.

Corollary 3.1. Under Assumption[I] for any X\ > 0, for any set of T tasks, for any online predictive
sequence of priors (P;), for any sequence of stochastic kernels (Q;) with probability at least 1 — ¢§
over the draw of (S1,...,S7) ~ DU x ... x DI, we have that the following holds for the data-
dependent measures P;(S1.4, "), Q:(S1.t, ),

T I
*CUL( Qu)i~1) < = Z (Q¢(S1:t)s 72 L(Q:(S1:4)||Pe(S1:))
t=1 (D
)\ log(1/0)
m T

The full proof is in Appendix [A] and follows a similar outline to Theorem [A.T] but adapted to the
continual learning setting. In particular, unlike the online setting, if we have m > T, the r.h.s.
converges to the l.h.s. as m — oo, similarly to the standard PAC-Bayes bounds. This result is a
straightforward extension of Theorem[A.T|and requires no new technical tools.

Since the prior sequence may be data-dependent, we can select Py = P and P;(S1.1) = Q¢—1(S1:¢)s
similarly to|Haddouche & Guedj|(2022), giving us a KL-divergence term that depends on the change
in the posterior between subsequent tasks. We note that while the posterior stochastic kernel Q1
must be F;_o-measurable and is therefore independent of Sy, the measure QQ;—1(S1.¢,-) can use
Sy in equation [I] In practical terms, this means that for models with task-specific parameters (i.e.
parameters that are used only for specific tasks), KL-divergence can be measured w.r.t. only shared
parameters. This may serve to lower the overall KL-divergence, as task-specific parameters can be
used to specialize a more general model that varies little between tasks.

While Corollary [3.1]is a useful upper bound, equation [I] has terms in the r.h.s. that do not converge
to the L.h.s. as the number of tasks 7" increases, namely the term AK 2 /m. In the context of continual
learning, upper bounds that converge as the number of tasks increases are vastly preferable. In order
to achieve such bounds, we must make some additional assumptions on our tasks. Specifically, we
assume that the loss function is upper bounded by a constant, and that the number of samples per
task is not much smaller than the number of tasks, i.e. m > V/T.

Theorem 3.2. Under the same setup as Corollary assuming ((h, z) € [0, K], for any predictive

sequence of posteriors (Qy), for any do € (0, 1], with probability at least 1 — & over the draw of
(S1,...,87) ~ D x ... x DI, the following holds for measures P,(S1.1), Q¢(S1:¢)

*CUL( Qu)i1) < TZ (Q¢(S1:e), ZKL Qe(S1:t) || Pe(S1:t))
=1 i (2)
1 AK/log(1/62)/2mT AK log(1/6)
)\log‘{( d2)e + dge }Jri)\ .

Tfa 52 == eiT\/T

Specifically, we can set A = , resulting in

T
TOMA@IL) < 73 Q{51050 +TZKL (@(510)1Qe-1(S1x)

Ké/f N K(1+1log(1/6))
" Vam TVT ’

3)

where Qg = P, meaning that as long as m > \/T/Q the r.h.s. converges to the 1.h.s.as m,T — oc.
This result gives us an upper bound that converges as more tasks are added, provided that we have
sufficient samples per task. It also suggests a good rule of thumb for effective continual learning -
the number of samples per task should exceed the square root of the number of total tasks.

Proof of Theorem [3.2] appears in Appendix [A] This Theorem uses a careful analysis of task and
posterior dependencies that is specific to online and continual learning, as well as bad-event analysis
that is not commonly utilized in the context of PAC-Bayes bounds.
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4 ORACLE BOUNDS FOR SPECIFIC SETTINGS

Corollary[3.T]and Theorem3.2]provide general upper bounds that are applicable for a wide variety of
tasks and continual learning algorithms, but their generality makes detailed analysis more difficult.
In order to better demonstrate these results and compare them for different settings, we derive and
compare oracle upper bounds on the Gibbs posterior.

Definition 5. Recall the Gibbs posterior distribution and the expected Gibbs posterior distribution,
fort > 1, )\ > O,forQé‘ :Qé =P,

QM) ox e MESIQN (h),  QM(h) ox e MmN (1),

The main advantage of the Gibbs posterior is that it removes the KL-divergence terms from the r.h.s.
of equation|[I] (as can be seen, for example, in Lemma[A.4). This property allows us to derive upper
bounds on the cumulative loss for the sequence of expected Gibbs posteriors. We note that while
these bounds refer to the expected Gibbs posterior and discuss the limit where m,T" — oo, they
originate from a non-asymptotic bound appearing in Appendix [A] Equivalent bounds for empirical
Gibbs posteriors can be derived by changing the final condition to be taken w.r.t. the empirical loss
on the training set.

Theorem 4.1. For any A\ > 0, assuming (1) Q; = Qf‘ is the expected Gibbs posterior. (2) P, = P
is a data-free measure over H. (3)Vt > 1: P, = Q;_1 = Q}  (4) H is a compact, bounded subset
of RL (5)Vt € [2,T), the total expected loss 3 ._, L(h,D;) has a strict global minimum at .,
and is twice continuously differentiable w.r.t. h. Under Assumption[I} we have

T
| 1 .
lim  ZCul((QY)L) < lim t}_‘; L£(PL4-1,Dr). “)

m,T— o0

The full proof is provided in Appendix [A] and relies mainly on Laplace’s method (Hwang| [1980;
Shun & McCullagh, [1995)), which is rarely used for PAC-Bayes bounds. We note that under different
strict minimum assumptions we can derive another useful oracle bound,

Corollary 4.2. For any \ > 0, assuming (1) Q; = Q; is the expected Gibbs posterior. (2) P, = P
is a data-free measure over H (3)Vt > 1: P, = Q1—1 = Qf‘_l (4) H is a compact, bounded subset
of RL (5)Vt € [2,T), the expected loss L(h,D;_1) has a strict global minimum at h}_, and is
twice continuously differentiable w.r.t. h. Under Assumption|I| we have

1 1~ ., 1
lim L CuL(QN)E1) < 7 D £(hi_y, Do) + HL(P, D). )

m—oo
t=2

In both cases, we see that the CuL can be upper bounded by the loss of a predictor obtained from
previous tasks. Using these oracle bounds, we can compare the cumulative loss for several different
continual learning setups and contrast the effects of task similarity between them.

Assumption 2. (Lipchitz loss) For some non-negative Gy and metric d(, ),
Vi, j,h € H, |L(h,D;) — L(h,Dj)| < Gnd(D;, Dj).

This assumption implies that similarities in the task distribution are reflected in the loss function.

Assumption 3. For each task Dy, the optimal (minimum) loss £ is a achievable via a hypothesis
of dimension d;. Additionally, for any two tasks D;, D;, if d = dim(#) > d; + d;, i.e. H is over-
parametrized, then there exists /; ; € H C R? such that L(h; ;) = minyew (L(h, Ds) + L(h, D;)).

This assumption aims to link model complexity and representation power, stating that given enough
parameters, it is possible to find a hypothesis achieving minimal loss and that given more parameters,
we can find optimal hypotheses on the average loss. Taking into account all of our assumptions, we
can provide oracle bounds for several different scenarios in terms of task similarities and ordering.

1. If Vt, D; = Dy, i.e. we have different samples from the same task distribution, we have

m—o0

1 . 1
tim LCL(Q)T) < £ +0 (T) |
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Figure 2: Depictions of scenarios 2, 3 and 4. In scenario 2 we alternate between two task distribu-
tions. In scenario 3 we take 7'/2 tasks from one distribution and another 7'/2 from a second one. In
scenario 3, each new task is of distance at most  from the previous one, and any two tasks are at
distance at most 2¢ from each other.

2. If tasks alternate between distributions D, and D5, we have that if d > dy + do, we also
obtain the optimal (minimal) result

lim *CUL((Qt )t 1) < El _ +0 <;> )

m—)oo 2

and otherwise we have (via Theorem [£.1))

lim —CuL((Qt)t ) < i {L(h Dy) + Lk, Do)}

’I’TL—?OO 2

1 1
+ igﬂd(’DhDZ) +0 (T)

1
<min{L], L5} + Gud(D1,D2) + O (T> .

3. If the first 7'/2 tasks are from D; and the second half are from Do, we have

lim *CUL((Qt )i=1) <

m—oo T’ -

E25 L0 (%) d>dy +dy
EiFE L O (L) + 4Gud(D,Dy) d < di+ds

4. If tasks change gradually and do not differ significantly from one another, or more formally,
itVe, d(Dy, Do) < pandVt < T, d(Di,Diy1) < 1,1 < ¢, we have

lim —CuL((Qt)t ) Z/;* +rgH+0< )

m—oo T
t 1

These results imply that (given limited capacity) task order can significantly impact the cumulative
error. This is not particularly surprising, as existing results on the expected loss and forgetting in
continual learning also demonstrate that task order and relatedness are a major factor in overall error,
but it is not immediate to deduce that this should also be the case for the cumulative loss.

5 EMPIRICAL DEMONSTRATION

In this section we demonstrate the utility of our bounds from Sections[3|and[d] We study the efficacy
of our bounds several simple (but non-trivial) environments with varied task similarity.

5.1 VISION-BASED TASKS

In order to examine the bounds of Corollary [3.1] and Theorem 3.2] we made use of a few well-
known computer vision tasks in the context of continual learning, namely: (1) Permuted-MNIST
(Goodfellow et al., [2015)), a domain-incremental problem (De Lange et al 2021) where a random
permutation is applied on each image for each task. (2) Split-MNIST (Zenke et al 2017), a se-
quential set of binary classification tasks constructed from the MNIST (LeCun et al.,[1998)) dataset.
(3) Split-CIFAR10 (Zenke et al} 2017), a sequential set of binary classification tasks constructed
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Table 1: Average and final cumulative error percentage for vision tasks. Lower is better.

Domain Method CuL Bound (equation Error @¢ =120 Bound @t = 120
Perm.-MNIST EWC 1.0£0.0 10.6 £ 0.2 1.0+0.0 5.1+£0.2

VI 15.5£0.1 17.9+0.1 4.7+0.1 6.8 0.1
Split-MNIST EWC 0.9+ 0.0 4.2+0.1 0.9+0.1 25+0.1

VI 176 £04 19.4+0.3 5.1+0.3 7.5+£0.5
Split-CIFAR10 EWC 344+£0.2 479+£0.5 34.7+0.9 39.7+1.4

VI 49.8 £ 0.1 52.24+0.2 49.5+0.1 52.5+0.2

Table 2: Average and final cumulative error percentage and forgetting for Split-ImageNet on 3
random seeds. Lower is better, a random model achieves 98% cumulative error.

Domain Method CuL Bound (equation Forgetting
Split-ImageNet EWC 33.5£0.2 40.1 £0.3 5.7+0.4
SGD 34.8+£0.3 414+£04 7.8+0.1
Replay  55.7 £ 0.7 62.5+0.4 2.84+0.1

from the CIFAR-10 (Krizhevsky et al.|[2009) dataset. (4) Split-ImageNet, a sequential set of binary
classification tasks constructed from the ImageNet (Deng et al.| 2009)) dataset.

We used both a variational inference (VI) (Hoffman et al., 2013) algorithm on the r.h.s. of equa-
tion 3] with multivariate Gaussian prior and posterior distributions on model parameters, and Elastic
Weight Consolidation (EWC) (Kirkpatrick et al., |2017), a deterministic continual learning algo-
rithm that tries to balance forgetting and forward transfer. For Split-ImageNet, we also examined
SGD with and without experience replay. Since EWC and SGD output deterministic parameters
for each task, a posterior distribution is constructed by adding Multivariate Gaussian noise, i.e.

let = N(wy, 014), where w; € R? is the weight vector given as output after task D;. Calculating
the upper bound terms adds a computational cost per task proportional to calculating the training loss
plus the number of model parameters. Since each term in the bound can be calculated online after
training for a specific task, there is no additional memory overhead and no additional samples are re-
quired besides the training set. We used convolutional neural networks (CNNs), with 7" = 120 tasks
in total for all domains. We measured the average cumulative error = CuL((Q)7_,), approximated
via a held-out test set for each task, and its upper bound based on equation [3|across 5 random seeds,
reporting standard error and the average value. We also report the loss and upper bound for the final
task. A full detailing of hyper-parameters and the experimental setup is available in Appendix

Tables detail the error percentage (error out of 100%, similar to accuracy percentage) for both
VI and EWC models on all tasks, as well as the cumulative error and average test forgetting (see
definition of forgetting measure (FM) in (Wang et al.| (2024)) as well as Appendix for Split-
ImageNet. The values reported are for both the average cumulative error and the error at the stopping
point. Figure[3]shows the average cumulative loss and the upper bound as a function of the number
of tasks for the split-MNIST task. We note that the values reported in the first two columns of Table
[[] correspond to the final values of Figure [3] and that the last two columns correspond to only the
error and bound for the final task in the continual learning process. Looking over the results, we
see that the bound is very tight for VI, and somewhat looser for EWC. This is to be expected, to an
extent, as the VI algorithm aims to optimize the r.h.s. of equation [3| w.r.t. the posterior distributions,
whereas for EWC the bound is not directly linked to the learning process. Across all settings, we see
that the bound becomes increasingly tight as the number of tasks increases, owing to both the fact
that several terms in equation [3] decrease in proportion to the number of tasks, and to the tendency
of the KL-divergence term to decrease during the continual learning process - as we experience
additional tasks, the posterior for the previous task ;1 that serves as the prior for task D; becomes
an increasingly better informed and predictive prior, resulting in a tighter upper bound. With the
exception of the VI algorithm for the split-CIFAR1O0 task, all of our empirical upper bounds are
non-vacuous, with several of them being tight enough to provide a useful risk certificate, especially
if we consider only later tasks. The upper bounds for average cumulative error tend to suffer for
early tasks, possibly due to the randomness of the training process for the first few tasks. This is
somewhat encouraging within the context of continually retraining a complex model to handle new
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data, as the forward transfer would be weighted towards generalizing on new tasks, and our bounds
are consistently tighter (empirically) for later tasks in a sequence.

1l Ewc
T {— EWC bound

Average online loss percentage

0 20 40 60 80 100 120 o 20 40 60 80 100 120
Task number Task number

(a) VI (b) EWC

Figure 3: Average CuL percentage and upper bound over time for split-MNIST. Error bars represent
standard error over 5 random seeds. A random predictor would have 50% average loss.

5.2 ORACLE BOUNDS

While the oracle bounds (@] [5) are already useful, as can be seen in the explicit oracle bounds for
specific scenarios, verifying and comparing the bounds empirically may provide additional insights.
To that end, we considered equation ] and equation [3]in several simple scenarios that correspond to
the specific theoretical scenarios discussed in Section|4] We utilized linear regression tasks following
a similar setup as discussed in |Lin et al.| (2023) (a linear ground truth (Belkin et al., [2018; Evron
et al.,|2022)) with the true weight vector for each task being a subset of all features) while varying the
model between over and under-parametrized linear regression, and simple 2 layer fully connected
(FC) neural networks (with a wide hidden layer to approximately adhere to the NTK regime (Jacot
et al.l 2018} Bennani & Sugiyama, |2020)). In order to approximate posterior sampling from the
Gibbs posterior, we used the Stochastic Gradient Langevin Dynamic (SGLD) (Neal, [201 1} |Welling
& Teh, 2011) algorithm in our experiments. The full detail of task construction and model and
training hyper-parameters is available in Appendix [B] alongside detailed numeric results.

® Average CuL loss 9 ® Average Cul loss
34, Oracle bound \ Oracle bound

Average model error LN " Average model error

/

MSE loss

MSE loss
N oW s w oo

0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200
Task number Task number

(a) Task swap (b) Task alternating

Figure 4: Average cumulative loss, oracle bound (equationd)) and average model error over time for
under-parametrized linear regression. (a) task changes at £ = 100 (b) tasks alternate.

Figure ] compares scenarios 2 and 3 for under-parametrized linear regression, with each task char-
acterized by a different true weight vector. We can clearly see that task order matters significantly
for both the cumulative loss and the average model loss. Specifically, we see that for cumulative
loss, a single swap is significantly better than alternating between two tasks. This result agrees with
the obtained theoretical bound. As can be seen for average model loss from the expected behavior
detailed in |Lin et al.| (2023) (that agrees with the empirical average model loss for most of the con-
tinual learning process), a sudden task swap results in a sudden significant increase in average error
that is slowly corrected, whereas alternating tasks quickly stabilize to a constant average error.

Figure [5| contrasts over and under-parametrized 2 layer neural networks on a sequence of gradually
changing tasks corresponding to scenario 4 of Section ] Each task corresponds to a generating
linear weight vector, and adjacent tasks have similar weight vectors (see Appendix [B]). We can see
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Figure 5: CuL, oracle bound (equation [4) and average model error over time for linear regression
with gradually changing tasks. (a) Under-parametrized model (b) over-parametrized model.

that in the over-parametrized regime, cumulative error remains near constant and the upper bound
is nearly exact. In the under-parametrized regime, however, we see a gradual decrease as the model
stabilizes. In both cases, the average error tends to increase with the number of tasks (though it is
lower in the over-parametrized setting), likely due to the increasing distance between tasks resulting
from the random walk process. We note that our bounds are several orders of magnitude tighter in
this setting compared to NTK-based generalization bounds for SGD (Bennani & Sugiyamal, 2020)).

6 LIMITATIONS AND FUTURE WORK

In this work, we derived several upper bounds on the cumulative error for both general hypothesis
classes and for the Gibbs posterior. Our bounds offer tight risk certificates when the number of
samples per task is large as well as in several concrete scenarios for the oracle bounds. Our results
assume that the loss is either bounded or is sub-Gaussian, though extensions to heavy-tailed losses
similarly to|Haddouche & Guedj|(2023)) may be possible. The assumption of a strict global minimum
can be relaxed to allow for a finite number of global minima. We note that our derived oracle bounds
are taken w.r.t. the expected Gibbs posterior. Equivalent bounds can be derived w.r.t. empirical Gibbs
posterior by modifying our assumptions on the global minimum to apply in expectation.

While our results are applicable for both offline and online continual learning, we acknowledge that
for offline continual learning the cumulative error is often less relevant than the average error. A
common assumption in this setting is an unbounded number of training samples per task, making
learning plasticity irrelevant as any task can be learned from scratch. We also note that in the online
continual learning setting, if task boundaries are blurry or unknown, the number of samples per task
m and the number of tasks 7" must be approximated in order to use our bounds.

Our PAC-Bayes bounds contain complexity terms (KL-divergence) that may be difficult to scale for
large models with many parameters. While this is not an issue in our oracle bounds, it is a concern
for the general bounds such as equation[5] While there is some work in the context of PAC-Bayes
bounds with other divergence measures (Bégin et al., [2016; |Amit et al.| 2022; |[Kuzborskij et al.,
2024), this can be a potential limiting factor in applying our results for large model classes, though
model-compression bounds (Lotfi et al., 2022) may serve as an avenue to overcome this limit.

We tested and verified our theoretical results on two main algorithms for several simple computer
vision benchmarks, yielding non-vacuous bounds on the cumulative test error. As we can see in
Tables|T] 2] the risk certificate is not always tight. We note that in most cases, the VI bound is nearly
tight whereas the upper bounds for deterministic methods tend to be looser. This is somewhat unsur-
prising as the VI training objective attempts to directly optimize the r.h.s. of the upper bound.. As our
main focus was measuring the efficacy of our upper bounds, we focused mostly on relatively small
neural networks and classification problems. While encouraging, our preliminary experiments only
used vision datasets, and we only examined our bounds on VI methods, EWC and experience re-
play algorithms. A more comprehensive empirical analysis of common continual learning methods,
combined with applying some of the recent insights into obtaining tight risk certificates via PAC-
Bayes bounds (Pérez-Ortiz et al.,[2021)), may yield further insights into the practical application of
PAC-Bayes bounds for cumulative loss in continual learning for larger models.



Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

Proofs for all Theorems and Corollaries is available in Appendix[A] All required assumptions appear
in both the main text and the Appendix. Code for reproducing the experiments is available as part of
the supplementary material and a more detailed explanation of the experimental setting and hyper-
parameters is available in Appendix [B] All data sources are publicly available and code to generate
the datasets per task is available in the supplementary material.
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A PROOFS

Theorem A.l. (Haddouche & Guedj| (2022), Theorem 2.3) Assuming Vh € H,z € Z,4(h,z) €
[0, K], for online learning (m = 1), for any distribution u over tasks [T, any X\ > 0 and any online
predictive sequence (P;), for any sequence of stochastic kernels (Q;), we have with probability at
least 1 — & over the sample S = (z1,...,2t) ~ u the following, holding for the data-dependent

measures Q¢ s 2 .Q(S,), P s £ Py(S,),

T T
5 B Berm b0, 2011 < 3 (Bnima o U 0] + S KLQusl 1) )

t=1 t=1
ATK?  log(1/6)
+ 5 + X .

Corollary A.2. Restatement of Corollary[3.1} Under Assumption[l} for any X > 0, for any set of T
tasks, for any online predictive sequence of priors (P;), for any sequence of stochastic kernels (Q;)

with probability at least 1 — & over the draw of (S1,...,S7) ~ D" x ... x DI, we have that the
following holds for the data-dependent measures P;(S1.t,-), Q:(S1:4, ),
T T
1 A 1
” Z (@81 POIFi-1] < 73 £Qu(S1): 80+ 57 3 KLQuSwlIPSia)
AK?  log(1/0)
o T T

Proof. We begin by applying the main Theorem of [Rivasplata et al.|(2020) with Q° = P, ® ... ®
Pr, Q=01 ®...QQr,and with

T
N .
F(S=5®..85,h=h1®...Qhr) = <§ E.,p, [l(ht, 2)| Fr—1] E th,St>.

Reorgamzmg terms, we have with probability at least 1 — J (over the draw of S = S ®...®57),

T ;EhtNQt(Slzt)[EmNPt [E(he, z¢) [ Fea]] < Zﬁ(Qt(Slzt)»St)

t=1
T
+ %ZKL<Qt(Sm)||Pt(Su>> ©

t=1
log(1/9)
where
§T = ]ESEhNQU |:6F(S’h):| .
We then apply a similar Lemma D.2 of |[Haddouche & Guedj| (2022) (with tasks instead of single
examples) that yields

T
§r = HEsl,...,S,,Etht {GAI/T(EZtNDt (k2| Feal=Lhe50) |
t=1
and applying Hoeffding’s Lemma for bounded losses or the exponential moment bound for sub-
Gaussian random variables we have
fT < 8)\/"211752 .
Combined with equation[6] we have as follows:

T T

1 1 A

T > Ehini (81 Ezemn, [0, 20)| Frioa]] < T Y " L(Qi(S1), Si)
t=1

t=1

T
. %ZKL(Qt(Sm)HPt(SLt))

NK?  log(1/6)
+ mT * N
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Picking A’ = AT completes the proof. O

Theorem A.3. Restatement of Theorem [3.2} Under the same setup as Corollary [3.1) assuming
L(h, z) € [0, K], for any predictive sequence of posteriors (Qy), for any §s € (0, 1], with probability
at least 1 — § over the draw of (S1,...,S7) ~ D" x ... x DI, the following holds for the data-

dependent measures Py (S1.t), Q:(S1:t)

T T
1 1
7 DIL(Qu(S1), DI Fia] < 75 D L(Qu(S1a), ZKL Qu(S1.0)[|P(S1.0))
t=1 t=1 t 1
l _ 5, e MKV log(1/62) /2mT AK
)\ { ]' 5 +52€ }
1 /

Proof. Starting from equation [6 with

T
F(S—Sl®...®ST,h—h1®...®hT)—>\( ZEZIND, U(hy, 2)| Fi_1] Z ht,St>

t=1

for convenience, we have

L(Q:(S1.0), St)

o~
Il
_

Nl =
M=

T
1
7 2 Brinu(s1.0Brn, [E(he, 2)| Fioa]] <

KL(Q:¢(S1:4)|| P (S1:t))

log(1/0)
A

Il
_

t

+
>/ N
]~

< logér + ———

Since each element of —1- Zle Z;":l £(h, z;) is bounded in range [0, K/mT]|, we can apply
Hoeffding’s Lemma on each task; we first apply Markov’s inequality: for s,e > 0

Pr(F(S=51®...@ Sp,h=h1 ®...®hp) > €) = Pr(eF(Sh) > ¢5€)
< e *Eg he”‘(% St Eoym, [U(he,20)| Feon]l— 7 2011y é(htvst)).

Since we assume that the expected loss is F;_1-measurable, this equals

T
_ 1 m .
=e ¢ I | ]Esh...,Sf,Ehh...,hteSA(TEZtNDt[K(hhzt) T 2is g(ht7zt’1)).
t=1

Since we assume data from each task is drawn iid we have

1

E.,~p,[¢(h L(hg,zt,i
= SEHEsl ..... St 1]Eh1 ..... e H]ESt ht€ mT ¢ Dt[( il mT (he.ze, ))

< g€ H H esz(AK/mT)z/S

t=14=1

sA2K?
= ¢ 8mTe ,
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Where the last inequality is due to applying Hoeffding’s Lemma on each element in the product.
Minimizing s, we have

2mT

PF(F(5251®®ST,h:h1® ®hT)>€)<67%2K2_52

Moving terms around, we get
log(1/2)
2mT

We can then split {7 = EsEj, . qo [eF (s 7h)] into two events with appropriate probabilities, with one
event (the good event, with probability 1 — d-) fulfilling this inequality and the other (the bad event,
with probability at most d2) violating it giving us an upper limit F'(S, h) < AK, giving us

gT < (1 _ 52)6)\K\/10g(1/62)/2mT + (SQGAK.

Plugging in this inequality in equation [6]completes the proof. O

e =\K

Lemma A.4. Under the same setting as Theorem|[3.1] assuming that

1. Q:= Qf‘ is the empirical Gibbs measure

2. Py = P is a data-free measure
IVE>1:P=Q; 1 =0Q),

we have

1 T

Es,....sr 7 D L(QF(S1e), Do)| Fioa] <Es, ,STTZE "1 (St-1), 8e) +

t=1 t=1

KZ
AR

Proof. Starting from Theorem [3.1] (in expectation), we begin by decomposing the KL-divergence
under our assumptions:

1 e—AL(h,S:)
SFELQMIQN ) = £, |8 = ®)
g AT
— —%ﬁ(Q;\, Sy) — )\T 10gE, on | o~ ME(hSy)
Applying this equality to Theorem [3.1] we have
1 : AK?
T ZESl _____ L(Q}(S1.4), Di) | Fra] < Vi Z s dogEy gy e TMSD =
) ©
Applying Jensen’s inequality on
)\T logEy, 53 € MRS < T L(Q} 1,5
for all ¢ € [1,T] completes the proof. O

Theorem A.5. Restatement of Theorem[d.1} For any X\ > 0, assuming

1. Q; = Q) is the expected Gibbs measure
2. Py = P is a data-free measure over H

3IVE>1:P=Qu1 = Q)4

4. H is a compact, bounded subset of RY.
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5. Vt € [2,T), the total expected loss "._, L(h, D;) has a strict global minimum at ., and
is twice continuously differentiable w.r.t. h.

,we have

m,T~>oo

T T
lim Z (Q), Do) Fia] < Jim Z (W1, Dy)

Proof. We begin with the change-of-measure inequality; for any A > 0 and any measurable function
f:H x DM — R, for any prior and posterior P, @, for any sample S ~ DM a.s.

1 1
DY log Ejpe M%) < En~qes) f(h, S) + XKL(Q(S)HP)
Taking an expectation over S and using Jensen’s inequality, we have
1 1
~EgspmEnoq(s)f(h,S) < X log Eg.pmEppe MBS 4 X]ESNDMKL(Q(S)HP)

Choosing Q = Q1 ®...0Q),P=PRQ} ®...® Q7 _, as well as

t=1

T
f(S=51®...050, h="h®.. Qhr)=— (TZIEMD, U(hy, 2)| Fi_1] Z ht,St>

yields

T
Z (@}, D)|Fi] < *ZESme[ (@7 S)|Fe1]

H \

A,logEsEhl e T By [l Frma =L (he50))

LS rQien)
t=1

(10)

Using Hoeffding’s Lemma for bounded losses or the exponential moment bound for sub-Gaussian
random variables, we get

XK2 1
—Z (@2, Dy)|Fia] < —ZEswn[ (@7, S0 Fea] + A,ZKL (@1Q1)
t=1

Picking A’ = AT and decomposing the KL-divergence as before, we get

fZ (@ P)IFia] < 7D (Bsmp [£Q), S0) — £(@) DIF 1))

t=1

1
1 E —AL(h,Dy)
Tz E 2By 0 |

(1)

y

by unrolling the last term according to the definition of the Gibbs posterior, i.e.

E o~ AC(hDe)=AL(h,De_y)
“AL(h,Dy) _ Qi

E A €
h~Q7_4 Ej0> Ze—w(h,btfl)
bl

), pe~ AYLZT L(h,D;)

—AYIZ] L(h D)= AL(h,Dy)

Ethe

17



Under review as a conference paper at ICLR 2026

we get
1< 1 &
= Y ILQND)IFiea] € 7 Y (Bsieop [£(@), S1) = £(Q) D)\ Fir))
t:l t=1
AK? 1
log By, pre M DP1) (12)

AT
K, pe— Tyt £(0D))

— I
T ; og E,_pe S L(hDy)=AL(R,Dy)

Suppose that A is a compact, bounded subset of R%. Assuming that £(h, D;) is twice continuously
differentiable w.r.t. h for all j, we can apply Laplace’s method (Shun & McCullaghl |1995)) on both
numerator and denominator. Let
=
Ml:t—l(h) = . Z‘C(haD])a

71— 14
Jj=1

t—1
Wiy & argmin My (h) = argmin » _ £(h, D;)
=1

, then marking M7{,_; = det M{,_;(h}.,_1)| the determinant of the Hessian matrix, we have the
Taylor expansion
), pe i=1 £(hD))

—_ 1 _
AT ; og B, e A Sl E(h D, AL

t—1 L, %
d/2 1 e N 2j=1 £ 1:P5)

T (27)/\/7 R

Ne—1)

1 ASII £,y DAL, D)
t=2 o d/2 TR i
(A(t—l)) Vi R
where R =1+ W + ..+ Ot =1))"!

Due to setting the same function to seek an optimum for in both the numerator and denominator
(with differing reminder). Since most of the elements of both numerator and denominator are the
same, we have (in the limit where A — o0)

AT 1 L(h,Dj)

= T
: Bnere (hit—1,D
AT t_zgl Ep pe*/\zt 1 L£(h,D;j)=AL(h,Dy) T Zloge net -7 ; (h1.4-1,Dt)

combined with equation|[I2] we have (in the limit)

T

1 ~
= Z Q) D)IFia] < 72 Y (Bsinop L@, S1) = £(@) D) Fir])
t=1 (13)
AK? 1 AL(h,D 1 ¢
t——- AiTIOgEhNP*ei (D) T t_zgﬁ(hik:t—th)
Taking A = \/m/T, we have
1 & 1 — 1
Clim Y IL(Q), D) Fiaa] < lim 2 L(RY,, Dr) + lim - L(P, D)
’ t=1 t=2
O

Corollary A.6. Restatement of Corollary[d.2} For any A > 0, assuming

1. Q; = Q; is the expected Gibbs measure
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Py = P is a data-free measure over ‘H
vt > 1:Pt:Qt71 :Qi/f\fl

H is a compact, bounded subset of RY.

S

Vit € [2,T), the expected loss L(h,Dy_1) has a strict global minimum at h}_, and is twice
continuously differentiable w.r.t. h.

we have
1 T T
lim fZ[ (Q}, Dy)| Fii] ; (hi_1,Dy) + E(P D)

t=1

Proof. Via unrolling the last term in equation [T once we get
T

1 o
Z (@ Do)IFia] £ 7 Y (Bsinop 2@, S1) — £(Q) D)\ Fir])
t=1 t=1
AK? 1
— —logE; .. —AL(h,D1) 14
m T og Ly~ pe (14)
T EhNQ?izeiAL(hwat_l)
T ZlogE e M(hDi 1) -AL(h,Dy)
t=2 h~Q7_,
Using similar arguments of Laplace’s approximation, we get for A = \/m,
1 & 1 & 1
W}LmOO T ;[ﬁ(Q?aDt”}—t—l] < T ;ﬁ(h:—lapiﬁ) + fﬁ(Pa D)

Corollary A.7. Under the same conditions as Theorem if we also have that
VZ,],hGH, ‘[,(h,DZ)—»C(h,DJM Sgﬂd(D“DJ)
Sor some non-negative Gy, and metric d(-,-), then
T

where the O () term is +L(P, Dy ).

Proof. Starting from equation[I3] we decompose

t—1 t—1
X t—1 N 1 . 1 .
E(hlztfhpt) = mﬁ(hlztflﬂpt) + m Zﬁ(hlztfhpj) - m Zﬁ( 1:t717Dj)
=1 =1
=
i Zﬁ 1t-1.Dj) + —1 Z (L(h3.4—1,Ds) = L(774—1,D;))
=1

1 * 1 — * *
P Z L(h1.—1,Dj) + —1 Z |L(h1.—1,De) — L(MTy—1,Dj)
Jj=1 j=1

By the definition of h7.,_;,

71111171{1 E(h D;) ZV: Lt—1:Dt) L(hT:t—17Dj)|
=1
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t—1
< 1w LDy + tg_—”l (D, ;) (15)
1 j=1

Using equation [I3]to upper bound each loss in equation|[I3]and taking the limit completes the proof.
O

20



Under review as a conference paper at ICLR 2026

B APPENDIX - EMPIRICAL SETTING AND HYPER-PARAMETERS

All experiments were run on local hardware with an NVIDIA GeForce 4090 GPU and an Intel i9
CPU. All results were run for 5 random seeds and averages and standard error were reported in all
tables. Anonymized code is available in the supplementary material.

B.1 PSEUDO-CODE FOR BOUND CALCULATION

Algorithm 1 Continual learning training and bound calculation for VI
function CONTINUAL-LEARN(S, ..., ST, P)
Choose algorithmic parameters A1, ..., Ar
Let Qi.0(h) £ P(h)
for each task ¢ from 1 to 7" do
Update Q1.+ via

Q1. = arg glli:l;l {E(let, St) + %DKL(letHQl:tﬂ)}

Update upper bound for (test) CuL based on equation [T]or 3]
return .7, upper bound

Algorithm 2 Continual learning training and bound calculation for deterministic methods
function CONTINUAL-LEARN(S1, ..., ST, P)
Choose algorithmic hyper-parameters 6, bound parameters A1, ..., Ar, o
initialize model weights wo
Let Ql;o £ N(wo, 0'2[d)
for each task ¢ from 1 to 7" do
Update model weights w; via the algorithm Ag (wo, . .., w1, St)
Let Q1;t =£ /\/’(wt, O'ZId)
Update upper bound for (test) CuL based on equation [I]or 3]
return wr, upper bound

B.2 VISION DATASETS

For all vision tasks except Split-ImageNet, we used a convolutional neural network consisting of
convolution blocks each consisting of 64 two-dimensional convolutions, max-pooling and tanh acti-
vations. The convolution blocks are then followed by a fully connected layer and an additional tanh
activation. Reported results also use a linear classification head for each task, but results without
separate classification heads per task were not significantly different.

For both MNIST-based tasks, we used two convolution blocks of 5 x 5 convolutions and the linear
layer contained 400 neurons. For the CIFAR10-based task, we used three convolution blocks of 3 x 3
convolutions and the linear layer contained 800 neurons. For Split-ImageNet, we used a pre-trained
ResNet-18 (He et al.,|2016)) model.

For permuted-MNIST, we used a different pixel permutation per task, and each task involved 10-
way classification. All 60000 training samples were used for training with a batch size of 128. The
learning rate was static at 1e =2 and the \ parameter was set to 1le~°. For split-MNIST, each task
involved half of the labels (at random) chosen as positive and half as negative. This is a minor
departure from the standard split-MNIST problem where 5 different binary classification tasks are
created and their loss is averaged, but the overall behavior is similar. All other hyper-parameters
were set identically to permuted-MNIST. For split-CIFAR10, task construction was the same as
split-MNIST but on the CIFAR10 dataset. All 50000 training samples were used for training with
a batch size of 256. The learning rate was static at le~> and the \ parameter was set to 5e .
For split-ImageNet, each task contained a disjoint subset of 50 classes, and the A parameter was
set to le~7. The notion of forgetting measured and reported for split-ImageNet is the average test
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forgetting, defined as

M(hy,D1,...,Dy_1) 72 max {a(h;,D;) — a(hs, Dj)},

i€[1,t—1]

where a(h, D;) is the test accuracy on task ¢. This measure can be written in terms of the loss
function as

FM(h¢, Dy, ..., Ds_1) t_lzller[rllatlxl]{f (he, D;) — £(hi, D)}

For VI, we used Markov Chain Monte Carlo (MCMC) estimation with 3 draws from the posterior,
and the prior was a multivariate Gaussian with noise o3 = 5e~2 and posterior noise 07 = le~%.
For EWC, the 02 parameter used for posterior construction was set as 1e~%, and the regularization
weight was set at Agwc = 100 for all datasets except Split-ImageNet, and Agwc = 40 for Split-
ImageNet. For experience replay, a replay buffer of size 1000 was used. Training was done using the
Adam optimizer (Kingma & Ba}[2015)) except for Split-ImageNet, where SGD with weight decay of
le—* was used. Hyper-parameters were chosen via manual trial and error using a held-out validation
set.
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Figure 6: Average cumulative loss percentage and upper bound over time for permuted-MNIST.
Error bars represent standard error over 5 random seeds. A random predictor would have 50%
average cumulative loss.

—+ Ewc
EWC bound
70 4

60 1

50 4

Average online loss percentage

I

0 20 40 60 80 100 120
Task number

304

Figure 7: Average cumulative loss percentage and upper bound over time for split-CIFAR10 and
the EWC algorithm. Error bars represent standard error over 5 random seeds. A random predictor
would have 50% average cumulative loss.

B.3 ORACLE BOUND EXPERIMENTS

Tasks were constructed as linear regression tasks of the form Y; = X/ w} + €;, where each element

in X; follows standard Gaussian distribution N(0, 1), and ¢; ~ N(0,0%1,) with ¢ = 0.3. Test data
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is drawn without noise ¥; = XTw}. All elements in w; follows standard Gaussian distribution
N(0,1). Like in|Lin et al.|(2023), for the linear case the true weight vector for each task w} is
partially zeroed out (we zero out 80% of the weights) to construct zero-filled features for different
tasks. For non-linear experiments we use all input dimensions.

For the task swap setting, we use the same weight w] until ¢ = 100, then swap to tasks with weight
w; until ¢ = T = 200. For the alternating task setting, we alternate between wj and w3. For the
gradual change setting, we draw an initial normalized w7 (||w}||3 = 1), and for any new task we
update wy,, = (wj + ¢€)/||w; + €||3, where e, ~ N (0, (0.3)I4).

We ran SGLD (Apache 2.0) for 20 iterations on each task, with an initial temperature of 3¢~ and
halving temperature after each epoch. The learning rate was constant at 1e 3. We generated 2048
training samples per task and 400 test samples. The training batch size for SGLD was fixed at 128.
We used a total of T = 200 tasks for all settings. Loss is measured via the mean square error (MSE).

CuL test loss
Test bound
® Avg model error

[ CuL testloss 2519 L]
-~ Test bound

Avg model error
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Figure 8: Average cumulative loss, oracle bound equation ] and average model error over time for
linear regression with Under-parametrized non-linear models. (a) Task swap (b) Alternating tasks.
Cumulative loss and the oracle bound converge to similar values.

For linear experiments, we used w; € R and z; € R3°%°. For non-linear (deep) experiments,
we used w; € R, using a fully connected neural network with one hidden layer with ReLU
activations. For the under-parametrized experiments, the hidden layer was of dimension 100, and
for the over-parametrized experiments, the hidden layer was of dimension 4000.

Table 3: Average and final cumulative error (MSE) percentage for oracle datasets. Lower is better.

Domain Method Cumulative error  Bound (equation Average error
Swap Linear over-parametrized 10.3£0.2 19.0£0.3 572.7£10.8
Swap Deep under-parametrized 0.11 +£0.01 0.15+0.01 2.72+0.47
Swap Deep over-parametrized 0.01 +0.00 0.01 £+ 0.00 0.12 +0.00
Alternating  Linear over-parametrized 280.1£54 520.8 £10.3 398.3£8.1
Alternating  Deep under-parametrized 0.114+0.01 0.16 + 0.01 2.02£0.21
Alternating ~ Deep over-parametrized 0.01 +£0.00 0.01 £ 0.00 0.12 £ 0.00
Gradual Linear over-parametrized 4.7+ 0.2 8.2+04 7.8+ 1.1

Gradual Deep under-parametrized 0.10 £ 0.00 0.12£0.01 0.19+£0.02
Gradual Deep over-parametrized 0.01 +0.00 0.01 £+ 0.00 0.10 + 0.00

C LLM USAGE

LLMs were used during the editing process of the paper for punctuation and checking for grammat-

ical errors.
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