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PM-MOE: Mixture of Experts on Private Model Parameters for
Personalized Federated Learning

Anonymous Author(s)

Abstract
Federated learning (FL) has gained widespread attention for its
privacy-preserving and collaborative learning capabilities. Due to
significant statistical heterogeneity, traditional FL struggles to gen-
eralize a shared model across diverse data domains. Personalized
federated learning addresses this issue by dividing the model into
a globally shared part and a locally private part, with the local
model correcting representation biases introduced by the global
model. Nevertheless, locally converged parameters more accurately
capture domain-specific knowledge, and current methods overlook
the potential benefits of these parameters. To address these lim-
itations, we propose PM-MoE architecture. This architecture in-
tegrates a mixture of personalized modules and an energy-based
personalized modules denoising, enabling each client to select ben-
eficial personalized parameters from other clients. We applied the
PM-MoE architecture to nine recent model-split-based personal-
ized federated learning algorithms, achieving performance improve-
ments with minimal additional training. Extensive experiments on
six widely adopted datasets and two heterogeneity settings validate
the effectiveness of our approach. The source code is available at
https://anonymous.4open.science/r/PM-MOE-8315.

CCS Concepts
• Computing methodologies→ Distributed computing method-
ologies.

Keywords
Personalized Federated Learning; Mixture of Experts; Energy-based
denoising

1 Introduction
The success of modern methods [9, 22, 41] is largely driven by the
growing availability of training data [16, 24, 25]. Unfortunately,
there are still vast amounts of isolated data remain underutilized due
to strict privacy requirements [10, 42]. As a result, federated learning
(FL) [1, 5, 15, 35, 39, 52], has gained significant attention for its
strong privacy protection and collaborative learning capabilities. This
innovative paradigm allows multiple clients to collaboratively train
models, where the server only aggregates models and keep private
data remaining on each client. Despite its effectiveness, traditional
FL methods suffer from performance degradation due to statistical
heterogeneity [20]—data domains on each client are biased, with
uneven class distributions, varying sample sizes, and significant
feature differences.

Personalized federated learning (PFL) [30, 31, 37, 45] alleviates
this limitation by allowing each client to better fit local data. Specifi-
cally, PFL methods focus on balancing local personalization with
global consistency by splitting models into global and personalized
modules [40, 58], where personalized modules capture unique local

Figure 1: Motivation of our study. (A) t-SNE graph shows the
inference effects of different models on the same set of data.
(B) Client A gets closer to the target when using Client B’s
personalized model, but moves farther from the target when
using Client C’s personalized model.

data characteristics, mitigating global model biases and better adapt-
ing to individual client data. Recent efforts have been developed
based on meta-learning [13], regularization [11, 29], model split-
ting [4], knowledge distillation [43–45, 49, 51], and personalized
aggregation [31, 37, 57].

Given that the same types of data can be distributed across mul-
tiple clients, then a key question arises: "Can personalized mod-
ules from different clients mutually enhance each other’s per-
formance?", which is overlooked in current PFL methods. To in-
vestigate, we conducted experiments based on the state-of-the-art
PFL approaches. We randomly select a client, and several data cate-
gories which distributed across different clients. Subsequently, we
trained in both centralized and personalized federated learning man-
ner. By comparison, We evaluated whether integrating personalized
parameters from other clients could improve model’s representation
capability. As illustrated in Figure 1 (A), the selected client indeed
benefited from the personalized modules from another client.

Driven by the above analysis, in this paper, we aim to explore how
personalized modules from different clients can mutually enhance
performance. As illustrated in Figure 1 (B), all clients utilize the
same global model, while applying personalized module to debias
according to the local data domain. For a single client, not all per-
sonalized modules contribute positively to the final representation.
Therefore, we leverage two basic principles when designing our
model: 1) Dynamically weighting the effect of personalized modules
based on the current input. 2) Filtering modules that exhibit negative
effects;
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Figure 2: Overall Architecture of Personalized Model parameters with Mixture of Experts

In this paper, we introduce PM-MoE, a two-stage personalized
federated leanring framework based on mixture of experts (MoE)
architecture [38, 46]. In the first stage, we pretrained models to get
global and personalized modules; In the second stage, we proposed
the mixture of personalized modules method (MPM) and the energy-
based denoising method(EDM) to make the personalized modules
from different clients enhance each other. With the first principle,
PM-MoE employs the MPM based on MoE gate selection. With
the second principle, PM-MoE incorporates the EDM to filter out
noisy personalized models. Together, these two componets enable
personalized modules from different clients to mutually enhance
each other. Additionally, sharing converged personalized parame-
ters will not break privacy requirements due to there is no gradient
leakage during training. We evaluated PM-MoE on nine SOTA PFL
benchmarks across six popular federated learning datasets. The ex-
perimental results demonstrate PM-MoE consistently improves the
performance of various PFL methods.

In summary, we conclude our contributions as follows:

• We propose PM-MOE, a novel two-stage framework for personal-
ized federated learning which exchanges personalized knowledge
across clients. In the first stage, the PM-MOE pretrains PFL mod-
els, followed by a fine-tuning stage for knowledge exchanges.

• Specifically, PM-MOE employs a simple MOE structure to dy-
namically weighting the contribution of different personalized
modules. Besides, PM-MOE introduces an energy-based denosing
method to filter those clients with negative effects.

• We conduct extensive experiments to nine state-of-art PFL meth-
ods across six datasets. The experimental results demonstrate
PM-MOE’s consistently improvement on various settings.

2 Notations and Preliminaries
2.1 Notations
In PFL, 𝑀 clients share the same model structure. Here, we denote
notations following FedGen [47] and FedRep [17]. Each client is de-
noted as𝐶 𝑗 ( 𝑗 ∈ 1, 2, ..., 𝑀), having its own data domainD 𝑗 with 𝑁 𝑗

samples ( 𝑗 ∈ 1, 2, ..., 𝑀). The data distribution of D 𝑗 is denoted as

𝑃 𝑗 . Specifically, D 𝑗 = {𝑥 𝑗
𝑖
, 𝑦
𝑗
𝑖
}𝑁

𝑗

𝑖=1, where 𝑖 is the number of training
samples. 𝑥𝑖 is the 𝑖-th data sample and 𝑦𝑖 is its corresponding label.
Each client 𝐶 𝑗 in PFL has two modules: the global module and the
personalized module, which is denoted as𝑊 𝑗

𝑔 and𝑊 𝑗
𝑝 respectively.

2.2 Preliminaries
In a typical PFL method, there is a centralized server who firstly
aggregates clients’ global modules

{
𝑊 1
𝑔 ,𝑊

2
𝑔 , ...,𝑊

𝑀
𝑔

}
, and then dis-

tributes the aggregated module𝑊𝑔 to each client. Therefore, each
client is required to firstly train on D 𝑗 and upload their𝑊 𝑗

𝑔 every
𝐸𝑙 iteration. The sever aggregates global modules by the function 𝑓

as:

𝑊𝑔 =
1
𝑁

𝑀∑︁
𝑗=1

𝑁 𝑗 𝑓 (𝑊 𝑗
𝑔 ), (1)
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Figure 3: Diagram of Mixture of Personalized Parameters.

where 𝑁 =
∑𝑀
𝑗=1 𝑁

𝑗 and 𝑓 can be algorithms like FedAvg [39],
FedProx [36], etc. After aggregation, the server sends𝑊𝑔 to client
𝐶 𝑗 . Then, client 𝐶 𝑗 enters the next training. Therefore, the objective
loss function L for the entire personalized federated learning task is
as follows:

min
𝑊

𝑗
𝑔 ,𝑊

𝑗
𝑝

L = min
𝑀∑︁
𝑗=1

E(𝑥 𝑗 ,𝑦 𝑗 )∼𝑃 𝑗 [𝐿 𝑗 (𝑥 𝑗 , 𝑦 𝑗 ;𝑊 𝑗
𝑔 ,𝑊

𝑗
𝑝 )] . (2)

Here, 𝐿 𝑗 is the loss function for client 𝐶 𝑗 .

3 Method
3.1 The PM-MOE Overall Framework
In this section, we introduce the overall framework of PM-MOE,
which which is a two-stage training framework. Specifically, our
contributions lie in the mixture of personalized modules (MPM) and
an energy-based denoising method (EDM). The MPM addresses
the challenge of effectively utilizing personalized models, while
the EDM method removes those personalized models with negative
effets.

The training process of PM-MOE is divided into two steps, as
shown in Figure 2. In pre-training step, we train model and obtain its
converged global and personalized modules for each client, thereby
constructing a personalized prompt pool. In PM-MOE step, we lever-
age the proposed MPM and EDM to select the optimal combination
among personalized modules for each client. The following sections
provide a detailed explanation of these two key phases.

Phase 1: Pre-training. The statistically heterogeneous distribu-
tion data D 𝑗 of client 𝐶 𝑗 is mapped to the feature space 𝑥

𝑗
𝑔,𝑟𝑒𝑝

through the global feature extractor 𝑓𝑔 : R𝑈 → R𝐷 , and to the fea-
ture space 𝑥 𝑗𝑝,𝑟𝑒𝑝 via the personalized feature extractor 𝑓𝑝 : R𝑈 →
R𝐷 . The weighted aggregated feature space 𝑥 𝑗𝑟𝑒𝑝 = 𝑥

𝑗
𝑔,𝑟𝑒𝑝 +𝑥

𝑗
𝑝,𝑟𝑒𝑝 is

then mapped to the corresponding label space through the global clas-
sifier 𝑠𝑔 : R𝐷 → R𝐶 and the personalized classifier 𝑠𝑝 : R𝐷 → R𝐶 .
𝑈 , 𝐷 and 𝐶 represent the input space, feature space, and label space,
respectively.

𝑥
𝑗
𝑟𝑒𝑝 = 𝑓𝑔

(
𝑊

𝑗

𝑔,𝑓 𝑒
, 𝑥 𝑗

)
+ 𝑓𝑝

(
𝑊

𝑗

𝑝,𝑓 𝑒
, 𝑥 𝑗

)
. (3)

Figure 4: Diagram of Mixture of Personalized Experts.

Additionally, as seen in DBE [55], there exists a personalized vec-
tor parameter 𝑃𝑃 𝑗 ∈ R𝐷 to correct the local data distribution. The
associated expressions are as follows:

𝑦 𝑗 = 𝑠𝑔

(
𝑊

𝑗

𝑔,ℎ𝑑
, ℎ 𝑗

)
+ 𝑠𝑝

(
𝑊

𝑗

𝑝,ℎ𝑑
, ℎ 𝑗

)
+ 𝑃𝑃 𝑗 . (4)

During training, the global model parameters 𝑊 𝑗

𝑔,𝑓 𝑒
and 𝑊

𝑗

𝑔,ℎ𝑑

are uploaded to the server for aggregation, while the personalized
model parameters𝑊 𝑗

𝑝,𝑓 𝑒
,𝑊

𝑗

𝑝,ℎ𝑑
and 𝑃𝑃 𝑗 are computed locally and

not uploaded. After the global training process with 𝐸𝑔 epochs, the
model converges.

Phase 2: PM-MOE Fine-Tuning. First, after the convergence of
the model-splitting-based series of models, the server collects the
trained personalized model parameters to form a personalized param-
eter pool, which is then distributed to each client. Next, each client
locally trains a gating network, which assigns weights to each per-
sonalized model based on the input data, thereby effectively utilizing
the personalized knowledge from all clients. For detailed informa-
tion, refer to Section 3.2. Finally, since some of the personalized
knowledge from other clients is irrelevant to the local data distribu-
tion, training the gating network with these noisy parameters can
hinder convergence. To address this, we designed an energy-based
denoising method. For further details, see Section 3.3.

3.2 Mixture of Personalized Modules
PM-MOE is a flexible architecture, and to accommodate the complex
and diverse model-splitting-based personalized federated learning
algorithms, we designed two adaptation methods: MPP and MPE,
as shown in Figures 3 and 4.

Assume that a personalized federated learning algorithm involves
personalized parameters, these parameters do not project data into
vectors of other dimensions. We define this type as local personal-
ized parameters (𝑃𝑃). Suppose the personalized federated learning
algorithm also involves personalized expert models, where the ex-
pert modelsW 𝑗

𝑝 map data D 𝑗 to a new feature space. We define
this type as local personalized experts (𝑃𝐸). The server builds and
synchronizes a set of personalized models. Depending on the type
of personalized model, the server collects the converged model pa-
rameters from all clients, constructing a personalized parameter pool

3
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W𝑃𝑃 = {𝑃𝑃 𝑗 }𝑀𝑗=1 and a personalized expert poolW𝑃𝐸 = {𝑊 𝑗

𝑃𝐸
}𝑀
𝑗=1.

The server then synchronizes these sets with all clients.
Clients build a gating network and fine-tune parameters. Since

each personalized federated learning client is diverse, as shown in
Figure 3, we divide the combination of the gating network and per-
sonalized models into two categories. The first is commonalities.
The calculation of set weights depends on the input data 𝑥 𝑗 . To
achieve this, we construct gating networks 𝐺 𝑗

𝑃𝑃
,𝐺

𝑗

𝑃𝐸
for the person-

alized parameter and the personalized expert, with corresponding
training parameters 𝜃 𝑗

𝑃𝑃
, 𝜃

𝑗

𝑃𝐸
. The weight calculations are formally

represented as follows:

𝛼𝑃𝑃 = 𝐺
𝑗

𝑃𝑃

(
𝑥 𝑗 , 𝜃

𝑗

𝑃𝑃

)
(5)

𝛼𝑃𝐸 = 𝐺
𝑗

𝑃𝐸

(
𝑥 𝑗 , 𝜃

𝑗

𝑃𝐸

)
(6)

We then sort the weights calculated by formulas (1) and (2) in
descending order. From the set, we select the top k parameters and
construct the personalized parameter and expert subsets as {𝛼𝑙

𝑃𝑃
} =

𝑇𝑜𝑝 (𝑘, 𝛼𝑃𝑃 ),{𝛼𝑙𝑃𝐸 } = 𝑇𝑜𝑝 (𝑘, 𝛼𝑃𝐸 ). Here, 𝑙 denotes the index of the
selected clients, where 𝑙 ∈ [1, 𝑀].

Second is Differences. Since the personalized parameter pool
W𝑃𝑃 does not process data, we directly compute the weighted sum
of the personalized parameters, resulting in a vector with the same
shape as the local personalized parameter 𝑃𝑃 𝑗 as follows:

𝑃𝑃
𝑗
𝑚𝑜𝑒 =W𝑙

𝑃𝑃 · 𝛼
𝑙
𝑃𝑃

(7)

In our setting, the weighted vector {𝑃𝑃𝑚𝑜𝑒 } 𝑗 replaces the local
personalized parameter {𝑃𝑃} 𝑗 on client 𝐶 𝑗 . For the personalized

expert setW𝑃𝐸 =𝑊
𝑗

𝑃𝐸

𝑀

𝑗=1, taking the personalized classifier 𝑠𝑝 as

an example, each expert maps the data to a new feature space ℎ𝑙 ,
where:

ℎ𝑙 ∈ R𝐶 = 𝑠𝑙𝑝 (𝑥 𝑗 ,𝑊 𝑙
𝑃𝐸 ) (8)

We then compute the mixed weighted personalized parameter vector
𝑥
𝑗
𝑚𝑜𝑒 as:

𝑥
𝑗
𝑚𝑜𝑒 = ℎ𝑙 · 𝛼𝑙𝑃𝐸 (9)

The client 𝐶 𝑗 then replaces the output of the local personalized
expert𝑊 𝑗

𝑃𝐸
with 𝑥

𝑗
𝑚𝑜𝑒 ∈ R𝐶 .

Since the converged parameters reflect the local data knowledge
that each client has spent significant effort training, during the train-
ing process, the personalized parameter and expert setsW𝑃𝑃 ,W𝑃𝐸

are frozen and not optimized together with the gating network.

3.3 Energy-based Personalized Modules Denoising
Due to MOE using Top-K to select appropriate experts, this ranking
based solely on parameter magnitude lacks confidence and intro-
duces noise to some extent. It leads to the gating network optimizing
gradients in the wrong direction. To effectively remove noise from
the personalized parameter pool, inspired by energy-based models,
we propose an energy-based personalized expert denoising method.

The core idea is to build an energy function to describe the de-
pendency or similarity between inputs. Simply put, the essence of
the method is to calculate energy—high energy corresponds to low
similarity, while low energy indicates high similarity. Taking the
personalized feature extractor experts as an example, for client 𝐶 𝑗 ,

the personalized expert poolW𝑃𝐸 = {𝑊 𝑗

𝑃𝐸
}𝑀
𝑗=1 uses a projection

function 𝑓𝑝 : R𝑈 → R𝐷 to map data 𝑥 𝑗 to 𝐻 = {ℎ1, ℎ2, ...ℎ 𝑗 , ...ℎ𝑀 }.
The vector ℎ 𝑗 ∈ R𝐷 from the local client is taken as the scalar for en-
ergy. Then, the vectors mapped by other client models are projected
into the coordinate system of ℎ 𝑗 . Let’s define the energy function for
a given input pair (ℎ 𝑗 , ℎ𝑘 ) as follows:

𝐸𝑘 (ℎ 𝑗 , ℎ𝑘 ) = −𝑣𝑘 [I] (10)

where 𝑣𝑘 ∈ R𝐷 = ℎ𝑘

ℎ 𝑗 , (𝑘 ≠ 𝑗). And each dimension of the
vector is denoted by I ∈ 𝐷. The projected vector set is defined as
𝑉 = {𝑣1, ..., 𝑣𝑘 }, (𝑘 ∈ [𝑀] , 𝑘 ≠ 𝑗). Then, Helmholtz free energy can
be expressed as the negative logarithm of the partition function:

𝐹𝑘𝑇 (𝑣
𝑘 ) = −𝑇𝑙𝑜𝑔

∑︁
𝑒𝑥𝑝 (−𝐸𝑘 (ℎ 𝑗 , ℎ𝑘 )/𝑇 ) (11)

Since we use the local client’s vector as a fixed anchor, it is natural
to choose the negative Helmholtz free energy as the confidence score
for the similarity between ℎ𝑘 and ℎ 𝑗

𝐻𝑘 (ℎ 𝑗 , ℎ𝑘 ) = −𝐹𝑘𝑇 (𝑣
𝑘 ) = 𝑇𝑙𝑜𝑔

∑︁
𝑒𝑥𝑝 (−𝐸𝑘 (ℎ 𝑗 , ℎ𝑘 )/𝑇 ) (12)

where 𝑇 is the temperature parameter. Therefore, we use the
confidence score to filter out noise (irrelevant experts). Then, we set
a dropout ratio coefficient 𝛾 ∈ (0, 1). The confidence scores of all
personalized feature extraction experts are sorted in ascending order,
and the bottom 𝛾-proportion of experts are removed.

Finally, after the two modules of PM-MOE framework, the total
objective loss of PM-MOE is as follows:

min
𝜃
𝑗

𝑃𝑃
,𝜃

𝑗

𝑃𝐸

L =𝑚𝑖𝑛

𝐾∑︁
𝑗

E(𝑥 𝑗 ,𝑦 𝑗 ) 𝑃 𝑗 𝐿 𝑗 (𝑥 𝑗 , 𝑦 𝑗 ;𝜃 𝑗
𝑃𝑃

, 𝜃
𝑗

𝑃𝐸
) (13)

3.4 Theoretical Analysis
In this section, we demonstrate that leveraging personalized models
converged from other clients is more beneficial for improving
the performance of local models. In simple terms, model-split-
based personalized federated learning shares uploaded models to
learn from the data distribution of all parties involved. However,
the heterogeneous nature of the data creates a tug-of-war, resulting
in inefficient knowledge transfer between clients. Interestingly, the
private parameters that are not uploaded by clients best capture local
knowledge.

Therefore, we propose that utilizing these converged personalized
models is necessary to enhance performance, leading to the design of
the PM-MOE architecture. In this subsection, we theoretically prove
that the PM-MOE architecture converges to a lower bound. Even
in extreme cases, where each client’s data distribution is entirely
different, this architecture does not degrade the performance of local
models.

THEOREM 3.1. (Lower Bound on the Final Accuracy of MPE)
Suppose there are 𝑀 (≥ 2) client experts predicting independently,
each with an average accuracy rate of 𝑝 (> 0). If a trained gate
network assigns samples to the client experts such that the ratio of
the probability of assigning a sample to a correct expert versus an
incorrect expert is 1 + 𝛼 , where 𝛼 > 0. Then, the final accuracy of
MPE is bounded from below by:

𝑃MPE ≥
(1 + 𝛼)𝑝

1 + 𝛼 (𝑝 + 1−𝑝
𝑀
)
> 𝑝 = 𝑃𝑐𝑙𝑖𝑒𝑛𝑡 . (14)
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Table 1: Results of federated and personalized federated learning algorithms on six datasets with heterogeneous data distribution
(Dirichlet distribution with 𝑆 = 0 and 𝑆 = 20). Bold: Best performance.

Spilt Type 𝑆 = 0 𝑆 = 20

Method MNIST FMNIST Cifar10 Cifar100 TINY AGNews MNIST FMNIST Cifar10 Cifar100 TINY AGNews

FedAvg 98.93 88.64 63.68 32.94 17.69 62.40 98.95 90.69 67.74 35.37 19.66 71.68
FedProx 98.93 88.50 63.85 33.07 17.60 65.75 98.98 90.79 67.54 35.42 19.56 72.90

SCAFFOLD 99.12 88.74 64.19 34.71 19.67 78.85 99.18 91.44 70.40 38.54 19.67 78.50
FedGEN 98.98 88.79 64.36 32.72 15.85 63.13 98.98 90.90 67.59 34.52 17.70 71.65
MOON 98.92 88.59 63.87 33.00 17.57 62.21 98.98 90.74 67.53 35.36 17.57 71.76

FedPer 99.49 97.53 89.90 48.27 36.36 93.99 98.62 93.57 76.67 36.28 25.91 88.75
LG-FedAvg 99.28 97.25 89.02 47.03 33.20 94.33 97.85 92.23 73.95 35.90 23.78 87.77

FedRep 99.46 97.58 90.19 49.44 38.09 93.78 98.61 93.77 77.25 36.52 25.77 89.02
FedRoD 99.68 97.60 90.07 51.92 38.90 93.65 99.33 94.06 79.50 42.45 29.07 88.91
FedGH 99.29 97.40 84.50 48.61 25.80 92.58 97.94 92.25 73.79 37.88 21.51 88.19

FedBABU 99.67 97.74 91.38 50.83 34.53 92.87 99.32 94.71 82.17 40.46 25.92 87.58
GPFL 99.49 94.91 77.79 57.41 27.08 90.84 99.49 93.21 72.39 49.01 22.92 82.41
FedCP 99.75 98.31 93.76 69.83 65.97 92.40 99.27 94.45 80.29 41.79 31.93 87.62
DBE 98.17 93.95 89.11 60.33 38.29 93.70 96.97 91.11 79.76 52.30 31.11 89.08

PM-MOE 99.85 98.61 93.95 70.68 66.33 94.76 99.49 94.79 82.21 52.36 32.15 89.16

We briefly proof the key steps, and other details are given in the
appendix.

PROOF. We define the event set:
A := {𝑠 out of 𝑀 experts are able to predict correctly}.

𝑃 (A) =
(
𝑀

𝑠

)
𝑝𝑠 (1 − 𝑝)𝑀−𝑠 , (15)

Under the above condition, if the gated network assigns s client
weights, the model is able to still correctly predict the sample. We
have:

𝑃 (B | A) = (1 + 𝛼)𝑠
(1 + 𝛼)𝑠 + (𝑀 − 𝑠) =

(1 + 𝛼)𝑠
𝑀 + 𝛼𝑠 , (16)

And then, B := {MPE can predict correctly}. We have:

𝑃 (B) =
∑︁
A

𝑃 (A)𝑃 (B | A)

= E
[
(1 + 𝛼)𝑀𝑝

𝑀 + 𝛼 (𝑡 + 1)

]
(Let 𝑡 = 𝑠 − 1).

(17)

Define the function:

𝑓 (𝑡) = (1 + 𝛼)𝑀𝑝

𝑀 + 𝛼 (𝑡 + 1) . (18)

We observe that 𝑓 (𝑡) is a convex function. And by Jensen’s in-
equality, we have:

E[𝑓 (𝑡)] ≥ 𝑓 (E[𝑡]) . (19)
Combining (17) and (19) yields

𝑃MPE = 𝑃 (B) ≥ 𝑓 (E[𝑡]) = (1 + 𝛼)𝑝
1 + 𝛼 (𝑝 + 1−𝑝

𝑀
)
. (20)

The last expression is strictly increasing with respect to 𝛼 when
𝛼 > 0, and thus:

𝑃MPE ≥
(1 + 𝛼)𝑝

1 + 𝛼 (𝑝 + 1−𝑝
𝑀
)
>

(1 + 0)𝑝
1 + 0(𝑝 + 1−𝑝

𝑀
)
= 𝑝 = 𝑃client . (21)

□

Theorem 3.1 indicates that the accuracy of the MPE is bounded
below by the average accuracy of an individual client. Furthermore,
the lower bound (1+𝛼 )𝑝

1+𝛼 (𝑝+ 1−𝑝
𝑀
)

increases monotonically with respect

to both 𝛼 and 𝑀 . In other words, the accuracy of the MPE will be
improved as the training of the gate network. Specifically, when the
gate network is well trained (i.e., 𝛼 ≫ 0) and 𝑀 is large enough, the
accuracy of MPE will asymptotically approach 100%.

3.5 Privacy Analysis
For model-splitting-based personalized federated learning algorithms
combined with PM-MOE, data privacy is ensured in both phases.

In the pre-training phase, each client uploads only the shared
parameters to the server, while personalized parameters are trained
locally. Due to the model splitting, the link between shared and
personalized parameters is severed. The gradient information of
personalized parameters remains private to each client, making it
difficult to breach data privacy through model inversion attacks [3].

In the PM-MOE phase, both the server and clients only receive
the converged personalized model parameters. Clients cannot infer
the training data or other private information from the model param-
eters. Therefore, the proposed approach effectively safeguards data
privacy.

4 Experiment
4.1 Experiment Setup
In this section, we compare the proposed PM-MOE with nine state-
of-the-art model-splitting-based personalized federated learning al-
gorithms. We validate the effectiveness of our method across six
datasets. Additionally, we conduct comprehensive ablation studies
on these algorithms to better determine parameter choices and the
impact of various components.
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Table 2: Ablation experiments of PM-MOE across 9 state-of-the-art model-split-based personalized federated learning algorithms.

Spilt Type 𝑆 = 0 𝑆 = 20 Avg ↑
Method MNIST FMNIST Cifar10 Cifar100 TINY AGNews MNIST FMNIST Cifar10 Cifar100 TINY AGNews

FedPer 99.49 97.53 89.90 48.27 36.36 93.99 98.62 93.57 76.67 36.28 25.91 88.75 -
+PM-MOE 99.50 97.55 89.96 48.34 36.42 93.99 98.62 93.59 76.69 36.30 25.96 88.75 0.0275

LG-FedAvg 99.28 97.25 89.02 47.03 33.20 94.33 97.85 92.23 73.95 35.90 23.78 87.77 -
+PM-MOE 99.28 97.28 89.19 47.10 33.25 94.76 97.85 92.23 74.01 35.90 23.78 87.77 0.0325

FedRep 99.46 97.58 90.19 49.44 38.09 93.78 98.61 93.77 77.25 36.52 25.77 89.02 -
+PM-MOE 99.47 97.60 90.24 49.49 38.12 93.87 98.61 93.82 77.25 36.52 25.78 89.02 0.0258

FedRoD 99.68 97.60 90.07 51.92 38.90 93.65 99.33 94.06 79.50 42.45 29.07 88.91 -
+PM-MOE 99.69 97.66 90.22 52.82 39.25 93.72 99.33 94.06 79.50 42.60 29.07 88.93 0.1425

FedGH 99.29 97.40 84.50 48.61 25.80 92.58 97.94 92.25 73.79 37.88 21.49 88.10 -
+PM-MOE 99.30 97.40 88.61 48.69 25.82 92.66 97.94 92.25 73.79 37.88 21.51 88.19 0.3675

FedBABU 99.67 97.74 91.38 50.83 34.53 92.87 99.32 94.71 82.17 40.46 25.92 87.58 -
+PM-MOE 99.67 97.76 91.41 50.83 34.53 93.55 99.32 94.79 82.17 40.46 25.92 88.29 0.1267

GPFL 99.49 94.91 77.79 57.41 27.08 90.84 99.49 93.21 72.39 49.01 22.92 82.41 -
+PM-MOE 99.50 95.56 82.28 57.41 27.08 91.94 99.49 93.21 72.39 49.01 22.92 82.41 0.5208

FedCP 99.75 98.31 93.76 69.83 65.97 92.40 99.27 94.45 80.29 41.79 31.93 87.62 -
+PM-MOE 99.85 98.61 93.95 70.68 66.33 92.48 99.30 94.63 80.51 42.49 31.96 87.67 0.2575

DBE 98.17 93.95 89.11 60.33 38.29 93.70 96.97 91.11 79.76 52.30 31.10 89.08 -
+PM-MOE 99.63 97.23 89.90 60.53 38.36 93.74 99.38 93.40 80.05 52.30 31.11 89.08 0.9033

Dataset and Data Partitioning. To effectively compare the perfor-
mance of the proposed approach, we use six widely-adopted bench-
mark datasets for personalized federated learning: AG News [60],
Cifar10 [23], Cifar100 [23], MNIST [26], Fashion-MNIST [50],
and Tiny-ImageNet [7]. Specifically, we adopt a Dirichlet distribu-
tion [33] with a shared ratio 𝑆 (0 < 𝑆 < 100) for data partitioning.

• Dirichlet distribution with 𝑆 = 20: In the first setting, 20% of
the data for each class is uniformly distributed among 𝑀 clients,
and the remaining data is assigned based on Dirichlet-distributed
weights.

• Dirichlet distribution with 𝑆 = 0: In the second setting, no
constraints are placed on class distribution across clients, with all
data allocated based on Dirichlet-distributed weights.

Baseline Methods. We referred to the Personal Federated Learn-
ing library, PFLlib [59]. Furthermore, we compared general fed-
erated learning algorithms such as FedAvg [39], FedProx [36],
SCAFFOLD [21], MOON [28], and FedGen [62], alongside recent
state-of-the-art personalized federated learning methods, including
personalized feature extractors like FedGH [53], LG-FedAvg [32],
FedBABU [40], FedCP[58], GPFL [56], FedPer[4], FedRep [8],
FedRod [6], and DBE [55] for personalized parameters.

Experimental Details. To ensure fairness, we employ a 4-layer
CNN model as the backbone for Cifar10, Cifar100, MNIST [26],
Fashion-MNIST [50], and Tiny-ImageNet [7] datasets, and a fast-
Text [19] model for AG News. Each personalized model is pre-
trained for 2000 epochs until convergence. We optimize three key
parameters: 𝜂𝑚𝑜𝑒 (local MOE learning rate), 𝑘 (top k MOE weights),
and 𝐸𝑚𝑜𝑒 (local MOE training iterations). All experiments are exe-
cuted on a single RTX 3090 GPU.

4.2 Experimental Results
Main Results. Tables 1 show that PM-MOE consistently outper-

forms other personalized federated learning methods across both par-
titioning settings in tasks ranging from 4 to 200 classes. Compared
to traditional federated learning methods, personalized federated
learning better handles data heterogeneity, with a performance im-
provement of up to 48.64% over the FedAvg baseline. Interestingly,
when data heterogeneity decreases, the overall performance of per-
sonalized methods also drops. The PM-MOE framework leverages
the personalized models converged from all clients to improve each
client’s performance. If parameters from other clients are noisy, the
local gating network assigns weights to prioritize the local person-
alized model, protecting its performance. Conversely, if external
parameters are useful, the network allocates weights accordingly,
enhancing the local model’s performance.

Analysis of Gating Network Parameters. As the most critical com-
ponent for each client in this framework is the training of the gating
network, this section presents parameter experiments focused on
tuning the number of layers, activation functions, and initialization
parameters of the gating network. In this subsection, to highlight the
differences between methods across different dimensions, we will
apply sigmoid normalization to the data in the experimental group.

• Number of Layers in the Gating Network: We conducted four
sets of experiments on the number of layers in the gating network.
1 layer: (input dimension, number of experts); 2 layers: (input
dimension, 128, number of experts); 3 layers: (input dimension,
128, 256, number of experts); 4 layers: (input dimension, 128, 256,
128, number of experts). As shown in Figure 5-(a), increasing the
depth of the gating network proves to be effective. The gating
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Figure 5: Results of Gating Network Parameters

Table 3: Ablation Experiment Analysis Results

Method AGNews FMNIST Cifar100 Avg ↑
pFL 94.33 98.31 69.83 -

+MOE 94.52 98.39 70.12 0.19%
+MOE+Denoising 94.76 98.61 70.68 0.53%

network needs to determine the weights for all personalized pa-
rameters based on input data, requiring deeper neural networks
on the client side to capture data features effective.

• Activation Functions of the Gating Network: For the 4-layer
feedforward gating network, we tested common neural network
activation functions such as ReLU, LeakyReLU, PReLU, ELU,
SELU, SiLU, and Mish. As shown in Figure 5-(b), the most
effective activation function is LeakyReLU. LeakyReLU’s non-
linearity in the negative region allows the neural network to learn
and model more complex data, effectively assigning personalized
model parameters the appropriate weights.

• Initialization Methods for the Gating Network: We compared
commonly used parameter initialization methods, including uni-
form distribution, normal distribution, Xavier, Kaiming, Orthog-
onal, and Spectral. As shown in Figure 5-(c), most results indi-
cated that the Orthogonal initialization method yields the best
performance for gated network models. This method draws initial
weights from the orthogonal group, maintaining dynamic isometry
throughout the network’s learning process, which helps preserve
a relatively stable proportional relationship between input and
output signals.

Ablation Study. In this section, we conducted ablation studies
to evaluate the effectiveness of each individually designed module.
The experiments confirmed that the PM-MOE component and the
denoising component improve the performance of the model-split-
based personalized federated learning algorithm. We selected the
best performing personalized federated learning methods in the
comparison dataset for comparison. As shown in Table 3, adding
the MOE component resulted in an average improvement of 0.2%
across the 4, 10, and 100 class settings. The regular denoising ratio
was set to 0.2, and adding the denoising component led to an average
improvement of 0.53%.

In detail, we demonstrated that our proposed PM-MOE frame-
work improves nine state-of-the-art personalized federated learning
algorithms. Specifically, we used data heterogeneity settings of 𝑆 = 0
(100% heterogeneity) and 𝑆 = 20 (80% heterogeneity). As shown
in Table 2, PM-MOE enhances the performance of all personalized
federated learning algorithms across six widely adopted datasets.

Model Parameter Analysis.

• Top-k Impact Analysis: The number of personalized parameters
determines the breadth of knowledge. If top 𝑘 is too small, it may
not fully utilize knowledge from other clients. If top 𝑘 is too large,
it may introduce excessive noisy knowledge. Therefore, we con-
ducted extensive experiments on the choice of 𝑘. Keeping other
conditions constant, we set 𝑘 = 2, 4, 8, 16, 20 across 20 clients. As
shown in Figure 6, in highly heterogeneous data settings (𝑆 = 0),
many clients do not share categories. Thus, setting 𝑘 to half the
number of clients helps the gating network select more effec-
tive personalized parameters. In settings with some shared data
(𝑆 = 20), where each client shares a few categories, a larger 𝑘,
typically equal to the number of clients, is preferable as it allows
the gating network to reference personalized knowledge from all
clients.

Figure 6: Impact of Top k in PM-MOE.

• Gating Network Learning Rate Analysis: Keeping other vari-
ables constant, we set the learning rate of the gating network 𝜂𝑚𝑜𝑒
to 0.05, 0.1, and 0.5. As shown in Figure 7, for both 𝑆 = 0 and
𝑆 = 20 heterogeneous data settings, the MOE gating network
should be assigned a higher learning rate. A smaller learning rate
may cause the model to get stuck in local minima or saddle points,
leading to worse performance.
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Figure 7: Impact of Gating Network Learning Rate in PM-MOE.

• Impact of MOE Training Iterations: We further explored whether
the number of local training iterations affects PM-MOE. As shown
in Figure 8, after adding PM-MOE to three algorithms, perfor-
mance slightly decreases with more training iterations, possibly
due to overfitting. Therefore, in the case of converged pre-trained
personalized federated learning, training for 50 epochs per client
is sufficient.

Figure 8: Impact of Training Epochs in PM-MOE.

4.3 Analysis of the combination of personalized
federated learning and MOE

For integrating MoE in personalized federated learning, both PFL-
MoE and FedMoE use gated networks to adjust the weight balance
between local personalized models and the global model. Both meth-
ods train the local models synchronously. For fair comparison, we
employed a gated network to balance the global and local models’
weights, training it synchronously with gradient optimization, re-
ferred to as synchronous MoE. The pre-training phase lasted 2000
rounds, with results presented in Table 4. While performance degra-
dation in synchronous MoE is minor for the 4-class AGNews dataset,
it becomes significant as task complexity increases, particularly
for datasets with 10, 100, or 200 classes like FMNIST, CIFAR-10,
CIFAR-100, and TINY. This decline likely occurs because syn-
chronous training forces the gated network to balance unconverged
global and local parameters, making it more susceptible to noise
and assigning suboptimal weights, which degrades overall model
performance.

5 Related Work
Personalized Federated Learning. Personalized Federated Learn-

ing (PFL) was introduced to address the limitations of traditional
federated learning in handling non-IID data and personalized re-
quirements. PFL employs various strategies such as regulariza-
tion [11, 29], meta-learning [13], knowledge distillation [43–45, 49,
51], model splitting [4], and personalized aggregation [31, 37, 57].

Table 4: Moe Combination Analysis Results

Method MNIST FMNIST Cifar10 Cifar100 TINY AGNews

Fed-Syn-MoE 89.48 91.47 78.31 18.75 13.59 93.37
PM-MOE 99.85 98.61 93.95 70.68 66.33 94.76

pFedMe [11] leverages the convexity and smoothness of Moreau En-
velopes to facilitate its convergence analysis, while Per-FedAvg [13]
incorporates meta-learning into federated learning. FedDistill [43]
transfers global knowledge to local models through distillation.

Model-Splitting-Based Personalized Federated Learning. Model-
splitting-based personalized federated learning has recently gained
traction by balancing personalization and global consistency through
model partitioning. These methods fall into three categories: the
first combines personalized feature extractors with a globally shared
classifier, as seen in FedGH[53] and LG-FedAvg [4], allowing clients
to maintain unique feature extraction while ensuring consistency
through a shared classifier. The second type uses a globally shared
feature extractor and personalized classifiers, as demonstrated by
FedBABU [40], FedCP [58], GPFL [56], FedPer [4], FedRep [8],
and FedRod [6], enabling client-specific adaptation while preserving
shared feature extraction. The third type, such as DBE

Personalized Federated Learning and MOE. In personalized fed-
erated learning, methods integrating Mixture of Experts [18, 61]
(MoE) models, such as PFL-MoE [14] and FedMoE [54], deploy
both local feature extractors (local experts) and globally shared fea-
ture extractors (global experts) on each client, with a gating network
controlling the output weights of these experts. PFL-MoE primarily
addresses homogeneous models, modulating the experts’ weights
via the gating network. In contrast, FedMoE emphasizes model het-
erogeneity by incorporating experts with more parameters than the
global model to better capture local data characteristics.

Energy-based denoising methods. Energy-based models [27] (EBMs)
capture variable dependencies by assigning scalar energy values to
each input configuration. EBMs have been applied across various do-
mains, including generative modeling [12], out-of-distribution detec-
tion [34], open-set classification [2], and incremental learning [48].
In personalized federated learning, EBMs are able to quantify rela-
tionships between model parameters using energy as a metric. For
selecting personalized experts in Mixture of Experts (MoE) models,
EBMs can filter out ineffective experts, thus denoising the model.
Despite its potential, the use of EBMs for expert denoising in MoE
remains underexplored.

6 Conclusion
In this article, we propose the PM-MOE framework to integrate
the construction of a personalized parameter pool with local MOE
training. PM-MOE aggregates the converged private model param-
eters from all clients, allowing each client to selectively reference
the knowledge of others. This architecture effectively enhances the
ability of model-splitting-based personalized federated learning al-
gorithms to learn global knowledge. Through extensive experiments
and theoretical analysis, we demonstrate the superiority of PM-
MOE.
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A Appendix
A.1 Theoretical Derivations

PROOF. Considering 𝑀 client experts predict independently, the
probability that exactly 𝑠 experts can predict correctly is given by
the binomial distribution Bin(𝑀, 𝑝):

𝑃 (A) =
(
𝑀

𝑠

)
𝑝𝑠 (1 − 𝑝)𝑀−𝑠 , (22)

where the event setA := {𝑠 out of 𝑀 experts can predict correctly}.
Under the above condition, if the gate network can assign a sample
to any of these 𝑠 client experts, then the MPE can predict the sample
correctly. Therefore, we have:

𝑃 (B | A) = (1 + 𝛼)𝑠
(1 + 𝛼)𝑠 + (𝑀 − 𝑠) =

(1 + 𝛼)𝑠
𝑀 + 𝛼𝑠 , (23)

where B := {MPE can predict correctly}. According to the law of
total probability, the probability that the MPE can predict correctly
is:
𝑃 (B) =

∑︁
A

𝑃 (A)𝑃 (B | A)

=

𝑀∑︁
𝑠=0

(
𝑀

𝑠

)
𝑝𝑠 (1 − 𝑝)𝑀−𝑠 (1 + 𝛼)𝑠

𝑀 + 𝛼𝑠

=

𝑀∑︁
𝑠=1

(
𝑀 − 1
𝑠 − 1

)
𝑝𝑠−1 (1 − 𝑝)𝑀−𝑠 (1 + 𝛼)𝑀𝑝

𝑀 + 𝛼𝑠

=

𝑀−1∑︁
𝑡=0

(
𝑀 − 1

𝑡

)
𝑝𝑡 (1 − 𝑝)𝑀−1−𝑡 (1 + 𝛼)𝑀𝑝

𝑀 + 𝛼 (𝑡 + 1) (Let 𝑡 = 𝑠 − 1)

= E
[
(1 + 𝛼)𝑀𝑝

𝑀 + 𝛼 (𝑡 + 1)

]
.

(24)
Here, the expectation is taken over 𝑡 which follows Bin(𝑀 − 1, 𝑝).
Define the function:

𝑓 (𝑡) = (1 + 𝛼)𝑀𝑝

𝑀 + 𝛼 (𝑡 + 1) . (25)

We observe that 𝑓 (𝑡) is a convex function with respect to 𝑡 because
its second derivative is positive:

𝑓 ′′ (𝑡) = 2(1 + 𝛼)𝑀𝑝𝛼2

(𝑀 + 𝛼𝑡 + 𝛼)3
> 0, (26)

since 𝛼, 𝑝,𝑀 > 0. By Jensen’s inequality, we have:
E[𝑓 (𝑡)] ≥ 𝑓 (E[𝑡]) . (27)

The expected value of 𝑡 is:
E[𝑡] = (𝑀 − 1)𝑝. (28)

Combining (24), (27) and (28) yields
𝑃MPE = 𝑃 (B) ≥ 𝑓 (E[𝑡]) = 𝑓 ((𝑀 − 1)𝑝)

=
(1 + 𝛼)𝑀𝑝

𝑀 + 𝛼 ((𝑀 − 1)𝑝 + 1)

=
(1 + 𝛼)𝑝

1 + 𝛼 (𝑝 + 1−𝑝
𝑀
)
.

(29)

The last expression is strictly increasing with respect to 𝛼 when
𝛼 > 0, and thus:

𝑃MPE ≥
(1 + 𝛼)𝑝

1 + 𝛼 (𝑝 + 1−𝑝
𝑀
)
>

(1 + 0)𝑝
1 + 0(𝑝 + 1−𝑝

𝑀
)
= 𝑝 = 𝑃client . (30)

□

A.2 Algorithm
Following the design principles of MPP, MPE and denoising module,
we apply this algorithm to nine state-of-the-art model-splitting-based
personalized federated learning algorithms. The general training
process is outlined in Algorithm 1.

Algorithm 1 Personalized Model Training with MOE

Input: 𝑀: Number of clients;𝑊𝑔,𝑓 𝑒 : Pre-trained parameters of the
global feature extractor; 𝑊𝑔,ℎ𝑑 : Pre-trained parameters of the

global head; {𝑊 𝑗

𝑝,𝑓 𝑒
,𝑊

𝑗

𝑝,ℎ𝑑
}𝑀
𝑗=1: Pre-trained parameters of the

client 𝑗 personalized head; 𝜂𝑚𝑜𝑒 : Local MOE learning rate; 𝑘:
Top-k value for MOE weights; 𝐸𝑚𝑜𝑒 : Local MOE training iter-
ations; 𝜃 𝑗

𝐺
: Client 𝑗’s model parameters of the gating network;

W𝑃𝐸 ,W𝑃𝑃 : Personalized expert set and personalized parameter
set, respectively. 𝛾 : Dropout ratio.

Output: {𝜃1
𝑃𝐸

, . . . , 𝜃𝑀
𝑃𝐸
}, {𝜃1

𝑃𝑃
, . . . , 𝜃𝑀

𝑃𝑃
}: Reasonable personalized

gate network models.
1: Server collects all the client’s personalized experts and parame-

ters to form a personalized poolW𝑃𝐸 ,W𝑃𝑃 and sends them to
𝑀 clients.

2: Server sends𝑊𝑔,𝑓 𝑒 ,𝑊𝑔,ℎ𝑑 to 𝑀 clients.
3: for 𝑗 ∈ [𝑀] in parallel do
4: local initialization
5: Client 𝑗 overwrites𝑊𝑔,𝑓 𝑒 ,𝑊𝑔,ℎ𝑑 with the server parameters

and freezes all of them.
6: Client 𝑗 initializes the gated network 𝜃 𝑗

𝑃𝐸
, 𝜃 𝑗
𝑃𝑃

forW𝑃𝐸 ,W𝑃𝑃

collected by the server.
7: The MOE combination of {𝜃 𝑗

𝑃𝐸
,W𝑃𝐸 }, {𝜃 𝑗𝑃𝑃 ,W𝑃𝑃 } replaces

the local personalized experts and parameters.
8: local MOE learning
9: for 𝑡 = 0 to 𝐸𝑚𝑜𝑒 do

10: Extract negative Helmholtz free energy 𝐻𝑘 (ℎ 𝑗 , ℎ𝑘 ) by
Eq.12

11: Removed 𝛾-proportion part by Dropout(𝛾 ,W𝑃𝐸 ,W𝑃𝑃 )
12: Client 𝑗 updates 𝜃 𝑗

𝑃𝐸
, 𝜃 𝑗
𝑃𝑃

simultaneously:

13: 𝜃
𝑗

𝑃𝐸
← 𝜃

𝑗

𝑃𝐸
− 𝜂𝑚𝑜𝑒∇𝜃 𝑗

𝑃𝐸

𝐺
𝑗

𝑃𝐸

14: 𝜃
𝑗

𝑃𝑃
← 𝜃

𝑗

𝑃𝑃
− 𝜂𝑚𝑜𝑒∇𝜃 𝑗

𝑃𝑃

𝐺
𝑗

𝑃𝑃

15: end for
16: end for
17: return {𝜃1

𝑃𝐸
, . . . , 𝜃𝑀

𝑃𝐸
}, {𝜃1

𝑃𝑃
, . . . , 𝜃𝑀

𝑃𝑃
}

A.3 Dataset
We use public datasets to perform experiments and evaluate the
performance of PM-MOE. The detailed descriptions and statistics
of these datasets are as follows:

• MNIST [26] dataset is a widely used collection for handwritten
digit recognition, compiled by the National Institute of Standards
and Technology (NIST). It consists of 60,000 training images
and 10,000 test images, each a 28x28 grayscale representation of
digits from 0 to 9.

• FMNIST [50] is a dataset of fashion product images intended
as a more challenging alternative to the traditional MNIST. It

11
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contains 10 categories of clothing items, such as T-shirts, trousers,
and sweaters, with 7,000 grayscale images per category. There
are 60,000 training images and 10,000 test images, all at 28x28
pixels. Fashion MNIST presents a greater challenge in terms of
image quality and diversity, featuring more background details
and varying perspectives.

• Cifar10 [23] consists of 60,000 32x32 color images divided into
10 classes, with 6,000 images per class. Of these, 50,000 are
used for training and 10,000 for testing. The dataset is split into
five training batches and one test batch, each containing 10,000
images. The test batch includes 1,000 randomly chosen images
from each class, while the training batches may have varying class
distributions across batches.

• Cifar100 [23] dataset contains 60,000 32x32 color images, but
it is divided into 100 classes, with 600 images per class. Each
class has 500 images for training and 100 for testing. These 100
classes are grouped into 20 super-classes, with each image having
both a "fine" label (its specific class) and a "coarse" label (its
super-class).

• TINY [7] dataset is a subset of ImageNet, released by Stanford
University. It comprises 200 classes, each with 500 training im-
ages, 50 validation images, and 50 test images. The images have
been preprocessed and resized to 64x64 pixels and are commonly
used in deep learning for image classification tasks.

• AGNews [60] dataset is an open dataset for text classification,
containing 120,000 news headlines and descriptions from four cat-
egories: World, Sports, Business, and Technology. Each category
includes 30,000 samples, with 120,000 samples in the training set
and 7,600 in the test set.

A.4 Baselines
In our experiments, the comparison baselines mainly include tradi-
tional federated learning methods (FedAvg, FedProx, SCAFFOLD,
MOON, and FedGen), federated learning of personalized experts
(FedGH, LG-FedAvg, FedBABU, FedCP, GPFL, FedPer, FedRep,
FedRod), and federated learning of personalized parameters (DBE).

• FedAvg [39] is a pioneering algorithm in federated learning. Its
core idea is to send the global model from the server to participat-
ing clients, where each client trains the model using their local
data. The updated model parameters are then uploaded to the
server, which computes the average of these parameters to update
the global model. FedAvg can encounter performance bottlenecks
when faced with highly imbalanced data or significant differences
in client computing power.

• FedProx [36] aims to address the performance degradation of
FedAvg when dealing with non-i.i.d. data. It introduces a regu-
larization term during local training to penalize the deviation of
model parameters from the global model, stabilizing the optimiza-
tion process and preventing local models from straying too far
from the global model.

• SCAFFOLD [21] tackles the issue of client drift by using control
variates to reduce the variance between local updates and the

global model. This ensures closer alignment between local models
and the global objective, especially in non-i.i.d. data scenarios.

• MOON [28] is a federated learning algorithm based on con-
trastive learning. It aims to minimize the feature representation
difference between the local and global models while maximizing
the difference between successive local models. By contrasting
the global and local model representations, MOON enhances the
generalization ability of the global model in federated environ-
ments.

• FedGen [62] is a federated learning algorithm using knowledge
distillation without data. It employs a lightweight generator on
the server side to synthesize data, which is broadcasted to clients
to assist their model training. This method not only optimizes the
global model but also introduces inductive bias to local models,
improving generalization in non-i.i.d. settings.

• FedGH [53] is a federated learning framework for heterogeneous
models. It trains a shared Global Prediction Header (GPH) to in-
tegrate diverse model structures from different clients. The GPH
is trained using feature representations extracted by clients’ pri-
vate feature extractors and learns global knowledge from various
clients. The server then transmits the shared GPH to all clients,
replacing their local prediction heads.

• LG-FedAvg [32] is a variant of FedAvg that trains both global and
local models simultaneously. The global model acts as a classifier,
while the local model is a feature extractor. During each iteration,
both the classifier and feature extractor are updated concurrently
without freezing any part of the model.

• FedBABU [40] updates only the body of the model during train-
ing, leaving the head randomly initialized and unchanged. This
allows the global model to improve generalization during training,
while the head is fine-tuned for personalization during evaluation,
achieving efficient personalization with consistent performance
improvements.

• FedCP [58] introduces conditional layers tailored to each client’s
data, which split the output of a shared extractor into personalized
and global representations. The shared classifier handles global
representations, while personalized classifiers manage personal-
ized ones. Additionally, FedCP sets a regularization loss, ensuring
that global feature representations remain as consistent as possible
across rounds.

• GPFL [56] personalizes federated learning by incorporating per-
sonalized layers into the global model, capturing client-specific
features. GPFL aims to adapt to each client’s unique needs while
maintaining privacy, making it suitable for scenarios with highly
heterogeneous data distributions.

• FedPer [4] personalizes federated learning by keeping certain
model layers (typically the final few) private to each client while
sharing the remaining layers globally. This enables each client to
fine-tune their local layers for personalized tasks while benefiting
from the shared global model. Unlike FedBABU, the local classifi-
cation head in FedPer is not frozen, and both the feature extractor
and classification head are optimized during local training.
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Figure 9: Distribution of class data across all clients for the MNIST dataset.

Figure 10: Distribution of class data across all clients for the CIFAR-10 dataset.

Figure 11: Distribution of class data across all clients for the CIFAR-100 dataset (top 10 classes).

• FedRep [8] first learns a shared representation through a matrix
method, followed by alternating updates between clients and the
server. FedRep demonstrates strong convergence in multilinear
regression problems and significantly reduces sample complexity
for new clients joining the system.

• FedRod [6] introduces a robust loss function that allows clients
to train a universal predictor on non-identically distributed cate-
gories. It also includes a lightweight adaptive module (personal-
ized classifier) that minimizes each client’s empirical risk based
on the shared universal predictor.

• DBE [55] is a method designed to tackle data heterogeneity in
federated learning. It eliminates domain shifts in the representa-
tion space, optimizing the bidirectional knowledge transfer pro-
cess between the server and clients. DBE sets a group of locally
optimized private parameters to align and correct global model
discrepancies.

A.5 Evaluation Metrics
In personalized federated learning, the assessment of global accuracy
can be formulated as the weighted sum of each client’s accuracy
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rate multiplied by its sample proportion. The formal expression is as
follows:

𝐴𝑡𝑜𝑡𝑎𝑙 =

𝑀∑︁
𝑗=1

𝑁 𝑗

𝑁
· 𝐴 𝑗 (31)

where 𝐴𝑡𝑜𝑡𝑎𝑙 denotes the weighted total accuracy. 𝑀 is the total
number of clients. 𝐴 𝑗 represents the accuracy of the 𝑗 −𝑡ℎ client, and
𝑁 𝑗 is the number of samples from the 𝑗 − 𝑡ℎ client. 𝑁 =

∑𝑀
𝑗=1 𝑁

𝑗

is the total number of samples across all clients. 𝑁
𝑗

𝑁
signifies the

proportion of samples from the 𝑗 − 𝑡ℎ client.

A.6 Data Distribution Visualization
We demonstrate here the data distribution with S=0 and S=20 in our
experiments. As illustrated in Figure 9, 10, 11, it can be observed
that with S=20, the proportion of category samples across all clients
is very low, with data evenly distributed among clients but in rel-
atively small quantities. Consequently, classification performance
for such data is generally poor. Each client particularly needs to
leverage knowledge from other clients to enhance its performance,
necessitating effective use of personalized models converged from
other clients.
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