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Abstract
Deep learning (DL) methodologies have led to significant advancements in various domains,
facilitating intricate data analysis and enhancing predictive accuracy and data generation quality
through complex algorithms. In materials science, the extensive computational demands associated
with high-throughput screening techniques such as density functional theory, coupled with
limitations in laboratory production, present substantial challenges for material research. DL
techniques are poised to alleviate these challenges by reducing the computational costs of
simulating material properties and by generating novel materials with desired attributes. This
comprehensive review document explores the current state of DL applications in materials design,
with a particular emphasis on two-dimensional materials. The article encompasses an in-depth
exploration of data-driven approaches in both forward and inverse design within the realm of
materials science.

1. Introduction

Most scientific laws are formulated to solve forward
problems; they predict the properties of a system
given its initial conditions. In contrast, inverse prob-
lems involve inferring the underlying causes, factors,
or structures responsible for a set of observations.
These problems arise in two key contexts. In the first
case, inverse problems are solved to deduce physical
laws, relations, or a humble parameter value from
the experimental data. In the second, we put sci-
entific knowledge to practical use and create an object
with the desired properties. Attempts to solve inverse
problems have been undertaken in a wide range of
fields: engineering, material science, non-destructive
testing (NDT), geophysics, radiation therapy, com-
putational fluid dynamics, medical imaging, geology,
astronomy, and economics; we list some of the most
interesting examples in the appendix A.

Over the last decade, remarkable progress in
material science has been achieved, significantly
pushing forward many applications, from electron-
ics to energy, composite materials to membranes.

Consequently, the development ofmaterials with pre-
determined properties has become critical for numer-
ous critical technologies.

The inverse problem in material science arises in
many different areas, from mechanics to the atomic
structure of materials, from spectroscopy data ana-
lysis to material design [1–5]. This article focuses
on a specific facet: determining the composition and
structure of a 2D crystal based on its macroscopic
physical properties, such as strength, elasticity, con-
ductivity, etc.

Material discovery is a complex process with a
general workflow that can be broken down into sev-
eral parts, as depicted in figure 1. Firstly, new mater-
ial candidates are generated, and their suitability for
potential applications is simulated. Next, the mater-
ial with the highest likelihood of success is synthes-
ized. Lastly, the material is incorporated into a device
and its desired properties are investigated. The time
required to design a material is thus dependent on
three factors: (i) the number and duration of simula-
tions, (ii) the duration of synthesis of proposed can-
didates, and (iii) the time needed for measurements
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Figure 1. The classical material design workflow. Candidate materials are intuitively perceived and their properties are computed
in silico and verified experimentally.

Figure 2. Schematic illustration of material and functional space and different approaches toward materials design. From [7].
Reprinted with permission from AAAS.

and the selection of the best candidates. The usual
material’s discovery or optimization time is measured
in years [6] and requires significant human and com-
putational resources. The inverse design approach
aims to accelerate the process of discovery of new
materials by efficiently and accurately finding candid-
ates in silico.

A schematic overviewofmaterial design problems
and their possible solutions is presented in figure 2,
where we link the material space and the material
functional space.

This paper is structured as follows. In section 2.1,
we discuss the simulation of materials based on phys-
ical principles; in section 2.2 we review structure
representations suited for machine learning (ML);
in section 2.3—property prediction based on ML.
Section 3 is dedicated to the inverse problem; in
section 3.1 we cover high-throughput virtual screen-
ing technique; in section 3.2—evolutionary design
methods; in section 3.3—generative ML methods; in

section 3.4—the recent applications of the reinforce-
ment learning (RL) approach. Section 4 concludes the
paper with a discussion of the methods’ applicability
and general outlook.

2. Material simulation

2.1. Ab-initio methods
In the 20th century, the formulation of quantum
mechanics solved the principal problem of theoretical
atomic systems description. However, themany-body
Schrodinger equation is too complex to be directly
solved for most real-world systems. Hence, a number
of approximate methods was developed. One of the
most widely used approaches for materials is dens-
ity functional theory (DFT) [8]. It allows for relat-
ively efficient calculation of the electron ground state
and its properties, such as the energy and the band
structure, etc. DFT has been used to generate huge
material databases [9] and to train ML algorithms
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Table 1. Generic material datasets.

Dataset Size URL

QM7, QM7b, QM8,
QM7bml, QM9, QM7-X >100 k http://quantum-machine.org/
Alchemy 200 K https://alchemy.tencent.com/
ANI-1 20 M https://github.com/isayev/ANI1_dataset
ANI-1x 5 M https://github.com/aiqm/ANI1x_datasets
AGZ7 140 k https://github.com/binghuang2018/agz7/tree/master
tmQM 80 k https://github.com/bbskjelstad/tmqm
OQMD >1 M https://oqmd.org/
The Open Catalyst >1 M https://opencatalystproject.org/
AFlow 3.5 M www.aflowlib.org/ —
Materials Project >600 k www.materialsproject.org
Materials Cloud >10 M www.materialscloud.org/home

Table 2. Crystal structures datasets with 2D materials.

Dataset Size URL

Aflow 3.5 M www.aflowlib.org/
JARVIS-DFT 77 k https://jarvis.nist.gov/
C2DB 4 k www.cmr.fysik.dtu.dk/c2db/c2db.html
aNANt 23 k www.anant.mrc.iisc.ac.in
Materials Cloud >10 M www.materialscloud.org/home
2DMatPedia 6 k www.2dmatpedia.org/
Materials Project >600 k www.materialsproject.org
ICSD 300 k www.psds.ac.uk/icsd
COD 500 k www.crystallography.net/cod/
CSD 1 M www.ccdc.cam.ac.uk/
OQMD 300 k https://oqmd.org/
QPOD 2 k https://cmr.fysik.dtu.dk/qpod/qpod.html
2DMD >15 k https://rolos.com/open/2d-materials-point-defects/
2D Materials 6 k https://cmr.fysik.dtu.dk/c2db/c2db.html

[10]. The computation time ofDFT is proportional to
the cube of the number of atoms in the structure [11,
12], with the practical system size ceiling of around
1000 atoms. Taking advantage of the interaction local-
ity allows the use of DFT for larger systems with com-
putational time linearly dependent on the number of
atoms [13], but provides little advantage for small sys-
tems. The accuracy of DFT in describing nanoscale
material properties has led to its widespread adoption
in various scientific software packages, a complete list
of which can be found in Wikipedia4.

Several DFT-derived databases cataloging an
array of structures, from molecules to crystals, have
been made available for diverse research objectives.
We enumerate the principal online datasets in table 1.
Some of these databases contain a wide variety of
structure types, including 2D materials. In table 2,
we have collected databases containing 2D materials.
It is worth mentioning that a much more extensive
list of datasets suitable for training ML algorithms to
predict material properties is available5. Despite the
breadth of these resources, the exhaustive landscape

4 https://en.wikipedia.org/wiki/List_of_quantum_chemistry_
and_solid-state_physics_software.
5 https://github.com/JuDFTteam/best-of-atomistic-machine-
learning.

of materials and their properties remains incom-
pletely mapped. This prompts ongoing efforts by
research collectives to compile specialized datasets
tailored to specific investigational needs [14].

The exploration of large atomic systems with
more than a thousand atoms is predominantly facil-
itated through molecular dynamics (MD) simula-
tions. In MD, atoms are treated as classical particles
that interact with each other; classical MD deals with
only forces, energies, and stress—without simulat-
ing electrons in any way. It is a very powerful set
of methods for predicting mechanical properties. In
a simple case, MD uses heuristic interatomic inter-
action potentials (EIP); providing a computationally
efficient means to simulate systems comprising up to
106 atoms. However widely used set of interatomic
simulations like Tersoff [15], AIREBO [16], ReaxFF
[17], and optimized Tersoff [18] can fail in seemingly
straightforward simulations, such as those involving
graphene [19]. Each atomic system needs carefully
selected inter-atomic potential and its parameters. Ab
initio MD (AIMD) overcomes this issue by mixing
DFT andMD, but these methods are limited by com-
putational cost since they rely on DFT.

Since the interatomic interaction potentials are
by their nature heuristic approximations, ML has
been systematically and successfully used to train
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Figure 3. One crystal can be represented in various ways using different representations. These representations include: a graph
containing atom and bond weights, Coulomb matrix, diffraction fingerprint, using topological descriptors and etc. [43] John
Wiley & Sons. © 2021 Wiley Periodicals LLC.

ML interatomic potentials (MLIP) on the DFT data,
starting with [20]. Modern methods [21–23] provide
accuracy comparable to DFTwith EIP computational
speed. Now MLIPs can be used in MD simulations
using either generic packages like LAMMPS [24], as
well as within specialized packages like TorchMD [25]
and DeepMD [26]. Nowadays MLIPs are greatly
used in material simulations, acceleration of materi-
als design [27–29], and predictingmaterial properties
[30]. There are few types of MLIPs: neural network
potentials (NNPs) [20, 23, 31], Gaussian approxim-
ation potentials (GAPs) based on Gaussian process
regression [32], moment tensor potentials [33, 34],
spectral neighbor analysis potentials [35], deep tensor
neural networks [36], Gaussian moment NNPs [37]
and most recently neuroevolution-potentials [38]. In
comparison to EP, MLIPs, as other ML methods,
rely heavily on the quality and diversity of training
data, trained using DFT-based datasets in combin-
ation with AIMD data, including high-temperature
regimes, to take into account diverse atomic envir-
onments. Temperature effects represent a huge niche
where MLIPs are found to be more accurate than tra-
ditional DFT and EP [21]. MLIPs have shown par-
ticular promise in the research of two-dimensional
(2D) materials. For instance, they have been applied
to study 2D lattices of biphenylene [39], quasi-
hexagonal-phase C60 fullerene (qHPC60) [40], BC2N
[41], MoS2 [42].

2.2. Atomic structure representation
The core problemof building amodel of a given struc-
ture is the mathematical representation of an atomic
system. Suppose we follow Born–Oppenheimer
approximation and presume that the electrons are
in the ground state. In that case, the atomic system
is fully described as a set of atoms, their positions,
and momenta. Using the raw coordinate values as
algorithm input is counterproductive as this does

not respect the rotation, translation, and permuta-
tion equivariance and quickly leads to a problem of
intractable computational complexity. A good rep-
resentation must respect those symmetries. There are
two observations that are usually useful when con-
structing such representations. Firstly, most atomic-
scale properties are continuous and smooth functions
of the atomic coordinates. Representations that pre-
serve this smoothness are preferred. Secondly, repres-
entation usually loses a certain amount of informa-
tion. Discarded information might limit the accuracy
of the model.

Early interatomic interaction potentials used just
the pairwise distances [44] to compute pairwise
forces. While conceptually simple and computation-
ally efficient, this approach can not describe com-
plex interactions. More advanced descriptors were
primarily based on fingerprints driven by chem-
ical intuition [45–48], and molecular and crys-
tal graphs [49–52]. Modern empirical interatomic
potentials [53–55] are typically expressed as an addit-
ive combination of local terms and long-range pair-
wise contributions. Hence, additive, atom-centered
representations have become popular in molecular
ML.

Other possible material representations include
structure fingerprints [56], inspired by the Fourier
transform Diffraction fingerprints [57], which
are widely used as crystal descriptors. Coulomb
matrices [58] each element is calculated based on the
Coulombic interactions between atoms. The diagonal
elements reflect the properties of individual atoms,
while off-diagonal elements represent interactions
between different atoms. As it is schematically depic-
ted in figure 3. And other methods like: bags of bonds
[59], Indicators from quantum chemical calculations
[60], empirical valence bond method [61], SPRINT
method [62], Overlap matrix eigenvalue fingerprints
[62, 63].
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Figure 4. Different sub-fields of machine intelligence.

Topological descriptors [43], particularly those
based on persistent homology, are advanced tools
used in materials science to encode compounds’
structural information. They work by representing
chemical structures as a series of interconnected
points (like a 3D point cloud), capturing the struc-
ture’s local and global details.

Voxel-based representations [64] naturally pre-
serve translation-invariant features and provide a rich
input to computer-vision inspired neural networks,
but until recently [65] suffered from the lack of a way
to encode the rotation symmetry.

Graph representation of an atomic system [66]
respects all the symmetries and also provides for
interaction locality. It is used in most state-of-the-art
ML methods. We will discuss it in more detail in the
next section 2.3.

In small organic molecules, most information
about the structure can be recovered from just a
graph of atoms and bonds between them. This
allows grammar-based representation, exemplified by
the Simplified Molecular Input Line Entry System
(SMILES) [67], to be commonly used to represent
them. However, it is limited to stereochemistry types,
has no standard for handling aromaticity, and no way
to generate canonical representation [68]. The recent
development of SELFIES [69] as next-generation
molecule text representation has the potential to over-
come someof these limitations.However, the SMILES
or SELFIES methods cannot be used to describe crys-
tal structure yet because crystal representation must
satisfy translational, rotational, and permutational
invariances. In a recent article, the first string-based
method for representing crystal structures SLICES
was presented [70].

The methods mentioned here are by no means an
exhaustive list. Musil et al [71] provided an excellent
review of the different methods used for the structure
representation of molecules and crystals. The choice
of representation ultimately depends on the available
data. While numerous databases are readily access-
ible online [9], 2D material datasets remain limited.
However, the field is rapidly evolving with the avail-
ability of new datasets [72–74], and further research is

required to explore the potential of different material
representations fully.

2.3. Machine learning
Machine intelligence or Artificial intelligence is a rap-
idly growing field encompassing ML and deep learn-
ing (DL). ML is a subfield of artificial intelligence
concerned with developing algorithms and statistical
models that enable computer systems to learn from
data and make predictions or decisions based on that
data. In contrast, DL is a specific subset of ML that
uses artificial neural networks to perform tasks that
require a high degree of abstraction, such as image
and speech recognition, natural language processing,
and the applications of other scientific domains [75].
The relationship between the fields is depicted in
figure 4.

While both ML and DL involve training
algorithms on data to make predictions or decisions,
they differ in their approach to learning and the types
of problems they are best suited for. ML typically
relies on hand-crafted features usually designed by
domain experts, reflecting their priors and induct-
ive biases to capture the relevant information in the
data. In contrast, DL models learn to extract relevant
features directly from the data using multiple layers
of interconnected nodes that can learn increasingly
abstract representations of the data. Reflecting the
biases and the symmetries into those layers is usually
more complicated, as it requires the introduction of
invariances and equivariance into the definition of
the layers.

The ability of DL models to automate feature
selection is a significant advantage over traditional
ML methods. This advantage has been demonstrated
in numerous applications, including images [76],
speech recognition [77], natural language processing
[78], game playing [79], protein folding [80]. For
example, in material science, DL models have been
used to predict or classify material properties without
involving hand-crafted features. Ma et al [81] used a
combination of DL and ab initio calculations to dis-
cover novel 2D ferroelectric materials. Wilhelm et al
[82] employed various DL methods to predict the

5
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Figure 5. Convolution neural network. The 2D material image. Reproduced from [88]. CC BY 4.0.

physical properties of Van der Waals heterostructures
from their constituent monolayer properties.

ML can be broadly classified into three categories:
supervised learning, unsupervised learning, and RL.
In supervised learning, a model is trained on labeled
datasets of input-output pairs to learn the underlying
relationship between the input and output variables.
On the other hand, unsupervised learning involves
training a model on an unlabeled dataset to discover
patterns and structure in the data, relying on met-
ric distances and differences between samples. RL is
a type of learning in which an agent learns to interact
with an environment to maximize a reward signal.

The development of machine intelligence has led
to numerous breakthroughs in fields such as com-
puter vision, natural language processing, and robot-
ics. With the availability of large amounts of data
and the development of powerful computing hard-
ware, the potential of machine intelligence to revo-
lutionize various industries and sectors is enormous.
Goodfellow et al [75] provide a comprehensive over-
view of ML and DL, including their classifications,
applications, and challenges.

In recent years, ML algorithms have been extens-
ively used for predicting or classifying material prop-
erties. For instance, decision trees, support vector
machines [83, 84], and other ML methods have
been applied to 2D materials [85, 86]. Wilhelm
et al [82] employed different ML methods, including
AdaBoost, ElasticNet, Gradient Boosted Trees, Kernel
Ridge Regression, and Support Vector Regression,
to predict the physical properties of Van der Waals
heterostructures from their constituent monolayer
properties.
Convolution neural networks (CNNs) [87] are

highly effective in DL, specifically for spatial data.
Convolutional layers use kernels to scan the input,
which is typically discretized on a grid, and the same
filter is used multiple times with different positions
in the input. Such parameter sharing makes training
CNNs more efficient. Translation invariance is also
an essential feature of convolution. It is particularly
important for image processing because features such
as edges and shapes can be present anywhere in the
case of images; thus, convolution helps capture these
features regardless of their location.

Another useful feature is local connectivity.
Convolutional layers use kernels with varying spa-
tial extent. The schematic illustration of simple CNN
is presented in figure 5. This local connectivity allows
the network to capture local patterns in the structure
or the image, such as edges, corners, texture in the
case of images, or atom types and other physics-based
descriptors e.g. structure density, volume per atom,
maximum packing fraction, structural complexity
[89], XRD powder pattern [90], orbital field matrix
[91], and JarvisCFID [92]. Combining multiple con-
volutional layers with different filters can capture
increasingly complex patterns, allowing the network
to learn hierarchical representations of the input.
Usually, convolutional layers are followed by pooling
or reduction layers, designed to reduce the spatial res-
olution of the input while retaining the most import-
ant information. This helps to make the network
more robust to small movements after translation
translations and deformations in the input and also
reduces the number of parameters that need to be
learned.

The main issue with utilizing the regular CNN
(where the domain of the operation is defined as a
grid) for materials science is that the locations of
atoms and molecules are usually not restricted to
a grid, and their precise locations carry important
information that will be lost if discretized to a grid.
Based on that, the authors of SchNet [93] develop
a continuous filter convolution where the input is
not required to be embedded on a grid. SchNet is
designed to learn a representation for predicting dif-
ferent physical attributes, mainly energies and atomic
forces. The model is invariant with respect to trans-
lation and permutations of atom indexing, with a
smooth energy prediction w.r.t. perturbation to atom
positions and energy conservation of the predicted
force fields. The energy and force predictions are rota-
tionally invariant and equivariant, respectively. At the
time, SchNet demonstrated state-of-the-art results on
the QM9 [94, 95] dataset and accurate results for
MD17 [96] and ISO17 [93].

2.3.1. Graph neural networks
Graph neural networks (GNNs) [97, 98] are an
important class of ML algorithms that operate on

6
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Figure 6. Convolutional GNN (a) example of graph structure (b) for each node computational graph is constructed, where each
layer contains aggregation functions with shared waits across that layer (c) upscaled vision of CGNN.

graph-structured data. Mathematically, a graph con-
sists of two sets: nodesV (alternatively called vertices)
and edges E. An edge connects two vertices, hence
E⊂ V2. A graph can have additional data associ-
ated with its elements, typically called node and edge
features.

Such general and straightforward definitions
make graphs a suitable mathematical model for a
wide variety of data. For example, images can be
presented as a graph structure with a regular grid-like
structure, with individual pixels representing nodes
and RGB channel values at each pixel serving as node
features. CNNs have shown a great ability to extract
features from image-like data. Thus, it would be nat-
ural to generalize this idea to graphs of any kind. A
rectangular convolutional filter expects a fixed num-
ber of pixels as its input. The weights also depend on
the relative position of the pixels. A graph, however,
does not have a natural ordering of the neighbors and
can have an arbitrary number of them. Therefore, in a
graph convolution, every neighboring node particip-
ates with the same weight.

Consider a graph example in figure 6(a) that can
represent a small molecule. Figure 6(b) depicts how
the two-layer classic convolutional GNN looks like
for that graph. The first layer (layer 0) consists of just
node feature vectors, which serve as an input to GNN
layers. For each node, we define a computational
graph that differs from node to node and depends
on node surroundings, but the depth is the same for
all of them. Node 1 6(b) aggregates and processes
information by a nonlinear function,whichmay be by
itself a small NN. The information aggregation from
node neighbors and neighbors of its neighbors, such
aggregation is called two-hop aggregation or two lay-
ers of GNN block. Usually, there is no need to have a
large number of GNN layers unless you are working
with graphs of high diameter. To make GNN more
expressive, the post and pre-processing layers and

residual connections can be added as schematically
shown in 6(c). The second way to improve GNNs is
to modify the GNN blocks by themselves.

GNNs have been successful in many applications
[99]. Recently, GNNs have found application in
materials science, showing promise in tasks such as
crystal structure prediction and property prediction.

In the context of crystal structure prediction,
GNNs can be used to model the interactions between
atoms in a crystal lattice and predict the resulting
arrangement of atoms. This approach has proven
highly effective, with some studies reporting accuracy
comparable to the traditional ab initio computational
methods, such as DFT calculations [66, 100].

One of the key advantages of GNNs for materials
science applications is their ability to handle large and
complex graph structures, which is often the case for
crystal structures. Additionally, GNNs can be trained
on large datasets, allowing them to capture complex
patterns in the data that are not easily modeled using
traditional methods.

As a result, GNNs have been actively researched
in the field of materials science in recent years, with a
growing body of literature demonstrating their effect-
iveness for a variety of tasks. In one of the earli-
est works that used GNNs for crystal properties pre-
diction, [66], the authors use Graph Convolutional
Neural Network with the representation of the ele-
mentary cell of the crystal in the form of a graph,
taking into account periodicity (see figure 7). The
information about atoms is stored in the graph nodes,
while graph edges represent interatomic distances.

The next significant advancement in this field
involved the application of methods based on a
more advanced variant of GNN, known as the
message-passing neural network. MatErials Graph
Network (MEGNet) [101] is designed to address
the limitations of existing ML models. It incorpor-
ates global state attributes (see figure 8) and allows

7



2D Mater. 11 (2024) 032002 A Al-Maeeni et al

Figure 7. CGNN. Illustration of the crystal graph convolutional neural networks. (a) Construction of the crystal graph. Crystals
are converted to graphs with nodes representing atoms in the unit cell and edges representing atom connections. Nodes and edges
are characterized by vectors corresponding to the atoms and bonds in the crystal, respectively. (b) Structure of the convolutional
neural network on top of the crystal graph. R convolutional layers and L1 hidden layers are built on top of each node, resulting in
a new graph with each node representing the local environment of each atom. After pooling, a vector representing the entire
crystal is connected to L2 hidden layers, followed by the output layer to provide the prediction. Reprinted with permission from
[66], Copyright (2018) by the American Physical Society.

for composability. The MEGNet models outperform
prior ML models in predicting properties such
as internal energy, enthalpy, Gibbs free energy,
formation energies, band gaps, and elastic moduli.
MEGNet also presents two strategies to address data
limitations in materials science and chemistry. These
strategies include a physically-intuitive approach to
unify multiple free energy MEGNet models into a
single model and using transfer learning from a lar-
ger data set to improve property models with smaller
amounts of data.

However, constructing the edges of the structure
graph based on the atoms pairwise distances fails
to account for the directional information between
atoms. To address this issue, Gasteiger et al [102]
developed a GNN model that embeds directional
information in the form of message transforma-
tions based on the angle between two atoms. The
transformed messages are then propagated using the
message-passing mechanism. Notably, the embed-
dings of the directional messages are rotational
equivariant. DimeNet [102] utilizes the spherical
Bessel function and spherical harmonics to con-
struct an orthogonal representation of directional
messages. This approach achieves better performance
with fewer parameters (75% reduction) compared
to the standard Gaussian radial basis representation
used by SchNet.

DimeNet++ [103] is an improved version of
DimeNet that addresses the issue of combinatorial
representation explosion by reducing the number of
embeddings in the directional message passing block.

In the original DimeNet, every message between
interacting pairs is embedded separately, resulting
in a combinatorial explosion of embeddings. The
situation becomes worse in the interaction block,
where every triplet is embedded to represent the bond
angles. This makes operations in the directional mes-
sage passing block 15xmore expensive than elsewhere
in the model. To address this issue, DimeNet++
replaces the bilinear layer used in the original direc-
tionalmessage passing blockwith a simpleHadamard
product and compensates for the loss in expressive-
ness by adding multilayer perceptrons (MLPs) for the
basis representations. This results in the same accur-
acy as the original DimeNet, at a fraction of the com-
putational cost. DimeNet++ also leverages the fact
that certain parts of the model use a higher num-
ber of embeddings by reducing the embedding size
in these parts via down- and up-projection layers.
This both accelerates the model and removes inform-
ation bottlenecks. In addition to these improvements,
the authors found that using four layers performs
similarly to the original six for some energy predic-
tion tasks. They also observed that larger batch sizes
significantly slowed down convergence, and mixed
precision caused the model precision to break down
completely. However, the relative error of DimeNet is
below float16’smachine precision, which, indeed, can
be expected.

GATGNN [104] is another variant of GNNs
based on the attention mechanism. It introduces
a model based on GNNs composed of multiple
graph-attention layers and a global attention layer
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Figure 8. An overview of a MEGNet module. The initial graph is represented by the set of atomic attributes V= vi, bond attributes
E= {(ek, rk, sk)}, and global state attributes u. In the first update step, the bond attributes are updated. Information flows from
atoms that form the bond, the state attributes, and the previous bond attribute to the new bond attributes. Similarly, the second
and third steps update the atomic and global state attributes, respectively, by information flow among all three attributes. The
final result is a new graph representation. Reprinted with permission from [101]. Copyright (2019) American Chemical Society.

to predict inorganic material properties. The model
learns the complex bonds shared among the atoms
within each atom’s local neighborhood, and the
global attention layer provides the weight coefficients
of each atom, improving the model’s performance.
This approach allows the model to capture the dif-
ferent contributions of the atoms in the crystal to
the global material property. The paper highlights the
limitations of existing structural descriptors and the
characteristics of desired structural descriptors. It dis-
cusses the use of GNNs in material property predic-
tion and introduces the attentionmechanism to learn
the contribution of different context vector compon-
ents to the merged context vector.

GemNet [105] is an improved architecture that is
based on DimeNet++. The architecture of GemNet
incorporates three different forms of interaction: geo-
metric message passing, one-hop geometric message
passing, and pure atom self-interaction based on
atom embeddings. Ablation studies have shown that
all three interaction forms benefit the model’s per-
formance.While two-hopmessage passing introduces
significant computational overhead, it is mitigated by
a down-projection layer and by the ablated GemNet-
T model. Interestingly, the GemNet-T model per-
forms remarkably well on the MD17 dataset, but not
on COLL. The author suggests that one-hop message
passing is expressive enough for certain practical use
cases. In contrast, two-hop message passing provides
an advantage for more challenging tasks that involve
fitting multiple molecules at once. In typical ML
models, the variance of activations is stabilized using
normalization methods, which have been shown to
have various positive effects on training. However,
these methods can have undesirable side effects in

the context of molecular regression. To address these
issues, GemNet stabilizes its variance by introdu-
cing constant scaling factors, as suggested by Brock
et al [106]. Skip connections, non-linearities,message
aggregation, and Hadamard/bilinear layers primar-
ily impact the activation variance. Simple empirical
scaling factors are sufficient to keep the activation
variance roughly constant. Other measures, such as
adaptive gradient clipping, scaled weight standard-
ization, or weighting the residual block with zero at
initialization, turn out to be not very beneficial for
the accuracy of the model. In summary, GNNs have
gained widespread popularity in the field of material
property prediction. They naturally provide desirable
inductive bias by respecting symmetries and inter-
action locality and demonstrate state-of-the-art per-
formance. Being DL methods with a large number of
parameters, they benefit greatly from the increased
amounts of data.

3. Material design

3.1. High-throughput screening
High-throughput screening (HTS) can be viewed
as the most straightforward computational material
design technique. It consists of an expert-provided
algorithm for generating candidate materials and a
computational module that predicts the target prop-
erties of a material. It can work either ab-initio or
using ML. The success of HTS depends on the qual-
ity of the initial screening scope, which experts in the
field should carefully define. To reduce the cost of
HTS, computational funnels may be used, in which
cheaper or easier-to-compute properties are used as
initial filters, with more sophisticated methods or
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Figure 9. HTS for screening thermally activated delayed fluorescence organic emitters, starting from selecting fragments to the
device integration. Reproduced from [107]. CC BY 4.0.

properties used to narrow down the pool of candid-
ates for final selection. An example HTS pipeline is
presented in figure 9.

HTS has been successful in identifying a variety
of materials [108–110]. Zhang et al [111] review the
use of high-throughput computational screening and
data mining to discover 2D materials.

In another study [112], the authors present sev-
eral examples of the use of computational screening
to identify promising 2Dmaterials for various applic-
ations. They use DFT calculations to screen a data-
set of over 150 Na-based layered materials, identify-
ing potential sodium-based battery electrodes with
desirable properties such as high average voltage, high
sodium ion mobility, and low volume change dur-
ing the intercalation/de-intercalation of Na ions. In
addition, the authors show the use of HTS to identify
2D photocatalysts with positive phonon dispersions,
indicating that theymay be experimentally exfoliated.

First-principles calculations combined with HTS
are used to identify quantum spin Hall insulators,
materials with a specific type of topological order that
could be used in spintronic devices [113–118].

ML methods have played an important role in
identifying layered, exfoliatable materials. Exfoliation
techniques, such as mechanical cleavage, surfactant-
assisted ultrasonication, and ion intercalation,
remain a popular way to prepare various 2D mater-
ials. These techniques have played a significant role
in the exfoliation of 2D materials from their corres-
ponding layered bulk materials, such as graphene,
TMDs, MXenes, and phosphorene [113, 119–123].
Therefore, finding materials that can be exfoliated is
an important task.

Mounet et al in [113] performed high-
throughput calculations using van der Waals DFT
to predict easy exfoliating 2D materials. More than
100 000 unique crystal structures were extracted
from public databases for selection using a specially
designed protocol. As a result, more than 5000 struc-
tures were filtered and classified as layered structures.
In the second stage, selected structures were validated
with DFT computations. The result of the study is
1036 candidate materials for easy exfoliation.

HTS search performance is limited by the candid-
ate evaluation speed, and ML offers an obvious way.
The paper by Noh et al [124] is a typical example of
this work. They combine DFT, ML, and HTS. The
authors use pre-trained ML to do the initial screen-
ing, followed by DFT, for more precise estimation.
The authors built on the crystal convolutional neural
network (CGCNN) [125] model, which we discuss
in section 2.3.1. They modified it in two ways. First,
they use the hyperbolic tangent instead of softplus
as the activation function, which regularizes the lat-
ent vector within the range of (−1,1). This causes
crystal feature vectors with similar properties to be
clustered in the latent space. Secondly, they useMonte
Carlo dropout [126] to quantify the uncertainty of
the predictions. It generates multiple slightly differ-
ent copies of the model by randomly dropping some
connections between neurons. The diversity among
the predictions of the model copies is treated as an
uncertainty estimate.

In a recent article [127], a combined approach
using various methods for generating new crystalline
structures was also proposed, along with a vast num-
ber of DFT calculations to determine their properties.
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Figure 10. Classification of metaheuristics algorithms. Reproduced from [131]. CC BY 3.0.

The article suggests and implements scaling the initial
dataset for material research through active learning.
For this purpose, a pipeline was proposed for generat-
ing crystalline lattices of various structures and com-
positions, unlike those presented in the initial data-
set. The generated candidate structures are filtered by
a GNN and further calculated using DFT. This iter-
ative method of enriching the database was proposed
to yield hundreds of thousands of stable structures.
Some were selected as targets for synthesis in an auto-
mated laboratory and were obtained experimentally
[128].

Overall, high-throughput computational screen-
ing accelerated byML anddatamining offers a power-
ful tool for discovering novel 2D materials, and the
research community expects that these methods will
continue to play a significant role in the development
of materials science. By using materials databases and
computational methods based on advancements in
ML, researchers can efficiently gather, access, store,
and analyze materials data, facilitating the design of
materials with specific properties and applications.
These methods have already led to the discovery of
several promising 2Dmaterials with potential applic-
ations in areas such as energy storage and electron-
ics, and they have the potential to identify other func-
tional 2D materials, such as 2D superconductors,
photocatalysts, and photoelectronic materials.

3.2. Evolutionary and global optimization
Evolutionary methods are a class of metaheuristic
algorithms that are used for solving complex optim-
ization problems that involve a large number of
variables and constraints. Biological evolution pro-
cesses, swarm behavior, and physical laws inspire
these algorithms. Evolutionary methods are broadly

classified into two categories: single-solution based
and population-based metaheuristic algorithms; see
figure 10 for details. Single-solution based metaheur-
istics use a single candidate solution and improve it
using local search, but they may get stuck in local
optima. Population-based metaheuristics use mul-
tiple candidate solutions to maintain diversity in the
population and avoid getting stuck in local optima
[129]. Those methods avoid local minima at the cost
of computing multiple evolution processes at once.
Genetic algorithm (GA) is one of themost widely

used evolutionary methods miming the Darwin the-
ory of survival of the fittest in nature [130]. The basic
elements of GA include encoding the problem at hand
in some representation, usually a bit-vector, fitness
selection function, and biological-inspired operators
such as selection, mutation, and crossover.

The principle of GAs is to start with a population
of potential solutions representing a set of possible
solutions to the optimization problem. Each solution
is evaluated based on a fitness function that meas-
ures how well it solves the problem. The solutions
with higher fitness are more likely to be selected for
reproduction.

Reproduction involves selecting two solutions
from the population and creating a new solution (off-
spring) by combining parts of the two parents. This
process is called crossover. The offspring may also
undergo randommutations, where a small portion of
the solution is changed randomly. The idea behind
mutation is to introduce new solutions into the pop-
ulation that may not have been explored before, ana-
logous to local search.

The refreshed population, comprising parents
and offspring, undergoes the same selection cycle,
crossover, and mutation. This iterative process is
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repeated for several generations, typically until a stop-
ping criterion is met, such as a maximum number of
generations or a minimum acceptable fitness value.

Over successive generations, the population
gradually converges toward superior solutions, driven
by the selection process that favors solutions with
higher fitness scores. The genetic operators of cros-
sover and mutation introduce diversity into the pop-
ulation, which helps avoid getting stuck in local
optima.

The success ofGAs is due to their ability to explore
a large search space efficiently and find good solutions
even in the presence of noise, uncertainty, and the lack
of gradient information.

Evolutionary algorithms have a rich history of
being used for inverse design [132, 133]. In the rest
of the section, we review notable cases of their applic-
ation for designing 2D systems.

In [134] Andreas Håkansson and Jose Sanchez-
Dehes present a method for the inverse design of
photonic crystals (PhCs) [135, 136] using a GA. PhCs
are materials with unique properties that can be used
to design optical devices with sub-wavelength cavities
and low loss. These materials have potential applica-
tions in various fields, including telecommunications,
sensors, and energy harvesting [137–139]. While tra-
ditional design methods rely on physical intuition
and insight into PhCs nature. In contrast, the inverse
design enables the optimization of functional devices
based on predefined constraints. This approach has
been used to design a variety of PhC components,
including spot-size converters [140], photonic band-
gap materials [141], cavities for QED experiments
[142], low loss PhC waveguide (WG) bends [143].

In particular, the work [144] considers the design
of a de-multiplex WG coupler (DEMUXWGC).
The purpose of the device is to separate and
couple two wavelengths from a single dielectric
WG to two separate PhC-WGs. The design vari-
ables for the DEMUXWGC are the coupling effi-
ciency and crosstalk attenuation for each channel
and wavelength. To estimate these parameters, the
authors calculate the amplitudes of the electric field
in the center of the PhC WGs. Since the PhC-WG is
designed to support a single mode, the total intensity
flux of the coupledmode can be scaled proportionally
with the maximal amplitude of the mode profile.

Kildishev et al [145] use evolutionary methods to
design a three-layer near-field lens, a lens designed to
operate on a scale much smaller than the wavelength
of light. The authors use three optimizationmethods:
simulated annealing (SA), which is based on the phys-
ical analogy of cooling crystal structures; a GA; and
particle swarm optimization (PSO). SA had the best
result.

The authors also note that the practical fabric-
ation of optimal devices requires taking additional
considerations into account, such as geometrical lim-
itations, material properties, and the impact of the

fabrication process onmaterial properties. These con-
straints can affect the performance of the materials
andmust be considered in the design process. Overall,
the authors demonstrate the successful use of optim-
ization techniques for the design of metamaterials for
nanoscale optical sensing and imaging.

Hassan and Tallman in [146] present a study
on the use of global search algorithms to solve the
inverse problem of computing strains from conduct-
ivity changes in self-sensingmaterials [147–153]. The
authors explore the use of three commonly used
metaheuristic global search algorithms, namely SA
based on [154, 155], PSO based on [156–158] and
GA based on the work of [159, 160] to solve the
ill-posed, multi-modal inverse problem. The study
is motivated by the current limitations in determin-
ing the underlying mechanical state of a piezoresist-
ive sensor from electrical measurements. Based on
the experimental loading setup, the authors formu-
lated a boundary value problem (BVP) of a plate con-
sisting of an unknown displacement boundary con-
dition. The BVP was integrated with the finite ele-
ment method to solve for the optimum displace-
ment boundary condition. The SA, PSO, and GA
algorithms were used to find the solution to the
BVP. The authors chose parameter values for the
algorithms based on the observation that the plate
did not fail during the experiment and the expected
applied displacement to be lower than the failure dis-
placement. The study results indicate that the three
global search algorithms were able to find solutions
to the inverse problem of computing strains from
conductivity changes. The authors draw a quant-
itative comparison between the three algorithms
regarding the quality of the inversely computed dis-
placements and strains, the variability and accur-
acy of the displacement solutions, and the compu-
tational efficiency regarding the fitness function and
runtime.

Zhao et al [161] employ an evolution-
ary algorithm USPEX combined with ab initio
simulations [162–164] to search for structural phases
of 2D boron allotropes with the goal of discovering
new superconducting phases. The authors use the
monolayer, bilayer, and thin multilayer 2D boron
structures to study superconductivity and perform
searches based on the spacing between layers ofmulti-
walled boron nanotubes. The results of the study
reveal five energetically stable structures with high
symmetry. The authors find that superconductivity
is ubiquitous in these newly found boron structures,
with Tc values higher than the liquid-helium tem-
perature. The authors attribute the high Tc values
to the presence of multiple vibration modes in the
electron–phonon coupling mechanism.

Study of NaxCly systems at various conditions by
USPEX algorithm [165] predicted two exotic stable
compounds, Na3Cl and Na2Cl were found at nor-
mal conditions as 2D phases on a graphene substrate
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[166]. There are many other USPEX predictions
applied to 2D materials [167, 168].

Bahmann and Kortu in [169] developed an evol-
ution strategy-based algorithm for crystal structure
prediction called EVO. The algorithm uses crys-
tal structures as individuals and Gibbs free energy
as the fitness function that must be minimized.
The authors also employed variable-cell structure
relaxation [170], which provides an efficient local
optimization and makes the structures and energies
comparable for a global search.

The author’s implementation of EVO has been
successfully applied to find crystal structures of ele-
ments in the 3rd main group, encompassing vari-
ous space groups and utilizing different multiples of
the number of atoms in the conventional cell. The
authors also found 2D structures, such as a boron
sheet, with structural features not previously con-
sidered in the literature.

Two-dimensional magnetic materials have attrac-
ted significant attention due to their potential applic-
ations in spintronics and data storage [171–177].
Stimulated by these exciting experimental reports,
56 new magnetically ordered monolayer structures
were predicted from high-throughput computation
to be exfoliated from known magnetic bulk materials
[113]. To search for stable 2D magnetic structures,
the authors further developed a new computational
scheme based on the ab initio evolutionary algorithm
USPEX [162–164] combined with the spin-polarized
DFT. The initial structures are randomly produced
with assigned layer group symmetry and user-defined
thickness. They are assumed to have either ferro-
magnetic, anti-ferromagnetic or nonmagnetic (NM)
orders. User inputs determine the ratio of different
structures (NM, FM-LS, FM-HS, AFM-LS, AFM-HS,
FM-LSHS, and AFM-LSHS). The authors evaluated
the reliability and accuracy of their new method by
investigating the 2DCrI3 system. Through this search,
they uncoveredmany newmetastablemagnetic struc-
tures that had not been previously identified in high-
throughput computational screenings. Additionally,
these structures did not have any known parent bulk
materials in the database, indicating that the search
was not biased and offered a more comprehensive
sampling of the configuration space. The most stable
magnetic structure contained 19 atoms per unit cell
and was identified as the 19-P6/mmm borophene as a
stable striped-AFM semiconductor.

Chen et al in [178] have proposed a GA for
designing high-performing optical sensors, focus-
ing on the use of transition metal dichalcogen-
ide (TMDC) Bloch surface wave (BSW) technology.
This technology offers advantages such as an all-
dielectric structure, sharper resonance peaks, and a
wider wavelength range. However, previous studies
have demonstrated that the sensitivity of BSW sensors
is typically lower than that of surface plasmon reson-
ance sensors when using the standard Kretschmann

prism coupling method. To enhance the sensitiv-
ity, the researchers proposed a multi-variable, multi-
objective optimization method utilizing an improved
GA. By optimizing such factors as film thickness,
periods of one-dimensional PhC, the thickness of
the defect layer, and the number of layers of TMDC
materials, they were able to increase the sensitivity of
the sensor significantly. The highest sensitivity was
reached using MoSe2, WSe2, MoS2, or WS2, resulting
in an improvement of 24.3%, 24.8%, 22.7%, or 24.4%
respectively. This optimized BSW sensor has potential
applications in various fields, including food safety,
environmental monitoring, and biological analysis.

Mishra et al in [179] propose an approach to
training and quantifying quantum MD (QMD) sim-
ulations. The team introduced a multi-objective
GA (MOGA)-based approach for the reactive MD
(RMD)method. Themethod enables large-scale sim-
ulations of chemical events in complex materials
involving multimillion atoms. The approach is used
to study the high-temperature sulfidation of MoO3

flakes with H2S precursors during the chemical vapor
deposition synthesis of MoS2 monolayers. The goal
was to train ReaxFF [180] parameters against QMD
simulations by estimating the number of H–S, Mo–
O, and Mo–S bonds as a function of time. The results
showed that the MOGA-based approach for RMD
was able to reproduce the time evolution of key reac-
tion events in the QMD simulations.

Patra et al in [181] presents a new strategy of util-
izing neural networks combined with GAs to design
soft materials without pre-existing databases effi-
ciently. This strategy involves the selection of new
candidates for the GA based on an objective function
that quantifies their properties in relation to target
values. The authors note that this approach enables
the GA to learn from its history, accelerating the pro-
cess compared to an evolutionary process alone.

GAs have also been combined with MD to study
defects. For example, later, Patra et al in the paper
[182], investigate the extended structure of point
defects and their dynamical evolution in transition-
metal dichalcogenides. A fundamental understand-
ing of the atomic-scale structure and dynamics of
defects in these low-dimensional systems and their
role in phase transitions is critical for advances in
nanotechnology.

This study combines ML methods with MD sim-
ulations to study how point defects in a 2D mono-
layer of MoS2 are organized into extended structures.
The authors use high-resolution transmission elec-
tron microscopy experiments to validate their find-
ings and show how defects evolve from random point
defects to extended line defects, which play a role in
driving phase transitions from a semiconducting 2 H
phase to a metallic 1 T phase. Simulations and exper-
iments suggest that the alignment of the extended
line defects influences the size and shape of the 1 T
regions. By introducing them into a MoS2 layer, the
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Figure 11. The process for generating 2D materials. It describes the architecture of a material transformer generator (MTG)
pipeline. Reproduced from [183]. CC BY 4.0.

relative proportions of the metallic and semiconduct-
ing phases can be systematically controlled.

3.3. Machine intelligence
ML works by fitting a heuristic, ‘intuitive’ model
for the system under study, on the high level, it is
the same for both forward and inverse problems.
Designing a new material, is, however, a much more
difficult problem than predicting properties. Instead
of summarizing the information about a given struc-
ture and predicting a number, the algorithm must
traverse the intractable space of all possible arrange-
ments of elements and find one that is stable and has
different properties.

3.3.1. Generative modeling
As we discussed previously, raw atomic structures
do not match well with the ML mathematical and
computational apparatus. Hence, generativemethods
map the structures into a more suitable represent-
ation, learn the probability distribution inside this
space, and thenmap from it to the structures. A com-
mon aspect of all the methods developed so far is that
this second mapping does not fully define the struc-
tures, but just provides an initial guess which is then
refined using the forward models.

An illustrative approach of this kind is present in
figure 11Dong et al in [183] propose amaterial trans-
former generator, a pipeline for 2Dmaterial discovery
that integrates a transformer-based 2Dmaterial com-
position generator, two template-based crystal struc-
ture predictors, and a GNN potential-based structure
relaxation algorithm.

Firstly, the material composition is mapped into
a sequence and sorted by electronegativities of ele-
ments. The distribution over those sequences is
learned using Transformer [184] in the step called
blank language models for materials. Notice the
information loss.

Secondly, the initial guesses for the structures
are produced using two crystal structure predic-
tion algorithms: template-based crystal structure

prediction (TCSP) [185] andML-based crystal struc-
ture prediction (CSPML) [186]. TCSP is based on
oxidation state patterns, while CSPML uses a ML
model to select templates based on structural simil-
arity. For a new 2D formula, both TCSP and CSPML
would first select all template structures with the pro-
totype ABC3, but the sorting process differs between
the two. TCSP focuses on element distance and cal-
culates the element mover distance score and element
oxidation states. On the other hand, CSPML selects
candidates solely based on the topological features of
the atomic coordinates and does not use any inform-
ation about the elemental composition.

Thirdly, two ML potential-based relaxation
algorithms are used to optimize the structures. These
algorithms are BOWSR [187], which uses Bayesian
optimization with symmetry relaxation andM3GNet
[31], which utilizes materials GNNs with 3-body
interactions as an energy estimation model.

Finally, the formation energy and e-above-hull
energy of structures are calculated using DFT.

A set of known 2D formulas and their struc-
tures were collected from open datasets, including
C2DB, MC2D, 2DMatPedia, and V2DB. The pipeline
was trained using materials from various databases
(328 719 formula samples and 12 214 structures).
Variational autoencoder (VAE) is a generative

model that consists of two main parts: encoder and
decoder [188] similar to autoencoders (AEs) (see
figure 12 VAE). The VAE core idea is to learn
the latent probability space representation of objects
presented in a dataset. Sampling vectors from learned
latent space and decoding them should give us a new
object similar to what is presented in the training
dataset.

Noh et al in [189] introduced the first VAE gen-
erative model for inverse crystal design. This work
proposed a framework to learn continuous material
representation in a latent space. The algorithm con-
sists of three steps. Firstly, it represents the material
as a 3D image, by diving the space into voxels, and
atoms as balls. The second step is training an AE to
transform the images into a latent vector. Finally, a
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Figure 12. Schematic illustration of VAE, conditional GAN, and genetic algorithms.

VAE is trained to generate new materials in this lat-
ent space. The model was trained and tested on a cus-
tomVOdataset comprising 10 981 VxOy compounds.
The authors reported newly generatedmetastable VO
structures and supported their findings with DFT
simulations.

The Crystal Diffusion Variational AutoEncoder
(CDVAE) [190] uses a GNN to map the materials
into a latent vector space. An MLP is used to pre-
dict the lattice parameters and chemical composition
from a latent vector. Finally, a random unit cell with
those parameters is generated and is relaxed using
a denoising model. CDVAE has been shown to out-
perform past methods in tasks such as reconstruct-
ing input structures, generating diverse and realistic
materials, and creating materials with specific optim-
ized properties.

The latest model that employs diffusion was
presented by the Microsoft research team [191].
MatterGen is a diffusion model that generates stable,

diverse inorganic materials across the periodic table
and can be fine-tuned to the generation of materials
with a wide properties range. The noise introduction
process is designed to independently disrupt the types
of atoms, coordinates, and lattice to achieve a phys-
ically motivated picture of the randomized mater-
ial. The equivariant scoring network was pretrained
for denoising. The authors claim that, compared to
the previous solutions, their model produces mater-
ials that are more than twice likely to be new and
stable, and also that the model predicts the energy
of the material 15 times closer to the local energy
minimum.

A VAE was also trained in [192]. A conditional
type of VAE is used to learn a continuous representa-
tion of the materials in a latent space. This research
explores the space of 2D materials from the point
of view of photocatalysts: these substances can be
used for photocatalytic water splitting, a technique
to produce hydrogen. This is a task of significant
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importance since hydrogen as transport fuel prom-
ises to alleviate the effects of global warming. The
authors use a database containing the properties of
2D materials computed via high-throughput DFT
calculations [193]. Based on this data, a generative
model learns the representations of 2D materials to
generate novel ones sampling from continuous rep-
resentations. The pipeline to learn the representa-
tions of the 2D materials consisted of ‘cell’ and ‘basis’
AEs and a segmentation network like in the iMatGen
framework. The analysis of the predictions of the ‘cell’
and ‘basis’ encodings was then used to train a condi-
tional VAE, whose latent space was sampled to gener-
ate new 2D materials. Subsequently, the novel mater-
ials were constrained and narrowed down to qualify
as potential catalysts. As a result of passing the ∼150
materials through a classification network, 19 mater-
ials with a probability of >0.99 belong to the stable
class. Moreover, it was observed that all 19 shortlisted
appeared to be halides since they were the dominant
type in the training dataset.
Generative adversarial networks (GANs) repres-

ent a class of generative models initially designed to
tackle image generation problems as VAEs. GANs
are composed of two neural networks, generator and
discriminator [194] (see figure 12 GAN). As an input
to the generator, it used a Gaussian noise vector,
which the generated output discriminator takes as an
input to judge if it is a real object or a generated one.
During the training, both NNs compete with each
other. Thus, generative NN can be trained to gener-
ate objects that are hardly distinguishable from those
presented in the dataset.

One of the classic examples of generative model
usage was presented in [195]. The generative model
was applied to metasurface properties prediction and
metasurface pattern generation. The core of the gen-
erative algorithm is a conditional deep convolutional
generative adversarial neural network (CGAN).

Kim et al [196] is one of the first examples where
conditional GANs were used in tandem with a critic
neural network to generate crystals on the base of
Mg–Mn–O ternarymaterials using an image-like rep-
resentation. They also use a variant of GAN that util-
ised Wasserstein distance [197] between generated
material target value distribution and target distribu-
tion for additional training stability.

In a recent work by Long et al [198], GANs with
constraints similar to algorithm architecture as in
[196] were applied to crystal structure generation.
Here, encoding of the lattice constants and atomic
positions is done by training the AE to learn latent
material representation space, which can be repres-
ented as an image. Overall, 50 000 structure image
representations were generated. However, only 9160
was reasonable because most of the generated struc-
tures contained atoms that occupies the same posi-
tion. 8310 structures among them are distinct. Thus,

it was shown that CCDCGAN is capable of repro-
ducing known structures and pushing boundaries by
predicting new materials.

In research by Song et al [199] GAN with ran-
dom forest (RF) classifier was proposed as a part of
a generative inverse design algorithm to discover new
2D materials. To generate chemically valid composi-
tions at the first stage,GAN learns to generate chemic-
ally valid formulas from known datasets. RF classifier
trained on a mixed dataset of 2D materials and non-
2D used to assign a probability for generated mater-
ial from the GAN of being 2D material. Here, the
probability was used as a ranking criterion, and 1485
hypothetical materials were generated with a probab-
ility of more than 0.95. DFT simulations were per-
formed to determine exfoliation energy. As a result,
31 materials were found to have exfoliation energies
of less than 200 meV, thus potentially easy to exfo-
liate. However, the proposed algorithm has its weak-
nesses; as the authorsmentioned, the crystal structure
prediction is a weak place here since it uses template-
based structure prediction. To generate novel mater-
ial with a unique structure, a more powerful structure
prediction algorithm is needed.
Text-based generation. With the recent explo-

sion of interest in language models (LM), two pre-
prints [200, 201] suggest generating material struc-
tures as token sequences using Transformer [184].
They try two modes: with character-level tokeniz-
ation, the model generates structures as text files,
character-by-character. With atom+coordinate-
level tokenization, the model discretizes the atomic
coordinates, and uses the resulting bins as coordinate
tokens, and generates them together with atom type
tokens. The authors claim performance comparable
to physically-motivated state-of-the-art models, for
generating both crystals and organic molecules. The
LM do not respect any kind invariance (permutation,
translation, rotation), which makes these ongoing
developments even more fascinating. Was the prob-
lem that simple all along?

3.4. Reinforcement learning
RL [203] is one of the ML methods during which
the model (so-called agent) learns to achieve a goal.
Unlike supervised learning, which relies on a static
dataset for training, RL is characterized by an agent
interacting with a dynamic environment, learning
from the consequences of its actions through a trial-
and-error strategy. RL methods are widely used in
robotics and automated systems. Together with mod-
ern achievements in robotics, they allow for auto-
matic atomically precise material construction, and
opens up a way to inverse material design on the
surface.

Chen et al [202] propose to use an RL-assisted
experimental method to build atom-by-atom Ag pat-
terns on a Ag(111) surface. The method is further
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Figure 13. (a) The RL agent learns to manipulate atoms precisely and efficiently through interacting with the STM environment.
STM is operated via actions (commands) at consisting of conductance G, bias V, and the two-dimensional tip position at the start
and end of the manipulation xtip, start, xtip,end, which are used to move the STM tip to try to move the adatom to the target
position. The agent samples the actions from a distribution (the so-called policy) π(st), where it is the state vector consisting of
the current and target adatom positions. The policy π is modeled as a multivariate Gaussian distribution with mean and
covariance given by a neural network. (b) The atom manipulation goal is to bring the adatoms close to the target position as
possible. (c) STM image of an Ag adatom on Ag substrate. Reproduced from [202]. CC BY 4.0.

described in figure 13. The interaction of the tip
and the atoms is difficult to describe theoretically
with sufficiently accurate prediction, and RL allows
us to automatically learn the manipulation of specific
adatomswith a specific STMmachine experimentally.

Banik et al [204] use an RL method to search for
optimal defect patterns in MoS2. The study proposes
to use Monte Carlo Tree Search to explore the defect
configuration space and identify potentially stable
configurations and evolution paths towards them.

3.5. Simulation-based inference
Simulation-based or likelihood-free inference meth-
ods are used in various scientific domains to infer
the underlying parameters of complex systems. This
complexity may stem from a generative or simulating
process. However, inferring these parameters poses a
significant challenge due to the intractability of the
likelihood function (a mapping from observed data
to parameters) and the necessity to align simulation
model parameters with prior knowledge derived from
domain expertise and empirical data. Bayesian infer-
ence tackles this challenge by furnishing a framework
for inverting simulations.

The typical intractability of the likelihood of
observed data given parameters, a vital component
for statistical inference, renders traditional statistical
methods inapplicable. In simulation-based inference,
the statistical model is defined by the simulator itself,

with parameters in themodel that describe the under-
lying mechanism and influence the transition prob-
abilities. Moreover, latent variables are integral to the
simulation, and the structure of the latent space may
vary among simulators.

Various approaches can be used to utilize
simulation-based inference for materials design.
These approaches share common components: the
simulator (e.g DFT algorithms), proposed distribu-
tion, and inference method. The simulator’s para-
meters are drawn from the proposal distribution, and
the simulator’s output is either used directly or as
input for a surrogate model, subsequently employed
for inference.

There are two broad categories of inference tech-
niques: those that utilize the simulator directly during
inference (e.g. approximate Bayesian computation
[205–207]) and those that construct a surrogate
model for inference. The former compares the sim-
ulator output directly to the data, while the latter
trains a surrogate model using the simulator’s out-
put as training data for the estimation or ML stages
[208–210]. The relationship between the latter cat-
egory and generative models is explored in the works
of Mohamed and Lakshminarayanan [211], Louppe
et al [212].

In Bayesian inference, the ultimate goal is to
obtain the posterior distribution of the parameters.
Some methods provide samples of parameter points
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from the posterior, while others yield a tractable func-
tion approximating the posterior. The decision on
which quantities to infer can be made early or post-
poned, depending on the method used.

In the probabilistic programming paradigm
[213], the simulator is written in a probabilistic pro-
gramming language. Utilizing a probabilistic pro-
gramming language allows for sampling from the
posterior distribution of input parameters and lat-
ent variables given observed data. These techniques,
based on Markov chain Monte Carlo or training a
neural network for proposal distributions, differ from
ABC in that the inference engine controls all steps in
program execution and biases each draw of random
latent variables to enhance the simulation’s likeli-
hood of matching observed data, thereby improving
sample efficiency. These algorithms facilitate not only
the inference of input parameters, but also the entire
latent process leading to a specific observation.

Simulation-based inference can be utilized in
materials design, offering insight into material prop-
erties and performance under various conditions,
thereby informing the design process. For a more
comprehensive analysis, Cranmer et al [214] provides
an excellent review of simulation-based inference.

4. Discussion and outlook

In this article, we review the state of the art in ML
for material design. The main data-driven methods
and their applications for forward and inverse design
in materials science were considered. ML methods
in the scope of 2D materials have yet to show their
full potential. The main limiting factor is the small
amount of data available for training models and still
huge material search space.

Due to the high computational cost of HTSmeth-
ods (like DFT), only a fraction of the desired mater-
ials and their properties can be directly calculated.
However, the situation is changing as the area is
attracting more and more attention. Improvement of
the HTS methods on one side and constant increase
of computational power on another might reveal the
option of simulating materials with large unit cells
and covering more material properties.

Despite the fascinating progress of DL models,
such approaches also have certain disadvantages, such
as insufficient interpretability of models [215]. All
large ML models are used as a kind of black box.
Furthermore, the generalizability of these models
remains a significant concern.

Also, one of the important disadvantages of all
results achieved by data-driven approaches is that
these results are purely theoretical and have not been
presented in comparison with experimental data,
and the difference can be significant. Currently, the
experimental data are insufficient. Experimentation
remains the bottleneck in the problem of material
design.

An automated laboratory for searching, synthes-
izing and testing (measuring) materials would solve
this problem of automatizing experimental material
search and data acquisition. The first prototypes have
already been demonstrated [216, 217]. Production
and measurement of 2D materials on demand in a
feedback loopwith self-correctingML algorithmswill
be a game-changing milestone.

Overall, progress in this area shows that the class
of 2D materials and their derivatives is little stud-
ied, and there are many materials with potentially
unique properties that have not yet been synthesized.
Everything indicates that in the near future, we will
have many discoveries in this area, some of which lie
on the surface.
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Appendix A. Inverse problem in natural
sciences

One of the earliest examples of an inverse problem is
the determination of the shape of a hill from the travel
time of a sliding particle on that hill [218], which was
solved by Niels Henrik Abel in 1826 [219–222]. This
work is generally accepted as the first formal math-
ematical solution to the inverse problem. However,
unlike Abel’s problem, which can be solved analyt-
ically, many inverse problems are difficult to solve
analytically due to their complexity and ill-posed
nature. In these cases, different numerical methods
are used to approximate the solution by incorporat-
ing assumptions and inductive biases in the form of
priors and regularizers to restrict the solution space
[223–225].

The inverse problem in NDT, which involves
determining the specimen parameters based on the
response signal from an NDT probe [226–230], has
studied the various techniques and applications of
NDT.

In the medical field, inverse problem solutions
have a wide range of applications, including med-
ical imaging to construct images of internal tissue
structures and diagnose diseases [231–236], radi-
ation therapy [237–241], and cardiology as a part
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of computational fluid dynamics to model fluid flow
based on pressure, velocity, and other measurements
[242–246].

In geology, inverse problems are used to infer
the interior structure or properties of the Earth in
terms of density and magnetism, or earthquake data
analysis [247, 248] by analyzing data from various
sources such as seismology, gravity, and magneto-
metry. This type of analysis can help scientists under-
stand the composition and dynamics of the Earth’s
interior, which is important for understanding pro-
cesses such as plate tectonics and volcanic activity.
Additionally, inverse problems are used in astronomy
to infer information about the properties of celestial
objects and the Universe based on measurements of
electromagnetic waves, such as light and radio waves
[249]. These techniques can be used to study a wide
range of astronomical phenomena, such as the struc-
ture of stars [250, 251], the distribution of matter in
galaxies [252, 253], and the properties of the cosmic
microwave background radiation [254].
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