
Improving the Exploration/Exploitation Trade-Of in
Web Content Discovery

Peter Schulam Ion Muslea
schulamp@amazon.com musleaim@amazon.com

Amazon Alexa Amazon Alexa
USA USA

ABSTRACT
New web content is published constantly, and although protocols
such as RSS can notify subscribers of new pages, they are not al-
ways implemented or actively maintained. A more reliable way to
discover new content is to periodically re-crawl the target sites.
Designing such “content discovery crawlers” has important ap-
plications, for example, in web search, digital assistants, business,
humanitarian aid, and law enforcement. Existing approaches as-
sume that each site of interest has a relatively small set of unknown
“source pages” that, when refreshed, frequently provide hyperlinks
to the majority of new content. The state of the art (SOTA) uses
ideas from the multi-armed bandit literature to explore candidate
sources while simultaneously exploiting known good sources. We
observe, however, that the SOTA uses a sub-optimal algorithm for
balancing exploration and exploitation. We trace this back to a mis-

match between the space of actions that the SOTA algorithm models
and the space of actions that the crawler must actually choose from.
Our proposed approach, the Thompson crawler (named after the
Thompson sampler that drives its refresh decisions), addresses this
shortcoming by more faithfully modeling the action space. On a
dataset of 4,070 source pages drawn from 53 news domains over a
period of 7 weeks, we show that, on average, the Thompson crawler
discovers 20% more new pages, fnds pages 6 hours earlier, and uses
14 fewer refreshes per 100 pages discovered than the SOTA.

CCS CONCEPTS
• Information systems → Web crawling; • Computing method-
ologies → Online learning settings.

KEYWORDS
Web Content Discovery, Multi-Armed Bandits, Thompson Sampling

ACM Reference Format:
Peter Schulam and Ion Muslea. 2023. Improving the Exploration/Exploita-
tion Trade-Of in Web Content Discovery. In Companion Proceedings of the
ACM Web Conference 2023 (WWW ’23 Companion), April 30–May 04, 2023,
Austin, TX, USA. ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/
3543873.3587574

This work is licensed under a Creative Commons Attribution International
4.0 License.

WWW ’23 Companion, April 30–May 04, 2023, Austin, TX, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9419-2/23/04.
https://doi.org/10.1145/3543873.3587574

1 INTRODUCTION
Many applications built on the web depend on real-time access
to newly published content. For instance, people expect to read
breaking news on their phones or tablets, businesses require up-to-
date information on competitors’ oferings, and humanitarian aid
organizations use the web to monitor developing crises. Although
protocols such as sitemaps and RSS feeds (see e.g. [20]) notify
subscribers of new content, they are not always available or actively
maintained. A more reliable way to quickly discover new content
is to periodically re-crawl target sites [10].

There are two high-level approaches to re-crawling a site in
order to discover new content. First, we can periodically crawl the
site exhaustively (see e.g. Olston and Najork [15]). Although this
approach often discovers a large amount of the available content (we
do not consider the problem of discovering “deep” content in this
paper [3]), it can be prohibitively expensive and slow as a means to
discover pages in near real-time (e.g. within minutes of publication).
Moreover, there are rising concerns about the impact that large
crawling operations can have on carbon emissions [12, 21], making
it increasingly important to reduce the overhead of discovering new
content [10]; i.e. the number of known pages we must refresh per
new page discovered.

The second, more precise, approach to discovering new content
on a target site is to periodically refresh a collection of source pages
(e.g. the sports, business, and politics “landing pages” for a news-
paper’s website). Using weekly deep crawls of 200 sites, Dasgupta
et al. [10] showed that the majority of new content is hyperlinked
from a relatively small number of existing pages. The challenge,
however, is to intelligently select the subset of pages that we will
refresh. This is the problem of predicting the “yield” of a page; i.e.
how many hyperlinks to new, unknown pages will we discover?

Contributions. The state of the art in near real-time content
discovery [17] refreshes a fxed collection of candidate source pages
(i.e. not all source pages will have high yield), and uses ideas from
the multi-armed bandit literature [22] to simultaneously explore
the candidate sources and exploit known good sources to discover
new content. In this paper, we show that the method proposed in
Pham et al. [17] (which we refer to as the “Pham crawler” from
here on) uses a multi-armed bandit to model an action space that
does not match the space of actions that the crawler must actu-
ally choose from. This mismatch leads to a sub-optimal trade-of
between exploration and exploitation for the purpose of learning
to predict page yield. This reduces the Pham crawler’s coverage
(number of new pages discovered), makes it less efcient (requires
more refreshes per discovered page), and increases the amount of
time required for it to discover a new page. To address this issue,

1183

https://doi.org/10.1145/3543873.3587574
https://doi.org/10.1145/3543873.3587574
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3543873.3587574
mailto:musleaim@amazon.com
mailto:schulamp@amazon.com
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3543873.3587574&domain=pdf&date_stamp=2023-04-30

WWW ’23 Companion, April 30–May 04, 2023, Austin, TX, USA Schulam and Muslea

we propose the Thompson crawler (named for the Thompson sam-

pler that drives its refresh decisions), which more faithfully models
the action space. On a dataset of 4,070 source pages from 53 news
domains over a period of 7 weeks, we show that, on average, the
Thompson crawler discovers 20% more new pages, fnds pages 6
hours earlier, and uses 14 fewer refreshes per 100 pages discovered
than the Pham crawler.

1.1 Related Work
Dasgupta et al. [10] were the frst to study the problem of discover-
ing new pages by scheduling refreshes of known pages. To select
pages to refresh, Dasgupta et al. [10] proposed a solution that in-
terleaves low frequency “snapshot” crawls and higher frequency
“discovery” crawls. A snapshot crawl exhaustively crawls the site,
while a discovery crawl refreshes a relatively small subset of known
pages with the goal of discovering hyperlinks to unknown pages.
Dasgupta et al. [10] compare the results of snapshot crawls over
time to estimate the yield of known pages, and then refresh the
pages with the highest estimated yield during the subsequent dis-
covery crawls. Although this technique is efective, snapshot crawls
can be prohibitively expensive for larger sites.

Pham et al. [17] recently proposed a technique that does not re-
quire snapshot crawls, instead learning directly from cheaper, more
frequent discovery crawls. Their method is rooted in key ideas from
the literature on multi-armed bandits, where a decision-making
system simultaneously learns about its environment (exploration),
while also using its current knowledge to take valuable actions (ex-
ploitation). They show that their crawler outperforms variants of
the methods proposed in Dasgupta et al. [10] adapted to ft within
a fxed budget per crawl cycle. Our work builds on their ideas.

There are several other notable works that address problems
similar to the one we study here, but make diferent assumptions.
Gupta et al. [11] also aim to selectively refresh pages with the
highest expected yield. They design an algorithm, however, that
operates in two distinct phases: a training phase where data is
collected for the purpose of training a predictive model, and a
crawling phase where the model’s predictions drive what pages to
refresh. In our setting, however, we wish to simultaneously learn a
good predictive model of yield while also discovering new content.
Lefortier et al. [14] study the problem of scheduling when to refresh
a set of known good source pages and when to fetch the discovered
content. We do not assume that all candidate source pages are good,
however, and so must learn to focus on the most productive ones.

In the broader literature on crawling, a lot of research has focused
on the related problem of keeping a fxed collection of web pages
up-to-date [7–9, 13, 16]. Many of the policies used to drive refresh
decisions depend on statistical models of how web pages change
over time, which ties into a more general thread of modeling web
dynamics independent of its application to crawling [1, 4, 5, 18].

2 METHODS
In this section, we formalize the problem of discovering new content
from a fxed collection of candidate source pages, provide relevant
background on algorithms for the multi-armed bandit problem,

discuss our observed shortcoming of the Pham crawler, and pro-
pose the Thompson crawler as an alternative that addresses this
shortcoming.

2.1 Fixed Source Content Discovery
We study the problem of discovering hyperlinks to new, unknown
pages in discrete-time using a fxed set of candidate source pages.
Formally, we defne the study period [1,�] where each time step
� represents an hour of clock time (e.g. 2022-11-13 00:00:00 to
2022-11-13 01:00:00, right side excluded). Over the course of
the study period, a crawler monitors a fxed collection of sources U,
which it can refresh to discover new content. At each time � , the
crawler is allowed a budget � < |U| of page refreshes. We denote
the set of � pages refreshed at time � as F� . After refreshing the
sources F� , we observe a set of outlinks from the source pages to
target pages. We denote each outlink using a tuple (�,�, �), which
indicates that we observe a link from source � to target � after
refreshing the source at time � . We use L�� to denote the unique
set of outlink tuples observed from source � at time � .

At any time � , we defne the target history V� as the union of all
′ ≜ ∪� −1targets observed in outlinks at times � < � : i.e. V� � ′ =1 ∪� ∈F� ′

L� ′ � . At time � = 1, the target history V1 is the empty set. We defne
the yield ��� of a source � at time � as the number of outlinks from
� at time � that point to targets � that are not in the outlink history
V� . The same target can count towards the yield of multiple sources
at a given time step (i.e. more than one source can get “credit” for
discovering a novel target). We defne the crawler’s yield �� at time
� as the number of target pages linked to by any source � ∈ F� that
is not in the history V� .

We use three metrics to evaluate a crawler’s performance over
the study period [1,�]: coverage, overhead, and 90th percentile of
hours to discovery (denoted HTD-P90). Let V∗

denote the set of
all targets that we can discover with any outlink from any source
� ∈ U at any time � ∈ [1,�]. This set of targets represents our
“ground truth” collection of pages that we would like to discover.
The coverage of a crawler is measured as |V� +1∩V∗||V∗|−1

(where
| · | denotes set cardinality). The overhead of a crawler is measured
as

Í�
=1 |F� | |V� +1 |−1. Finally, HTD-P90 is the 90th percentile of �

the diference between when a target page frst appeared (i.e. the
earliest time when it was frst hyperlinked from any source page)
and when it was discovered by the crawler (i.e. the frst time it was
linked from a source page that the crawler chose to refresh).

2.2 Multi-Armed Bandits
The multi-armed bandit literature addresses the problem of how an
agent can simultaneously operate successfully in an environment
while continuing to learn about it. The problem is typically formal-

ized using a collection of random variables {�� : � ∈ A}, where
A is a set of actions and �� models the unknown distribution over
rewards that the agent receives. The agent operates over a period
of discrete time, and at each time � must choose an action � ∈ A.
After selecting an action, the agent receives a reward �� drawn
from the distribution of the random variable �� .

If the agent knows the expected reward of each action, then the
optimal strategy is to repeatedly choose the action with largest
expected value. The challenge, however, is that the agent starts

1184

Improving the Exploration/Exploitation Trade-Of in Web Content Discovery WWW ’23 Companion, April 30–May 04, 2023, Austin, TX, USA

with minimal knowledge of the reward distributions and must si-
multaneously estimate the expected rewards (explore), while also
maximizing the cumulative reward received over time (exploit).
Multi-armed bandit algorithms aim to trade of exploration and
exploitation in a way that minimizes the agent’s regret; the difer-
ence between the cumulative reward achieved using the optimal
strategy and the cumulative reward that the agent actually obtains.

2.2.1 The UCB1 Algorithm. There is a massive literature on multi-

armed bandits, but only two algorithms are relevant to our discus-
sion. The frst algorithm is the Upper Confdence Bound 1 (UCB1)
algorithm, which was frst proposed and analyzed by Auer et al.
[2]. In the UCB1 algorithm, the agent keeps track of two statistics
per arm: (1) the sample average of rewards �̂� observed after tak-
ing action �, and (2) the number of times �� that the agent has
taken action �. The agent frst chooses each action once to initialize
statistics, and then at each subsequent time � chooses √ © 2 log(� − 1) ª

�� = arg max ­�̂� + ® (1)
�∈A �� « ¬

The square root term in the expression above captures uncertainty
in the agent’s current estimates of the expected rewards. Choosing
actions based on estimated upper bounds of expected rewards en-
courages the agent to explore actions that may prove more valuable
than the current “greedy” action (i.e. the action with largest �̂�).

2.2.2 Thompson Sampling. The second multi-armed bandit algo-
rithm relevant to the results in this paper is Thompson sampling.
Thompson sampling is a family of algorithms built on the Bayesian
approach to statistical estimation [23, 24]. As in the UCB1 algorithm,
our goal is to estimate the expected reward of each action, but in
the Thompson sampling approach we achieve this by computing
the following posterior distribution at each time � :

� −1Ö
� (� | �

1:(� −1) , �1:(� −1)) ∝ � (�) � (��� | �� , �), (2)
�=1

where � (�� | �� , �) is a statistical model of the distribution for the
reward �� associated with action � parameterized by � , and � (�)
is a prior distribution over the reward distribution parameters. To
select an action at time � , we draw a sample �ˆ� from the posterior
distribution above, and choose the actionh i

�� = arg max E �� | �, �ˆ� . (3)
�∈A

In words: we sample a plausible confguration of parameters � from
the posterior, compute the expected value of each action as if our
sample were the true parameters, and then select the action that
maximizes the expected reward. In the interest of space, we omit a
more extensive introduction to the topic, but refer interested readers
to Russo et al. [19] for more on the history of Thompson sampling
and a readable, tutorial-style introduction to the algorithm.

2.3 Pham Crawler
The discovery-only crawler proposed in Pham et al. [17] has two
key components. The frst component is a predictive model of
the yield that the crawler will observe at time � for source �. The
second component is an implementation of the UCB1 algorithm

that selects what fraction of the total budget � at each time step
should be allocated to exploitation and to exploration. We show that
this architecture is sub-optimal for driving discovery-only crawls.

The expected yield model is a linear regression that includes a
collection of 35 features for each source �. The 35 features include
four summary statistics of the historical fetches of the source (av-
erage yield, standard deviation of yield, time since last fetch, and
the product of average yield and age), and 31 features that depend
on the time of the fetch (24 one-hot encoded features for hour of
day, and 7 one-hot encoded features for day of week). At each time
� , the crawler uses the model to predict the expected yield of each
source and ranks the sources in descending order of the predicted
yield. We emphasize that the crawler uses these predictions (and
the induced rank over sources) to choose its actions (i.e. which
sources to refresh at each time �).

The UCB1 component decides how much of the budget � to
use for exploration and how much to use for exploitation. The
“actions” that it models are the fraction of the budget to use for
exploitation. Pham et al. [17] choose actions [0.6, 0.7, 0.8, 0.9, 1.0]
in their experiments. For a given action �, the crawler uses � × �
of the budget to select the sources with the top predicted yields,
and uses � × (1 − �) of the budget to select the most stale sources
(i.e. those that have not been refreshed for the longest amount of
time). For each of the fve actions, the UCB1 component tracks the
average combined yield �̂� from all time steps when that action
was selected.

We claim that the exploration/exploitation trade-of is sub-optimal
in this architecture because the UCB1 algorithm tracks the expected
yields and uncertainties of an action space that does not match the
actions that the crawler actually chooses from. The crawler’s true
action space is comprised of the source pages U, from which it
selects a subset of of pages to refresh in order to maximize yield.
The UCB1 component of the Pham crawler, however, does not track
how certain the yield estimate model is about its predictions for
each source. As a result, the UCB1 algorithm cannot use this in-
formation to precisely select which sources should be confdently
refreshed (exploitation) and which sources have high potential, but
are currently underexplored (exploration).

2.4 Thompson Crawler
To more faithfully model the actions of a discovery-only crawler, we
introduce the Thompson crawler (named after Thompson sampling,
which we use to balance exploration and exploitation). We posit a
probabilistic model of page yield for each source at each hour of
the day (i.e. 00, 01, . . . , 23), but our approach is straightforward to
extend to more elaborate methods of partitioning time (e.g. mod-

eling page yield for each hour of the week). We assume that page
yield for source � at hour ℎ is drawn from a Poisson distribution
with rate parameter ��ℎ , which places non-zero probability on all
non-negative integers. We further assume that ��ℎ for all sources
� ∈ U and all hours ℎ ∈ {0, . . . , 23} are sampled independently
from a common gamma distribution with fxed hyperparameters �
and � . In summary, we assume the following likelihood and prior

1185

import numpy as np
from scipy.stats import gamma

def thompson_crawl(n_src , n_hrs , tsps , k,
alpha =1.0, beta =1.0):

s = np.zeros((n_src , n_hrs))
n = np.zeros((n_src , n_hrs))

for tsp in tsps:
h = tsp_to_hour(tsp)
a = s[:, h] + alpha
b = n[:, h] + beta

y_hat = gamma.rvs(a, scale =1.0/b)
srcs = np.argsort(y_hat)[-k:]
y_obs = fetch_and_calc_yields(srcs)

for u, y in zip (srcs , y_obs):
s[u, h] += y
n[u, h] += 1

WWW ’23 Companion, April 30–May 04, 2023, Austin, TX, USA Schulam and Muslea

Figure 1: Thompson crawler in Python.

for each source � and hour ℎ:
��

�� −1�−�� � (� | �, �) = (4)

Γ(�)

� (� | �) =
�
1

!
���−�

(5)

This prior-likelihood combination is computationally convenient
because the prior is conjugate to the likelihood. This means that
the posterior distribution over � given observed data � is also a
gamma distribution. We can see this for the gamma-Poisson pair
by writing out the posterior distribution

� (� | �, �, �) ∝ � (� | �)� (� |, �, �) ∝ ��� −��� −1�−��
(6)

= ��+� −1� −(�+1)�
(7)

The fnal line on the right-hand-side has the same unnormalized
′

form as a gamma distribution with parameters � = � + � and
′ Γ (�

� = 1 + � . We simply divide by
′)

to obtain the posterior ′� ′ �
density over �. For a collection of � observations �1:� , we obtain a

′ Í� ′
similar result where � = �=1 �� + � and � = � + � . To maintain
the posterior distribution over �, it is sufcient to keep track ofÍ�
the sum of all observations � = �=1 �� and the total number of
observations �.

Figure 1 displays a simplifed implementation of our Thompson
crawler in Python. Note that the Thompson crawler tracks the same
statistics per action as the UCB1 algorithm. We chose Thompson
sampling over UCB1 for selecting actions based on these statistics
because Thompson sampling has been shown to perform better
in practice [6]. Our model of page yields is especially simple to
implement, but we note that the Thompson crawler approach can
be readily extended with more elaborate priors and likelihoods.
The price to pay is (typically) more difcult posterior inference. For

some production systems, this price may be justifed, but we leave
this direction open for future work.

3 EXPERIMENTS

3.1 Data
We collect data for our experiments by refreshing pages from a wide
variety of news domains multiple times per hour.1

We collect pages
from 100 candidate news domains between November 13, 2022 and
December 31, 2022 (inclusive; 1,176 total hours). We count the num-

ber of times each page is fetched over this 7-week period, and retain
only the top 100 most frequently refreshed pages for each domain.
We discretize the fetches to an hourly time grid by randomly sam-

pling one fetch per page per hour. From this candidate set of pages,
we further flter pages that do not have at least one fetch for at least
90% of the hours in the study period (i.e. we require at least 1,059
fetches for each page). We enforce this “density” requirement on
the number of fetches per source so that we can reliably simulate a
crawl retrospectively. Finally, we remove domains that have fewer
than 40 total pages with one fetch in at least 90% of the hours in
the study period (40 is twice the maximum budget � that we use
in our experiments below). The fnal dataset contains 4,070 unique
source pages from 53 news domains, 4.7M total fetches, and 589M
total outlinks2

to 1.1M unique target pages. We run each crawler
independently on each domain using per-domain budgets � = 5,
� = 10, and � = 20 (i.e. a total of three runs per crawler per domain).

3.2 Crawlers
We compare the performance of three crawlers on our retrospective
dataset. In addition to the Pham crawler and the Thompson crawler,
we also benchmark an oracle crawler.

3.2.1 Oracle crawler. The Oracle crawler selects the � pages to
refresh at each time � using perfect knowledge of the outlinks that
will appear on each source page. It uses the Greedy algorithm in
Dasgupta et al. [10] to select � source pages in order to maximize
the number of novel target pages that it will discover after fetching
those pages.

3.2.2 Pham crawler. We implement the Bandit algorithm as de-
scribed in Section 5.3 of Pham et al. [17] (and summarized in Section
2.3 above). We do not model overlap in targets between sources
when selecting which pages to refresh.3

We otherwise confgure the
crawler as reported by Pham et al. [17]: we retrain the yield model
very 3 hours using data from the past 7 days and use a 24-hour
window for computing the history-dependent features.

3.2.3 Thompson crawler. Finally, we implement the Thompson
crawler as shown in Figure 1. We set � = 1 and � = 1 for all

1
We crawl politely by respecting robots.txt and by waiting at least several seconds
between consecutive HTTP requests to the same domain.

2
i.e. (�,�, �) tuples representing a link from source � to target � at time �

3
Pham et al. [17] state that “we need to estimate the overlap diferently” than Dasgupta
et al. [10], but omit important details required to reproduce their method. Specifcally,
they do not provide an explicit algorithm for how the overlap estimates are updated
with the � fetched pages. Dasgupta et al. [10] observed similar performance with and
without accounting for overlap (compare Cliq-Win and Od-Win in their Table 2).
Pham et al. [17] did not study the efect of modeling overlap with an ablation analysis,
so we expect that it had little impact on their results (as observed by [10]).

1186

Improving the Exploration/Exploitation Trade-Of in Web Content Discovery WWW ’23 Companion, April 30–May 04, 2023, Austin, TX, USA

0.50 0.55 0.60 0.65
Coverage

20

10

05

Bu
dg

et
 (k

)

1 2 3 4 5
Overhead

0 5 10 15 20
HTD-P90

Crawler
Oracle
Pham
Thompson

Figure 2: Average coverage, overhead, and HTD-P90 for the three crawlers across all 53 domains.

0 200 400 600 800 1000 1200
Hours

10

20

30

40

50

60

70

No
rm

al
ize

d
Cu

m
ul

at
iv

e
Re

gr
et

 (%
) Pham

Thompson

Figure 3: Cumulative regret averaged over domains.

experiments. It may be possible to tune these hyperparameters to
improve performance, but we did not do so in our experiments.

3.3 Evaluating Convergence to Oracle
In the bandits literature, researchers commonly evaluate and com-

pare algorithms by measuring cumulative regret over time [19, 22].
The cumulative reward � (�) at time � is the sum of all rewards
received up to, and including, time � . An algorithm’s regret is the
diference between the cumulative reward obtained by an optimal
strategy � ∗(�) and that obtained by the algorithm’s strategy � (�). A
strong algorithm that balances exploration and exploitation efec-
tively will quickly converge to and maintain a low regret [19, 22].

We defne the cumulative reward to be the total number of new
pages discovered up to and including time � . Because the number
of new pages varies across domains, we compute the normalized

� ∗ (�)−� (�)regret 100 × to make the regret curves comparable across
� ∗ (�)

domains. Using a per-domain budget of � = 5, Figure 3 shows
the average cumulative regret (and 95% bootstrapped confdence
intervals) over all 53 domains for both the Pham and Thompson
crawlers relative to the Oracle crawler; that is, we use the Oracle
crawler’s regret as the optimal regret � ∗(�).

We observe that both crawlers quickly converge to under 20%
regret within the frst few days. The Pham crawler reaches around
10% regret in approximately 75 hours, but bounces back to approxi-
mately 15% cumulative regret over time and stabilizes there. The
Thompson crawler, on the other hand, smoothly progresses over
time and converges to approximately 6% cumulative regret by the
end of the study period. We conclude that the Thompson crawler
balances exploration and exploitation more efectively than the
Pham crawler.

3.4 Evaluating Crawl Performance
The regret curves in Figure 3 demonstrate that the Thompson
crawler efectively balances exploration and exploitation, which
helps it to efciently converge to a strategy that is 6% worse than
the oracle on average in terms of cumulative number of pages dis-
covered. There are, however, other aspects of a content discovery
crawler’s performance that these curves do not refect. In this sec-
tion, we also evaluate the efciency of the Pham and Thompson
crawlers (measured using overhead as described in Section 2.1)
and the timeliness of the crawlers’ discoveries (measured using
HTD-P90 as described in Section 2.1).

We use the frst week of data to allow each of the crawlers in
our experiment to “warm up”, and use the remaining six weeks to
evaluate their performance in their steady state. After each run
of a crawler on a given domain and with a given budget, we com-

pute coverage, overhead, and HTD-P90 as defned in Section 2.1.
To summarize a crawler’s performance with a given budget, we
average across domains and compute 95% confdence intervals for
the average using 1,000 bootstrap samples.

Figure 2 shows the average coverage, overhead, and HTD-P90
(and 95% confdence intervals) for each crawler at each budget � .
Starting with the left-most panel, we see that the oracle’s coverage
is just under 65% on average and is not sensitive to the budget (i.e. it
remains at 65% for all budgets). This suggests that a strong refresh
policy may “saturate” at relatively small budgets, supporting the
widely adopted assumption in the literature that most new content
can be discovered from a relatively small number of source pages.
The fact that the Oracle crawler’s coverage plateaus at 65% also

1187

WWW ’23 Companion, April 30–May 04, 2023, Austin, TX, USA Schulam and Muslea

1.00 1.05 1.10 1.15 1.20 1.25
Coverage Ratio

20

10

05

Bu
dg

et
 (k

)

0.85 0.90 0.95
Overhead Ratio

8 6 4 2
Change in HTD-P90

Figure 4: Average change in coverage, overhead, and HTD-P90 of Thompson crawler relative to Pham crawler over 53 domains.

shows that the “long tail” of new content may not be efciently dis-
coverable (i.e. discoverable without refreshing all known sources).
This data is consistent with Dasgupta et al. [10], who observed
that 25% of new content may not be efciently discoverable. The
Pham and Thompson crawlers both approach this plateau given
sufciently large budget, but the Thompson crawler is competitive
with the Oracle crawler even at the lowest budget � = 5.

In the center panel of Figure 2, we show the overhead of each
crawler at each budget (the number of source refreshes required
to discover one new page). All crawlers become less efcient as
the budget is increased, again supporting the assumption that the
majority of new content is discoverable from a relatively small
number of sources. In general, the Oracle crawler is most efcient
and the Pham crawler is least efcient on average, but there is
considerable overlap in the confdence intervals.

Finally, in the right-most panel of Figure 2, we show the 90th
percentile of the distribution over hours to discovery of target
pages. The Oracle crawler discovers most pages within 3-4 hours
of when they frst appear, even at the lowest budget. The Pham
and Thompson crawler are much more sensitive to budget; they
discover most pages in under 5 hours when � = 20, but can take
much longer to discover pages when � = 5 (20 hours on average
for Pham, and 15 hours for Thompson).

We draw several conclusions from Figure 2. First, as Dasgupta
et al. [10] observed, a signifcant portion of new pages simply cannot
be discovered efciently (i.e. without refreshing all known sources).
A comprehensive discovery crawler may need to plan occasional
“full refreshes” in order to cover the long tail. Second, there is a
strong relationship between budget and efciency for all crawlers;
even the Oracle crawler becomes less efcient as the budget is
increased. We conjecture that this may be due to the fact that a
large budget is not needed at every time step. For instance, we may
be wasting most of the budgeted refreshes in the middle of the
night when most pages are not changing very much. A discovery
crawler that adaptively adjusts the budget based on expected yield
over time may be able to remain efcient while still enjoying the
improvements in coverage and HTD-P90 observed at high budgets.

3.4.1 Comparing Thompson to Pham. We now directly compare
the Pham and Thompson crawlers. To compare the two crawlers,
we designate the Thompson crawler as the comparison and Pham
as the reference. For each metric � , budget � , and domain � , we com-

pute �comp
and �ref. To compare coverage and efciency, we use the

�� ��

ratio �comp/�ref and compute the average ratio across domains. To
�� ��

comp − �ref compare HTD-P90, we use the diference � and compute
�� ��

the average diference across domains. Figure 4 shows the aver-
age ratio/diference for each budget along with the 95% confdence
intervals (computed using 1,000 bootstrap samples). Overall, we ob-
serve statistically signifcant improvements over the Pham crawler
across all metrics and all budgets (but the gap narrows considerably
as the budget becomes larger). At the smallest budget (where a
careful refresh policy is most important), we see that, on average,
the Thompson crawler discovers 20% more pages, fnds pages 6
hours earlier, and requires 14 fewer refreshes per 100 discoveries
to do so (i.e. we see a relative reduction in overhead by 14%).

4 CONCLUSION
Quickly and efciently discovering new pages on the web is impor-

tant for a wide variety of applications. Pham et al. [17] showed that
its possible to reduce the number of fetches required to run con-
tent discovery crawls by proposing an algorithm that sidesteps the
need for “snapshot crawls” in the method introduced by Dasgupta
et al. [10]. In this paper, we identifed a modeling decision in the
Pham crawler that leads to a sub-optimal exploration/exploitation
trade-of, which impacts the efectiveness of a discovery crawl. We
proposed an alternative, the Thompson crawler, that addresses this
issue. On a collection of 4,070 source pages from 53 news domains,
we showed that, on average, the Thompson crawler discovers 20%
more new pages, fnds pages 6 hours earlier, and requires 14 fewer
refreshes per 100 pages discovered than the Pham crawler.

Thompson sampling is a fexible approach to designing algo-
rithms that can efectively balance exploration and exploitation
in a wide variety of problems. Our work is the frst to show that
Thompson sampling is an efective technique for guiding discovery
crawls. Thompson sampling can accommodate a wide variety of ob-
jectives (e.g. we might incorporate clickstream data into the reward
as in [14]). We can also design probabilistic models that refect rich
domain-specifc structure. For instance, placing structured priors on
the expected yield � that model dependencies between hours that
are close in time may help to improve the rate at which crawlers can
learn the yield model parameters. While fexible, Thompson sam-

pling depends on Bayesian inference, which can be prohibitively
expensive to do at “web scale” and “web speed”. This challenge
presents new opportunities to push the state of the art in Bayesian
inference for problems on the web.

1188

Improving the Exploration/Exploitation Trade-Of in Web Content Discovery

REFERENCES
[1] Eytan Adar, Jaime Teevan, Susan T Dumais, and Jonathan L Elsas. 2009. The web

changes everything: understanding the dynamics of web content. In Proceedings
of the Second ACM International Conference on Web Search and Data Mining.
282–291.

[2] Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. 2002. Finite-time analysis of
the multiarmed bandit problem. Machine learning 47, 2 (2002), 235–256.

[3] Michael K Bergman. 2001. The deep web: surfacing hidden value. Journal of
electronic publishing 7, 1 (2001).

[4] Brian E Brewington and George Cybenko. 2000. How dynamic is the Web?
Computer Networks 33, 1-6 (2000), 257–276.

[5] Maria Carla Calzarossa and Daniele Tessera. 2015. Modeling and predicting
temporal patterns of web content changes. Journal of Network and Computer
Applications 56 (2015), 115–123.

[6] Olivier Chapelle and Lihong Li. 2011. An empirical evaluation of Thompson
sampling. Advances in neural information processing systems 24 (2011).

[7] Junghoo Cho and Hector Garcia-Molina. 2003. Efective page refresh policies
for web crawlers. ACM Transactions on Database Systems (TODS) 28, 4 (2003),
390–426.

[8] Junghoo Cho and Alexandros Ntoulas. 2002. Efective change detection using
sampling. In VLDB’02: Proceedings of the 28th International Conference on Very
Large Databases. Elsevier, 514–525.

[9] Edward G Cofman Jr, Zhen Liu, and Richard R Weber. 1998. Optimal robot
scheduling for web search engines. Journal of scheduling 1, 1 (1998), 15–29.

[10] Anirban Dasgupta, Arpita Ghosh, Ravi Kumar, Christopher Olston, Sandeep
Pandey, and Andrew Tomkins. 2007. The discoverability of the web. In Proceedings
of the 16th ACM International World Wide Web Conference. 421–430.

[11] Kanik Gupta, Vishal Mittal, Bazir Bishnoi, Siddharth Maheshwari, and Dhaval
Patel. 2016. AcT: Accuracy-aware crawling techniques for cloud-crawler. World
Wide Web 19, 1 (2016), 69–88.

[12] Vassiliki Hatzi, B Barla Cambazoglu, and Iordanis Koutsopoulos. 2016. Optimal
web page download scheduling policies for Green Web crawling. IEEE Journal
on Selected Areas in Communications 34, 5 (2016), 1378–1388.

WWW ’23 Companion, April 30–May 04, 2023, Austin, TX, USA

[13] Andrey Kolobov, Yuval Peres, Cheng Lu, and Eric J Horvitz. 2019. Staying up to
date with online content changes using reinforcement learning for scheduling.
Advances in Neural Information Processing Systems 32 (2019).

[14] Damien Lefortier, Liudmila Ostroumova, Egor Samosvat, and Pavel Serdyukov.
2013. Timely crawling of high-quality ephemeral new content. In Proceedings of
the 22nd ACM international conference on Information & Knowledge Management.
745–750.

[15] Christopher Olston and Marc Najork. 2010. Web crawling. Foundations and
Trends® in Information Retrieval 4, 3 (2010), 175–246.

[16] Christopher Olston and Sandeep Pandey. 2008. Recrawl scheduling based on
information longevity. In Proceedings of the 17th international conference on World
Wide Web. 437–446.

[17] Kien Pham, Aécio Santos, and Juliana Freire. 2018. Learning to Discover Domain-

Specifc Web Content. In Proceedings of the 11th ACM International Conference on
Web Search and Data Mining. 432–440.

[18] Kira Radinsky and Paul N Bennett. 2013. Predicting content change on the web.
In Proceedings of the sixth ACM international conference on Web search and data
mining. 415–424.

[19] Daniel J Russo, Benjamin Van Roy, Abbas Kazerouni, Ian Osband, Zheng Wen,
et al. 2018. A tutorial on Thompson sampling. Foundations and Trends® in
Machine Learning 11, 1 (2018), 1–96.

[20] Uri Schonfeld and Narayanan Shivakumar. 2009. Sitemaps: above and beyond
the crawl of duty. In Proceedings of the 18th international conference on World
wide web. 991–1000.

[21] Matt Southern. 2022. Google Considers Reducing Webpage Crawl Rate. https:
//www.searchenginejournal.com/google-crawl-rate/434265/. Accessed: 2022-02-
03.

[22] Richard S Sutton and Andrew G Barto. 2018. Reinforcement learning: An intro-
duction. MIT press.

[23] William R Thompson. 1933. On the likelihood that one unknown probability
exceeds another in view of the evidence of two samples. Biometrika 25, 3-4 (1933),
285–294.

[24] William R Thompson. 1935. On the theory of apportionment. American Journal
of Mathematics 57, 2 (1935), 450–456.

1189

https://www.searchenginejournal.com/google-crawl-rate/434265/
https://www.searchenginejournal.com/google-crawl-rate/434265/

	Abstract
	1 Introduction
	1.1 Related Work

	2 Methods
	2.1 Fixed Source Content Discovery
	2.2 Multi-Armed Bandits
	2.3 Pham Crawler
	2.4 Thompson Crawler

	3 Experiments
	3.1 Data
	3.2 Crawlers
	3.3 Evaluating Convergence to Oracle
	3.4 Evaluating Crawl Performance

	4 Conclusion
	References

