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Abstract001

Multimodal foundation models hold significant002
potential for automating radiology report gener-003
ation, thereby assisting clinicians in diagnosing004
cardiac diseases. However, generated reports005
often suffer from serious factual inaccuracy.006
In this paper, we introduce a fact-aware multi-007
modal retrieval-augmented pipeline in generat-008
ing accurate radiology reports (FactMM-RAG).009
We first leverage RadGraph to mine factual re-010
port pairs, then integrate factual knowledge to011
train a universal multimodal retriever. Given012
a radiology image, our retriever can identify013
high-quality reference reports to augment mul-014
timodal foundation models, thus enhancing the015
factual completeness and correctness of report016
generation. Experiments on two benchmark017
datasets show that our multimodal retriever out-018
performs state-of-the-art retrievers on both lan-019
guage generation and radiology-specific met-020
rics, up to 6.5% and 2% score in F1CheXbert021
and F1RadGraph. Further analysis indicates022
that employing our factually-informed train-023
ing strategy imposes an effective supervision024
signal, without relying on explicit diagnostic025
label guidance, and successfully propagates026
fact-aware capabilities from the multimodal re-027
triever to the multimodal foundation model in028
radiology report generation.029

1 Introduction030

Within hospitals worldwide, chest radiology031

serves as a critical technique in identifying032

cardiac diseases and abnormalities. Results of a033

chest radiograph are typically consolidated in a034

radiology report, including the source X-ray and035

a radiologist-produced findings section detailing036

clinical observations. Manually generating these037

reports, however, can be both time-consuming038

and potentially inaccessible in under-resourced039

hospitals (Speets et al., 2006; Iyeke et al., 2022).040

Recent multimodal foundation models have041

exhibited remarkable capabilities in challenging042

healthcare tasks, motivating an automation of 043

this process to enhance physicians’ efficiency 044

on clinical decision-making and improve patient 045

health outcomes (Çallı et al., 2021; Li et al., 2023; 046

Moor et al., 2023; Tu et al., 2023; Sun et al., 2024). 047

048

Although prior medical multimodal foundation 049

models have demonstrated promising capabilities 050

on report generation given the radiology image, 051

they still suffer from serious hallucinations by 052

generating factually inaccurate reports (Pal et al., 053

2023; Ahmad et al., 2023; Pal and Sankarasubbu, 054

2024). Factual correctness is especially critical 055

in chest radiology domains, as minute textual 056

differences can drastically invert radiology report 057

meaning and downstream prescribed treatments 058

(Delbrouck et al., 2022; Xie et al., 2023; Liu 059

et al., 2024). Retrieval-Augmented Generation 060

(RAG) has emerged as a popular paradigm to 061

address this issue by grounding text generation 062

with retrieved relevant knowledge given a query 063

(Lewis et al., 2021; Chen et al., 2022; Gao et al., 064

2024). However, developing medical multimodal 065

retrievers remains challenging, requiring retrievers 066

to bridge the gap between symptomatic image 067

semantics and factually-equivalent report text. 068

069

To capture fine-grained details in chest ra- 070

diographs and improve the factual completeness 071

of generated reports, we introduce FactMM-RAG, 072

a fact-aware multimodal retrieval-augmented 073

pipeline for generating accurate radiology reports 074

given a radiology image. By designing a novel 075

report pair-mining procedure incorporating factual 076

knowledge, we develop a fact-aware retriever 077

to augment multimodal foundation models in 078

generating accurate chest X-ray radiology reports. 079

Specifically, we first leverage RadGraph (Jain 080

et al., 2021) to mine factually-oriented report pairs 081

by annotating consistent radiology entities and 082

relations between query and reference reports with 083
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certain abnormalities. Next, we train a universal084

multimodal encoding architecture through mined085

report pairs to conduct multimodal dense retrieval.086

Given an unseen patient’s radiology image, our087

retriever encodes it and searches for the most088

similar factually-informed reference report from089

an available report corpus. Passing them together090

into a multimodal foundation model unlocks its091

fact-aware potential to generate more accurate092

radiology reports.093

094

Our experiments reveal that our retriever095

outperforms all state-of-the-art retrievers in both096

language generation and clinically relevant metrics097

on the MIMIC-CXR and CheXpert datasets,098

achieving up to 6.5% and 2% score in F1CheXbert099

and F1RadGraph for final RAG evaluation. We100

also investigate our retriever’s fact-aware capability101

controlled by factual similarity thresholds and102

confirm that our factually-informed training103

strategy can impose a useful supervision signal104

without relying on explicit diagnostic label guid-105

ance. Further analysis through retrieval evaluation106

metrics shows that the fact-aware capability of107

our retriever can be effectively propagated to the108

multimodal foundation models. Lastly, our case109

study highlights that among reports describing110

the same symptom from different retrievers, those111

generated by our model are more accurate and112

achieve greater factual correctness.113

114

Our main contributions can be summarized115

as follows:116

• We propose a fact-aware medical multimodal117

retriever to augment multimodal foundation118

models in generating accurate chest X-ray ra-119

diology reports.120

• We design a method for mining factually-121

informed radiology report pairs that trains122

multimodal encoders to retrieve high-quality123

reference reports.124

• We demonstrate that on two benchmark125

datasets, our medical multimodal retriever out-126

performs state-of-the-art medical multimodal127

retrievers on both language generation and128

clinically relevant metrics.129

The rest of this paper is organized as follows. We130

review related work in in Section 2. We discuss the131

pipeline of FactMM-RAG in Sections 3. Section 4132

and 5 discuss our experimental setup and results.133

2 Related Work 134

Retrieval Augmented Generation. Retrieval 135

Augmented Generation, utilizing external knowl- 136

edge to enhance language models, has shown 137

great promise in text-generation performance on 138

factual accuracy especially for Open-Domain QA. 139

(Borgeaud et al., 2022; Izacard et al., 2022). Guu 140

et al. (2020); Lewis et al. (2021) involve end-to-end 141

training through both generators and retrievers; Shi 142

et al. (2023); Yu et al. (2023b) adapt the end-to-end 143

pattern by employing black-box LLM training 144

signal propagation for retriever tuning. Further 145

works have expanded RAG to multiple modalities, 146

employing unified image-text encoders (Radford 147

et al., 2021) or separate pretrained encoders 148

(Dosovitskiy et al., 2021; Raffel et al., 2023) and 149

plugging retrieved documents into multimodal 150

foundation models (Chen et al., 2022; Hu et al., 151

2023). Yasunaga et al. (2023) similarly integrates 152

multimodal retrieval with both text and image 153

generation capabilities. 154

155

Medical Multimodal Retriever. Joint train- 156

ing of image-text pairs in a shared embedding 157

space, as exemplified by CLIP (Radford et al., 158

2021), facilitates visual and textual modality 159

interactions, providing flexible representations 160

for general-domain downstream tasks. Adapting 161

general-domain multimodal retrievers to medical 162

domains, however, is non-trivial due to the 163

necessity of specialized knowledge. Zhang et al. 164

(2022) introduces an unsupervised approach for 165

radiology image representation learning from 166

paired text descriptions. Huang et al. (2021) 167

leverages global image-report and local sub-region 168

features for multimodal retrieval and classification. 169

Wang et al. (2022); You et al. (2023) propose 170

medical knowledge extraction for constructing 171

contrastive learning image-text pairs. Zhang 172

et al. (2024) addresses the limited diversity within 173

medical datasets, curating a large biomedical 174

image-text collection towards a biomedical 175

multimodal foundation model. Nevertheless, 176

these existing medical multimodal retrievers 177

neglect specific image information and do not 178

adequately emphasize factual accuracy, resulting 179

in imprecision when retrieving radiology reports. 180

181

Medical Multimodal Foundation Model. 182

Significant efforts have been made in applying 183

multimodal foundation models to the medical 184
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Figure 1: An overview of the FactMM-RAG system. It mainly contains three stages: (1) Leveraging RadGraph
to characterize each radiology report and mine factually-informed report pairs; (2) Integrating factual knowledge
into the training of the universal multimodal retriever; (3) Given the radiology image, employing the fact-aware
multimodal retriever to search for factually-informed reference reports and augmenting the multimodal foundation
model in generating accurate radiology reports.

imaging domain (Li et al., 2023; Moor et al.,185

2023; Tu et al., 2023; Sun et al., 2024). As186

chest X-ray radiology is the most commonly187

performed imaging examination, tailored medical188

multimodal foundation models for this critical189

area has gathered much attention (Chambon190

et al., 2022; Chen et al., 2021; Omkar Thawkar191

and Khan, 2023; Wu et al., 2023; Chen et al.,192

2024). Jain et al. (2021) advances this area193

by designing a novel information extraction194

schema to structure radiology reports from chest195

radiographs; Miura et al. (2021); Delbrouck et al.196

(2022) take a step forward, using reinforcement197

learning from semantic rewards to improve the198

factual quality of generated radiology reports;199

Chen et al. (2024) recently has also developed an200

instruction-tuned multimodal foundation model201

capable of sophisticated interpretation and analysis202

of chest X-rays.203

204

One closely related line of work to ours is205

retrieval-based radiology report generation given206

only radiology images. For instance, Li et al.207

(2018) proposes a retrieval policy module to update208

radiology reports via hierarchical reinforcement209

learning; Endo et al. (2021) employs image-text210

embeddings from contrastive learning for retrieval-211

augmented radiology report generation; Ramesh212

et al. (2022) proposes synthesizing additional213

reports and reducing hallucinations from reference214

report priors to improve report generation.215

3 Methodology 216

In this section, we present the overall methodol- 217

ogy of FactMM-RAG. We first detail the training 218

procedure of our fact-aware medical multimodal re- 219

triever in Section 3.1. We then provide the pipeline 220

for retrieval-augmented radiology report genera- 221

tion with our multimodal retriever in section 3.2. 222

The overview is illustrated in Figure 1. 223

3.1 Fact-aware Multimodal Retrieval 224

This section discusses the training process of the 225

multimodal retriever with factual knowledge. Each 226

patient in the corpus has a chest X-ray radiology 227

image along with its corresponding report. We 228

begin by annotating each report using RadGraph 229

(Jain et al., 2021), then constructing factual report 230

pairs to train our multimodal retriever. We describe 231

these steps as follows. 232

233

Chest Radiograph Annotation. Since ra- 234

diology reports are free-text, we utilize the 235

RadGraph information extraction tool to extract 236

structured knowledge graphs from them. Specifi- 237

cally, RadGraph employs named entity recognition 238

and relation extraction models to identify radiolog- 239

ical entities (e.g. carina, lungs, abnormalities) and 240

the clinical relations between them (e.g. modify, 241

located at, suggestive of). Each radiology report 242

is then segmented into distinct regions and stored as 243

[(entity1, entity label1, relation1), (entity2, 244

entity label2, relation2), . . .]. After charac- 245
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terizing the chest radiograph for each report in the246

training corpus, we construct factual report pairs.247

248

Factual Report Pairs Mining. Each report249

has an associated medical label describing the250

symptom. We first utilize the query report to251

search for other reports with the same symptom,252

aiming to eliminate false negatives when con-253

structing report pairs. Rather than solely relying254

on the diagnostic labels, we further capture the255

factually-oriented pathology semantics between256

different reports. Following F1RadGraph (Jain257

et al., 2021), we calculate the factual similarity258

s(qtxt, dtxt) between query report qtxt and other259

reports dtxt in the annotated format as follows,260

s(qtxt, dtxt) =
2 · (q̂txt ∩ d̂txt)

length(q̂txt) · length(d̂txt)
, (1)261

where q̂txt, ĥtxt denotes reports with only anno-262

tated entities and relations in RadGraph structured263

form. We then set a strict threshold δ to filter out264

searched reports with low similarity score:265

Nqtxt = {dtxt ∈ D|s(qtxt, dtxt) > δ}. (2)266

where Nqtxt denotes factual positive report pairs267

for qtxt and D is the total training corpus. Since268

each query report is associated with a correspond-269

ing radiology image, these factual report pairs can270

also be applied to the query report’s radiology271

image. Next, we train our multimodal retriever272

with mined factual report pairs.273

274

Multimodal Dense Retrieval. Following275

previous work (Zhou et al., 2024), we universally276

encode each query image qimg and other image-277

text pairs (dtxt, dimg) in the training corpus, using278

one encoder, MARVEL:279

q = MARVEL(qimg); (3)280

d = MARVEL(dtxt, dimg), (4)281

where each image-text pair is represented as a sin-282

gle embedding. We then model the relevance score283

f(q, d) between the query image and other image-284

text pairs by cosine similarity:285

f(q, d) = cos(q,d). (5)286

To inject factually-oriented medical knowledge into287

multimodal retrieval, we train the encoder to mini-288

mize the following loss,289

L = −
∑

qimg∈D

∑
d+∈Nqimg

log
ef(q,d

+)/τ

ef(q,d+)/τ +
∑

d− ef(q,d−)/τ
,

(6)290

where d+ are obtained through factual report pair 291

mining and d− are in-batch negative samples 292

(Karpukhin et al., 2020). Then, we use our multi- 293

modal retriever and foundation model to perform 294

retrieval-augmented radiology finding generation. 295

3.2 Retrieval Augmentation for Accurate 296

Radiology Report Generation 297

Given our trained fact-aware multimodal retriever, 298

we encode the query image and each report in 299

the training corpus. Then, we retrieve the report 300

with the highest relevance score to the query image 301

as the factually-informed relevant report. Subse- 302

quently, we pass the query image along with the 303

relevant report into a multimodal foundation model 304

to perform retrieval-augmented generation training. 305

The multimodal foundation model is finetuned by 306

standard autogressive loss, 307

L = − 1

n
log

n∏
i

pθ(yi|qimg, d
∗
txt, xinstr, y<i), (7) 308

where qimg is the query image, d∗txt is the retrieved 309

factually-informed relevant report, xinstr is the 310

prompt instruction, and y is the ground-truth report. 311

During inference, we retrieve a relevant report from 312

the training corpus using an unseen patient X-ray 313

image, and pass them into the multimodal founda- 314

tion model to generate findings with higher factual 315

accuracy. 316

4 Experimental Setup 317

Dataset. Following Delbrouck et al. (2023), we 318

use the processed MIMIC-CXR (Johnson et al., 319

2019) to train both retriever and foundation model. 320

This dataset contains 125,417 training radiology 321

image-report pairs, 991 validation pairs, and 1,624 322

test pairs. They are sourced from the Beth Israel 323

Deaconess Medical Center. CheXpert (Irvin et al., 324

2019) is another chest X-ray dataset from Stanford 325

Health Care. Since it contains complete finding 326

reports only for a testing dataset containing 1000 327

pairs, we use it as zero-shot evaluation. 328

329

Evaluation Metrics. We evaluate our pro- 330

posed system using both natural language 331

generation and medically-tailored evaluation 332

metrics. 333

334

For language fluency measures, we use ROUGE-L 335

(Lin, 2004) to evaluate the longest common 336

subsequence overlap between the generated and 337
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reference findings, and BERTScore (Zhang et al.,338

2020a) to evaluate non-clinical semantic sentence339

similarity.340

341

For clinical accuracy measures, we employ342

CheXbert (Smit et al., 2020) to generate the343

ground-truth diagnostic labels for finding reports,344

identifying 14 different types of observations. Fol-345

lowing Delbrouck et al. (2023), we then calculate346

the F1CheXbert (Zhang et al., 2020b), which is the347

F1-score for 5 observations (Cardiomegaly, Edema,348

Consolidation, Atelectasis, Pleural Effusion)349

by comparing the generated report with the350

reference report’s classifications. Beyond using the351

limited diagnostic labels for evaluation, we also352

adopt F1RadGraph (Jain et al., 2021) to measure353

factual correctness by calculating the overlap354

in radiological entities and clinical relations be-355

tween the generated report and the reference report.356

357

Baselines. We mainly compare our retriever with358

other baselines under multimodal RAG setting. We359

include the following baselines, CLIP (Radford360

et al., 2021) is a multimodal retriever pretrained361

from general-domain image-text pairs; GLoRIA362

(Huang et al., 2021) leverages attention-weighted363

image regions with contextual words to learn364

localized and global representations for radiology365

images and reports; MedCLIP (Wang et al., 2022)366

and CXR-CLIP (You et al., 2023) build upon367

CLIP and utilize diagnostic labels as training368

signals for learning radiology image and text369

representations; BiomedCLIP (Zhang et al., 2024)370

extends the radiology-specific dataset and pretrains371

on a larger magnitude of biomedical data to372

learn multimodal representations; Med-MARVEL373

utilizes universal encoder MARVEL (Zhou et al.,374

2024) to conduct contrastive learning on each375

patient’s self image-report pair without further376

training on factual image-report pairs.377

378

Implementation Details. In our experiments,379

we use MARVEL (Zhou et al., 2024) as our380

multimodal retriever backbone. MARVEL is a381

language model based on T5-ANCE (Yu et al.,382

2023a), trained with modality-balanced hard383

negatives. We use LLaVA (Liu et al., 2023) as our384

multimodal foundation model backbone. Since385

each radiology study contains multiple image386

views for each patient, we select the frontal view.387

We also concatenate the finding and impression388

sections to form the X-ray report. To reduce389

training costs and address factual report pair 390

imbalances, we rerank the retrieved reports by 391

factual similarity and use the top 2 factual report 392

pairs for each query to train our multimodal 393

retriever. We leave the training details in Appendix 394

A. 395

5 Evaluation Results 396

In this section, we present our experimental results. 397

We first evaluate the overall performance between 398

different retrievers under two settings in section 5.1. 399

Next, we discuss the ablation studies in section 5.2. 400

We then explore the fact-aware capability of our 401

retriever in section 5.3 and section 5.4. Lastly, we 402

show the superiority of our retriever through a case 403

study in section 5.5. 404

5.1 Overall Performance 405

The results of our fact-aware RAG system are 406

shown in Table 1. In MIMIC-CXR, FactMM-RAG 407

outperforms state-of-the-art retrievers by a signifi- 408

cant margin, up to 6.5% in F1CheXbert and 2% in 409

F1RadGraph. In the CheXpert zero-shot evalua- 410

tion, FactMM-RAG outperforms state-of-the-art 411

retrievers by 2% and 1.2% in these two metrics, 412

indicating our retriever’s generalization capability 413

compared to other models. 414

415

Besides, we can observe that adopting the 416

baseline retrievers on top of multimodal foundation 417

models only yields marginal gains compared to 418

the finetuning of foundation model generation 419

without retrieval-augmentation. This shows 420

that reports retrieved by baseline retrievers are 421

factually-inferior to those from our retriever, 422

potentially passing misleading information that 423

prevents the foundation model from generating 424

factual reports. 425

426

Specifically, compared to the retriever Med- 427

MARVEL, we also observe factual-correctness 428

performance gain based on two clinical metrics. 429

Both use the same universal encoder backbone, but 430

FactMM-RAG benefits from the injected factual 431

medical knowledge, allowing it to search for the 432

most similar and factually correct reports, thereby 433

assisting the multimodal foundation model in 434

generating more accurate reports. 435

5.2 Ablation Study 436

Multimodal Retrieval. Instead of relying on 437

the multimodal foundation model to generate 438
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MIMIC-CXR CheXpert

Model Factual Similarity Textual Similarity Factual Similarity Textual Similarity

F1CheXbert F1RadGraph ROUGE-L BERTScore F1CheXbert F1RadGraph ROUGE-L BERTScore

No Retriever 0.496 0.234 0.294 0.549 0.371 0.173 0.231 0.469

CLIP (Radford et al., 2021) 0.507 0.241 0.300 0.552 0.381 0.172 0.231 0.468
GLoRIA (Huang et al., 2021) 0.476 0.232 0.294 0.543 0.397 0.173 0.231 0.468
MedCLIP (Wang et al., 2022) 0.517 0.238 0.298 0.549 0.408 0.182 0.238 0.471
CXR-CLIP (You et al., 2023) 0.501 0.243 0.302 0.553 0.406 0.183 0.241 0.471
BiomedCLIP (Zhang et al., 2024) 0.502 0.233 0.293 0.546 0.380 0.173 0.232 0.469

Med-MARVEL (Zhou et al., 2024) 0.537 0.237 0.306 0.549 0.454 0.185 0.243 0.472
FactMM-RAG 0.602 0.257 0.307 0.561 0.475 0.185 0.236 0.475

Table 1: Overall performance of FactMM-RAG and baselines under the multimodal retrieval-augmentation setting.
Models are evaluated by textual similarity and factual similarity between generated and reference reports. FactMM-
RAG outperforms the best baseline with p-value < 0.05.

(a) F1CheXbert Threshold: 0.0 (b) F1CheXbert Threshold: 0.4 (c) F1CheXbert Threshold: 0.8 (d) F1CheXbert Threshold: 1.0

Figure 2: Factual performance of FactMM-RAG controlled by different F1CheXbert and F1RadGraph thresholds.

reports, we also evaluate the performance of439

the multimodal retrievers by directly encoding440

radiology images from the testing corpus and441

searching for the closest report from the training442

corpus for comparison with ground-truth reports.443

Table 2 shows that our retriever also achieves444

the best factual retrieval performance compared445

to other baselines under this setting across two446

datasets. This demonstrates that training the mul-447

timodal retriever with mined factually-informed448

report pairs can enhance its radiology image449

understanding capabilities and directly align it450

with precise reports.451

452

Backbone Variation. We also investigate453

the impact of different retriever and foundation454

model backbones on radiology report generation455

in Table 2. We initialize our retriever model456

from two checkpoints: WebQA and ClueWeb in457

(Zhou et al., 2024). We observe that the ClueWeb458

checkpoint provides a marginal gain compared to459

the WebQA checkpoint. This can be attributed460

to the larger scale of the ClueWeb dataset used461

for pretraining. We also utilize Med-MARVEL462

as our retriever backbone, which exhibits similar463

performance to other backbones after training.464

This implies that even if our retriever is initialized465

with a backbone from a general domain, our 466

factually-informed training strategy enables it to 467

fully leverage medical knowledge and quickly 468

adapt to the radiology-specific domain without 469

degrading performance. 470

5.3 Fact-aware Capability Control 471

The factual similarity threshold in Equation 1 plays 472

a critical role in controlling the fact-awareness 473

of our multimodal retriever. We examine the 474

performance of FactMM-RAG under different 475

thresholds, as shown in Figure 2. Not only 476

utilizing F1RadGraph thresholds, we also employ 477

F1CheXbert to curate additional thresholds from 478

the report’s diagnostic labels to mine report pairs. 479

480

Under the same F1CheXbert threshold for 481

mining report pairs, we observe that an increase 482

in the F1RadGraph threshold correlates with an 483

improvement in factual performance. However, 484

adopting stricter thresholds for identifying report 485

pairs does not yield further improvements and 486

reaches saturation. After calculating the average 487

number of report pairs per query, we find that high 488

thresholds can exclude many relevant report pairs, 489

as shown in Figure 3. This exclusion results in 490

the potential loss of factually useful pairs, thereby 491
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MIMIC-CXR CheXpert

Model Factual Similarity Textual Similarity Factual Similarity Textual Similarity

F1CheXbert F1RadGraph ROUGE-L BERTScore F1CheXbert F1RadGraph ROUGE-L BERTScore

Setting: Multimodal Retrieval

CLIP (Radford et al., 2021) 0.341 0.160 0.238 0.489 0.285 0.130 0.207 0.439
GLoRIA (Huang et al., 2021) 0.346 0.137 0.211 0.453 0.359 0.135 0.216 0.447
MedCLIP (Wang et al., 2022) 0.539 0.198 0.261 0.508 0.478 0.161 0.225 0.454
CXR-CLIP (You et al., 2023) 0.516 0.215 0.277 0.524 0.444 0.167 0.230 0.458
BiomedCLIP (Zhang et al., 2024) 0.502 0.233 0.293 0.546 0.386 0.142 0.216 0.441
Med-MARVEL (Zhou et al., 2024) 0.550 0.212 0.279 0.525 0.479 0.160 0.222 0.454
FactMM-RAG 0.605 0.249 0.297 0.547 0.491 0.174 0.237 0.467

Setting: Multimodal Retrieval Augmented Generation

ClueWeb-LLaVA1.5 0.602 0.257 0.307 0.561 0.495 0.180 0.239 0.473
WebQA-LLaVA1.5 0.572 0.262 0.304 0.562 0.456 0.184 0.237 0.474
Med-MARVEL-LLaVA1.5 0.581 0.260 0.311 0.563 0.475 0.185 0.236 0.474
ClueWeb-LLaVA1.6 0.601 0.252 0.303 0.558 0.492 0.178 0.237 0.471

Table 2: Ablation study of FactMM-RAG including multimodal retrieval and backbone variation.

0.0 0.4 0.8 1.0
F1CheXbert Threshold

0

10

20

M
R

R
@

10
0

F1RadGraph = 0.2
F1RadGraph = 0.3
F1RadGraph = 0.4
F1RadGraph = 0.5
F1RadGraph = 0.6

Figure 3: Retrieval evaluation of FactMM-RAG with
different F1CheXbert and F1RadGraph thresholds.

hindering the training of our multimodal retriever492

driven by additional factual medical knowledge.493

494

Rather than relying on diagnostic labels from495

CheXbert to identify high-quality report pairs,496

Figure 2a demonstrates that the F1RadGraph497

threshold alone can also effectively mine factual498

report pairs for training our multimodal retriever.499

As the F1RadGraph threshold increases, FactMM-500

RAG even matches the performance under high501

threshold settings in Figure 2d. This signifies502

that employing our training strategy with curated503

factual query-report pairs still imposes useful504

supervision signals without relying on explicit505

diagnostic label guidance.506

5.4 Fact-aware Capability Propagation507

To further understand the benefits of our retriever508

for the foundation model, we explore the effec-509

tive propagation of fact-aware capabilities from510

the retriever to the foundation model. To demon-511

strate this behavior, we use the mined factual report512

pairs as reference reports for the query report. We513

then use the retrieval metric Mean Reciprocal Rank514

(MRR) as an intermediate evaluation, shown in Fig-515
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Figure 4: Analysis of fact-aware capability propagation
evaluated by MRR retrieval metric.

ure 4. From the plot, we observe that as training 516

progresses, the retrieval metric increases alongside 517

two clinical metrics. This factually-oriented up- 518

ward trend in our retriever’s performance in Figure 519

4a is also reflected in the foundation model’s per- 520

formance in Figure 4b. This indicates that employ- 521

ing a factually-informed reference report selection 522

strategy to train our multimodal retriever can also 523

enhance the foundation model’s ability to generate 524

factually accurate radiology reports. 525

5.5 Case Study 526

In this section, we present two examples from 527

MIMIC-CXR to qualitatively analyze our re- 528

triever’s fact-aware capability, as illustrated in 529

Table 3. In the first example, we observe that 530

FactMM-RAG provides symptom observations 531

consistent with the ground-truth report and gen- 532

erates more accurate factual details compared to 533

Med-MARVEL, e.g., “post median sternotomy, at- 534

electasis, not pneumothorax”; In the second exam- 535

ple, we further observe that although both retrievers 536

generate reports with diagnostic labels matching 537

the ground-truth report, FactMM-RAG provides ad- 538

ditional details compared to Med-MARVEL, such 539
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Radiology Image Med-MARVEL FactMM-RAG Reference
Single portable view of the chest. There
are bilateral pleural effusions, moder-
ate on the left and small on the right.
There is also pulmonary vascular re-
distribution and hazy alveolar infiltrate.
cardiac silhouette is enlarged but un-
changed. Median sternotomy wires and
mediastinal clips are again noted.

A left-sided pacemaker is in place with
leads terminating in the right atrium and
right ventricle. The patient is status post
median sternotomy and CABG. The
heart is moderately enlarged. There
is mild pulmonary edema. A small left
pleural effusion is present. There is at-
electasis at the left lung base. No pneu-
mothorax is seen.

The patient is status post median ster-
notomy and CABG. Left-sided dual-
chamber pacemaker is noted with leads
terminating in right atrium and right
ventricle, unchanged. Cardiomegaly
is similar. There is continued mild to
moderate pulmonary edema, slightly
improved compared to the prior exam.
Small layering bilateral pleural effu-
sions also may be slightly decreased in
the interval. Bibasilar airspace opac-
ities likely reflect atelectasis. There is
no pneumothorax. No acute osseous ab-
normalities are visualized.

F1RadGraph 0.218 0.413
CheXbert Observations Cardiomegaly, Edema, Pleural Effusion Cardiomegaly, Edema, Atelectasis,

Pleural Effusion
Cardiomegaly, Edema, Atelectasis,
Pleural Effusion

The heart is mildly enlarged. The aorta
is mildly tortuous. The mediastinal and
hilar contours appear unchanged. There
is no pleural effusion or pneumotho-
rax. Streaky left basilar opacity sug-
gests minor atelectasis. There is no defi-
nite pleural effusion or pneumothorax.
The bones appear demineralized. There
is mild-to-moderate rightward convex
curvature centered along the mid tho-
racic spine.

Heart size is mildly enlarged. The aorta
is tortuous. Mediastinal and hilar con-
tours are otherwise unremarkable. Pul-
monary vasculature is normal. Linear
opacities in the left lower lobe are com-
patible with subsegmental atelectasis.
No focal consolidation, pleural effusion
or pneumothorax is present. There are
no acute osseous abnormalities.

Moderate enlargement of the cardiac
silhouette with a left ventricular pre-
dominance is unchanged. The aorta re-
mains tortuous, and the hilar contours
are stable. Pulmonary vascularity is not
engorged. There is minimal atelecta-
sis within the lung bases, but no focal
consolidation is present. No pleural
effusion or pneumothorax is identified.
There are no acute osseous abnormali-
ties.

F1RadGraph 0.333 0.526
CheXbert Observations Cardiomegaly, Atelectasis Cardiomegaly, Atelectasis Cardiomegaly, Atelectasis

Table 3: One case study from MIMIC-CXR. Cyan text indicates radiological consistency with the ground-truth
report. Orange text highlights extra accurate details provided by FactMM-RAG compared to Med-MARVEL. Red
text denotes observations missing in Med-MARVEL.

as “pulmonary vasculature is normal, no acute os-540

seous abnormalities”. These characteristics con-541

firm that adopting our fact-aware retriever can as-542

sist multimodal foundation models in generating543

more accurate radiology reports.544

6 Conclusion545

In this paper, we aim at improving radiology report546

generation by introducing a fact-informed medical547

multimodal retriever for retrieval-augmented gen-548

eration. In particular, we utilize RadGraph to anno-549

tate chest radiograph reports and mine clinically-550

relevant pairs. We integrate factual information551

into a universal multimodal retriever, presenting552

FactMM-RAG, a fact-aware multimodal retrieval-553

augmented radiology report generation pipeline.554

FactMM-RAG outperforms all state-of-the-art re-555

trievers evaluated by factual correctness and textual556

coherence for final report generation in MIMIC-557

CXR and CheXpert datasets. We further confirm558

the benefit of our multimodal retriever from the559

analysis of fact-aware capability control and prop-560

agation. Given the pervasive applications of ma-561

chine learning in clinical diagnoses using chest562

X-rays, we hope our factual-informed approach563

inspires further work in multimodal generative arti- 564

ficial intelligence in healthcare contexts. 565

7 Limitations 566

Despite the strong performance of our FactMM- 567

RAG pipeline, we acknowledge potential 568

limitations of our proposed method. In particular, 569

our work only emphasizes chest radiology domains. 570

It also worth exploring our retrieval-augmented 571

factual report generation pipeline in broader 572

medical domains, such as brain scan or histology 573

datasets. 574

575

Another concern lies in the chosen evalua- 576

tion metrics, F1RadGraph and F1CheXbert. 577

F1CheXbert reflects high-level observational accu- 578

racy, while F1RadGraph assesses the correctness 579

of radiology entities and clinical relationships. 580

However, other radiologically-specific metrics, 581

such as report conciseness and clarity, should 582

also be considered (Sureka et al., 2014). Ideally, 583

we should incorporate methods of evaluation 584

directly aligned with human evaluations or involve 585

domain expertise itself in our pair-mining and final 586

evaluation procedure. 587
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A Appendix 900

A.1 Retriever Training Procedure 901

To training our fact-aware multimodal retriever, we 902

not only use mined factual report pairs as positive 903

reports to the query image, but also incorporate 904

the query image’s corresponding report. Follow- 905

ing (Yu et al., 2023a; Zhou et al., 2024), we also 906

adopt modality-balanced hard negatives to train the 907

retriever after in-batch negative training from the 908

multimodal dense retrieval stage. We use AdamW 909

(Loshchilov and Hutter, 2019) as our optimizer 910

and training epochs = 15, early stopping epoch 911

= 5, batch size = 32, learning rate = 5e-6, and 912

the temperature hyperparameter τ = 0.01. For our 913

MARVEL backbone, we use T5-ANCE (Yu et al., 914

2023a) as the text encoder and vision transformer 915

(Dosovitskiy et al., 2021) as the vision encoder. 916

A.2 RAG Finetuning Procedure 917

To create a RAG dataset for fine-tuning LLaVA, 918

we search the nearest-neighbor document d∗txt for 919

a query image qimg using a retriever’s embeddings. 920

We filter out any results that involve retrieving a 921
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Visual Question Answering:

Generate a radiology report from this image:
<image>

Retrieval Augmented Generation:

Here is a report of a related patient:
"<document>"
Generate a radiology report from this image:
<image>

Figure 5: Prompt templates for Visual Question Answer-
ing and Retrieval Augmented Generation

patient’s own report, the same patient’s other stud-922

ies, or malformed reports in the training dataset923

(specified by being less than 5 characters). We924

apply the prompt templates in Figure 5, and fine-925

tune LLaVA-1.5 for one epoch. Models are trained926

using 8x NVIDIA RTX A6000, with epochs=1,927

learning rate=2e-5, global batch size=128, from928

vicuna-7b-v1.5 checkpoint. We save the check-929

point after one full pass of the training dataset for930

final evaluation.931
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