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ABSTRACT 
New web content is published constantly, and although protocols 
such as RSS can notify subscribers of new pages, they are not al-
ways implemented or actively maintained. A more reliable way to 
discover new content is to periodically re-crawl the target sites. 
Designing such “content discovery crawlers” has important ap-
plications, for example, in web search, digital assistants, business, 
humanitarian aid, and law enforcement. Existing approaches as-
sume that each site of interest has a relatively small set of unknown 
“source pages” that, when refreshed, frequently provide hyperlinks 
to the majority of new content. The state of the art (SOTA) uses 
ideas from the multi-armed bandit literature to explore candidate 
sources while simultaneously exploiting known good sources. We 
observe, however, that the SOTA uses a sub-optimal algorithm for 
balancing exploration and exploitation. We trace this back to a mis-

match between the space of actions that the SOTA algorithm models 
and the space of actions that the crawler must actually choose from. 
Our proposed approach, the Thompson crawler (named after the 
Thompson sampler that drives its refresh decisions), addresses this 
shortcoming by more faithfully modeling the action space. On a 
dataset of 4,070 source pages drawn from 53 news domains over a 
period of 7 weeks, we show that, on average, the Thompson crawler 
discovers 20% more new pages, fnds pages 6 hours earlier, and uses 
14 fewer refreshes per 100 pages discovered than the SOTA. 
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• Information systems → Web crawling; • Computing method-
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1 INTRODUCTION 
Many applications built on the web depend on real-time access 
to newly published content. For instance, people expect to read 
breaking news on their phones or tablets, businesses require up-to-
date information on competitors’ oferings, and humanitarian aid 
organizations use the web to monitor developing crises. Although 
protocols such as sitemaps and RSS feeds (see e.g. [20]) notify 
subscribers of new content, they are not always available or actively 
maintained. A more reliable way to quickly discover new content 
is to periodically re-crawl target sites [10]. 

There are two high-level approaches to re-crawling a site in 
order to discover new content. First, we can periodically crawl the 
site exhaustively (see e.g. Olston and Najork [15]). Although this 
approach often discovers a large amount of the available content (we 
do not consider the problem of discovering “deep” content in this 
paper [3]), it can be prohibitively expensive and slow as a means to 
discover pages in near real-time (e.g. within minutes of publication). 
Moreover, there are rising concerns about the impact that large 
crawling operations can have on carbon emissions [12, 21], making 
it increasingly important to reduce the overhead of discovering new 
content [10]; i.e. the number of known pages we must refresh per 
new page discovered. 

The second, more precise, approach to discovering new content 
on a target site is to periodically refresh a collection of source pages 
(e.g. the sports, business, and politics “landing pages” for a news-
paper’s website). Using weekly deep crawls of 200 sites, Dasgupta 
et al. [10] showed that the majority of new content is hyperlinked 
from a relatively small number of existing pages. The challenge, 
however, is to intelligently select the subset of pages that we will 
refresh. This is the problem of predicting the “yield” of a page; i.e. 
how many hyperlinks to new, unknown pages will we discover? 

Contributions. The state of the art in near real-time content 
discovery [17] refreshes a fxed collection of candidate source pages 
(i.e. not all source pages will have high yield), and uses ideas from 
the multi-armed bandit literature [22] to simultaneously explore 
the candidate sources and exploit known good sources to discover 
new content. In this paper, we show that the method proposed in 
Pham et al. [17] (which we refer to as the “Pham crawler” from 
here on) uses a multi-armed bandit to model an action space that 
does not match the space of actions that the crawler must actu-
ally choose from. This mismatch leads to a sub-optimal trade-of 
between exploration and exploitation for the purpose of learning 
to predict page yield. This reduces the Pham crawler’s coverage 
(number of new pages discovered), makes it less efcient (requires 
more refreshes per discovered page), and increases the amount of 
time required for it to discover a new page. To address this issue, 
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we propose the Thompson crawler (named for the Thompson sam-

pler that drives its refresh decisions), which more faithfully models 
the action space. On a dataset of 4,070 source pages from 53 news 
domains over a period of 7 weeks, we show that, on average, the 
Thompson crawler discovers 20% more new pages, fnds pages 6 
hours earlier, and uses 14 fewer refreshes per 100 pages discovered 
than the Pham crawler. 

1.1 Related Work 
Dasgupta et al. [10] were the frst to study the problem of discover-
ing new pages by scheduling refreshes of known pages. To select 
pages to refresh, Dasgupta et al. [10] proposed a solution that in-
terleaves low frequency “snapshot” crawls and higher frequency 
“discovery” crawls. A snapshot crawl exhaustively crawls the site, 
while a discovery crawl refreshes a relatively small subset of known 
pages with the goal of discovering hyperlinks to unknown pages. 
Dasgupta et al. [10] compare the results of snapshot crawls over 
time to estimate the yield of known pages, and then refresh the 
pages with the highest estimated yield during the subsequent dis-
covery crawls. Although this technique is efective, snapshot crawls 
can be prohibitively expensive for larger sites. 

Pham et al. [17] recently proposed a technique that does not re-
quire snapshot crawls, instead learning directly from cheaper, more 
frequent discovery crawls. Their method is rooted in key ideas from 
the literature on multi-armed bandits, where a decision-making 
system simultaneously learns about its environment (exploration), 
while also using its current knowledge to take valuable actions (ex-
ploitation). They show that their crawler outperforms variants of 
the methods proposed in Dasgupta et al. [10] adapted to ft within 
a fxed budget per crawl cycle. Our work builds on their ideas. 

There are several other notable works that address problems 
similar to the one we study here, but make diferent assumptions. 
Gupta et al. [11] also aim to selectively refresh pages with the 
highest expected yield. They design an algorithm, however, that 
operates in two distinct phases: a training phase where data is 
collected for the purpose of training a predictive model, and a 
crawling phase where the model’s predictions drive what pages to 
refresh. In our setting, however, we wish to simultaneously learn a 
good predictive model of yield while also discovering new content. 
Lefortier et al. [14] study the problem of scheduling when to refresh 
a set of known good source pages and when to fetch the discovered 
content. We do not assume that all candidate source pages are good, 
however, and so must learn to focus on the most productive ones. 

In the broader literature on crawling, a lot of research has focused 
on the related problem of keeping a fxed collection of web pages 
up-to-date [7–9, 13, 16]. Many of the policies used to drive refresh 
decisions depend on statistical models of how web pages change 
over time, which ties into a more general thread of modeling web 
dynamics independent of its application to crawling [1, 4, 5, 18]. 

2 METHODS 
In this section, we formalize the problem of discovering new content 
from a fxed collection of candidate source pages, provide relevant 
background on algorithms for the multi-armed bandit problem, 

discuss our observed shortcoming of the Pham crawler, and pro-
pose the Thompson crawler as an alternative that addresses this 
shortcoming. 

2.1 Fixed Source Content Discovery 
We study the problem of discovering hyperlinks to new, unknown 
pages in discrete-time using a fxed set of candidate source pages. 
Formally, we defne the study period [1,� ] where each time step 
� represents an hour of clock time (e.g. 2022-11-13 00:00:00 to 
2022-11-13 01:00:00, right side excluded). Over the course of 
the study period, a crawler monitors a fxed collection of sources U, 
which it can refresh to discover new content. At each time � , the 
crawler is allowed a budget � < |U| of page refreshes. We denote 
the set of � pages refreshed at time � as F� . After refreshing the 
sources F� , we observe a set of outlinks from the source pages to 
target pages. We denote each outlink using a tuple (�,�, �), which 
indicates that we observe a link from source � to target � after 
refreshing the source at time � . We use L�� to denote the unique 
set of outlink tuples observed from source � at time � . 

At any time � , we defne the target history V� as the union of all 
′ ≜ ∪� −1targets observed in outlinks at times � < � : i.e. V� � ′ =1 ∪� ∈F� ′ 

L� ′ � . At time � = 1, the target history V1 is the empty set. We defne 
the yield ��� of a source � at time � as the number of outlinks from 
� at time � that point to targets � that are not in the outlink history 
V� . The same target can count towards the yield of multiple sources 
at a given time step (i.e. more than one source can get “credit” for 
discovering a novel target). We defne the crawler’s yield �� at time 
� as the number of target pages linked to by any source � ∈ F� that 
is not in the history V� . 

We use three metrics to evaluate a crawler’s performance over 
the study period [1,� ]: coverage, overhead, and 90th percentile of 
hours to discovery (denoted HTD-P90). Let V∗ 

denote the set of 
all targets that we can discover with any outlink from any source 
� ∈ U at any time � ∈ [1,� ]. This set of targets represents our 
“ground truth” collection of pages that we would like to discover. 
The coverage of a crawler is measured as |V� +1∩V∗||V∗|−1 

(where 
| · | denotes set cardinality). The overhead of a crawler is measured 
as 

Í� 
=1 |F� | |V� +1 |−1. Finally, HTD-P90 is the 90th percentile of � 

the diference between when a target page frst appeared (i.e. the 
earliest time when it was frst hyperlinked from any source page) 
and when it was discovered by the crawler (i.e. the frst time it was 
linked from a source page that the crawler chose to refresh). 

2.2 Multi-Armed Bandits 
The multi-armed bandit literature addresses the problem of how an 
agent can simultaneously operate successfully in an environment 
while continuing to learn about it. The problem is typically formal-

ized using a collection of random variables {�� : � ∈ A}, where 
A is a set of actions and �� models the unknown distribution over 
rewards that the agent receives. The agent operates over a period 
of discrete time, and at each time � must choose an action � ∈ A. 
After selecting an action, the agent receives a reward �� drawn 
from the distribution of the random variable �� . 

If the agent knows the expected reward of each action, then the 
optimal strategy is to repeatedly choose the action with largest 
expected value. The challenge, however, is that the agent starts 
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with minimal knowledge of the reward distributions and must si-
multaneously estimate the expected rewards (explore), while also 
maximizing the cumulative reward received over time (exploit). 
Multi-armed bandit algorithms aim to trade of exploration and 
exploitation in a way that minimizes the agent’s regret; the difer-
ence between the cumulative reward achieved using the optimal 
strategy and the cumulative reward that the agent actually obtains. 

2.2.1 The UCB1 Algorithm. There is a massive literature on multi-

armed bandits, but only two algorithms are relevant to our discus-
sion. The frst algorithm is the Upper Confdence Bound 1 (UCB1) 
algorithm, which was frst proposed and analyzed by Auer et al. 
[2]. In the UCB1 algorithm, the agent keeps track of two statistics 
per arm: (1) the sample average of rewards �̂� observed after tak-
ing action �, and (2) the number of times �� that the agent has 
taken action �. The agent frst chooses each action once to initialize 
statistics, and then at each subsequent time � chooses √ © 2 log(� − 1) ª 

�� = arg max ­�̂� + ® (1) 
�∈A �� « ¬ 

The square root term in the expression above captures uncertainty 
in the agent’s current estimates of the expected rewards. Choosing 
actions based on estimated upper bounds of expected rewards en-
courages the agent to explore actions that may prove more valuable 
than the current “greedy” action (i.e. the action with largest �̂� ). 

2.2.2 Thompson Sampling. The second multi-armed bandit algo-
rithm relevant to the results in this paper is Thompson sampling. 
Thompson sampling is a family of algorithms built on the Bayesian 
approach to statistical estimation [23, 24]. As in the UCB1 algorithm, 
our goal is to estimate the expected reward of each action, but in 
the Thompson sampling approach we achieve this by computing 
the following posterior distribution at each time � : 

� −1Ö 
� (� | �

1:(� −1) , �1:(� −1) ) ∝ � (� ) � (��� | �� , � ), (2) 
�=1 

where � (�� | �� , � ) is a statistical model of the distribution for the 
reward �� associated with action � parameterized by � , and � (� )
is a prior distribution over the reward distribution parameters. To 
select an action at time � , we draw a sample �ˆ� from the posterior 
distribution above, and choose the actionh i 

�� = arg max E �� | �, �ˆ� . (3) 
�∈A 

In words: we sample a plausible confguration of parameters � from 
the posterior, compute the expected value of each action as if our 
sample were the true parameters, and then select the action that 
maximizes the expected reward. In the interest of space, we omit a 
more extensive introduction to the topic, but refer interested readers 
to Russo et al. [19] for more on the history of Thompson sampling 
and a readable, tutorial-style introduction to the algorithm. 

2.3 Pham Crawler 
The discovery-only crawler proposed in Pham et al. [17] has two 
key components. The frst component is a predictive model of 
the yield that the crawler will observe at time � for source �. The 
second component is an implementation of the UCB1 algorithm 

that selects what fraction of the total budget � at each time step 
should be allocated to exploitation and to exploration. We show that 
this architecture is sub-optimal for driving discovery-only crawls. 

The expected yield model is a linear regression that includes a 
collection of 35 features for each source �. The 35 features include 
four summary statistics of the historical fetches of the source (av-
erage yield, standard deviation of yield, time since last fetch, and 
the product of average yield and age), and 31 features that depend 
on the time of the fetch (24 one-hot encoded features for hour of 
day, and 7 one-hot encoded features for day of week). At each time 
� , the crawler uses the model to predict the expected yield of each 
source and ranks the sources in descending order of the predicted 
yield. We emphasize that the crawler uses these predictions (and 
the induced rank over sources) to choose its actions (i.e. which 
sources to refresh at each time � ). 

The UCB1 component decides how much of the budget � to 
use for exploration and how much to use for exploitation. The 
“actions” that it models are the fraction of the budget to use for 
exploitation. Pham et al. [17] choose actions [0.6, 0.7, 0.8, 0.9, 1.0]
in their experiments. For a given action �, the crawler uses � × � 
of the budget to select the sources with the top predicted yields, 
and uses � × (1 − �) of the budget to select the most stale sources 
(i.e. those that have not been refreshed for the longest amount of 
time). For each of the fve actions, the UCB1 component tracks the 
average combined yield �̂� from all time steps when that action 
was selected. 

We claim that the exploration/exploitation trade-of is sub-optimal 
in this architecture because the UCB1 algorithm tracks the expected 
yields and uncertainties of an action space that does not match the 
actions that the crawler actually chooses from. The crawler’s true 
action space is comprised of the source pages U, from which it 
selects a subset of of pages to refresh in order to maximize yield. 
The UCB1 component of the Pham crawler, however, does not track 
how certain the yield estimate model is about its predictions for 
each source. As a result, the UCB1 algorithm cannot use this in-
formation to precisely select which sources should be confdently 
refreshed (exploitation) and which sources have high potential, but 
are currently underexplored (exploration). 

2.4 Thompson Crawler 
To more faithfully model the actions of a discovery-only crawler, we 
introduce the Thompson crawler (named after Thompson sampling, 
which we use to balance exploration and exploitation). We posit a 
probabilistic model of page yield for each source at each hour of 
the day (i.e. 00, 01, . . . , 23), but our approach is straightforward to 
extend to more elaborate methods of partitioning time (e.g. mod-

eling page yield for each hour of the week). We assume that page 
yield for source � at hour ℎ is drawn from a Poisson distribution 
with rate parameter ��ℎ , which places non-zero probability on all 
non-negative integers. We further assume that ��ℎ for all sources 
� ∈ U and all hours ℎ ∈ {0, . . . , 23} are sampled independently 
from a common gamma distribution with fxed hyperparameters � 
and � . In summary, we assume the following likelihood and prior 
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import numpy as np 
from scipy.stats import gamma 

def thompson_crawl(n_src , n_hrs , tsps , k, 
alpha =1.0, beta =1.0): 

s = np.zeros((n_src , n_hrs)) 
n = np.zeros((n_src , n_hrs)) 

for tsp in tsps: 
h = tsp_to_hour(tsp) 
a = s[:, h] + alpha 
b = n[:, h] + beta 

y_hat = gamma.rvs(a, scale =1.0/b) 
srcs = np.argsort(y_hat)[-k:] 
y_obs = fetch_and_calc_yields(srcs) 

for u, y in zip (srcs , y_obs): 
s[u, h] += y 
n[u, h] += 1 
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Figure 1: Thompson crawler in Python. 

for each source � and hour ℎ: 
�� 

�� −1�−�� � (� | �, �) = (4)

Γ(�) 

� (� | �) = 
� 
1

! 
���−� 

(5) 

This prior-likelihood combination is computationally convenient 
because the prior is conjugate to the likelihood. This means that 
the posterior distribution over � given observed data � is also a 
gamma distribution. We can see this for the gamma-Poisson pair 
by writing out the posterior distribution 

� (� | �, �, �) ∝ � (� | �)� (� |, �, �) ∝ ��� −��� −1�−�� 
(6) 

= ��+� −1� −(�+1)� 
(7) 

The fnal line on the right-hand-side has the same unnormalized 
′

form as a gamma distribution with parameters � = � + � and 
′ Γ (� 

� = 1 + � . We simply divide by 
′ ) 

to obtain the posterior ′� ′ � 
density over �. For a collection of � observations �1:� , we obtain a 

′ Í� ′
similar result where � = �=1 �� + � and � = � + � . To maintain 
the posterior distribution over �, it is sufcient to keep track ofÍ� 
the sum of all observations � = �=1 �� and the total number of 
observations �. 

Figure 1 displays a simplifed implementation of our Thompson 
crawler in Python. Note that the Thompson crawler tracks the same 
statistics per action as the UCB1 algorithm. We chose Thompson 
sampling over UCB1 for selecting actions based on these statistics 
because Thompson sampling has been shown to perform better 
in practice [6]. Our model of page yields is especially simple to 
implement, but we note that the Thompson crawler approach can 
be readily extended with more elaborate priors and likelihoods. 
The price to pay is (typically) more difcult posterior inference. For 

some production systems, this price may be justifed, but we leave 
this direction open for future work. 

3 EXPERIMENTS 

3.1 Data 
We collect data for our experiments by refreshing pages from a wide 
variety of news domains multiple times per hour.1 

We collect pages 
from 100 candidate news domains between November 13, 2022 and 
December 31, 2022 (inclusive; 1,176 total hours). We count the num-

ber of times each page is fetched over this 7-week period, and retain 
only the top 100 most frequently refreshed pages for each domain. 
We discretize the fetches to an hourly time grid by randomly sam-

pling one fetch per page per hour. From this candidate set of pages, 
we further flter pages that do not have at least one fetch for at least 
90% of the hours in the study period (i.e. we require at least 1,059 
fetches for each page). We enforce this “density” requirement on 
the number of fetches per source so that we can reliably simulate a 
crawl retrospectively. Finally, we remove domains that have fewer 
than 40 total pages with one fetch in at least 90% of the hours in 
the study period (40 is twice the maximum budget � that we use 
in our experiments below). The fnal dataset contains 4,070 unique 
source pages from 53 news domains, 4.7M total fetches, and 589M 
total outlinks2 

to 1.1M unique target pages. We run each crawler 
independently on each domain using per-domain budgets � = 5, 
� = 10, and � = 20 (i.e. a total of three runs per crawler per domain). 

3.2 Crawlers 
We compare the performance of three crawlers on our retrospective 
dataset. In addition to the Pham crawler and the Thompson crawler, 
we also benchmark an oracle crawler. 

3.2.1 Oracle crawler. The Oracle crawler selects the � pages to 
refresh at each time � using perfect knowledge of the outlinks that 
will appear on each source page. It uses the Greedy algorithm in 
Dasgupta et al. [10] to select � source pages in order to maximize 
the number of novel target pages that it will discover after fetching 
those pages. 

3.2.2 Pham crawler. We implement the Bandit algorithm as de-
scribed in Section 5.3 of Pham et al. [17] (and summarized in Section 
2.3 above). We do not model overlap in targets between sources 
when selecting which pages to refresh.3 

We otherwise confgure the 
crawler as reported by Pham et al. [17]: we retrain the yield model 
very 3 hours using data from the past 7 days and use a 24-hour 
window for computing the history-dependent features. 

3.2.3 Thompson crawler. Finally, we implement the Thompson 
crawler as shown in Figure 1. We set � = 1 and � = 1 for all 

1
We crawl politely by respecting robots.txt and by waiting at least several seconds 
between consecutive HTTP requests to the same domain.

2
i.e. (�,�, �) tuples representing a link from source � to target � at time � 

3
Pham et al. [17] state that “we need to estimate the overlap diferently” than Dasgupta 
et al. [10], but omit important details required to reproduce their method. Specifcally, 
they do not provide an explicit algorithm for how the overlap estimates are updated 
with the � fetched pages. Dasgupta et al. [10] observed similar performance with and 
without accounting for overlap (compare Cliq-Win and Od-Win in their Table 2). 
Pham et al. [17] did not study the efect of modeling overlap with an ablation analysis, 
so we expect that it had little impact on their results (as observed by [10]). 
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Figure 2: Average coverage, overhead, and HTD-P90 for the three crawlers across all 53 domains. 
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Figure 3: Cumulative regret averaged over domains. 

experiments. It may be possible to tune these hyperparameters to 
improve performance, but we did not do so in our experiments. 

3.3 Evaluating Convergence to Oracle 
In the bandits literature, researchers commonly evaluate and com-

pare algorithms by measuring cumulative regret over time [19, 22]. 
The cumulative reward � (�) at time � is the sum of all rewards 
received up to, and including, time � . An algorithm’s regret is the 
diference between the cumulative reward obtained by an optimal 
strategy � ∗(�) and that obtained by the algorithm’s strategy � (�). A 
strong algorithm that balances exploration and exploitation efec-
tively will quickly converge to and maintain a low regret [19, 22]. 

We defne the cumulative reward to be the total number of new 
pages discovered up to and including time � . Because the number 
of new pages varies across domains, we compute the normalized 

� ∗ (� )−� (� )regret 100 × to make the regret curves comparable across 
� ∗ (� )

domains. Using a per-domain budget of � = 5, Figure 3 shows 
the average cumulative regret (and 95% bootstrapped confdence 
intervals) over all 53 domains for both the Pham and Thompson 
crawlers relative to the Oracle crawler; that is, we use the Oracle 
crawler’s regret as the optimal regret � ∗(�). 

We observe that both crawlers quickly converge to under 20% 
regret within the frst few days. The Pham crawler reaches around 
10% regret in approximately 75 hours, but bounces back to approxi-
mately 15% cumulative regret over time and stabilizes there. The 
Thompson crawler, on the other hand, smoothly progresses over 
time and converges to approximately 6% cumulative regret by the 
end of the study period. We conclude that the Thompson crawler 
balances exploration and exploitation more efectively than the 
Pham crawler. 

3.4 Evaluating Crawl Performance 
The regret curves in Figure 3 demonstrate that the Thompson 
crawler efectively balances exploration and exploitation, which 
helps it to efciently converge to a strategy that is 6% worse than 
the oracle on average in terms of cumulative number of pages dis-
covered. There are, however, other aspects of a content discovery 
crawler’s performance that these curves do not refect. In this sec-
tion, we also evaluate the efciency of the Pham and Thompson 
crawlers (measured using overhead as described in Section 2.1) 
and the timeliness of the crawlers’ discoveries (measured using 
HTD-P90 as described in Section 2.1). 

We use the frst week of data to allow each of the crawlers in 
our experiment to “warm up”, and use the remaining six weeks to 
evaluate their performance in their steady state. After each run 
of a crawler on a given domain and with a given budget, we com-

pute coverage, overhead, and HTD-P90 as defned in Section 2.1. 
To summarize a crawler’s performance with a given budget, we 
average across domains and compute 95% confdence intervals for 
the average using 1,000 bootstrap samples. 

Figure 2 shows the average coverage, overhead, and HTD-P90 
(and 95% confdence intervals) for each crawler at each budget � . 
Starting with the left-most panel, we see that the oracle’s coverage 
is just under 65% on average and is not sensitive to the budget (i.e. it 
remains at 65% for all budgets). This suggests that a strong refresh 
policy may “saturate” at relatively small budgets, supporting the 
widely adopted assumption in the literature that most new content 
can be discovered from a relatively small number of source pages. 
The fact that the Oracle crawler’s coverage plateaus at 65% also 
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Figure 4: Average change in coverage, overhead, and HTD-P90 of Thompson crawler relative to Pham crawler over 53 domains. 

shows that the “long tail” of new content may not be efciently dis-
coverable (i.e. discoverable without refreshing all known sources). 
This data is consistent with Dasgupta et al. [10], who observed 
that 25% of new content may not be efciently discoverable. The 
Pham and Thompson crawlers both approach this plateau given 
sufciently large budget, but the Thompson crawler is competitive 
with the Oracle crawler even at the lowest budget � = 5. 

In the center panel of Figure 2, we show the overhead of each 
crawler at each budget (the number of source refreshes required 
to discover one new page). All crawlers become less efcient as 
the budget is increased, again supporting the assumption that the 
majority of new content is discoverable from a relatively small 
number of sources. In general, the Oracle crawler is most efcient 
and the Pham crawler is least efcient on average, but there is 
considerable overlap in the confdence intervals. 

Finally, in the right-most panel of Figure 2, we show the 90th 
percentile of the distribution over hours to discovery of target 
pages. The Oracle crawler discovers most pages within 3-4 hours 
of when they frst appear, even at the lowest budget. The Pham 
and Thompson crawler are much more sensitive to budget; they 
discover most pages in under 5 hours when � = 20, but can take 
much longer to discover pages when � = 5 ( 20 hours on average 
for Pham, and 15 hours for Thompson). 

We draw several conclusions from Figure 2. First, as Dasgupta 
et al. [10] observed, a signifcant portion of new pages simply cannot 
be discovered efciently (i.e. without refreshing all known sources). 
A comprehensive discovery crawler may need to plan occasional 
“full refreshes” in order to cover the long tail. Second, there is a 
strong relationship between budget and efciency for all crawlers; 
even the Oracle crawler becomes less efcient as the budget is 
increased. We conjecture that this may be due to the fact that a 
large budget is not needed at every time step. For instance, we may 
be wasting most of the budgeted refreshes in the middle of the 
night when most pages are not changing very much. A discovery 
crawler that adaptively adjusts the budget based on expected yield 
over time may be able to remain efcient while still enjoying the 
improvements in coverage and HTD-P90 observed at high budgets. 

3.4.1 Comparing Thompson to Pham. We now directly compare 
the Pham and Thompson crawlers. To compare the two crawlers, 
we designate the Thompson crawler as the comparison and Pham 
as the reference. For each metric � , budget � , and domain � , we com-

pute �comp 
and �ref. To compare coverage and efciency, we use the 

�� �� 

ratio �comp/�ref and compute the average ratio across domains. To 
�� �� 

comp − �ref compare HTD-P90, we use the diference � and compute 
�� �� 

the average diference across domains. Figure 4 shows the aver-
age ratio/diference for each budget along with the 95% confdence 
intervals (computed using 1,000 bootstrap samples). Overall, we ob-
serve statistically signifcant improvements over the Pham crawler 
across all metrics and all budgets (but the gap narrows considerably 
as the budget becomes larger). At the smallest budget (where a 
careful refresh policy is most important), we see that, on average, 
the Thompson crawler discovers 20% more pages, fnds pages 6 
hours earlier, and requires 14 fewer refreshes per 100 discoveries 
to do so (i.e. we see a relative reduction in overhead by 14%). 

4 CONCLUSION 
Quickly and efciently discovering new pages on the web is impor-

tant for a wide variety of applications. Pham et al. [17] showed that 
its possible to reduce the number of fetches required to run con-
tent discovery crawls by proposing an algorithm that sidesteps the 
need for “snapshot crawls” in the method introduced by Dasgupta 
et al. [10]. In this paper, we identifed a modeling decision in the 
Pham crawler that leads to a sub-optimal exploration/exploitation 
trade-of, which impacts the efectiveness of a discovery crawl. We 
proposed an alternative, the Thompson crawler, that addresses this 
issue. On a collection of 4,070 source pages from 53 news domains, 
we showed that, on average, the Thompson crawler discovers 20% 
more new pages, fnds pages 6 hours earlier, and requires 14 fewer 
refreshes per 100 pages discovered than the Pham crawler. 

Thompson sampling is a fexible approach to designing algo-
rithms that can efectively balance exploration and exploitation 
in a wide variety of problems. Our work is the frst to show that 
Thompson sampling is an efective technique for guiding discovery 
crawls. Thompson sampling can accommodate a wide variety of ob-
jectives (e.g. we might incorporate clickstream data into the reward 
as in [14]). We can also design probabilistic models that refect rich 
domain-specifc structure. For instance, placing structured priors on 
the expected yield � that model dependencies between hours that 
are close in time may help to improve the rate at which crawlers can 
learn the yield model parameters. While fexible, Thompson sam-

pling depends on Bayesian inference, which can be prohibitively 
expensive to do at “web scale” and “web speed”. This challenge 
presents new opportunities to push the state of the art in Bayesian 
inference for problems on the web. 
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