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Abstract

Video prediction is a challenging task. The quality of video frames from current
state-of-the-art (SOTA) generative models tends to be poor and generalization
beyond the training data is difficult. Furthermore, existing prediction frameworks
are typically not capable of simultaneously handling other video-related tasks such
as unconditional generation or interpolation. In this work, we devise a general-
purpose framework called Masked Conditional Video Diffusion (MCVD) for all of
these video synthesis tasks using a probabilistic conditional score-based denoising
diffusion model, conditioned on past and/or future frames. We train the model in a
manner where we randomly and independently mask all the past frames or all the
future frames. This novel but straightforward setup allows us to train a single model
that is capable of executing a broad range of video tasks, specifically: future/past
prediction — when only future/past frames are masked; unconditional generation
— when both past and future frames are masked; and interpolation — when neither
past nor future frames are masked. Our experiments show that this approach can
generate high-quality frames for diverse types of videos. Our MCVD models are
built from simple non-recurrent 2D-convolutional architectures, conditioning on
blocks of frames and generating blocks of frames. We generate videos of arbitrary
lengths autoregressively in a block-wise manner. Our approach yields SOTA results
across standard video prediction and interpolation benchmarks, with computation
times for training models measured in 1-12 days using < 4 GPUs.

Project page: https://mask-cond-video-diffusion.github.io
Code: https://mask-cond-video-diffusion.github.io/

1 Introduction

Predicting what one may visually perceive in the future is closely linked to the dynamics of objects
and people. As such, this kind of prediction relates to many crucial human decision-making tasks
ranging from making dinner to driving a car. If video models could generate full-fledged videos in
pixel-level detail with plausible futures, agents could use them to make better decisions, especially
safety-critical ones. Consider, for example, the task of driving a car in a tight situation at high
speed. Having an accurate model of the future could mean the difference between damaging a car or
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something worse. We can obtain some intuitions about this scenario by examining the predictions of
our model in Figure 1, where we condition on two frames and predict 28 frames into the future for
a car driving around a corner. We can see that this is enough time for two different painted arrows
to pass under the car. If one zooms in, one can inspect the relative positions of the arrow and the
Mercedes hood ornament in the real versus predicted frames. Pixel-level models of trajectories,
pedestrians, potholes, and debris on the road could one day improve the safety of vehicles.

Figure 1: Our approach generates high quality frames many steps into the future: Given two conditioning
frames from the Cityscapes [Cordts et al., 2016] validation set (top left), we show 7 predicted future frames in
row 2 below, then skip to frames 20-28, autoregressively predicted in row 4. Ground truth frames are shown in
rows 1 and 3. Notice the initial large arrow advancing and passing under the car. In frame 20 (the far left of
the 3rd and 4th row), the initially small and barely visible second arrow in the background of the conditioning
frames has advanced into the foreground. Result generated by our MCVD concat model variant. Note that some
Cityscapes videos contain brightness changes, which may explain the brightness change in this sample.

Although beneficial to decision making, video generation is an incredibly challenging problem; not
only must high-quality frames be generated, but the changes over time must be plausible and ideally
drawn from an accurate and potentially complex distribution over probable futures. Looking far
in time is exceptionally hard given the exponential increase in possible futures. Generating video
from scratch or unconditionally further compounds the problem because even the structure of the
first frame must be synthesized. Also related to video generation are the simpler tasks of a) video
prediction, predicting the future given the past, and b) interpolation, predicting the in-between given
past and future. Yet, both problems remain challenging. Specialized tools exist to solve the various
video tasks, but they rarely solve more than one task at a time.

Given the monumental task of general video generation, current approaches are still very limited
despite the fact that many state of the art methods have hundreds of millions of parameters [Wu et al.,
2021, Weissenborn et al., 2019, Villegas et al., 2019, Babaeizadeh et al., 2021]. While industrial
research is capable of looking at even larger models, current methods frequently underfit the data,
leading to blurry videos, especially in the longer-term future and recent work has examined ways
in improve parameter efficiency [Babaecizadeh et al., 2021]. Our objective here is to devise a video
generation approach that generates high-quality, time-consistent videos within our computation
budget of < 4 GPU) and computation times for training models < two weeks. Fortunately, diffusion
models for image synthesis have demonstrated wide success, which strongly motivated our use of
this approach. Our qualitative results in Figure 1 also indicate that our particular approach does quite
well at synthesizing frames in the longer-term future (i.e., frame 29 in the bottom right corner).

One family of diffusion models might be characterized as Denoising Diffusion Probabilistic Models
(DDPMSs) [Sohl-Dickstein et al., 2015, Ho et al., 2020, Dhariwal and Nichol, 2021], while another as
Score-based Generative Models (SGMs) [Song and Ermon, 2019, Li et al., 2019, Song and Ermon,
2020, Jolicoeur-Martineau et al., 2021a]. However, these approaches have effectively merged into a
field we shall refer to as score-based diffusion models, which work by defining a stochastic process
from data to noise and then reversing that process to go from noise to data. Their main benefits are
that they generate very 1) high-quality and 2) diverse data samples. One of their drawbacks is that
solving the reverse process is relatively slow, but there are ways to improve speed [Song et al., 2020,
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their massive success and attractive properties, we focus here on developing our framework using
score-based diffusion models for video prediction, generation, and interpolation.

Our work makes the following contributions:

1. A conditional video diffusion approach for video prediction and interpolation that yields
SOTA results.

2. A conditioning procedure based on masking past and/or future frames in a blockwise
manner giving a single model the ability to solve multiple video tasks: future/past prediction,
unconditional generation, and interpolation.

3. Asliding window blockwise autoregressive conditioning procedure to allow fast and coherent
long-term generation (Figure 2).

4. A convolutional U-net neural architecture integrating recent developments with a conditional
normalization technique we call SPAce-TIme-Adaptive Normalization (SPATIN) (Figure 3).

By conditioning on blocks of frames in the past and optionally blocks of frames even further in the
future, we are able to better ensure that temporal dynamics are transferred across blocks of samples,
i.e. our networks can learn implicit models of spatio-temporal dynamics to inform frame generation.
Unlike many other approaches, we do not have explicit model components for spatio-temporal
derivatives or optical flow or recurrent blocks.

2 Conditional Diffusion for Video

Let xo € R? be a sample from the data distribution pg,. A sample X can corrupted from ¢ = 0 to
t = T through the Forward Diffusion Process (FDP) with the following transition kernel:

qr(xexe—1) = N (x5 v/ 1 = Bixe—1, Bie]), (1
Furthermore, x; can be sampled directly from x( using the following accumulated kernel:
G (xe[x0) = N (%45 Vauxo, (1 — a)l) = x; = Vauxo + V1 — aye (2)
where @; = [['_,(1 — f,), and € ~ (0, T).
Generating new samples can be done by reversing the FDP and solving the Reverse Diffusion Process

(RDP) starting from Gaussian noise x7. It can be shown ( [ 1, [ 1) that
the RDP can be computed using the following transition kernel:
pt(xt—l |Xt, XO) = N(thh llt(Xu X0)7 BtI)a
_ Va1B Vor(l—ay—q) 1—aq

where  fi;(x¢,%X0) = 1% Xg + -3 x; and Bt:ﬁﬁt €)]
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Since xq given x; is unknown, it can be estimated using eq. (2): X9 = (xt —1— dte) /+/ @, where
€9(x¢|t) estimates € using a time-conditional neural network parameterized by 6. This allows us to
reverse the process from noise to data. The loss function of the neural network is:

L(e) = Et7xONPdala7€NN(O7I) |:H6 B 60(\/@)(0 + Me | t)H§:| (4)

Note that estimating € is equivalent to estimating a scaled version of the score function (i.e., the
gradient of the log density) of the noisy data:

1 1
Xy — VouXg) = ——=——€ 5
=g, Xt~ VoK) = — = ©)
Thus, data generation through denoising depends on the score-function, and can be seen as noise-
conditional score-based generation.

Vi, logqi(x; | x0) = —

Score-based diffusion models can be straightforwardly adapted to video by considering the joint
distribution of multiple continuous frames. While this is sufficient for unconditional video generation,
other tasks such as video interpolation and prediction remain unsolved. A conditional video prediction
model can be approximately derived from the unconditional model using imputation [ ,

]; indeed, the contemporary work of [ ] attempts to use this technique; however,
their approach is based on an approximate conditional model.



2.1 Video Prediction via Conditional Diffusion

We first propose to directly model the conditional distribution of video frames in the immediate
future given past frames. Assume we have p past frames p = {p’ }le and k current frames in the
immediate future xg = {xf, }i:r We condition the above diffusion models on the past frames to
predict the current frames:

— — 2
Lvidpred(e) = ]Et,[p,xO]dia[a,ENN(O,I) |:||6 - 69(\/a_tX0 + V1 — e | P, t)” ] (6)

Given a model trained as above, video prediction for subsequent time steps can be achieved by
blockwise autoregressively predicting current video frames conditioned on previously predicted
frames (see Figure 2). We use variants of the network shown in Figure 3 to model €y in Equation 6
here, and for Equation 7 and Equation 8 below.

Prediction Real Past t=1 t=2 t=3 t=4 t=5

Prediction Prediction
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Figure 2: (Above) Blockwise autoregressive
prediction with our model. (Right) shows this
strategy where the top row and third row are
ground truth, and the second and fourth rows
show the blockwise autoregressively gener-
ated frames using our approach.

2.2 Video Prediction + Generation via Masked Conditional Diffusion

Our approach above allows video prediction, but not unconditional video generation. As a second
approach, we extend the same framework to video generation by masking (zeroing-out) the past
frames with probability pmag = 1/2 using binary mask m,,. The network thus learns to predict the
noise added without any past frames for context. Doing so means that we can perform conditional as
well as unconditional frame generation, i.e., video prediction and generation with the same network.
This leads to the following loss (B is the Bernouilli distribution):

— — 2
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We hypothesize that this dropout-like [Srivastava et al., 2014] approach will also serve as a form of
regularization, improving the model’s ability to perform predictions conditioned on the past. We
see positive evidence of this effect in our experiments — see the MCVD past-mask model variants in
Tables 3 and 9 versus without past-masking. Note that random masking is used only during training.

2.3 Video Prediction + Generation + Interpolation via Masked Conditional Diffusion

We now have a design for video prediction and generation, but it still cannot perform video interpo-
lation nor past prediction from the future. As a third and final approach, we show how to build a
general model for solving all four video tasks. Assume we have p past frames, k current frames, and

f future frames f = {f 1}f= . We randomly mask the p past frames with probability ppask = /2,
and similarly randomly mask the f future frames with the same probability (but sampled separately).
Thus, future or past prediction is when only future or past frames are masked. Unconditional genera-
tion is when both past and future frames are masked. Video interpolation is when neither past nor
future frames are masked. The loss function for this general video machinery is:

— — 2
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Figure 3: We give noisy current frames to a U-Net whose residual blocks receive conditional
information from past/future frames and noise-level. The output is the predicted noise in the current
frames, which we use to denoise the current frames. At test time, we start from pure noise.

2.4 Our Network Architecture

For our denoising network we use a U-net architecture [

, ] combining the improvements from [ ] and
[ 1. This architecture uses a mix of 2D convolutions [ s ], multi-head
self-attention [ s ], and adaptive group-norm [ s ]. We use positional
encodings of the noise level (¢ € [0, 1]) and process it using a transformer style positional embedding:
—2d —2d T
e(t) = [ ..,CO8 (tcT) ,sin (tCT) S } , 9)

where d = 1,...,D/2, D is the number of dimensions of the embedding, and ¢ = 10000. This
embedding vector is passed through a fully connected layer, followed by an activation function
and another fully connected layer. Each residual block has an fully connected layer that adapts the
embedding to the correct dimensionality.

To provide x;, p, and f to the network, we separately concatenate the past/future conditional frames
and the noisy current frames in the channel dimension. The concatenated noisy current frames
are directly passed as input to the network. Meanwhile, the concatenated conditional frames are
passed through an embedding that influences the conditional normalization akin to SPatially-Adaptive
(DE)normalization (SPADE) [ , ]; to account for the effect of time/motion, we call
this approach SPAce-TIme-Adaptive Normalization (SPATIN). In addition to SPATIN, we also try
directly concatenating the conditional and noisy current frames together and passing them as the
input. In our experiments below we show some results with SPATIN and some with concatenation
(concat). For simple video prediction with Equation 6, we experimented with 3D convolutions and
3D attention However, this requires an exorbitant amount of memory, and we found no benefit in
using 3D layers over 2D layers at the same memory (i.e., the biggest model that fits in 4 GPUs). Thus,
we did not explore this idea further. We also tried and found no benefit from gamma noise [
s ], L1 loss, and F-PNDM sampling [ s ].



3 Related work

Score-based diffusion models have been used for image editing [Meng et al., 2022, Saharia et al.,
2021, Nichol et al., 2021] and our approach to video generation might be viewed as an analogy
to classical image inpainting, but in the temporal dimension. The GLIDE or Guided Language to
Image Diffusion for Generation and Editing approach of Nichol et al. [2021] uses CLIP-guided
diffusion for image editing, while Denoising Diffusion Restoration Models (DDRM) Kawar et al.
[2022] additionally condition on a corrupted image to restore the clean image. Adversarial variants of
score-based diffusion models have been used to enhance quality [Jolicoeur-Martineau et al., 2021a]
or speed [Xiao et al., 2022].

Contemporary work to our own such as that of Ho et al. [2022] and Yang et al. [2022] also
examine video generation using score-based diffusion models. However, the Video Diffusion Models
(VDMs) work of Ho et al. [2022] approximates conditional distributions using a gradient method for
conditional sampling from their unconditional model formulation. In contrast, our approach directly
works with a conditional diffusion model, which we obtain through masked conditional training,
thereby giving us the exact conditional distribution as well as the ability to generate unconditionally.
Their experiments focus on: a) unconditional video generation, and b) text-conditioned video
generation, whereas our work focuses primarily on predicting future video frames from the past,
using our masked conditional generation framework. The Residual Video Diffusion (RVD) of Yang
et al. [2022] is only for video prediction, and it uses a residual formulation to generate frames
autoregressively one at a time. Meanwhile, ours directly models the conditional frames to generate
multiple frames in a block-wise autoregressive manner.

Recurrent neural network (RNN) techniques
were early candidates for modern deep neural ar-
chitectures for video prediction and generation.
Early work combined RNNs with a stochastic la-
tent variable (SV2P) Babacizadeh et al. [2018a]
and was optimized by variational inference. The
stochastic video generation (SVG) approach of
Denton and Fergus [2018] learned both prior and
a per time step latent variable model, which in-
fluences the dynamics of an LSTM at each step.
The model is also trained in a manner similar
to a variational autoencoder, i.e., it was another
form of variational RNN (VRNN). To address
the fact that vVRNNSs tend to lead to blurry results,
Castrejon et al. [2019] (Hier-vRNN) increased
the expressiveness of the latent distributions us- Figure 4: Comparing future prediction methods
ing a hierarchy of latent variables. We com- on Cityscapes: SVG-LP (Top Row), Hier-vRNNs
pare qualitative result of SVG and Hier-vRNN  (Second Row), Our Method (Third Row), Ground
with the MCVD concat variant of our method Truth (Bottom Row). Frame 2, a ground truth
in Figure 4. Other vRNN-based models include conditioning frame is shown in first column, fol-
SAVP Lee et al. [2018], SRVP Franceschi et al.  lowed by frames: 3, 5, 10 and 20 generated by
[2020], SLAMP Akan et al. [2021]. each method vs the ground truth at the bottom.

The well known Transformer paradigm [Vaswani et al., 2017] from natural language processing has
also been explored for video. The Video-GPT work of Yan et al. [2021] applied an autoregressive GPT
style [Brown et al., 2020] transformer to the codes produced from a VQ-VAE [Van Den Oord et al.,
2017]. The Video Transformer work of Weissenborn et al. [2019] models video using 3-D spatio-
temporal volumes without linearizing positions in the volume. They examine local self-attention over
small non-overlapping sub-volumes or 3D blocks. This is done partly to accelerate computations
on TPU hardware. Their work also observed that the peak signal-to-noise ratio (PSNR) metric and
the mean-structural similarity (SSIM) metrics [Wang et al., 2004] were developed for images, and
have serious flaws when applied to videos. PSNR prefers blurry videos and SSIM does not correlate
well to perceptual quality. Like them, we focus on the recently proposed Frechet Video Distance
(FVD) [Unterthiner et al., 2018], computed over entire videos and which is sensitive to visual quality,
temporal coherence, and diversity of samples. Rakhimov et al. [2020] (LVT) used transformers to




predict the dynamics of video in latent space. [ ] (CCVS) also predict in latent
space, that of an adversarially trained autoencoder, and also add a learnable optical flow module.

Generative Adversarial Network (GAN) based approaches to video generation have also been
studied extensively. [ ] proposed an early GAN architecture for video, using a
spatio-temporal CNN. [ ] proposed a strategy for separating motion and content
into different pathways of a convolutional LSTM based encoder-decoder RNN. [ ]
(TGAN) predicted a sequence of latents using a temporal generator, and then the sequence of frames
from those latents using an image generator. TGANv2 [ ] improved its memory
efficiency. MoCoGAN [ ] explored style and content separation, but within a
CNN framework. [ ] used the MoCoGAN framework by re-formulating the
video prediction problem as a Markov Decision Process (MDP). FutureGAN
[ ] used spatio-temporal 3D convolutions in an encoder decoder architecture, and elements of
the progressive GAN [ ] approach to improve image quality. TS-GAN

[ ] facilitated information flow between consecutive frames. TriVD-GAN [ ]
proposes a novel recurrent unit in the generator to handle more complex dynamics, while DIGAN

[ ] uses implicit neural representations in the generator.

Video interpolation was the subject of a flurry of interest in the deep learning community a number of
years ago [ , s s , s , , ]. However, these
architectures tend to be fairly specialized to the interpolation task, involving optical flow or motion
field modelling and computations. Frame interpolation is useful for video compression; therefore,
many other lines of work have examined interpolation from a compression perspective. However,
these architectures tend to be extremely specialized to the video compression task [ , ].

The Cutout approach of [ ] has examined the idea of cutting out small
continuous regions of an input image, such as small squares. Dropout [ , ] at the
FeatureMap level was proposed and explored under the name of SpatialDropout in

[ ]. Input Dropout [ , ] has been examined in the context of dropping different
channels of multi-modal input imagery, such as the dropping of the RGB channels or depth map
channels during training, then using the model without one of the modalities during testing, e.g. in
their work they drop the depth channel.

Regarding our block-autoregressive approach, previous video prediction models were typically either
1) non-recurrent: predicting all n frames simultaneously with no way of adding more frames (most
GAN-based methods), or 2) recurrent in nature, predicting 1 frame at a time in an autoregressive
fashion. The benefit of the non-recurrent type is that you can generate videos faster than 1 frame at a
time while allowing for generating as many frames as needed. The disadvantage is that it is slower
than generating all frames at once, and takes up more memory and compute at each iteration. Our
model finds a sweet spot in between in that it is block-autoregressive: generating k¥ < n frames at a
time recurrently to finally obtain n frames.

4 Experiments

We show the results of our video prediction experiments on test data that was never seen dur-
ing training in Tables 1 - 4 for Stochastic Moving MNIST (SMMNIST) 2, KTH *, BAIR “, and
Cityscapes “respectively. We present unconditional generation results for BAIR in Table 5 and
UCF-101 © in Table 6, and interpolation results for SMMNIST, KTH, and BAIR in Table 7.

Datasets: We generate 128x128 images for Cityscapes and 64x64 images for the other datasets.
See our Appendix and supplementary material for additional visual results. Our choice of datasets
is in order of progressive difficulty: 1) SMMNIST: black-and-white digits; 2) KTH: grayscale
single-humans; 3) BAIR: color, multiple objects, simple scene; 4) Cityscapes: color, natural complex
natural driving scene; 5) UCF101: color, 101 categories of natural scenes. We process these datasets
similarly to prior works. For Cityscapes, each video is center-cropped, then resized to 128 x 128. For
UCF101, each video clip is center-cropped at 240x240 and resized to 64x64, taking care to maintain
the train-test splits.

& ,2018, 20151 7 [ ,2004] 4 [ 20171 O [



Unless otherwise specified, we set Table 1: Video prediction results on SMMNIST (64 x 64)
the mask probability to 0.5 when for 10 predicted frames conditioned on 5 past frames. We
masking was used. For sampling, predicted 10 trajectories per real video, and report the average
we report results using the sampling  FVD and maximum SSIM, averaged across 256 test videos.

methods DDPM [ » 20201 or T GMMNIST [5 — 10; trained on k] | k | FVD| SSIMf
DDIM | ’ } with only SVG 10 | 90.81  0.688
100 sampling steps, though our mod- [ ’ | : :
. . vRNN 1L [ s ] 10 | 63.81 0.763

els were trained with 1000, to make )

. Hier-vRNN [ , 111015717  0.760
samphng faster. We observe that MCVD concat (Ours) 502563 0786
the metrics are generally better using  povp spatin (Ours) 5| 2386 0780

DDPM than DDIM (except for UCF-
101). Using 1000 sampling steps could yield better results.

Note that all our models are trained to predict only 4-5 current frames at a time, unlike other models
that predict >10. We use these models to then autoregressively predict longer sequences for prediction
or generation. This was done in order to fit the models in our GPU memory budget. Despite this
disadvantage, we find that our MCVD models perform better than many previous SOTA methods.

Metrics: As mentioned earlier, Table 2: Video prediction results on KTH (64 x 64), predicting
we primarily use the FVD met- 30 and 40 frames using models trained to predict k frames at a
ric for comparison across mod- time. All models condition on 10 past frames, on 256 test videos.
els as FVD measures both fidelity

and diversity of the generated KTH [10 — pred; trained on k] | k pred|FVD] PSNR?1 SSIM1T
samples. Previous works com- SAVP [ ) ] 10 30 1374£3 265 0.756
pare Frechet Inception Distance gi\{/g)ioncat (Ours) 1 lg gg ;gg i g %gi 8222
%FID)t.[ S S Tand  qpyp| ,20201 |10 30 |222+£3 297 0.870
heeption ]C;Cfaept(e d)to[vi deos by  MCVD concat (Ours) 5 40 2767 2640 0812
o 210l . SAVP-VAE [ ,2018] |10 40 [1457  26.00 0.806
replacing the Inception network G54 kevnoints [ 2021110 40 |1442  27.11 0.837

with a 3D-convolutional network
that takes video input. FVD is
computed similarly to FID, but using an I3D network trained on the huge video dataset Kinetics-400.
We also report PSNR and SSIM.

Ablation studies: In Table 3 we compare models that use concatenated raw pixels as input to U-Net
blocks (concat) to SPATIN variants. We also compare no-masking to past-masking variants, i.e.
models which are only trained predict the future vs. models which are regularized by being trained for
prediction and unconditional generation. It can be seen that our model works across different choices
of past frames and generates better quality for shorter videos. This is expected from models of this
kind. Moreover, it can be seen that the model trained on the two tasks of Prediction and Generation
(i.e., the models with past-mask) performs better than the model trained only on Prediction!

In addition, the appendix contains an ablation study in Table 9 on the different design choices: concat
vs concat past-future-mask vs spatin vs spatin future-mask vs spatin past-future-mask. It can be seen
that concat is, in general, better than spatin. It can also be seen that the past-future-mask variant,
which is a general model capable of all three tasks, performs better at the individual tasks than the
models trained only on the individual task. This was demonstrated in Table 3 as well. This shows that
the model gains very helpful insights while generalizing to all three tasks, which it does not while
training only on the individual task.

We conducted preliminary experiments with a larger number of frames. Since the models with a
larger number of frames were bigger, we could only run them for a shorter time with a smaller batch
size than the smaller models. In general, we found that larger models did not substantially improve
the results. We attribute this to the fact that using more frames means that the model should be
given more capacity, but we could not increase it due to our computational budget constraints. We
emphasize that our method works very well with fewer computational resources.

Examining these results we remark that we have SOTA performance for prediction on SMMNIST,
BAIR and the challenging Cityscapes evaluation. Our Cityscapes model yields an FVD of 145.5,
whereas the best previous result of which we are aware is 418. The quality of our Cityscapes results
are illustrated visually in Figure 1 and Figure 2 and in the additional examples provided in our
Appendix. While our completely unconditional generation results are strong, we note that when



past masking is used to regularize future predicting models, we see clear performance gains in
Table 3. Finally, in Table 7 we see that our interpolation results are SOTA by a wide margin, across
experiments on SMMNIST, KTH and BAIR — even compared to architectures much more specialized
for interpolation.

It can be seen that our proposed method generates better quality videos, even though it was trained
on a shorter number of frames than other methods. It can also be seen that training on multiple tasks
using random masking improves the quality of generated frames than training on the individual tasks.

Table 3: Video prediction results on BAIR (64 x 64) conditioning on p past frames and
predicting pred frames in the future, using models trained to predict k frames at at time.

BAIR (64 x 64) [past p — pred ; trainedon k] | p  k pred | FVD] PSNRT SSIMf
LVT [ , ] 1 15 15 125.8 - -
DVD-GAN-FP [ , ] 1 15 15 109.8 - -
MCYVD spatin (Ours) 1 5 15 103.8 18.8 0.826
TrIVD-GAN-FP [ , ] 1 15 15 103.3 - -
VideoGPT [ , ] 1 15 15 103.3 - -
CCVS [ , ] 1 15 15 99.0 - -
MCYVD concat (Ours) 1 5 15 98.8 18.8 0.829
MCYVD spatin past-mask (Ours) 1 5 15 96.5 18.8 0.828
MCYVD concat past-mask (Ours) 1 5 15 95.6 18.8 0.832
Video Transformer [ , ] 1 15 15 94-96* - -
FitVid [ , ] 1 15 15 93.6 - -
MCYVD concat past-future-mask (Ours) 1 5 15 89.5 16.9 0.780
SAVP [ , ] 2 14 14 116.4 - -
MCYVD spatin (Ours) 2 5 14 94.1 19.1 0.836
MCYVD spatin past-mask (Ours) 2 5 14 90.5 19.2 0.837
MCYVD concat (Ours) 2 5 14 90.5 19.1 0.834
MCYVD concat past-future-mask (Ours) 2 5 14 89.6 17.1 0.787
MCVD concat past-mask (Ours) 2 5 14 87.9 19.1 0.838
SAVP [ , ] 2 10 28 143.4 - 0.795
Hier-vRNN [ , ] 2 10 28 143.4 - 0.822
MCYVD spatin (Ours) 2 5 28 132.1 17.5 0.779
MCYVD spatin past-mask (Ours) 2 5 28 127.9 17.7 0.789
MCYVD concat (Ours) 2 5 28 120.6 17.6 0.785
MCVD concat past-mask (Ours) 2 5 28 119.0 17.7 0.797
MCVD concat past-future-mask (Ours) 2 5 28 118.4 16.2 0.745

* 94 on only the first frames, 96 on all subsequences of test frames

Table 4: Video prediction on Cityscapes (128 x 128) conditioning on 2 frames and predicting 28.
SPATIN seems to produce a drift towards brighter images with a color balance shift in frames further
from the start frame on Cityscapes, resulting in increased FVD for SPATIN than the CONCAT variant.

Cityscapes (128 x 128) [2 — 28; trained on k] k | FVDJ LPIPS) SSIM?

SVG-LP [ ] 10 | 1300.26  0.549 £ 0.06 0.574 £ 0.08
vRNN 1L [ ] 10 682.08 0.304 £0.10 0.609 £ 0.11
Hier-vRNN [ ] 10 567.51 0.264 £ 0.07 0.628 £ 0.10
GHVAE [ ] 10 418.00 0.193 £0.014  0.740 £+ 0.04
MCYVD spatin past-mask (Ours) 5 184.81 0.121 £0.05 0.720 =+ 0.11
MCVD concat past-mask (Ours) 5 141.31  0.112 £ 0.05 0.690 £ 0.12

5 Conclusion

We have shown how to obtain SOTA video prediction and interpolation results with randomly
masked conditional video diffusion models using a relatively simple architecture. We found that
past-masking was able to improve performance across all model variants and configurations tested.
We believe our approach may pave the way forward toward high quality larger-scale video generation.



Limitations. Videos generated by  Table 5: Unconditional generation of BAIR video frames.
these models are still small compared
to real movies, and they can still be- BAIR (64 x 64) [0 — pred; trained on 5) | pred | FVD]

come blurry or inconsistent when the MCVD spatin past-mask (Ours) 16 267.8
number of generated frames is very MCYVD concat past-mask (Ours) ‘ 16 ‘ 228.5
large. Our unconditional generation -

results on the highly diverse UCF-101 ~ MCVD spatin past-mask (Ours) ‘ 30 ‘ 399.8

MCVD concat past-mask (Ours) 30 348.2

dataset are still far from perfect. More
work is clearly needed to scale these
models to larger datasets with more diversity and with longer duration video. As has been the case
in many other settings, simply using larger models with many more parameters is a strategy that is
likely to improve the quality and flexibility of these models — we were limited to 4 GPUs for our
work here. There is also a need for faster sampling methods capable of maintaining quality over time.

Givel} our strong il}terpolation resqlts, Table 6: Unconditional generation of UCF-101 video frames.
conditional diffusion models which

genera?e skipped frames could make UCF-101 (64 x 64) [0 — 16; trainedon k] | k | FVDJ
it possible to generate much longer, MoCoGAN-MDP [ e (12970
1 i oCo - , )

but consistent Vldep through a'strat- MCVD concat past-mask (Ours) 61277
egy of first generating sparse distant

f in a block, followed by an i TGANv2 [ , 2020] 16 | 1209.0
rames 1n a block, Tollowed by an in- MCYVD spatin past-mask (Ours) 4 | 1143.0
terpolative diffusion step for the miss- DIGAN [ ’ 1 16 | 655.0

ing frames.

Table 7: Video Interpolation results (64 x 64). Given p past + f future frames — interpolate k frames.
Reporting average of the best metrics out of n trajectories per test sample. | (p+ f) and 1k is harder.
We used MCVD spatin past-mask for SMMNIST and KTH, and MCVD concat past-future-mask for
BAIR. We also include results on SMMNIST for a "pure" model trained without any masking.

SMMNIST (64 x 64) KTH (64 x 64) BAIR (64 x 64)
p+f k n [PSNRTSSIMt||p+f k n [PSNRTSSIM?||[p+f & n [PSNR{ SSIM?+
SVG-LP poisl || 18 7 100[13.543 0.741 || 18 7 100[28.131 0.883 || 18 7 100|18.648 0.846
FSTN [2017] 18 7 100[14.730 0.765 || 18 7 100/29.431 0.899 || 18 7 100/19.908 0.850
SepConv [2017] || 18 7 100|14.759 0.775 || 18 7 100[29.210 0.904 || 18 7 100|21.615 0.877
SuperSloMo [2018]|| 18 7 100|13.387 0.749 || 18 7 10028.756 0.893 | - — — | - -
SDVI full [2020] 18 7 100]16.025 0.842 || 18 7 100[29.190 0.901 || 18 7 100{21.432 0.880
SDVI [2020] 16 7 100|14.857 0.782 || 16 7 100/26.907 0.831 || 16 7 100|19.694 0.852
10 10 100{20.944 0.854 || 15 10 10034.669 0.943 || 4 5100(25.162 0.932
MCVD (Ours) 10 5 10(27.693 0.941 || 15 10 10 [34.068 0.942 || 4 5 10|23.408 0.914
pure  |18.385 0.802 | 10 5 10|35.611 0.963

Broader Impacts. High-quality video generation is potentially a powerful technology that could
be used by malicious actors for applications such as creating fake video content. Our formulation
focuses on capturing the distributions of real video sequences. High-quality video prediction could
one day find use in applications such as autonomous vehicles, where the cost of errors could be high.
Diffusion methods have shown great promise for covering the modes of real probability distributions.
In this context, diffusion-based techniques for generative modelling may be a promising avenue for
future research where the ability to capture modes properly is safety critical. Another potential point
of impact is the amount of computational resources being spent for these applications involving the
high fidelity and voluminous modality of video data. We emphasize the use of limited resources
in achieving better or comparable results. Our submission provides evidence for more efficient
computation involving fewer GPU hours spent in training time.
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