TABULAR DATA: IS DEEP LEARNING ALL YOU NEED?

Anonymous authors
Paper under double-blind review

ABSTRACT

Tabular data represent one of the most prevalent data formats in applied machine
learning, largely because they accommodate a broad spectrum of real-world prob-
lems. Existing literature has studied many of the shortcomings of neural architec-
tures on tabular data and has repeatedly confirmed the scalability and robustness
of gradient-boosted decision trees across varied datasets. However, recent deep
learning models have not been subjected to a comprehensive evaluation under con-
ditions that allow for a fair comparison with existing classical approaches. This
situation motivates an investigation into whether recent deep-learning paradigms
outperform classical ML methods on tabular data. Our survey fills this gap by
benchmarking seventeen state-of-the-art methods, spanning neural networks, clas-
sical ML and AutoML techniques. Our empirical results over 68 diverse datasets
from a well-established benchmark indicate a paradigm shift, where Deep Learn-
ing methods outperform classical approaches.

1 INTRODUCTION

Tabular data has long been one of the most common and widely used data formats, with applica-
tions spanning various fields such as healthcare (Johnson et al., 2016; Ulmer et al., 2020), finance
(Nureni & Adekola, 2022), and manufacturing (Chen et al., 2023), among others. Despite being
a ubiquitous data modality, tabular data has only been marginally impacted by the deep learning
revolution (Van Breugel & Van Der Schaar, 2024). A significant portion of the research community
in tabular data continues to advocate for traditional machine learning methods, such as gradient-
boosting decision trees (GBDTs) (Friedman, 2001; Chen & Guestrin, 2016; Prokhorenkova et al.,
2018; Ke et al., 2017). Recent empirical studies suggest that GBDTs are still competitive for tabular
data (Shwartz-Ziv & Armon, 2022; Grinsztajn et al., 2022; McElfresh et al., 2023). Nevertheless,
an increasing segment of the community highlights the benefits of deep learning methods (Kadra
et al., 2021; Gorishniy et al., 2021; Arik & Pfister, 2021; Somepalli et al., 2021; Kadra et al., 2024;
Holzmiiller et al., 2024).

The community remains divided on whether Deep Learning approaches are the undisputed state-of-
the-art methods for tabular data (Shwartz-Ziv & Armon, 2022). To resolve this debate and determine
the most effective methods for tabular data, multiple recent studies have focused on empirically com-
paring GBDTs with Deep Learning methods (Grinsztajn et al., 2022; Borisov et al., 2022; McElfresh
et al., 2023). These studies suggest that tree-based models outperform deep learning models on tab-
ular data even after tuning neural networks.

However, these recent empirical surveys only include non-meta-learned neural networks (Grinsztajn
et al., 2022; Borisov et al., 2022) and do not incorporate the recent stream of methods that leverage
foundation models and LLMs for tabular data (Zhu et al., 2023; Hollmann et al., 2023; Yan et al.,
2024; Kim et al., 2024). Furthermore, the empirical setup of the recent empirical benchmarks is
sub-optimal because no thorough hyperparameter optimization (HPO) techniques were applied to
carefully tune the hyperparameters of neural networks.

In this empirical survey paper, we address a simple question: ”Is Deep Learning now state-of-the-
art on tabular data, compared to GBDTs?”. Providing an unbiased and empirically justified answer
to this question has a significant impact on the large community of practitioners. Therefore, we
designed a large-scale experimental protocol using 68 diverse classification OpenML datasets and 17
recent baselines, including foundation models for tabular data. We classify models according to their
underlying paradigm and provide a taxonomy tree in Figure 1. In our protocol, we use 10-fold cross-

) () e o))) [(i))

Figure 1: Taxonomy tree of algorithms applied to tabular classification (TC) models

validation experiments for all the datasets and fairly tune the hyperparameters of all the baselines
with an equally large HPO budget. In our study, we focus on the predictive quality of models rather
than interpretability. However, recent works exist that propose interpretable counterparts for the
top-performing deep learning methods in our study (Kadra et al., 2024; Mueller et al., 2024).

Moreover, to fully unlock a model’s potential, contrary to prior work, after HPO we refit all models
on the joined training and validation set. Hence, our study provides a fair investigation of post-
hyperparameter optimization. We argue that this is a crucial oversight because training on the com-
bined dataset can further improve a model’s predictive performance and change the ranking of the
models, as indicated by our empirical results. Our findings highlight a paradigm shift, where Deep
Learning methods achieve state-of-the-art results and manage to outperform classical approaches.

In summary, we provide the following main insights:

* Meta-learned foundation models and simple feed-forward neural networks outperform GB-
DTs in all dataset regimes.

» Feed-forward neural networks outperform related dataset-specific architectures, and non-
fine-tuned foundation models outperform fine-tuned ones.

* Refitting on the validation dataset after performing hyperparameter optimization signifi-
cantly improves predictive quality and affects the overall model rankings.

* As an overarching contribution, to facilitate future research, we open-source our code and
we release a large benchmark that includes 17 baselines run on 68 datasets, repeated 10
times with different test outer folds, for up to 100 HPO trials, yielding a total number of 8
million evaluations or a total of 11.81 GPU years.

2 RELATED WORK

Given the prevalence of tabular data in numerous areas, including healthcare, finance, psychology,
and anomaly detection, as highlighted in various studies (Chandola et al., 2009; Johnson et al., 2016;
Guo et al., 2017; Ulmer et al., 2020; Urban & Gates, 2021; Nureni & Adekola, 2022; Van Breugel &
Van Der Schaar, 2024), there has been significant research dedicated to developing algorithms that
effectively address the challenges inherent in these domains.

Classical Machine Learning. Gradient Boosted Decision Trees (GBDTs) (Friedman, 2001), in-
cluding popular implementations like XGBoost (Chen & Guestrin, 2016), LightGBM (Ke et al.,
2017), and CatBoost (Prokhorenkova et al., 2018), are widely favored by practitioners for their ro-
bust performance on tabular datasets and their short training times.

Deep Learning. In terms of neural networks, prior work shows that meticulously searching for the
optimal combination of regularization techniques in simple multilayer perceptrons (MLPs) called
Regularization Cocktails (Kadra et al., 2021) can yield impressive results. Additionally, the models
in (Kadra et al., 2021; Gorishniy et al., 2021) propose adaptations of the ResNet (He et al., 2016)
architecture for tabular data, demonstrating the potential of deep learning approaches in handling
tabular data.

Furthermore, recent research underscores that numerical embeddings (Gorishniy et al., 2022) for
tabular data are underexplored. Incorporating these embeddings into neural network architec-
tures, including MLPs and transformer-based models, can substantially enhance performance.

Protocol | Model families

Study Refitting Model-based HPO #Datasets\GBDT AutoML ICL FT FNN TF\#Baselines

Ye et al. (2025) X 300 X X 31
Rubacheyv et al. (2024) X 8 X X X 14
McElfresh et al. (2023) X X 176 X X 19
Borisov et al. (2022) X 5 X X X 20
Grinsztajn et al. (2022) X X 45 3 X X 7
Shwartz-Ziv & Armon (2022) X 11 X X X X 5
Gorishniy et al. (2021) X 11 X X X 11
Ours 68 | 17

Table 1: Comparison with prior empirical survey works. In our study, we include 6 model families:
Gradient Boosted Decision Trees (GBDT), AutoML, In-Context Learning (ICL), Fine-tuning (FT),
Feed forward neural networks (FNN), and Transformer-based Models (TF).

Moreover, novel approaches such as RealMLP (Holzmiiller et al., 2024) introduce various en-
hancements to the standard MLP architecture. These include using robust scaling at the pre-
processing stage and experimenting with alternative numerical embedding strategies. Lastly, re-
cent research (Gorishniy et al., 2025) achieves state-of-the-art performance by combining simple
feed-forward neural networks with efficient ensembling techniques effectively mimicking gradient
boosted decision trees.

Reflecting their success in various domains, transformers have also garnered attention in the tabular
data domain. TabNet (Arik & Pfister, 2021), an innovative model in this area, employs attention
mechanisms sequentially to prioritize the most significant features. SAINT (Somepalli et al., 2021)
draws inspiration from the seminal transformer architecture (Vaswani et al., 2017). It addresses data
challenges by applying attention both to rows and columns. They also offer a self-supervised pre-
training phase, particularly beneficial when labels are scarce. The FT-Transformer (Gorishniy et al.,
2021) stands out with its two-component structure: the Feature Tokenizer and the Transformer. The
Feature Tokenizer is responsible for converting numerical and categorical features into embeddings.
These embeddings are then fed into the Transformer, forming the basis for subsequent processing.

Recently, a new avenue of research has emerged, focusing on the use of foundation models for
tabular data. XTab (Zhu et al., 2023) utilizes shared Transformer blocks, similar to those in FT-
Transformer (Gorishniy et al., 2021), followed by fine-tuning dataset-specific encoders. Another
notable work, TabPFN (Hollmann et al., 2023), employs in-context learning (ICL), by leveraging
sequences of labeled examples provided in the input for predictions, thereby eliminating the need
for additional parameter updates after training. The most recent version, TabPFNv2 (Hollmann
et al., 2025), addresses the limitations of the first version, handling tables with up to 10K samples,
and incorporating row- and column-wise attention, improving predictive performance. TabICL (Qu
et al., 2025), similar to the TabPFN models, is pretrained on millions of synthetic datasets and can
scale to tables with up to 500K samples. TP-BERTa (Yan et al., 2024), a pre-trained language model
for tabular data prediction, uses relative magnitude tokenization to convert scalar numerical features
into discrete tokens. The last layer of the model is then fine-tuned on a per-dataset basis. In contrast,
CARTE (Kim et al., 2024) utilizes a graph representation of tabular data and a neural network
capable of capturing the context within a table. The model is then fine-tuned on a per-dataset basis.

Empirical Studies. Significant research has delved into understanding the contexts where neural
networks (NNs) excel, and where they fall short (Shwartz-Ziv & Armon, 2022; Borisov et al., 2022;
Grinsztajn et al., 2022; Rubachev et al., 2024; Ye et al., 2025). The recent study by McElfresh
et al. (2023) is highly related to ours in terms of research focus. However, the authors use only ran-
dom search for tuning the hyperparameters of neural networks, whereas we employ Tree-structured
Parzen Estimator (TPE) (Bergstra et al., 2011) as employed by Gorishniy et al. (2021), which pro-
vides a more guided and efficient search strategy. Additionally, recent studies (McElfresh et al.,
2023) are limited to evaluating a maximum of 30 hyperparameter configurations, in contrast to our
more extensive exploration of up to 100 configurations. Furthermore, despite using the validation
set for hyperparameter optimization (HPO), they do not retrain the model on the combined training
and validation data using the best-found configuration before evaluating the model on the test set.
Our paper differs from prior studies by applying a methodologically correct experimental protocol
involving thorough HPO for neural networks. Lastly, Table 1 summarizes the model families eval-

uated in related empirical studies and highlights the differences in the evaluation protocol. To the
best of our knowledge, we are the first to provide a thorough assessment of foundation models and
AutoML to other learning paradigms.

3 EXPERIMENTAL PROTOCOL

In our study, we focus on binary and multi-class classification problems on tabular data. The gen-
eral learning task is described in Section 3.1. A detailed description of our evaluation protocol is
provided in Section 3.2.

3.1 LEARNING WITH TABULAR DATA

A tabular dataset contains N samples with d features defining an N x d table. A sample x; € R?
is defined by its d feature values. The features can be continuous numerical values or categorical,
where for the latter, a common heuristic is to transform the values into numerical space. Given labels
y; €) being associated with the instances (rows) in the table, the task in our study is to solve a
binary or multi-class classification problem. Hence, given a tabular dataset D = {(x;,)}V, the
aim is to learn a prediction model f(-) to minimize a classification loss function £(-, -):

argmin Y Ly, (0, 0), (1)

0 (zi,y:)€ED

where we use f(x;;6,\) for denoting the predicted label by a trained model parameterized by the
model weights 6 and hyperparameter configuration \.

3.2 EXPERIMENTAL SETUP

Datasets. In our study, we assess all the methods using OpenMLCC18 (Bischl et al., 2021), a well-
established tabular benchmark in the community, which comprises 72 diverse datasets!. The datasets
contain 5 to 3073 features and 500 to 100,000 instances, covering various binary and multi-class
problems. The benchmark excludes artificial datasets, subsets or binarizations of larger datasets,
and any dataset solvable by a single feature or a simple decision tree. For the full list of datasets
used, we kindly refer the reader to Appendix E.

Preprocessing. We use a consistent preprocessing pipeline across all methods whenever possible.
By default, we apply a quantile transformation using the scikit-learn library (Pedregosa et al., 2011),
and categorical features are encoded with an ordinal encoder similar to prior work (Gorishniy et al.,
2021). Methods for which we do not apply this preprocessing are those that inherently require a
different approach, such as TP-BERTa and CARTE, or those implemented within libraries where
modifying the preprocessing pipeline is not trivial. In these cases, we use the preprocessing strate-
gies from the original works. Regarding batch size, we do not tune it in our experiments due to
memory constraints. Instead, we determine batch size heuristically, similar to the setup proposed
by Chen et al. (2024), based on the number of features in the dataset. While batch sizes may vary
across datasets, they remain consistent across methods.

Evaluation Protocol. Our evaluation employs a nested cross-validation approach. Initially, we par-
tition the data into 10 folds. Nine of these folds are then used for hyperparameter tuning. Each
hyperparameter configuration is evaluated using 9-fold cross-validation. The results from the cross-
validation are used to estimate the performance of the model under a specific hyperparameter con-
figuration. For hyperparameter optimization, we utilize Optuna (Akiba et al., 2019), a well-known
HPO library with the Tree-structured Parzen Estimator (TPE) (Bergstra et al., 2011) algorithm, the
default Optuna HPO method. The optimization is constrained by a budget of either 100 trials or a
maximum duration of 23 hours, similar to prior work (Kadra et al., 2021). Upon determining the
optimal hyperparameters using Optuna, we train the model on the combined training and validation
splits. All experiments are run on NVIDIA RTX2080Ti GPUs with 11 GB of memory. Our evalua-
tion protocol dictates that for every algorithm, up to 68K different models will be evaluated, leading

'Due to memory issues encountered with several methods, we exclude four datasets from our analysis.

to a total of approximately 900K individual evaluations. As our study encompasses seventeen dis-
tinct methods, this methodology culminates in a substantial total of 8M evaluations, involving 900K
unique models.

A detailed description of our evaluation protocol is provided in Appendix A.l1. In our study, we
adhere to the official hyperparameter search spaces from the respective papers for tuning every
method. As a sole exception, the early stopping procedure is performed implicitly from the
HPO procedure, where the number of training iterations is a hyperparameter similar to prior
work (Kadra et al., 2021). We observed that this alternative form of early stopping yields
better generalization. For a detailed description of the hyperparameter search spaces of all methods
included in our analysis, we refer the reader to Appendix A.

Metrics. Lastly, we report the model’s performance as the average Area Under the Receiver Op-
erating Characteristic (ROC-AUC) across 10 outer test folds. Given the prevalence of imbalanced
datasets in the OpenMLCC18 benchmark, we employ ROC-AUC as our primary metric, since it
offers a more reliable assessment of model performance.

Code: For reproducibility, our code is available at: https://anonymous.4open.science/r/TabularStudy-
OEE2.

4 BASELINES

In our experiments, we compare a range of methods categorized into three distinct groups: Classi-
cal Machine Learning Classifiers, Deep Learning Methods, and AutoML frameworks, as shown in
Figure 1.

Classical Machine Learning Classifiers. First, we consider XGBoost (Chen & Guestrin, 2016),
a well-established GBDT library that uses asymmetric trees. Moreover, we consider CatBoost
(Prokhorenkova et al., 2018), a well-known library for GBDT that employs oblivious trees as weak
learners and natively handles categorical features with various strategies. Finally, we also include
LightGBM (Ke et al., 2017), a widely used GBDT framework that grows trees leaf-wise and supports
efficient handling of large datasets.

Deep Learning Methods. In terms of classical deep learning methods, we include the ResNet
implementation provided in the work by Gorishniy et al. (2021). Furthermore, we include three
recent and competitive variants of the MLP architecture: i) an MLP architecture enhanced with
numerical embeddings (Gorishniy et al., 2022) to which we refer as MLP, ii) RealMLP (Holzmiiller
et al., 2024), an MLP enhanced with several additions like robust scaling, numerical embeddings,
etc, iii) TabM (Gorishniy et al., 2025), an efficient ensemble of MLP models.

In terms of transformer-based architectures, we consider TabNet (Arik & Pfister, 2021), an archi-
tecture that employs sequential attention to selectively utilize the most pertinent features at every
decision step.

Next, we consider SAINT (Somepalli et al., 2021), a hybrid deep learning approach tailored for
tabular data challenges. SAINT applies attention mechanisms across both rows and columns and
integrates an advanced embedding technique. Lastly, we consider FT-Transformer (Gorishniy et al.,
2021), an adaptation of the Transformer architecture for tabular data. It transforms categorical and
numerical features into embeddings, which are then processed through a series of Transformer lay-
ers.

Foundation Models for Tabular Classification. For in-context learning, we consider
TabPFN (Hollmann et al., 2023), a meta-learned transformer architecture. Next, we consider
TabPFNv2 (Hollmann et al., 2025), which alternates attention first across features, then across sam-
ples. Finally, we consider TabICL (Qu et al., 2025), pretrained on synthetic datasets similar to the
TabPFN models, which can handle up to 500K samples. Among fine-tuned models, we include
XTab (Zhu et al., 2023), a method that proposes a cross-table pretraining approach that can work
across multiple tables with different column types and structures. Next, we consider TP-BERTa
(Yan et al., 2024), a variant of the BERT language model that is adapted for tabular prediction. It
introduces a relative magnitude tokenization to transform continuous numerical values into discrete
high-dimensional tokens. Lastly, we include CARTE (Kim et al., 2024) in our experimental study.
CARTE utilizes a graph representation of tabular data to process tables with differing structures.

https://anonymous.4open.science/r/TabularStudy-0EE2
https://anonymous.4open.science/r/TabularStudy-0EE2

[Classical ML [Deep Learning 3 AutoML [Dataset-specific [Foundation Models 3 AutoML

15 = 125 &
10.0
10 <75
© ©
-4 o
5 5.0
2.5
2 L
& &
& &
&K &

Figure 2: Left: Distribution of ranks for the Deep Learning (12 methods), Classical ML (3 methods)
and AutoML (1 method) classifier families. Right: Distribution of ranks for the Foundation Models
(5 methods), Dataset-Specific (7 methods) and AutoML (1 method) classifier families. The boxplots
illustrate the rank spread, with medians represented by black lines, diamonds representing the means,
and whiskers showing the range.

Since all the fine-tuned models were pretrained on real-world datasets, we ensure that there are no
datasets that overlap with the OpenMLCC18 benchmark.

AutoML Frameworks. Due to the large number of AutoML frameworks available in the commu-
nity (Feurer et al., 2015; Erickson et al., 2020; LeDell & Poirier, 2020; Feurer et al., 2022), it was
infeasible to include all of them in our experimental study. Therefore, we selected AutoGluon (Er-
ickson et al., 2020), a framework that achieves the highest predictive performance in the recent
AutoML Benchmark study (Gijsbers et al., 2024).

For all methods, we use their official implementations. We refer the readers to Appendix A for more
details.

5 EXPERIMENTS AND RESULTS

Research Question 1: Do DL models
outperform gradient boosting methods AutoGiuon o 0 R -« = - -~

in tabular data classification? To ad- AutoGiuon (1P0) B oo [l oot vo oo i oot oo B 0o 5 R L0
dress our research question, we initially Caf:oi;immmm I
compare the performance of Deep Learn- FTT [B o7 [655 o0 040 38 030 040 o 5 [054 oo 08
ing methods and Classical ML methods - = 45 ot o e o o [RCE R o G i
jointly, by ranking the methods per-dataset RealMLP 8 oo [T o2 a0 035 o3¢ 030 osa o 06

and analyzing the rank distribution (the ResNet (MR o= o« o o oxo o
lower the rank, the better). The results pro- SA'NTMMS R o :
vided in Figure 2 (Left) indicate that DL

methods outperform the previous state-of-
the-art GBDTSs approaches. The best per-

Win Rate

o
IS

o o
o N)

forming methods are TabICL with a me- TasPFv2 o) O O :

. XGBoost [o2 [o« oss os0 057 0¢ a7 o7 [o2 o7 R o [o0 o7
dian rank of 2, followed by AutoGluon e Q50 5 - 5 85 o . R o
and TabPFNv2, both with a median rank SOEFENS S ES ORI

")
of 3. In terms of non-meta learned meth- ST ST TGS

ods, TabM achieves a median rank of &
5, followed by CatBoost, XGBoost, and
LightGBM, with median ranks of 5.5, 7, Figure 3: Win-rate dueling matrix comparing learn-
and 7.5, respectively. ing methods across shared datasets. Each cell (row 1,
column j) shows the fraction of common datasets on

Next, we investigate how the models com- which method i outperforms method ;.

pare in a one-versus-one setting to elim-
inate the effect of related baselines. We
present the results in Figure 3, where we observe that the one-versus-one results are consistent with
the results where all the methods are considered jointly. In terms of meta-learned architectures, both
TabPFNv2 and TabICL outperform tree-based architectures in the majority of the datasets. From the
non-meta learned models, only TabM manages to outperform all variants of tree-based architectures.

e (Classical ML e Deep Learning e Tie

1000 °
° © o
0
v °e
=} °
<100
s o ® 8 ¢4 oo
L ° ® o ° 0% °
[°] ° ° ° Ge
D o 0 °© e e % 4
10 Ce S o ° °
.- . oo oo °
1000 10000 100000
Rows

Figure 4: Dataset landscape showing winning method families across different dataset sizes. Each
point represents a dataset from the OpenMLCC18 benchmark, positioned by number of rows (x-
axis) and features (y-axis) on log scales. Colors indicate which method family achieved the highest
accuracy: Deep Learning methods (orange), Classical ML tree-based models (green), and ties (gray).

Lastly, we investigate whether there exists a certain region where deep learning methods are superior
compared to the tree-based baselines, or where the opposite holds. For that purpose, we highlight the
winning method family in Figure 4 for every dataset, over the number of examples and number of
features of a dataset. The results show that Deep Learning methods dominate tree-based methods in
datasets that have less than 5000 examples, by winning 31-3. In cases where a dataset has more than
5000 examples, tree-based methods become more competitive. However, they are still outperformed
by deep learning methods 17-7.

For additional analyses, such as evaluations of predictive performance across different data regimes,
examinations of the cost—efficiency trade-off, and investigations into the influence of meta-features
on predictive performance, we refer readers to Appendices G, H, and 1.

Research Question 2: Do meta-learned NNs outperform data-specific NNs in tabular data clas-
sification? To answer the second research question, we analyze the distribution of ranks between
the two subfamilies within the Deep Learning category: foundation models and dataset-specific neu-
ral networks. Figure 2 (Right) plot illustrates that in-context learning models are very competitive,
with TabICL and TabPFNv2 having the best overall rank. Within the dataset-specific family, TabM
demonstrates the best performance, attaining a median rank of 4 across all 68 datasets. The fine-
tuned foundation models XTab, CARTE, and TP-BERTa obtain the worst performance compared
to all remaining dataset-specific neural networks, except for TabNet. Interestingly to note is that,
except for the in-context learning models, which are meta-learned architectures, the feed-forward
neural networks TabM, RealMLP, and MLP outperform the attention-based architectures.

Next, we compare foundation models with dataset-specific NNs by generating critical difference
diagrams. To generate the CD diagrams, we utilize the aut orank package (Herbold, 2020), which
performs a Friedman test followed by a Nemenyi post-hoc test at a significance level of 0.05.

CD CD
— —_
14131211109 8 76 54 3 2 1 11109 8 7 6 5 4 3 2 1
TabNet — TabPFNv2 |
RTE TabicL TabNet —' TablCL
XTap ——— | L TabM CARTE TabPFNv2
ResNet CatBoost XTab TabM
— fSAINT éGBII(\)/IOLSPt ResNet MLP
-Transformer ea SAINT RealMLP
LightGBM MLP FT-Transformer

Figure 5: Critical difference (CD) diagram of the methods, where a horizontal bar indicates the
absence of statistical significance. Left: CD diagram of Deep Learning vs. GBDTs, Right: CD
diagram of dataset-specific vs. foundation models.

We present the results in Figure 5, where the black bars connecting methods indicate that there is
no statistically significant difference in performance. Due to the limited number of datasets shared

among the methods, TP-BERTa was excluded from this comparison. The left diagram of Figure 5
illustrates that TabPFNv2 and TabICL outperform all the other methods, demonstrating superior
performance. TabM trails the top methods by a narrow margin, ranking third overall. CatBoost
and XGBoost follow, and their performance differences relative to the top three are not statistically
significant. We also compare the performance of models within the deep learning family. The right
plot of Figure 5 shows a critical difference diagram indicating that TabICL and TabPFNv2 again
attain the top average ranks. Except for TabM, both TabICL and TabPFNv2 are significantly better
than all remaining methods.

A comprehensive presentation of the raw results for all methods, both after hyperparameter
optimization (HPO) and with default hyperparameter configurations, is provided in Appendix D.

[Fine-tuning I In-context learning CD

[e]

u o

IN
w
N}
-

Rank
w b
o

En
o

TabICL
TabPFNv2

<o
1 2] ,
© CARTE ——

@ & 3 ol & o XTab
s £ & & @
)

&
&
&
R

Figure 6: Left: Distribution of ranks for the Fine-tuning (3 models) and In-context learning (3 mod-
els) classifier families. The boxplots illustrate the rank spread, with medians represented by black
lines and whiskers showing the range. Right: CD diagram of Fine-tuning models against In-context
learning models. The horizontal bar indicates the absence of statistically significant differences.

Research Question 3: Which paradigm in transfer learning performs better: Do in-context
models or fine-tuned models perform better? To further investigate the family of foundation
models, whether fine-tuning or in-context learning models yield better performance, we conducted
an analysis similar to our previous research questions. We employ boxplots to display the distribu-
tion of ranks and use critical difference (CD) diagrams to evaluate the statistical significance of the
results.

Figure 6 (Left) illustrates that TabICL, categorized under in-context learning methods, achieved a
median rank of 1, and TabPFNv2 achieved a median rank of 2. Among the fine-tuning methods,
XTab showed the best performance with a median rank of 3 but exhibited a larger interquartile range
compared to the in-context learning methods, followed by CARTE and TP-BERTa.

To investigate whether the differences in performance are statistically significant, we present a CD
diagram in Figure 6 (Right), from which TP-BERTa and TabPFN are excluded due to the limited
number of common datasets among the methods. The CD diagram reveals that the in-context learn-
ing methods, TabICL and TabPFNV2, significantly outperform the fine-tuning methods XTab and
CARTE.

Research Question 4: Does refitting after performing hyperparameter optimization have a
significant impact on the predictive quality of the models, and does it impact the overall model
ranking? To investigate the impact of refitting, we select two top-performing distinct methods
from the Deep Learning family, namely FT-Transformer as a transformer-based architecture, and
TabM as an MLP-based architecture, while also selecting CatBoost and XGBoost from the tree-
based family as the top-performing models.

Initially, we compare the models in isolation to investigate how refitting affects the distribution of
predictive performances across tasks. We present the results in Figure 7 (Left), where, as observed,
all the methods that incorporate refitting feature a lower rank and outperform their non-refitting
counterparts. Additionally, as we show in Appendix C, the difference in results is statistically sig-
nificant in the majority of cases.

Moreover, we investigate whether refitting affects the ranking of the methods when considered
jointly. The results in Figure 7 (Right) indicate that refitting does change the ranking of the meth-
ods, where, e.g., after refitting, XGBoost manages to outperform FT-Transformer and achieves a

Refit
No Refit

Rank

& g 0&\ <0
&

&
Figure 7: Refitting impact on the predictive performance. Left: Investigating the rank distribution
of the methods in isolation, with and without refitting. Right: Investigating the distribution of the
ranks for the methods jointly, with and without refitting.

better median rank compared to the non-refitting counterpart. We continue by evaluating the impact
of refitting via head-to-head, dataset-level comparisons, and applying statistical tests to assess the
significance of the observed differences. We kindly refer the reader to Appendix C for details.

-
S

Research Question 5: What is the influence
of hyperparameter optimization on a method’s
predictive performance? To investigate the im-
pact of hyperparameter optimization, we calcu-
late the per-dataset rank of every method with
and without performing hyperparameter optimiza-
tion and compare the median rank improvement
for every method compared to the other baselines.
In general, the majority of methods improve in
predictive performance when considered in isola-

Rank improvement
(Default — HPO)
o

tion, as validated in Appendix B.13. However,
the results in Figure 8 indicate that only TabM,
RealMLP, SAINT, XGBoost, and XTab improve in
terms of median rank compared to the other con-
tenders, when hyperparameter optimization is per-
formed.

In Appendix B, we provide a detailed analysis

Figure 8: Rank improvement of methods with
hyperparameter optimization compared to us-
ing the default configuration. Rankings are
computed relative to other methods on each
dataset (default rank — HPO rank; positive val-
ues indicate improvement). Box plots show the
distribution across datasets, with points for in-
dividual datasets, horizontal bar for the median

of hyperparameter importance, showing both the and diamonds for the mean.
overall contribution of hyperparameters to model performance and the individual effect of each hy-
perparameter for every method.

6 CONCLUSION

Our comprehensive empirical study evaluates the quality of seventeen state-of-the-art tabular clas-
sification approaches across 68 diverse classification datasets from the OpenMLCC18 benchmark
with a rigorous setup, employing cross-validation, model-based hyperparameter optimization, and
refitting.

Our results indicate a paradigm shift, where deep learning methods outperform traditional baselines
in all dataset regimes of the considered benchmark. Next to a fair comparison of model families,
we provide an in-depth analysis of the importance of refitting, the influence of hyperparameter op-
timization on the models’ performance, the most important hyperparameters per method, and the
cost-performance efficiency of various methods.

Our study contributes valuable insights into the current landscape of tabular data modeling and
encourages further potential research directions with promising model families.

REFERENCES

Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. Optuna:
A next-generation hyperparameter optimization framework. In Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, 2019.

Edesio Alcobaca, Felipe Siqueira, Adriano Rivolli, Luis P. F. Garcia, Jefferson T. Oliva, and André
C. P. L. F. de Carvalho. Mfe: Towards reproducible meta-feature extraction. Journal of Machine
Learning Research, 21(111):1-5,2020. URL http://jmlr.org/papers/v21/19-348.
html.

Sercan O Arik and Tomas Pfister. Tabnet: Attentive interpretable tabular learning. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 35, pp. 6679-6687, 2021.

James Bergstra, Rémi Bardenet, Yoshua Bengio, and Baldzs Kégl. Algorithms for hyper-
parameter optimization. In J. Shawe-Taylor, R. Zemel, P. Bartlett, F. Pereira, and K.Q.
Weinberger (eds.), Advances in Neural Information Processing Systems, volume 24. Curran
Associates, Inc., 2011. URL https://proceedings.neurips.cc/paper_files/
paper/2011/file/86e8f7ab32cfd12577bc2619bc635690-Paper.pdf.

Bernd Bischl, Giuseppe Casalicchio, Matthias Feurer, Pieter Gijsbers, Frank Hutter, Michel Lang,
Rafael Gomes Mantovani, Jan N. van Rijn, and Joaquin Vanschoren. OpenML benchmark-
ing suites. In Thirty-fifth Conference on Neural Information Processing Systems Datasets
and Benchmarks Track (Round 2), 2021. URL https://openreview.net/forum?id=
OCrD8ycKijG.

Vadim Borisov, Tobias Leemann, Kathrin SeBler, Johannes Haug, Martin Pawelczyk, and Gjergji
Kasneci. Deep neural networks and tabular data: A survey. IEEE Transactions on Neural Net-
works and Learning Systems, pp. 1-21, 2022. doi: 10.1109/TNNLS.2022.3229161.

Varun Chandola, Arindam Banerjee, and Vipin Kumar. Anomaly detection: A survey. ACM Comput.
Surv., 41(3), jul 2009. ISSN 0360-0300. doi: 10.1145/1541880.1541882. URL https://doi.
org/10.1145/1541880.1541882.

Jintai Chen, Jiahuan Yan, Qiyuan Chen, Danny Ziyi Chen, Jian Wu, and Jimeng Sun. Excelformer:
A neural network surpassing gbdts on tabular data, 2024. URL https://arxiv.org/abs/
2301.028109.

Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Min-
ing, KDD 16, pp. 785-794, New York, NY, USA, 2016. Association for Computing Machin-
ery. ISBN 9781450342322. doi: 10.1145/2939672.2939785. URL https://doi.org/10.
1145/2939672.2939785.

Tingting Chen, Vignesh Sampath, Marvin Carl May, Shuo Shan, Oliver Jonas Jorg, Juan José
Aguilar Martin, Florian Stamer, Gualtiero Fantoni, Guido Tosello, and Matteo Calaon. Ma-
chine learning in manufacturing towards industry 4.0: From ‘for now’ to ‘four-know’. Ap-
plied Sciences, 13(3), 2023. ISSN 2076-3417. doi: 10.3390/app13031903. URL https:
//www.mdpi.com/2076-3417/13/3/1903.

Nick Erickson, Jonas Mueller, Alexander Shirkov, Hang Zhang, Pedro Larroy, Mu Li, and Alexan-
der Smola. Autogluon-tabular: Robust and accurate automl for structured data. arXiv preprint
arXiv:2003.06505, 2020.

Matthias Feurer, Aaron Klein, Katharina Eggensperger, Jost Springenberg, Manuel Blum, and Frank
Hutter. Efficient and robust automated machine learning. In Advances in Neural Information
Processing Systems 28 (2015), pp. 2962-2970, 2015.

Matthias Feurer, Katharina Eggensperger, Stefan Falkner, Marius Lindauer, and Frank Hutter. Auto-

sklearn 2.0: Hands-free automl via meta-learning, 2022. URL https://arxiv.org/abs/
2007.04074.

10

http://jmlr.org/papers/v21/19-348.html
http://jmlr.org/papers/v21/19-348.html
https://proceedings.neurips.cc/paper_files/paper/2011/file/86e8f7ab32cfd12577bc2619bc635690-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2011/file/86e8f7ab32cfd12577bc2619bc635690-Paper.pdf
https://openreview.net/forum?id=OCrD8ycKjG
https://openreview.net/forum?id=OCrD8ycKjG
https://doi.org/10.1145/1541880.1541882
https://doi.org/10.1145/1541880.1541882
https://arxiv.org/abs/2301.02819
https://arxiv.org/abs/2301.02819
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1145/2939672.2939785
https://www.mdpi.com/2076-3417/13/3/1903
https://www.mdpi.com/2076-3417/13/3/1903
https://arxiv.org/abs/2007.04074
https://arxiv.org/abs/2007.04074

Jerome H. Friedman. Greedy function approximation: A gradient boosting machine. The Annals
of Statistics, 29(5):1189 — 1232, 2001. doi: 10.1214/a0s/1013203451. URL https://doi.
org/10.1214/a0s/1013203451.

Pieter Gijsbers, Marcos L. P. Bueno, Stefan Coors, Erin LeDell, Sébastien Poirier, Janek Thomas,
Bernd Bischl, and Joaquin Vanschoren. Amlb: an automl benchmark. Journal of Machine Learn-
ing Research, 25(101):1-65, 2024. URL http://jmlr.org/papers/v25/22-0493.
html.

Yury Gorishniy, Ivan Rubachev, Valentin Khrulkov, and Artem Babenko. Revisiting deep learning
models for tabular data. In NeurIPS, 2021.

Yury Gorishniy, Ivan Rubachev, and Artem Babenko. On embeddings for numerical features in
tabular deep learning. In NeurIPS, 2022.

Yury Gorishniy, Akim Kotelnikov, and Artem Babenko. Tabm: Advancing tabular deep learning
with parameter-efficient ensembling. In The Thirteenth International Conference on Learning
Representations, 2025. URL https://openreview.net/forum?id=Sd4wYYOhmY.

Leo Grinsztajn, Edouard Oyallon, and Gael Varoquaux. Why do tree-based models still outperform
deep learning on typical tabular data? In Thirty-sixth Conference on Neural Information Pro-
cessing Systems Datasets and Benchmarks Track, 2022. URL https://openreview.net/
forum?id=Fp7__phQszn.

Huifeng Guo, Ruiming Tang, Yunming Ye, Zhenguo Li, and Xiugiang He. Deepfm: a factorization-
machine based neural network for ctr prediction. In Proceedings of the 26th International
Joint Conference on Artificial Intelligence, IJCAT’ 17, pp. 1725-1731. AAAI Press, 2017. ISBN
9780999241103.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.
770-778, 2016. doi: 10.1109/CVPR.2016.90.

Steffen Herbold. Autorank: A python package for automated ranking of classifiers. Journal of Open
Source Software, 5(48):2173, 2020. doi: 10.21105/joss.02173. URL https://doi.org/10.
21105/jo0ss.02173.

Noah Hollmann, Samuel Miiller, Katharina Eggensperger, and Frank Hutter. TabPFN: A transformer
that solves small tabular classification problems in a second. In The Eleventh International Con-
ference on Learning Representations, 2023. URL https://openreview.net/forum?
id=cp5PvcI6wd_.

Noah Hollmann, Samuel Miiller, Lennart Purucker, Arjun Krishnakumar, Max Korfer, Shi Bin Hoo,
Robin Tibor Schirrmeister, and Frank Hutter. Accurate predictions on small data with a tabular
foundation model. Nature, 01 2025. doi: 10.1038/s41586-024-08328-6. URL https://www.
nature.com/articles/s41586-024-08328-6.

David Holzmiiller, Leo Grinsztajn, and Ingo Steinwart. Better by default: Strong pre-tuned MLPs
and boosted trees on tabular data. In The Thirty-eighth Annual Conference on Neural Information
Processing Systems, 2024. URL https://openreview.net/forum?id=3BNPUDvgMt.

F. Hutter, H. Hoos, and K. Leyton-Brown. An efficient approach for assessing hyperparameter im-
portance. In Proceedings of International Conference on Machine Learning 2014 (ICML 2014),
pp. 754-762, June 2014.

Alistair E. W. Johnson, Tom J. Pollard, Lu Shen, Li wei H. Lehman, Mengling Feng, Moham-
mad Mahdi Ghassemi, Benjamin Moody, Peter Szolovits, Leo Anthony Celi, and Roger G.
Mark. Mimic-iii, a freely accessible critical care database. Scientific Data, 3, 2016. URL
https://api.semanticscholar.org/CorpusID:33285731.

Arlind Kadra, Marius Lindauer, Frank Hutter, and Josif Grabocka. Well-tuned simple nets excel on
tabular datasets. In Thirty-Fifth Conference on Neural Information Processing Systems, 2021.

11

https://doi.org/10.1214/aos/1013203451
https://doi.org/10.1214/aos/1013203451
http://jmlr.org/papers/v25/22-0493.html
http://jmlr.org/papers/v25/22-0493.html
https://openreview.net/forum?id=Sd4wYYOhmY
https://openreview.net/forum?id=Fp7__phQszn
https://openreview.net/forum?id=Fp7__phQszn
https://doi.org/10.21105/joss.02173
https://doi.org/10.21105/joss.02173
https://openreview.net/forum?id=cp5PvcI6w8_
https://openreview.net/forum?id=cp5PvcI6w8_
https://www.nature.com/articles/s41586-024-08328-6
https://www.nature.com/articles/s41586-024-08328-6
https://openreview.net/forum?id=3BNPUDvqMt
https://api.semanticscholar.org/CorpusID:33285731

Arlind Kadra, Sebastian Pineda Arango, and Josif Grabocka. Interpretable mesomorphic networks
for tabular data. In The Thirty-eighth Annual Conference on Neural Information Processing Sys-
tems, 2024. URL https://openreview.net/forum?id=PmLty7tODm.

Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, and
Tie-Yan Liu. Lightgbm: A highly efficient gradient boosting decision tree. In I. Guyon,
U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.),
Advances in Neural Information Processing Systems, volume 30. Curran Associates, Inc.,
2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/
file/6449f44a102fde848669bdd9%ebbb76fa-Paper.pdf.

Myung Jun Kim, Léo Grinsztajn, and Gaél Varoquaux. Carte: pretraining and transfer for tabular
learning. arXiv preprint arXiv:2402.16785, 2024.

Erin LeDell and Sebastien Poirier. H20 AutoML: Scalable automatic machine learning. 7th
ICML Workshop on Automated Machine Learning (AutoML), July 2020. URL https://www.
automl.org/wp—content/uploads/2020/07/AutoML_2020_paper_61.pdf.

Duncan McElfresh, Sujay Khandagale, Jonathan Valverde, Ganesh Ramakrishnan, Vishak Prasad,
Micah Goldblum, and Colin White. When do neural nets outperform boosted trees on tabular
data? In Advances in Neural Information Processing Systems, 2023.

Andreas Mueller, Julien Siems, Harsha Nori, David Salinas, Arber Zela, Rich Caruana, and
Frank Hutter. Gamformer: In-context learning for generalized additive models. arXiv preprint
arXiv:2410.04560, 2024.

Azeez A Nureni and OE Adekola. Loan approval prediction based on machine learning approach.
Fudma Journal of Sciences, 6(3):41-50, 2022.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research,
12:2825-2830, 2011.

Liudmila Prokhorenkova, Gleb Gusev, Aleksandr Vorobev, Anna Veronika Dorogush, and Andrey
Gulin. Catboost: unbiased boosting with categorical features. Advances in neural information
processing systems, 31, 2018.

Jingang Qu, David Holzmiiller, Gagl Varoquaux, and Marine Le Morvan. Tabicl: A tabular founda-
tion model for in-context learning on large data. arXiv preprint arXiv:2502.05564, 2025.

Ivan Rubachev, Nikolay Kartashev, Yury Gorishniy, and Artem Babenko. Tabred: Analyzing pitfalls
and filling the gaps in tabular deep learning benchmarks, 2024. URL https://arxiv.org/
abs/2406.19380.

Ravid Shwartz-Ziv and Amitai Armon. Tabular data: Deep learning is not all you need. In-
formation Fusion, 81:84-90, 2022. ISSN 1566-2535. doi: https://doi.org/10.1016/j.inffus.
2021.11.011. URL https://www.sciencedirect.com/science/article/pii/
S51566253521002360.

Gowthami Somepalli, Micah Goldblum, Avi Schwarzschild, C Bayan Bruss, and Tom Goldstein.
Saint: Improved neural networks for tabular data via row attention and contrastive pre-training.
arXiv preprint arXiv:2106.01342, 2021.

Dennis Ulmer, Lotta Meijerink, and Giovanni Cina. Trust issues: Uncertainty estimation does not
enable reliable ood detection on medical tabular data. In Emily Alsentzer, Matthew B. A. Mc-
Dermott, Fabian Falck, Suproteem K. Sarkar, Subhrajit Roy, and Stephanie L. Hyland (eds.),
Proceedings of the Machine Learning for Health NeurIPS Workshop, volume 136 of Pro-
ceedings of Machine Learning Research, pp. 341-354. PMLR, 11 Dec 2020. URL https:
//proceedings.mlr.press/v136/ulmer20a.html.

Christopher J Urban and Kathleen M Gates. Deep learning: A primer for psychologists. Psycholog-
ical Methods, 2021.

12

https://openreview.net/forum?id=PmLty7tODm
https://proceedings.neurips.cc/paper_files/paper/2017/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf
https://www.automl.org/wp-content/uploads/2020/07/AutoML_2020_paper_61.pdf
https://www.automl.org/wp-content/uploads/2020/07/AutoML_2020_paper_61.pdf
https://arxiv.org/abs/2406.19380
https://arxiv.org/abs/2406.19380
https://www.sciencedirect.com/science/article/pii/S1566253521002360
https://www.sciencedirect.com/science/article/pii/S1566253521002360
https://proceedings.mlr.press/v136/ulmer20a.html
https://proceedings.mlr.press/v136/ulmer20a.html

Boris Van Breugel and Mihaela Van Der Schaar. Position: Why tabular foundation models should be
aresearch priority. In Ruslan Salakhutdinov, Zico Kolter, Katherine Heller, Adrian Weller, Nuria
Oliver, Jonathan Scarlett, and Felix Berkenkamp (eds.), Proceedings of the 41st International
Conference on Machine Learning, volume 235 of Proceedings of Machine Learning Research,
pp. 48976—48993. PMLR, 21-27 Jul 2024. URL https://proceedings.mlr.press/
v235/van-breugel24a.html.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
L ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. Von
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Ad-
vances in Neural Information Processing Systems, volume 30. Curran Associates, Inc.,
2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/
file/3f5ee243547dee91fbd053clcd4a845aa—-Paper.pdf.

Martin Wistuba, Nicolas Schilling, and Lars Schmidt-Thieme. Hyperparameter optimization ma-
chines. In 2016 IEEE International Conference on Data Science and Advanced Analytics (DSAA),
pp- 41-50, 2016. doi: 10.1109/DSAA.2016.12.

Jiahuan Yan, Bo Zheng, Hongxia Xu, Yiheng Zhu, Danny Chen, Jimeng Sun, Jian Wu, and Jintai
Chen. Making pre-trained language models great on tabular prediction. In The Twelfth Interna-
tional Conference on Learning Representations, 2024. URL https://openreview.net/
forum?id=anzIzGZulLi.

Han-Jia Ye, Si-Yang Liu, Hao-Run Cai, Qi-Le Zhou, and De-Chuan Zhan. A closer look at
deep learning methods on tabular datasets, 2025. URL https://arxiv.org/abs/2407.
00956.

Bingzhao Zhu, Xingjian Shi, Nick Erickson, Mu Li, George Karypis, and Mahsa Shoaran. XTab:
Cross-table pretraining for tabular transformers. In Andreas Krause, Emma Brunskill, Kyunghyun
Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), Proceedings of the 40th
International Conference on Machine Learning, volume 202 of Proceedings of Machine Learning
Research, pp. 43181-43204. PMLR, 23-29 Jul 2023. URL https://proceedings.mlr.
press/v202/zhu23k.html.

13

https://proceedings.mlr.press/v235/van-breugel24a.html
https://proceedings.mlr.press/v235/van-breugel24a.html
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://openreview.net/forum?id=anzIzGZuLi
https://openreview.net/forum?id=anzIzGZuLi
https://arxiv.org/abs/2407.00956
https://arxiv.org/abs/2407.00956
https://proceedings.mlr.press/v202/zhu23k.html
https://proceedings.mlr.press/v202/zhu23k.html

A EVALUATION PROTOCOL AND CONFIGURATION SPACES

A.1 EVALUATION PROTOCOL

Algorithm 1: Nested Cross-Validation for Hyperparameter Optimization
Input : Dataset D, Number of outer folds K = 10, Number of inner folds J = 9, Number
of hyperparameter optimization trials 7" = 100, Search space A

Output: Overall performance Pyyer
1 for k < 1to K do

2 Split D into training set DX, and test set D ;
3 fort < 1to T do
4 Sample hyperparameter configuration #; from the search space A;
5 for j < 1to J do
6 Split DF . into inner training set Dﬁ;{n and validation set fo;lj ;
7 Train model M ();) on D7
8 Evaluate M ()\;) on Dfa’lj to get performance P*7(\;);
9 end
10 Compute mean performance P*()\;) = + Z}le PRI (\);
u Use P*()\;) as the objective value for \;
12 end
13 Select the best hyperparameter configuration A} ;
14 | Train final model M (\}) on DF .. ;
15 | Evaluate M()\}) on DE to get outer performance P¥,..;

16 end

5 K
17 Compute overall performance Poyer = % S PEs
18 return Pyye,;

Algorithm 1, shows the nested-cross validation with the outer folds (lines 1-16) and inner folds (lines
5-9). In each trial (lines 3-12), the mean performance across inner folds are calculated in line 10
which is used as the objective value for Optuna in line 11. After the maximal number of trials 1" is
reached or the time budget is exceeded, we select the best hyperparameter setting in line 13.

A.2 CATBOOST

Table 2: Search space for CatBoost.

Parameter Type Range Log Scale
max_depth Integer [3, 10]

learning_rate Float [1072, 1] v
bagging_temperature Float [0, 1]

12_leaf reg Float [1, 10] v
leaf_estimation_iterations Integer [1, 10]

iterations Integer [100, 2000]

The specific search space employed for CatBoost is detailed in Table 2. Our implementation heavily
relies on the framework provided by the official implementation of the FT-Transformer, as found
in the following repository?. We do this to ensure a consistent pipeline across all methods, that we
compare. The CatBoost algorithm implementation, however, is the official one’.

https://github.com/yandex-research/rtdl-revisiting-models
*https://catboost.ai/

14

https://github.com/yandex-research/rtdl-revisiting-models
https://catboost.ai/

For the default configuration of CatBoost, we do not modify any hyperparameter values. This ap-
proach allows the library to automatically apply its default settings, ensuring that our implementation
is aligned with the most typical usage scenarios of the library.

A.3 XGBoosT

Table 3: Search space for XGBoost.

Parameter Type Range Log Scale
max_depth Integer [3, 10]
min_child_weight Float [1078, 10°] v
subsample Float [0.5, 1]

learning rate Float [1072, 1] v

colsample_bylevel Float [0.5, 1]
colsample_bytree Float [0.5, 1]

gamma Float [1078, 107] v
reg_lambda Float [1078, 107] v
reg_alpha Float [1078,107] v
n_estimators Integer [100, 2000]

We utilized the official XGBoost implementation*. While the data preprocessing steps were consis-
tent across all methods, a notable exception was made for XGBoost. For this method, we imple-
mented one-hot encoding on categorical features, as XGBoost does not inherently process categori-
cal values, in line with the implementation from the FT-Transformer repository.

The comprehensive search space for the XGBoost hyperparameters is detailed in Table 3. In the case
of default hyperparameters, our approach mirrored the CatBoost implementation where we opted not
to set any hyperparameters explicitly but instead, use the library defaults.

Furthermore, it is important to note that XGBoost lacks native support for the ROC-AUC metric
in multiclass problems. To address this, we incorporated a custom ROC-AUC evaluation function.
This function first applies a softmax to the predictions and then employs the ROC-AUC scoring
functionality provided by scikit-learn, which can be found at the following link>.

A.4 LIGHTGBM

Table 4: Search space for LightGBM.

Parameter Type Range Log Scale
feature_fraction Float [0.5, 1.0]

lambda_12 Float {0.0, [0.1, 11.0]} v
learning_rate Float [0.001, 1.0] NV
num_leaves Integer [4, 768]
min_sum_hessian_in_leaf float [0.0001, 100] v
bagging_fractions Float [0.5, 1.0]

bagging_fractions Float [0.5, 1.0]

n_estimators Integer [100, 2000]

*https://xgboost.readthedocs.io/en/stable/
Shttps://scikit-learn.org/stable/modules/generated/sklearn.metrics.roc_
auc_score.html

15

https://xgboost.readthedocs.io/en/stable/
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.roc_auc_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.roc_auc_score.html

The hyperparameter search space for LightGBM is shown in Table 4. As with other methods, we
adopt the preprocessing pipeline from the FT-Transformer repository.
For the default configuration, we retain all library-defined hyperparameters without modification.

A.5 FT-TRANSFORMER

Table 5: Search space for FT-Transformer.

Parameter Type Range Log Scale
n_layers Integer [1, 6]

d_token Integer [64, 512]

residual_dropout Float [0, 0.2]

attn_dropout Float [0, 0.5]

ffn_dropout Float [0, 0.5]

d_ffn_factor Float BRI

Ir Float [107°,1073] v
weight_decay Float [107%,1077] v
epochs Integer [10, 500]

In our investigation, we adopted the official implementation of the FT-Transformer (Gorishniy et al.,
2021). Diverging from the approach from the original study, we implemented a uniform search
space applicable to all datasets, rather than customizing the search space for each specific dataset.
This approach ensures a consistent and comparable application across various datasets. The uniform
search space we employed aligns with the structure proposed in Gorishniy et al. (2021). Specifically,
we consolidated the search space by integrating the upper bounds defined in the original paper with
the minimum bounds identified across different datasets.

Regarding the default hyperparameters, we adhered strictly to the specifications provided in Gorish-
niy et al. (2021).

A.6 SAINT

We utilize the official implementation of the method as detailed by the respective authors (Somepalli
et al., 2021). The comprehensive search space employed for hyperparameter tuning is illustrated in
Table 6.

Regarding the default hyperparameters, we adhere to the specifications provided by the authors in
their original implementation.

Table 6: Search space for SAINT.

Parameter Type Range Log Scale
embedding_size Categorical {4, 8, 16, 32}
transformer_depth Integer [1, 4]

attention_dropout Float [0, 1.0]

ff_dropout Float [0, 1.0]

Ir Float [107°, 10~9] v
weight_decay Float [10~%, 1079] v
epochs Integer [10, 500]

16

A.7 TABNET

Table 7: Search space for TabNet.

Parameter Type Range Log Scale
n_a Integer [8, 64]

nd Integer [8, 64]

gamma Float [1.0, 2.0]

n_steps Integer [3, 10]

cat_emb_dim Integer [1, 3]

n_independent Integer [1, 5]

n_shared Integer [1, 5]

momentum Float [0.001, 0.4] v
mask_type Categorical {entmax, sparsemax }

epochs Integer [10, 500]

For TabNet’s implementation, we utilized a well-maintained and publicly available version, accessi-
ble at the following link®. The hyperparameter tuning search space for TabNet, detailed in Table 7,
was derived from McElfresh et al. (2023).

Regarding the default hyperparameters, we followed the recommendations provided by the original
authors.

A.8 RESNET

Table 8: Search space for ResNet.

Parameter Type Range Log Scale
layer_size Integer [64, 1024]

Ir Float [107>,1077] v
weight_decay Float [107%,1077] v

residual_dropout Float [0, 0.5]
hidden_dropout Float [0, 0.5]
n_layers Integer [1, 8]
d_embedding Integer [64, 512]
d_hidden_factor = Float [1.0, 4.0]
epochs Integer [10, 500]

We employed the ResNet implementation as described in prior work (Gorishniy et al., 2021). The
entire range of hyperparameters explored for ResNet tuning is detailed in Table 8. Since the original
study did not specify default hyperparameter values, we relied on the search space provided in a
prior work (Kadra et al., 2021).

A.9 MLP-PLR

We employ the MLP implementation proposed by (Gorishniy et al., 2022). The search space
used for hyperparameter optimization is detailed in Table 9. Default hyperparameters are adapted
from (McElfresh et al., 2023), while the search space is based on the original work of (Gorishniy
et al., 2022).

*https://github.com/dreamquark—-ai/tabnet

17

https://github.com/dreamquark-ai/tabnet

Table 9: Search space for MLP-PLR.

Parameter Type Range Log Scale
Ir Float [107°, 1073] v
weight_decay Float [107%,1077] v
dropout Float [0, 0.5]

n_layers Integer [1, 16]

d_embedding Integer [64, 512]
d_num_embedding Integer [I, 128]

d_first Integer [1, 1024]

d_middle Integer [1, 1024]

d_last Integer [1, 1024]

n Integer [1, 128]

sigma Float [0.01, 100] V4
epochs Integer [10, 500]

A.10 TasM

To run TabM in our experiments, we use the pytabkit implementation’. The hyperparameter

search space for TabM, presented in Table 10, is adapted from the original work (Gorishniy et al.,
2025).

Table 10: Search space for TabM.

Parameter Type Range Log Scale
n_blocks Integer [1, 5]

d_block Integer [64, 1024]

dropout Float [0, 0.5]

hidden_dropout Float [0, 0.5]

Ir Float [107%, 5 x 1073] v
weight_ decay ~ Float [10-%, 107 1] v
epochs Integer [10, 500]

A.11 REALMLP

For our RealMLP experiments, we use the official implementation in pytabkit’. Following the
authors’ recommendations, we impute missing values using the mean of the training split before
applying their preprocessing pipeline. We adopt the recommended default hyperparameters and
search space, detailed in Table 11. Additionally, we extend the search space for initializating the
standard deviation of the first embedding layer and tune the embedding dimensions, as suggested by
the authors.

"https://github.com/dholzmueller/pytabkit

18

https://github.com/dholzmueller/pytabkit

Table 11: Search space for RealMLP.

Parameter Type Range Log Scale
num_emb_type Categorical {None, PBLD, PL, PLR}
add_front_scale Categorical {True, False}

Ir Float [2e-2, 3e-1] Ve
p-drop Categorical {0.0, 0.15, 0.3}
act Categorical ~ {relu, selu, mish}
hidden_sizes Categorical {[256, 256, 256], [64, 64, 64, 64, 64], [512]}
wd Categorical {0.0, 0.02}
plr_sigma Float [0.05, 1el] v
Is_eps Categorical {0.0,0.1}
embedding_size Integer [1, 64]
n_epochs Integer [10, 500]
A.12 XTAB

For XTab, we utilize the official implementation®. To ensure comparability with other methods, we
decouple XTab from AutoGluon and apply the same preprocessing and training pipeline as used
for the other models. The original work reports results for both light finetuning and heavy fine-
tuning, so we introduce this as a categorical hyperparameter. If 1ight_finetuning is set to
True, the model is finetuned for only 3 epochs. Otherwise, we follow the same epoch range as
for the other methods, i.e., [10,500]. Furthermore, we use the checkpoint after 2000 iterations
(iter_2k.ckpt), provided by the authors. Table 12 outlines the complete search space used for
XTab during hyperparameter optimization.

Table 12: Search space for XTab.

Parameter Type Range Log Scale
Ir Float [107°,1077] v
weight_decay ~ Float [107%,1073] v
light_finetuning Categorical ~{True, False}
epochs Integer 3 (if light_finetuning=True) or [10, 500] (otherwise)

A.13 CARTE

For CARTE, we use the official implementationg. Similar to XTab, since it is a pretrained model, we
do not tune the architectural hyperparameters but keep them fixed and load the checkpoint provided
by the authors. The search space used for CARTE during our hyperparameter optimization (HPO)
process is shown in Table 13.

Table 13: Search space for CARTE.

Parameter Type Range Log Scale
Ir Float [107°,107°]
weight_decay Float [107°%,1073] v

epochs Integer [10, 500]

$https://github.com/BingzhaoZhu/XTab
‘https://github.com/soda-inria/carte

19

https://github.com/BingzhaoZhu/XTab
https://github.com/soda-inria/carte

A.14 TP-BERTA
We use the official implementation for TP-BERTa'?. Similar to the other pretrained models, we only

tune the learning rate, weight decay, and the number of finetuning epochs. The search
space is shown in Table 14.

Table 14: Search space for TP-BERTa.

Parameter Type Range Log Scale
Ir Float [107°,107°]
weight_ decay Float [107°,1073]

epochs Integer [10, 500]

A.15 TABPFN

For TabPFN and TabPFNv2, we utilized the official implementations from the authors''. We fol-
lowed the settings suggested by the authors and we did not preprocess the numerical features as
TabPFN does that natively, we ordinally encoded the categorical features and we used an ensemble
size of 32 for TabPFN to achieve peak performance as suggested by the authors. For TabPFNv2 we
use the default settings and do not change anything.

A.16 TaBICL

We use the official implementation of TabICL!”> and follow the authors’ instruc-
tions without modification. In particular, we employ the default checkpoint
tabicl-classifier-v1.1-0506.ckpt.

A.17 AUTOGLUON

For our experiments, we utilize the official implementation of AutoGluon'3. Specifically, we evalu-
ate two configurations of AutoGluon: the HPO version and the recommended version.

* For the HPO version, we use the default search spaces for the models included in Auto-
Gluon’s ensemble.

* For the recommended version, we set presets="best_quality" as per the official
documentation and do not perform hyperparameter optimization.

Yhttps://github.com/jyansir/tp-berta
"https://github.com/automl/TabPFN
Phttps://github.com/soda-inria/tabicl
Bhttps://auto.gluon.ai/stable/index.html

20

https://github.com/jyansir/tp-berta
https://github.com/automl/TabPFN
https://github.com/soda-inria/tabicl
https://auto.gluon.ai/stable/index.html

B HYPERPARAMETER ANALYSIS

In this section, we first examine the overall importance of hyperparameters for each method, as
shown in Figure 9, which quantifies the contribution of each hyperparameter to model performance.
The subsequent figures in this section illustrate the effect of individual hyperparameters on the per-
formance metric. The x-axis represents the hyperparameters, while the y-axis denotes the ROC-AUC
performance. We calculate hyperparameter importance using the fANOVA (Hutter et al., 2014) im-
plementation in Optuna (Akiba et al., 2019). According to our analysis, the most important hy-
perparameter for CatBoost is the learning rate, while for XGBoost, it is the subsample ratio of the
training instances. For XTab, the learning rate is also the most important hyperparameter, closely
followed by the 1 ight_finetune hyperparameter, which is a categorical parameter taking values
True or False. When 1ight_finetune is True, we fine-tune XTab for only 3 epochs; when
it is False, we use the same range of epochs as for the other methods (10 to 500). Similarly, for
the MLP with PLR embeddings, the learning rate proves to be the most influential hyperparameter,
whereas for RealMLP, the number of units in the hidden layers. For the remaining dataset-specific
neural networks in the deep learning family, as well as for CARTE, the number of training epochs
is the most important hyperparameter, indicating that training duration plays a critical role in their
performance.

tearning_racc [subsampie I epochs I
min_child_weign. I -
iterations | RN gamm I 4_embedding NI
colsample_bytree
e I

- reg_lambda | idden_dropou

teat etimation teratons [N reg.aipha| weight_decey I

learning_rate residual_dropout [N

max_depth [max_depth n_layers I

0.00 0.05 010 015 020 025 030 0.00 0.05 010 015 020 025 030 035 0.00 0.05 0.10 0.15 0.20 0.25
Importance Importance Importance
(a) CatBoost (b) XGBoost (c) ResNet
epochs I cvocrs I epochs I
ffn_dropout [l] n_steps I
p— ff_dropout gamma [l
d_token [l o [momentum Il
residual_dropout [l attention_dropout [l 2,: :
WE‘Q"‘-"E‘EV= transformer_depth . cat_emb_dim|
attn_dropout n_shared |
weight_deca: -
d_ffn_factor [l igne.decay il mask_type |
n_layers|| embedding_size [| n_independent|
0.0 0.1 0.2 3 0.4 0.5 0.6 0.7 0.0 0.1 0.2 0.3 0.4 0.5 0.6 00 01 02 03 04 05 06 07 08
Importance Importance Importance

(d) FT-Transformer (e) SAINT (f) TabNet

_ e _ \r_
font finetune _
_ \r. ot -
0

Ir

weight_decay

weight_decay

epochs weight_decay

000 005 010 015 020 025 030 0.35 o 02 04 08 00 01 02 03 04 05 06
Importance Importance Importance
1 .
Ir hidden_sizes num_epochs
n_layers epochs I -
weight_decay I R d_block
opou num_emb,_ type I
| first
I5_eps I dropout
d_middle B H—
sigma Ml w
e »._arop L weignt_secay [l
d_last M act
d_num_embedding B add_front_scale | "J""Cks-
000 005 010 015 020 025 030 035 040 000 005 010 015 020 025 030 000 005 010 015 020 025 030
Importance Importance Importance

Figure 9: Hyperparameter importance for various methods

21

B.1 CATBOOST

0.96
0.95 0.96
0.94
0.90
£0.92 o 094
2 2 2
$0.90 $0.85 $0.92
o o o
088 « =
0.80 0.90
0.86
0.88
0.84 075
0.0 0.2 0 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 250 500 750 1000 1250 1500 1750 2000
bagging_temperature learning_rate iterations

0.96 0.950
0.945 0.945
0094 o o
2 9 g
3 20940 20940
8002 3 8
= %0935 &
0935
0.90 0930
0.930
2 6 8 10 2 4 6 10 3 4 s 6 7 8 9 10
12_leaf reg leaf estimation_iterations max_depth

Figure 10: Effect of all the hyperparameters on model performance for CatBoost. The x-axis repre-
sents the hyperparameter values, while the y-axis shows the corresponding performance.

B.2 RESNET

0.92

ROC-AUC
s o o
> =2 o
& 8 8

ROC-AUC
o o o
2 » @
& 8 8
ROC-AUC
s o o
> @ ©
& & 8

o
©
2

0.84 0.84
100 200 400 50

3
o
0
w
n
IS
°
o
°

0.1 0.4 0

0

300 2.0 25 3.0 0.2 0.3
d_embedding d_hidden_factor hidden_dropout

\OC-AUC
o o o o
©® ® @ ©
2 & & 8
ROC-AUC
o o o o
© o 0 ©
& 8 & ©
ROC-AUC
o o o
o o @ © i
& 8 3

o
@
2

200 400 600 800
layer_size

=
S
S
3
o
S
5
o
b
~
w
o
<
@

4 5
n_layers

ROC-AUC
o o o o
® ® © ©
& & 3 ©
ROC-AUC
o o o o
©® ® ® ©
2 3 & 8
ROC-AUC
o o o o
o @ 0 0
& 8 8 =2

0.4 0.5

o

100 400 500 10°° 10°° ot 1073

0 0.3 00 300 1
residual_dropout epochs weight_decay

Figure 11: Effect of all the hyperparameters on model performance for ResNet. The x-axis repre-
sents the hyperparameter values, while the y-axis shows the corresponding performance.

22

B.3 MLP-PLR

ROC-AUC
o o o o
© ® ® ®
&3 33
ROC-AUC
> o
© o
& &
ROC-AUC
o o o
@ © @ i
2 & &

0.84

0.84
0.82

083 0.82

100 200 300 400 500 0 200 400 600 800 1000 0 200 400 600 800 1000
d_embedding d_first d_middle

0.90 0.90

0.90

-AUC
o o
3 o
& &
ROC-AUC
) o
@ o
& &
ROC-AUC
o o
® o
& &

o
o
i

o

©

2

0.82
0 200 400 600 800 1000 0 20 40 60 80 100 120 0.0 0.1 0.2 0.3 0.4 05
d_last d_num_embedding dropout
0.90 0.90
0.90
0.88
0.88 088
o 086 oY
2 2 2
;ose 084 0086
2 2 j
0.84 0.82 0.84
0.80
0.82
082 0.78
0 100 200 300 400 500 10-° 1074 102 1072 2 4 6 8 10 12 14 16
epochs Ir n_layers
0.90 0.90
0.89
0.88 0.88 -
E g S
2086 o087 2
8 g g
. 0.86
<0.84 2086 <
0.85
0.82
0.84 0.84
0 20 40 60 80 100 120 0 20 40 60 80 100 10°° 107° 107* 103
n sigma weight_decay

Figure 12: Effect of all the hyperparameters on model performance for MLP-PLR. The x-axis rep-
resents the hyperparameter values, while the y-axis shows the corresponding performance.

B.4 REALMLP

0.975
0.94
0.94 0.950
9 o o
So.2 So92 30925
% 1%)
g g £0.900
0.90 *0.90 10 075
0.88 0.88 0.850
0 10 20 30 40 50 60 107! 0 100 200 300 400 500
embedding_size Ir n_epochs
0.94
0.92
80.90
<
o
go.88
g
0.86
0.84
107! 10° 10t
pir_sigma

Figure 13: Effect of all the hyperparameters on model performance for RealMLP. The x-axis repre-
sents the hyperparameter values, while the y-axis shows the corresponding performance.

Since fANOVA does not support categorical hyperparameters, we exclude them from this analysis.

23

B.5 TaABM

0.94
0.94 0.04
o o o
0.92
2092 2 2
3 $0.92 3
2 2 2
0.90 0.90
0.90
088 0.88
0.0 01 02 03 04 05 200 400 600 800 1000 107 102
dropout hidden_size Ir
0.940 0.94
0.94 0935 0.93
9) 1%}
2 =] =]
I 20.930 50'92
G092 S g
= € ©0.91
0925
0.90 0.90
0920
0 100 200 300 400 500 10 15 20 25 30 35 40 45 50 0.00 0.02 0.04 0.06 0.08 0.10
n_epochs num_layers wd

Figure 14: Effect of all the hyperparameters on model performance for TabM. The x-axis represents
the hyperparameter values, while the y-axis shows the corresponding performance.

B.6 XGBOOST

0.90 0875 0.90
0.85 0.850 085
9 Qo.825 9
3 <
3 8 0.800 8 0.80 M
20.75 e 2
0775
0.75
0.70 0.750
05 0.6 0 0.8 0.9 1.0 05 06 0.7 0.8 9 10 0 20 o 80 100
colsample_bylevel colsample_bytree gamma
0.875
085 0875
0.850
080 0.850
2 So.825]
I 2 20.825
$0.75 S S
S 30.800 3
g
070 e £0.800
0775 0775
0.65)
0.750
0.750
0.0 02 0.4 0.6 0.8 1.0 3 4 5 6 7 8 9 10 0 20000 40000 60000 80000 100000
learning_rate max_depth min_child_weight
0.875
0:90 0.875
0.850
0.85 0.850
H 00.825 o
20.80 2 20825
g ©0.800 o
2075 2 20.800
0775
0775
0.70 0.750
065 0.750
: 250 500 750 1000 1250 1500 1750 2000 0 20 40 6 80 100 [20 40 60 80 100
n_estimators reg_alpha reg_lambda
0.85
o
2
200 m
o
2
075

0.5 0.6 0.9 1.0

07 0.8
subsample

Figure 15: Effect of all the hyperparameters on model performance for XGBoost. The x-axis repre-
sents the hyperparameter values, while the y-axis shows the corresponding performance.

24

B.7 FT-TRANSFORMER

ROC-AUC
=S
3

o
©
3

0.2 0.3
attn_dropout

ROC-AUC
°
©
=4

0.0 0.1 0.2 0.3
ffn_dropout

0.920

0.915

0.910

n_layers

04

04

ROC-AUC

ROC-AUC

=

0.92

ROC-AUC
S
©
S

0.88

0.86

<
©
a

o o
© ©
S 8

ROC-AUC
°
0
3

o o
© ®
& 3

o
@
2

o o
© ©
3 5

°
@
&

0.86

IR,

075 1.00 1.25 150 175 200 2.25 250 275

d_ffn_factor

00 300
epochs

residual_dropout

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200

0.93

o
©
N

ROC-AUC
S
5

<
©
3

100 200 300 400 50
d_token

3

0.93
0.92
0,91
2
Fo.90
o
“0.89
0.88
0.87

1075 1074 1073
Ir

107% 10° 1074 1073
weight_decay

Figure 16: Effect of all the hyperparameters on model performance for FT-Transformer. The x-axis
represents the hyperparameter values, while the y-axis shows the corresponding performance.

B.8 SAINT

0.0 0.2 0.4 0.6
attention_dropout

0.950

0.925

0.900
]
20875
I}
$0.850
4

0.825

0.800

°
-
1
38

0 300
epochs

ROC-AUC
°
o
&

ROC-AUC
o o
© ©
S B

1.0

15

0.4 0.6
f_dropout

2.0 25 3.0
transformer_depth

08

35

40

ROC-AUC
o o o
3 o ©
& & 3

H
3

1074 1073

ROC-AUC
)
©
3

o
©
53

107 107° 04 103

1
weight_decay

Figure 17: Effect of all the hyperparameters on model performance for SAINT. The x-axis represents
the hyperparameter values, while the y-axis shows the corresponding performance.

25

B.9 TABNET

0.99
0976 0.98
0.98
0.97
90974 S S
3 3 So.07
) 2096 g%
S0.972 2 Q
0.95 0.96
0.970
0.94 0.95
098 100 125 150 175 200 225 250 275 3.00 1.0 12 14 16 18 2.0 0.00 005 010 015 020 025 030 035 0.40
cat_emb_dim gamma momentum
0.080 0.980 0.978
0.975 0.976
0975
9 90,970 So.974
So.070 & B
8% 50.965 80972
£ g g
0.965 0.960 0.970
o5 0.955 0.968
: 10 20 30 40 50 60 10 20 30 40 50 60 10 15 20 25 30 35 40 45 50
na nd n_independent
0.978
0.9775 0.98
0.976
0.9750 o7
90.974 o Qo.
3 209725 2
00972 8] 80.96
8o0.
e 20.9700 2
.97
0.970 0.9675 0.95
0.968 0.9650
0.94
10 15 20 25 30 35 40 45 50 3 4 5 6 7 8 9 10 0 100 200 300 400 500
n_shared n_steps epochs

Figure 18: Effect of all the hyperparameters on model performance for TabNet. The x-axis repre-
sents the hyperparameter values, while the y-axis shows the corresponding performance.

B.10 XTAB

0.950 0.94
08
0925 092
So06 90.90
So.900 2 2
3 I ©0.88
o
Q0875 204 2
0.86
0.850 0.2
0.84
0.825 0.0 0.82
0 100 200 300 400 500 . 10 10-° 1074 10°?
epochs light_finetune weight_decay
0.950
0.925
©0.900
H
<
$0.875
<]
2
0.850
0.825
0.800

10-° 1074 102

Figure 19: Effect of all the hyperparameters on model performance for XTab. The x-axis represents
the hyperparameter values, while the y-axis shows the corresponding performance.

B.11 CARTE

1.00 0.925
0.925
0.95 0.900
©0.90 0900 L0878
3 2 20.850
80.85 s 0.875 s
2080 € 0850 Qo825
075 0.800
0.825
0.70 0.775
o 100 0 300 400 500 10°° 10 102 1072 1076 10-° 10 1073
epochs Ir weight_decay

Figure 20: Effect of all the hyperparameters on model performance for CARTE. The x-axis repre-
sents the hyperparameter values, while the y-axis shows the corresponding performance.

26

B.12 TP-BERTA

075 0.675 0.75
0.650

0.70
4070 " g
2 Sos2s 2065
goe 80.600 8
2 2 2060
0.60 0575

0.55 0.550

0 100 200 300 400 500 107° 107* 1073 1072 107° 10-° 107¢ 102
epochs Ir weight_decay

Figure 21: Effect of all the hyperparameters on model performance for TP-BERTa. The x-axis

represents the hyperparameter values, while the y-axis shows the corresponding performance.

B.13 HPO INFLUENCE ON A PER-MODEL LEVEL

In our analysis of hyperparameter optimization (HPO) versus default configurations across various
machine learning methods, we observed that HPO generally led to improved performance. The
analysis is depicted in Figure 22. This improvement is reflected in the average rank reductions for
most methods when HPO was applied. For example, XGBoost’s average rank improved significantly
from 1.94 in its default configuration to 1.06 with HPO, and XTab showed a similar enhancement,
moving from a rank of 1.96 down to 1.04.

These findings are visually represented in the accompanying plot, which illustrates the performance
gains achieved through HPO. An exception to the general trend was observed with TP-BERTa,
where the default configuration slightly outperformed the HPO version (average ranks of 1.47 and
1.53, respectively). This anomaly can be attributed to the computational demands of TP-BERTa.
Due to its large model size, TP-BERTa was unable to complete the full 100 hyperparameter tuning
trials within the allotted 23-hour time frame, often finishing only a few trials. Consequently, the HPO
process may have converged to a suboptimal configuration that did not surpass the performance of
the default settings.

e HPO x Default

1.0 I
1.2 T I O

£1.4 H

Q X

% °

§1.6 X

< i X &

18 X % 4 & N X

2.0 P
COESETFEE S D E S
Qa(& & N «z}oé ° e/& Nl B & (,‘g ¢ T
SRS R S ©

S L o V

o AL

o&o <<&

Figure 22: Comparison of average rank performance between hyperparameter-optimized (HPO)
models and default models. The blue dots represent the performance of the HPO models, while the
red crosses denote the default models. Lower ranks indicate better performance.

27

C ABLATING THE CHOICE OF REFITTING

In this ablation, we explore whether refitting the model on the combined training and validation sets
(after hyperparameter optimization) provides any measurable benefit. The standard procedure, as
described in Section 3.2, uses a 10-fold nested cross-validation: we split the data into 10 folds, use
9 folds for inner cross-validation and HPO, then identify the best hyperparameter configuration and
refit the model on all 9 folds before testing on the remaining fold.

We compare this approach to a no-refitting variant. Here, we still employ 10-fold cross-validation,
but replace the inner cross-validation with a single 70/30 split of the 9 folds for training and val-
idation. We train the model on the 70% partition, perform HPO on the 30% partition, and then
save both the optimal hyperparameter configuration and the resulting trained model. Hence, when
moving to the test fold, we simply load this trained model (with its fixed hyperparameters) instead
of retraining on the entire 9-fold set. We repeat this for each of the 10 folds, ensuring the test set
remains identical across both approaches.

Due to the computational resources required, we restrict this analysis to four methods: CatBoost,
XGBoost, FT-Transformer, and TabM. The results of this ablation study are presented below, com-
paring performance with and without refitting.

Section 5, Research Question 4 (Figure 7) summarizes the main ablation results. Here, we extend
that analysis by comparing the refitting and no-refitting variants head-to-head at the dataset level
and conducting statistical tests to assess significance.

Figure 23 illustrates the performance difference between CatBoost with and without refitting across
all datasets. The results clearly indicate that, with only a few exceptions, the refitted version consis-
tently outperforms its non-refitted counterpart.

Difference (CatBoost - CatBoost _noRefit)

Diff in ROC-AUC
o
o
=y

Figure 23: Performance difference between CatBoost with refitting and CatBoost without refitting
across Datasets. Positive values indicate an improvement in ROC-AUC when refitting is applied,
while negative values indicate a performance drop.

A similar pattern is observed in Figure 24 for XGBoost. Likewise, Figure 25 shows that refitting
yields superior performance on most datasets for TabM too. In contrast, Figure 26 reveals that a
greater number of datasets favor the non-refitted FT-Transformer. Nonetheless, the majority still
benefit from refitting overall.

28

Difference (XGBoost - XGBoost_noRefit)

raw_endgame_complete

jungle_chess_2pcs.t

Figure 24: Performance difference between XGBoost with refitting and XGBoost without refitting

across Datasets. Positive values indicate an improvement in ROC-AUC when refitting is applied,
while negative values indicate a performance drop.

Difference (TabM - TabM_noRefit)

Diff in ROC-AUC
o o o o o
o o o o o
Pt [N} @ = a

o
o
1S]

kel
ke2
K

k-

wall-robot-n:

€

raw_endgame_complete

jungle_chess_2pcs.t

Figure 25: Performance difference between TabM with refitting and TabM without refitting across

Datasets. Positive values indicate an improvement in ROC-AUC when refitting is applied, while
negative values indicate a performance drop.

29

010 Difference (FT-Transformer - FT-Transformer_noRefit)

0.08
0.06
0.04

0.02

Diff in ROC-AUC

0.00

—0.02

—0.04

3

jungle_chess_2pcs,

Figure 26: Performance difference between FI-Transformer with refitting and FT-Transformer with-
out refitting Across Datasets. Positive values indicate an improvement in ROC-AUC when refitting
is applied, while negative values indicate a performance drop.

Furthermore, we conducted a Wilcoxon signed-rank test to compare the performance of refitting
versus no-refitting across multiple datasets for each method. The statistical results are summarized
in Table 15.

Table 15: Statistical Comparison of Refit vs. No-Refit Methods

Method Pair #Datasets Avg. Diff Median Diff Wilcoxon Stat p-value

CatBoost vs. CatBoost_noRefit 68 0.0079 0.0016 180.0000 1.298511e-09
XGBoost vs. XGBoost_noRefit 68 0.0144 0.0029 152.0000 4.413043e-10
TabM vs. TabM _noRefit 68 0.0056 0.0010 101.0000 3.395174e-10
FT vs. FT_noRefit 68 0.0035 0.0004 843.0000 9.356765e-02

For CatBoost, we observed an average performance improvement of 0.0079 when refitting, with a
median difference of 0.0016. The Wilcoxon test yielded a test statistic of 180.0000 and a highly
significant p-value of 1.2985 - 102, This strongly suggests that refitting leads to a statistically
significant and consistent improvement in CatBoost’s performance across datasets. Given the very
low p-value (p < 0.001), we can confidently reject the null hypothesis that refitting has no effect.

For XGBoost, the average improvement with refitting was 0.0144, with a median difference of
0.0029. The Wilcoxon test statistic was 152.0000, with a highly significant p-value of 4.4130 -
1010, These results indicate that, similar to CatBoost, refitting yields a consistent and statistically
significant improvement in performance for XGBoost.

In contrast, for FT-Transformer, the average improvement due to refitting was 0.0035, with a median
difference of 0.0004. However, the Wilcoxon test yielded a test statistic of 843.0000 and a p-value of
0.0936, which is not statistically significant (p > 0.05). This suggests that while refitting improves
FT-Transformer’s performance on average, the improvement is not consistent or significant across
datasets.

For TabM, refitting led to an average performance improvement of 0.0056 with a median difference
of 0.0010. The Wilcoxon test yielded a test statistic of 101.0000 and a highly significant p-value
of 3.3952 - 10710, This provides strong evidence that refitting substantially and consistently im-
proves TabM’s performance across datasets. Given the extremely low p-value (p < 0.001), we can
confidently reject the null hypothesis, concluding that refitting has a significant positive impact on
TabM.

30

Additionally, Table 16 presents the raw results of FT-Transformer, CatBoost, XGBoost and TabM,
in comparison to their non-refitted counterparts.

Table 16: Average test ROC-AUC per dataset for FT, CatBoost, TabM and XGBoost using refitting
vs. no refitting across CV folds.

Dataset CatBoost CatBoost_norefit ‘ XGBoost XGBoost_norefit ‘ FT FT_norefit ‘ TabM TabM _norefit
adult 0.930747 0.924052 0.930482 0.916441 0.914869 0.915875 | 0.919662 0.917949
analcatdata_authorship 0.999662 0.999470 0.999816 0.999304 0.999985 0.999566 | 1.000000 1.000000
analcatdata_dmft 0.579136 0.547691 0.572150 0.575579 0.576947 0.579169 | 0.576017 0.568896
balance-scale 0.972625 0.962132 0.991268 0.889868 0999735 0.995086 | 0.998912 0.998805
bank-marketing 0.938831 0.937464 0.938384 0.933394 0.938198 0.937470 | 0.941872 0.941008
banknote-authentication 0.999935 0.999979 0.999935 0.999849 1.000000 1.000000 | 1.000000 1.000000
Bioresponse 0.885502 0.872449 0.888615 0.853483 0.820159 N/A 0.876671 0.865593
blood-transfusion-service-center 0.754965 0.749848 0.750671 0.726849 0.745975 0.748119 | 0.748538 0.746875
breast-w 0.989162 0.992507 0.992112 0.991595 0.989503 0.989074 | 0.995845 0.995032
car 1.000000 0.998453 0.999902 0.999412 0.999751 0.999969 | 1.000000 1.000000
churn 0.922968 0.916146 0.914432 0.912343 0.914596 0.915300 | 0.929636 0.918852
climate-model-simulation-crashes 0.951480 0.944551 0.947000 0.947724 0.934671 0.933561 | 0.939969 0.940694
cme 0.740149 0.735398 0.735649 0.721967 0.739402 0.736959 | 0.743797 0.738024
cnae-9 0.996316 0.994599 0.997454 0.983546 0.994497 0.994377 | 0.998100 0.997319
connect-4 0.921050 0.913372 0.931952 0.923175 0.901170 0.921978 | 0.941654 0.938588
credit-approval 0.934006 0.940661 0.934692 0.943379 0.935798 0.944236 | 0.934458 0.928719
credit-g 0.801762 0.773381 0.798571 0.794000 0.783048 0.777810 | 0.790905 0.770190
cylinder-bands 0.912070 0.867995 0.928116 0.866898 0.915494 0.826412 | 0.926477 0.886880
diabetes 0.837869 0.822365 0.835638 0.823473 0.831108 0.823379 | 0.829801 0.823632
dna 0.995028 0.994658 0.995278 0.994620 0.990937 0.989937 | 0.994505 0.994692
dresses-sales 0.595731 0.605008 0.622414 0.582184 0.620033 0.610016 | 0.642200 0.615764
electricity 0.980993 0.937421 0.987790 0.948766 0.963076 0.957884 | 0.968731 0.964049
eucalyptus 0.923334 0.916719 0.918055 0.902200 0.923933 0.911772 | 0.931897 0.920520
first-order-theorem-proving 0.831775 0.811589 0.834883 0.810288 0.796707 0.785106 | 0.818255 0.805200
GesturePhaseSegmentationProcessed 0.916674 0.779683 0.916761 0.774266 0.895166 0.799810 | 0.933828 0.908776
har 0.999941 0.999887 0.999960 0.999919 0.999685 0.999706 | 0.999966 0.999927
ilpd 0.744702 0.731536 0.748019 0.718251 0.751488 0.737753 | 0.744875 0.739189
Internet-Advertisements 0.979120 0.972513 0.982276 0.978762 0974513 0.985391 | 0.985640 0.982167
isolet 0.999389 0.999282 0.999488 0.999225 0.998817 0.999282 | 0.999750 0.999628
jml 0.756611 0.742362 0.759652 0.734592 0.709321 0.725904 | 0.751557 0.735722
jungle_chess_2pcs_raw_endgame_complete ~ 0.976349 0.973983 0.974087 0.852209 0.999975 0.999861 | 0.999985 0.999945
kel 0.825443 0.814042 0.832007 0.808270 0.783519 0.803310 | 0.813763 0.799767
ke2 0.846802 0.841593 0.843295 0.839860 0.832014 0.837281 | 0.833491 0.813933
kr-vs-kp 0.999392 0.999419 0.999796 0.999785 0.999777 0.999173 | 0.999652 0.999659
letter 0.999854 0.999802 0.999819 0.992828 0.999919 0.999886 | 0.999943 0.999906
madelon 0.937562 0.929178 0.932249 0.912814 0.747391 0.793476 | 0.809941 0.758538
mfeat-factors 0.998910 0.997917 0.999004 0.998767 0.999015 0.998560 | 0.999700 0.999550
mfeat-fourier 0.984714 0.984229 0.983375 0.981292 0.984511 0.982372 | 0.988497 0.987389
mfeat-karhunen 0.999264 0.998802 0.999211 0.998908 0.998682 0.997649 | 0.999521 0.999267
mfeat-morphological 0.965406 0.965867 0.963075 0.945833 0.970198 0.967869 | 0.969433 0.969514
mfeat-pixel 0.999422 0.999183 0.999378 0.998464 0.997451 0.998448 | 0.999478 0.999292
mfeat-zernike 0.977986 0.977831 0.974231 0.975436 0.983479 0.981858 | 0.984997 0.984036
MiceProtein 1.000000 0.999991 0.999923 0.999871 0.999973 1.000000 | 1.000000 0.999963
nomao 0.996439 0.995329 0.996676 0.995051 0.990908 0.992552 | 0.994828 0.994329
numerai28.6 0.529404 0.529350 0.529457 0.528295 0.530315 0.527963 | 0.529336 0.529882
optdigits 0.999844 0.999780 0.999855 0.999738 0.999616 0.999487 | 0.999939 0.999891
ozone-level-8hr 0.929094 0.923125 0.922663 0.918516 0.919484 0.919689 | 0.930601 0.926141
pel 0.875471 0.850199 0.863061 0.853272 0917591 0.840223 | 0.889312 0.862341
pc3 0.851122 0.833527 0.854543 0.833489 0.828743 0.835171 | 0.843468 0.839846
pc4 0.953309 0.945471 0.951037 0.903891 0.934944 0.944674 | 0.952956 0.950541
pendigits 0.999752 0.999728 0.999703 0.999777 0.999703 0.999668 | 0.999739 0.999756
PhishingWebsites 0.996482 0.995649 0.997425 0.996704 0.996760 0.996105 | 0.997636 0.996866
phoneme 0.968024 0.958699 0.967421 0.957712 0.965071 0.957862 | 0.971200 0.962861
gsar-biodeg 0.930649 0.928167 0.934875 0.917479 0.919584 0.914716 | 0.937730 0.929856
satimage 0.991978 0.990444 0.992114 0.990114 0.993516 0.992003 | 0.994291 0.992353
segment 0.996231 0.995441 0.996126 0.994624 0.994124 0.993598 | 0.994943 0.994696
semeion 0.998687 0.997784 0.998272 0.974216 0.995548 0.996208 | 0.998425 0.997714
sick 0.998331 0.997520 0.997950 0.995587 0.997937 0.997762 | 0.997317 0.996299
spambase 0.989935 0.988718 0.990726 0.988292 0.985969 0.983881 | 0.989244 0.988850
splice 0.995472 0.992511 0.995049 0.997548 0.992276 0.995195 | 0.995054 0.994709
steel-plates-fault 0.974350 0.968766 0.972743 0.954217 0.959182 0.962215 | 0.971043 0.966795
texture 0.999948 0.999946 0.999940 0.999834 0.999983 0.999973 | 0.999997 0.999997
tic-tac-toe 1.000000 0.999952 0.999710 0.999567 0.996152 0.996209 | 1.000000 1.000000
vehicle 0.943460 0.933394 0.942080 0.929008 0.963362 0.940233 | 0.965156 0.955308
vowel 0.999259 0.998833 0.999428 0.997587 0.999713 0.999198 | 0.999966 0.999854
wall-robot-navigation 0.999990 0.999910 0.999981 0.999586 0.999900 0.999870 | 0.999912 0.999873
wdbe 0.993813 0.991693 0.994467 0.993817 0.993967 0.986203 | 0.996573 0.994058
wilt 0.990950 0.991393 0.992192 0.991602 0.993047 0.992642 | 0.994857 0.995517

31

D RAW RESULTS TABLES

D.1 RESULTS AFTER HYPERPARAMETER OPTIMIZATION

Table 17 shows the raw results after HPO for CatBoost, LightGBM and XGBoost.

Table 17: Average test ROC-AUC per dataset for CatBoost, LightGBM and XGBoost after hyper-
parameter optimization across CV folds.

Dataset CatBoost LightGBM XGBoost
adult 0.930747 0.931261 0.930482
analcatdata_authorship 0.999662 0.999986 0.999816
analcatdata_dmft 0.579136 0.573445 0.572150
balance-scale 0.972625 0.976799 0.991268
bank-marketing 0.938831 0.938470 0.938384
banknote-authentication 0.999935 0.999979 0.999935
Bioresponse 0.885502 0.886734 0.888615
blood-transfusion-service-center 0.754965 0.723635 0.750671
breast-w 0.989162 0.989162 0.992112
car 1.000000 0.999703 0.999902
churn 0.922968 0.913858 0.914432
climate-model-simulation-crashes 0.951480 0.950490 0.947000
cme 0.740149 0.730807 0.735649
cnae-9 0.996316 0.984404 0.997454
connect-4 0.921050 0.932440 0.931952
credit-approval 0.934006 0.930848 0.934692
credit-g 0.801762 0.795774 0.798571
cylinder-bands 0.912070 0.929117 0.928116
diabetes 0.837869 0.827963 0.835638
dna 0.995028 0.994942 0.995278
dresses-sales 0.595731 0.617323 0.622414
electricity 0.980993 0.989807 0.987790
eucalyptus 0.923334 0.912027 0.918055
first-order-theorem-proving 0.831775 0.833949 0.834883
GesturePhaseSegmentationProcessed 0.916674 0.920034 0.916761
har 0.999941 0.999959 0.999960
ilpd 0.744702 0.711289 0.748019
Internet-Advertisements 0.979120 0.980094 0.982276
isolet 0.999389 0.999401 0.999488
jml 0.756611 0.753206 0.759652
jungle_chess_2pcs_raw_endgame_complete 0.976349 0.977605 0.974087
kel 0.825443 0.803456 0.832007
ke2 0.846802 0.843645 0.843295
kr-vs-kp 0.999392 0.999755 0.999796
letter 0.999854 0.999825 0.999819
madelon 0.937562 0.924095 0.932249
mfeat-factors 0.998910 0.999125 0.999004
mfeat-fourier 0.984714 0.983817 0.983375
mfeat-karhunen 0.999264 0.998958 0.999211
mfeat-morphological 0.965406 0.961250 0.963075
mfeat-pixel 0.999422 0.999131 0.999378
mfeat-zernike 0.977986 0.973627 0.974231
MiceProtein 1.000000 1.000000 0.999923
nomao 0.996439 0.996835 0.996676
numerai28.6 0.529404 0.529077 0.529457
optdigits 0.999844 0.999818 0.999855
ozone-level-8hr 0.929094 0.923040 0.922663
pel 0.875471 0.874508 0.863061
pc3 0.851122 0.843094 0.854543
pc4d 0.953309 0.946295 0.951037
pendigits 0.999752 0.999735 0.999703
PhishingWebsites 0.996482 0.997542 0.997425
phoneme 0.968024 0.965147 0.967421
qgsar-biodeg 0.930649 0.931863 0.934875
satimage 0.991978 0.991309 0.992114
segment 0.996231 0.996233 0.996126
semeion 0.998687 0.997646 0.998272
sick 0.998331 0.998073 0.997950
spambase 0.989935 0.989995 0.990726
splice 0.995472 0.995103 0.995049
steel-plates-fault 0.974350 0.973788 0.972743
texture 0.999948 0.999890 0.999940
tic-tac-toe 1.000000 1.000000 0.999710
vehicle 0.943460 0.935611 0.942080
vowel 0.999259 0.998466 0.999428
wall-robot-navigation 0.999990 0.999968 0.999981
wdbc 0.993813 0.994729 0.994467
wilt 0.990950 0.985504 0.992192

32

Table 18 shows the raw results after HPO for dataset-specific neural networks.

Table 18: Average test ROC-AUC per dataset for dataset-specific neural networks after hyperparam-
eter optimization across CV folds. Missing datasets are represented by ”-”.

Dataset FT-Transformer MLP RealMLP ResNet SAINT TabM TabNet
adult 0.914869 0.928689 0.923327 0.913790 0.920246 0.919662 0.882450
analcatdata_authorship 0.999985 0.999770 1.000000 1.000000 0.999974 1.000000 0.999249
analcatdata_dmft 0.576947 0.574532 0.574396 0.584338 0.544695 0.576017 0.515962
balance-scale 0.999735 0.998659 1.000000 0.989061 0.999266 0.998912 0.979668
bank-marketing 0.938198 0.937054 0.937031 0.935740 0.936560 0.941872 0.887319
banknote-authentication 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
Bioresponse 0.820159 0.825631 0.859065 0.850801 - 0.876671 -

blood-transfusion-service-center 0.745975 0.770627 0.746350 0.738502 0.746726 0.748538 0.660675
breast-w 0.989503 0.992380 0.992882 0.995477 0.988470 0.995845 0.986694
car 0.999751 0.999992 1.000000 0.994154 1.000000 1.000000 1.000000
churn 0.914596 0.922938 0.913533 0.918713 0.915603 0.929636 0.891443
climate-model-simulation-crashes 0.934671 0.948857 0.962163 0.918990 0.925643 0.939969 0.868204
cme 0.739402 0.744580 0.735472 0.737829 0.738490 0.743797 0.647121
cnae-9 0.994497 0.996716 0.997569 0.997106 - 0.998100 -

connect-4 0.901170 0.927373 0.928258 0.933333 - 0.941654 -

credit-approval 0.935798 0.938866 0.917352 0.933113 0.933493 0.934458 0.878500
credit-g 0.783048 0.788476 0.779381 0.783524 0.786402 0.790905 0.696905
cylinder-bands 0.915494 0.886405 0.910680 0.909989 0.923391 0.926477 0.837792
diabetes 0.831108 0.837342 0.837507 0.821798 0.827285 0.829801 0.756416
dna 0.990937 0.992220 0.994111 0.992543 0.992473 0.994505 0.991448
dresses-sales 0.620033 0.635468 0.537849 0.575205 0.624704 0.642200 0.555993
electricity 0.963076 0.969201 0.961467 0.960658 0.967012 0.968731 0.938656
eucalyptus 0.923933 0.921873 0.915693 0.916785 0.925970 0.931897 0.872365
first-order-theorem-proving 0.796707 0.798812 0.795637 0.784636 0.802392 0.818255 0.774094
GesturePhaseSegmentationProcessed 0.895166 0911434 0.901441 0.914196 0.919006 0.933828 0.850596
har 0.999685 0.999783 0.999959 0.999921 - 0.999966 0.999515
ilpd 0.751488 0.671938 0.729412 0.747491 0.698718 0.744875 0.704840
Internet-Advertisements 0.974513 - 0.973810 0.974187 - 0.985640 -

isolet 0.998817 0.998295 0.999635 0.999401 - 0.999750 0.998813
jml 0.709321 0.715620 0.713988 0.720444 0.719464 0.751557 0.674043
jungle_chess_2pcs_raw_endgame_complete 0.999975 0.999965 0.999774 0.999956 0.999926 0.999985 0.991981
kel 0.783519 0.805465 0.796117 0.806819 0.796918 0.813763 0.762807
ke2 0.832014 0.829426 0.845768 0.833248 0.834436 0.833491 0.713458
kr-vs-kp 0.999777 0.999686 0.999704 0.999369 0.999789 0.999652 0.998872
letter 0.999919 0.999894 0.999914 0.999926 0.999853 0.999943 0.999606
madelon 0.747391 0.883991 0.930302 0.605018 - 0.809941 0.630669
mfeat-factors 0.999015 0.998875 0.999625 0.999472 0.999385 0.999700 0.998125
mfeat-fourier 0.984511 0.984929 0.985483 0.981725 0.980508 0.988497 0.970539
mfeat-karhunen 0.998682 0.998849 0.999019 0.998448 0.999078 0.999521 0.996960
mfeat-morphological 0.970198 0.967719 0.969994 0.968651 0.967681 0.969433 0.955818
mfeat-pixel 0.997451 0.998674 0.999492 0.998690 0.999217 0.999478 0.998200
mfeat-zernike 0.983479 0.984610 0.982993 0.984488 0.981874 0.984997 0.968629
MiceProtein 0.999973 0.999973 0.999971 0.999973 1.000000 1.000000 0.999344
nomao 0.990908 0.986577 0.989803 0.993048 - 0.994828 -

numerai28.6 0.530315 0.525920 0.529534 0.528012 0.525822 0.529336 -

optdigits 0.999616 0.999794 0.999968 0.999927 0.999841 0.999939 0.998871
ozone-level-8hr 0.919484 0.927900 0.923252 0.925416 0.919315 0.930601 0.864067
pel 0.917591 0.832532 0.844517 0.889458 0.870543 0.889312 0.804412
pe3 0.828743 0.842511 0.814590 0.829637 0.827322 0.843468 0.788151
pc4 0.934944 0.945813 0.939257 0.944447 0.934528 0.952956 0.920943
pendigits 0.999703 0.999705 0.999659 0.999638 0.999782 0.999739 0.999753
PhishingWebsites 0.996760 0.996991 0.997208 0.996975 0.996746 0.997636 0.996196
phoneme 0.965071 0.967617 0.966456 0.963591 0.960382 0.971200 0.956279
gsar-biodeg 0.919584 0.924951 0.929226 0.932220 0.930632 0.937730 0.902748
satimage 0.993516 0.992308 0.993034 0.991995 0.992630 0.994291 0.987482
segment 0.994124 0.995046 0.994075 0.993581 0.994831 0.994943 0.992317
semeion 0.995548 0.997350 0.998976 0.997689 0.997630 0.998425 0.994019
sick 0.997937 0.997048 0.998661 0.968841 0.998281 0.997317 0.981838
spambase 0.985969 0.988185 0.987799 0.987683 0.986263 0.989244 0.980804
splice 0.992276 0.994053 0.994420 0.993514 0.995073 0.995054 0.990441
steel-plates-fault 0.959182 0.964693 0.959639 0.949067 0.955379 0.971043 0.947456
texture 0.999983 0.999991 0.999999 0.999999 0.999976 0.999997 0.999763
tic-tac-toe 0.996152 1.000000 0.999711 0.999462 0.999725 1.000000 0.993030
vehicle 0.963362 0.961813 0.965844 0.967212 0.955127 0.965156 0.943787
vowel 0.999713 0.999638 0.999955 0.999813 0.999875 0.999966 0.999686
wall-robot-navigation 0.999900 0.999689 0.998720 0.999042 0.999844 0.999912 0.997585
wdbc 0.993967 0.996065 0.996038 0.995409 0.995546 0.996573 0.986656
wilt 0.993047 0.997690 0.993197 0.990726 0.993139 0.994857 0.991289

33

Table 19 shows the raw results after HPO for the meta-learned neural networks.

Table 19: Average test ROC-AUC per dataset for meta-learned neural networks after hyperparameter

optimization across CV folds. Missing datasets are represented by -”.

Dataset CARTE TPBerta TabICL TabPFN TabPFNv2 XTab
adult 0.902677 - 0.914430 - - -
analcatdata_authorship 0.999181 - 1.000000 1.000000 1.000000 0.999991
analcatdata_dmft 0.586376 - 0.591336 0.586630 0.588236 0.556971
balance-scale 0.999413 - 0.997980 0.997656 0.995312 0.997420
bank-marketing 0.924664 - 0.940210 - - -
banknote-authentication 1.000000 0.994512 1.000000 - 1.000000 1.000000
Bioresponse - - 0.885075 - - -
blood-transfusion-service-center 0.739571 0.633041 0.743063 0.752586 0.754893 -
breast-w 0.987912 0.986514 0.993152 0.994131 0.994132 0.989666
car 0.997126 - 0.999232 - 0.999963 -
churn 0.923626 - 0.923984 - 0.923208 -
climate-model-simulation-crashes 0.938531 - 0.932612 0.968010 0.958663 0.944367
cme 0.738379 - 0.740035 - 0.746447 -
cnae-9 0.990151 - 0.997840 - - -
connect-4 - - 0.897904 - - -
credit-approval 0.909279 0.901989 0.941488 0.932397 0.940813 0.939620
credit-g 0.769619 - 0.799048 0.768476 0.793429 -
cylinder-bands 0.848539 0.820399 0.926679 0.886616 0.904451 0.881396
diabetes 0.823615 0.778356 0.835442 0.836120 0.844356 0.815847
dna 0.986120 - 0.994123 - 0.995658 0.992479
dresses-sales 0.589655 0.534893 0.605090 0.538916 0.608456 0.613136
electricity 0.909407 - 0.970809 - - 0.966899
eucalyptus 0.905245 - 0.934423 0.928493 0.933540 0.918317
first-order-theorem-proving 0.764092 - 0.834629 - 0.825502 0.798803
GesturePhaseSegmentationProcessed 0.798024 - 0.951408 - 0.936548 0.886960
har - - 0.999913 - - -

ilpd 0.704712 0.586083 0.780714 0.757892 0.745193 0.726413
Internet-Advertisements - - 0.989308 - - -
isolet - - 0.999570 - - -

jml 0.728512 - 0.784425 - - 0.727984
jungle_chess_2pcs_raw_endgame_complete 0.973383 - 0.975471 - - 0.999950
kel 0.797680 - 0.849627 - 0.836795 0.803082
ke2 0.842828 - 0.834741 0.850065 0.837427 0.835476
kr-vs-kp 0.999685 0.855273 0.999792 - 0.999408 0.999616
letter 0.999440 - 0.999957 - - 0.999859
madelon 0.836760 - 0.711538 - - 0.845746
mfeat-factors 0.996064 - 0.999808 - 0.999650 0.998443
mfeat-fourier 0.976986 - 0.989372 - 0.991319 0.982539
mfeat-karhunen 0.994814 - 0.999850 - 0.999622 0.998582
mfeat-morphological 0.967325 - 0.968919 - 0.969308 0.967136
mfeat-pixel 0.996175 - 0.999664 - 0.999503 0.998642
mfeat-zernike 0.978119 - 0.992247 - 0.991483 0.980183
MiceProtein 0.999582 - 1.000000 - 1.000000 1.000000
nomao - - 0.996055 - - 0.992727
numerai28.6 0.514361 - 0.526838 - - 0.528062
optdigits 0.999112 - 0.999989 - 0.999897 0.999712
ozone-level-8hr 0.890063 - 0.936234 - 0.933398 0.915744
pel 0.835444 - 0.912419 - 0.906419 0.855741
pc3 0.831574 0.625642 0.867955 - 0.854460 0.823532
pc4 0.937337 0.744304 0.959970 - 0.958887 0.938455
pendigits 0.999468 - 0.999852 - - 0.999751
PhishingWebsites 0.994582 - 0.998342 - - 0.996896
phoneme 0.948702 0.796404 0.977493 - 0.973546 0.961749
gsar-biodeg 0.921153 0.833852 0.943963 - 0.942895 0.926795
satimage 0.988038 - 0.993373 - 0995122 0.992918
segment 0.993491 - 0.997462 - 0.997547 0.994697
semeion 0.993378 - 0.999033 - 0.998288 0.997064
sick 0.995762 - 0.997012 - 0.998008 0.998232
spambase 0.983228 - 0.992153 - 0.991218 0.986044
splice 0.987950 - 0.993905 - 0.995288 0.992444
steel-plates-fault 0.943636 - 0.978541 - 0.984454 0.957088
texture 0.999541 - 1.000000 - - 0.999962
tic-tac-toe 0.984361 0.993803 0.999182 0.996086 0.999663 1.000000
vehicle 0.941691 - 0.978088 0.970556 0.975896 0.955838
vowel 0.998092 - 1.000000 - - 0.999630
wall-robot-navigation 0.999505 - 0.999610 - 0.999936 0.999846
wdbc 0.990612 - 0.996697 0.996298 0.997761 0.994317
wilt 0.994858 0.880733 0.995557 - 0.996605 0.994261

34

Lastly, Table 20 shows the raw results of AutoGluon using HPO and AutoGluon with its recom-
mended settings.

Table 20: Average test ROC-AUC per dataset for AutoGluon with HPO and AutoGluon with its
recommended settings across CV folds.

Dataset AutoGluon AutoGluon (HPO)
adult 0.931792 0.931658
analcatdata_authorship 1.000000 0.999887
analcatdata_dmft 0.577809 0.553672
balance-scale 0.997339 0.995057
bank-marketing 0.941273 0.940659
banknote-authentication 1.000000 0.999957
Bioresponse 0.888693 0.881238
blood-transfusion-service-center 0.741733 0.733305
breast-w 0.994394 0.993510
car 0.999861 0.999998
churn 0.927520 0.920213
climate-model-simulation-crashes 0.970051 0.926306
cme 0.737077 0.536500
cnae-9 0.998524 0.997965
connect-4 0.934636 0.941976
credit-approval 0.940476 0.933497
credit-g 0.802381 0.773238
cylinder-bands 0.933320 0.903658
diabetes 0.833641 0.827171
dna 0.995385 0.994906
dresses-sales 0.615107 0.597537
electricity 0.987260 0.986609
eucalyptus 0.933782 0.925856
first-order-theorem-proving 0.835425 0.825561
GesturePhaseSegmentationProcessed 0.936667 0.917835
har 0.999958 0.999942
ilpd 0.765098 0.745564
Internet-Advertisements 0.985963 0.984740
isolet 0.999744 0.999696
jml 0.770272 0.761065
jungle_chess_2pcs_raw_endgame_complete 0.999278 0.999444
kel 0.835974 0.815660
ke2 0.834913 0.813625
kr-vs-kp 0.999405 0.999412
letter 0.999934 0.999933
madelon 0.932817 0.929882
mfeat-factors 0.999350 0.999111
mfeat-fourier 0.986058 0.986717
mfeat-karhunen 0.999575 0.998740
mfeat-morphological 0.977508 0.968908
mfeat-pixel 0.999403 0.999139
mfeat-zernike 0.995249 0.985279
MiceProtein 0.999929 0.999981
nomao 0.996892 0.996441
numerai28.6 0.530150 0.527692
optdigits 0.999925 0.999893
ozone-level-8hr 0.936029 0.930880
pel 0.888177 0.860825
pe3 0.865766 0.845648
pc4d 0.955384 0.950117
pendigits 0.999725 0.999642
PhishingWebsites 0.997572 0.997102
phoneme 0.973342 0.964555
gsar-biodeg 0.942988 0.932276
satimage 0.993557 0.993220
segment 0.996895 0.996421
semeion 0.998506 0.998210
sick 0.998367 0.997357
spambase 0.991092 0.989781
splice 0.995941 0.995249
steel-plates-fault 0.973843 0.972323
texture 0.999998 0.999995
tic-tac-toe 1.000000 0.996585
vehicle 0.969797 0.965886
vowel 0.999910 0.999618
wall-robot-navigation 0.999993 0.999984
wdbc 0.995799 0.992456
wilt 0.995652 0.994495

35

D.2 RESULTS USING DEFAULT HYPERPARAMETER CONFIGURATIONS

Table 21 shows the raw results for CatBoost and XGBoost using the default hyperparameter config-
urations.

Table 21: Average test ROC-AUC per dataset for CatBoost, LightGBM and XGBoost using the
default hyperparamater configurations across CV folds.

Dataset CatBoost LightGBM XGBoost
adult 0.930571 0.929995 0.929316
analcatdata_authorship 0.999710 0.999970 0.999518
analcatdata_dmft 0.549171 0.538902 0.531850
balance-scale 0.952530 0.920593 0.926923
bank-marketing 0.938725 0.937425 0.934864
banknote-authentication 0.999957 0.999613 0.999914
Bioresponse 0.879217 0.880857 0.880176
blood-transfusion-service-center 0.729842 0.706352 0.712258
breast-w 0.991254 0.990699 0.990430
car 0.999509 0.999672 0.998790
churn 0.924606 0.917109 0.913882
climate-model-simulation-crashes 0.962296 0.949276 0.955828
cme 0.709590 0.695848 0.684939
cnae-9 0.996007 0.983430 0.994232
connect-4 0.893587 0.886247 0.899588
credit-approval 0.937424 0.925672 0.930615
credit-g 0.800667 0.787000 0.788381
cylinder-bands 0.885160 0.907731 0.912564
diabetes 0.835137 0.798912 0.797009
dna 0.994641 0.994798 0.994699
dresses-sales 0.598768 0.565517 0.570699
electricity 0.958153 0.954700 0.971787
eucalyptus 0.921691 0.903510 0.902805
first-order-theorem-proving 0.826532 0.828733 0.826895
GesturePhaseSegmentationProcessed 0.898407 0.889753 0.892459
har 0.999899 0.999938 0.999905
ilpd 0.741153 0.745050 0.722052
Internet-Advertisements 0.979992 0.978933 0.976972
isolet 0.999407 0.999095 0.998854
jml 0.748060 0.749102 0.729353
jungle_chess_2pcs_raw_endgame_complete 0.972286 0.971617 0.974856
kel 0.823661 0.791316 0.791182
ke2 0.821163 0.787678 0.771390
kr-vs-kp 0.999521 0.999727 0.999720
letter 0.999740 0.999724 0.999648
madelon 0.928172 0.902450 0.890107
mfeat-factors 0.999031 0.998867 0.998356
mfeat-fourier 0.984181 0.981478 0.982669
mfeat-karhunen 0.999128 0.998500 0.997700
mfeat-morphological 0.962489 0.955839 0.958908
mfeat-pixel 0.999289 0.998861 0.998703
mfeat-zernike 0.972961 0.965408 0.966633
MiceProtein 0.999983 0.999944 0.999680
nomao 0.995620 0.995122 0.995690
numerai28.6 0.518341 0.521861 0.511976
optdigits 0.999808 0.999690 0.999586
ozone-level-8hr 0.925485 0.916990 0.911594
pel 0.891257 0.874492 0.857895
pc3 0.850219 0.819425 0.816916
pcd 0.953689 0.949308 0.942808
pendigits 0.999764 0.999772 0.999760
PhishingWebsites 0.995801 0.996155 0.996764
phoneme 0.955202 0.956695 0.957311
gsar-biodeg 0.934769 0.933991 0.926970
satimage 0.991815 0.990983 0.990907
segment 0.996012 0.996016 0.995267
semeion 0.998163 0.996984 0.996029
sick 0.998355 0.998355 0.996943
spambase 0.989066 0.990138 0.988888
splice 0.995198 0.994463 0.994788
steel-plates-fault 0.972233 0.973473 0.970148
texture 0.999908 0.999856 0.999795
tic-tac-toe 1.000000 0.998990 0.999181
vehicle 0.942832 0.936072 0.935079
vowel 0.999237 0.998215 0.996947
wall-robot-navigation 0.999989 0.999955 0.999934
wdbe 0.994217 0.992350 0.994471
wilt 0.991488 0.987326 0.988659

36

Table 22 shows the raw results for dataset-specific neural networks using the default hyperparameter
configurations.

Table 22: Average test ROC-AUC per dataset for dataset-specific neural networks using default
hyperparameter configurations across CV folds. Missing datasets are represented by ”-”.

Dataset FT-Transformer MLP RealMLP ResNet SAINT TabM TabNet
adult 0.893029 0.897504 0.909085 0.905838 0.870099 0.908670 0.912781
analcatdata_authorship 0.999392 0.999934 0.999952 1.000000 0.999983 1.000000 0.993186
analcatdata_dmft 0.553755 0.554240 0.575007 0.553675 0.526597 0.539602 0.534271
balance-scale 0.988863 0.995111 0.980107 0.992229 0.991970 0.998859 0.972816
bank-marketing 0.907667 0.904699 0.814657 0.926617 0.892316 0.931979 0.927765
banknote-authentication 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
Bioresponse 0.804580 0.560952 0.824996 0.843462 - 0.872512 0.812061
blood-transfusion-service-center 0.713181 0.762080 0.746119 0.742088 0.723673 0.727600 0.728919
breast-w 0.988615 0.994222 0.993411 0.991140 0.992220 0.995038 0.984383
car 0.999758 0.999678 1.000000 0.998600 0.999828 1.000000 0.931659
churn 0.915966 0.903166 0.917916 0.914732 0.910996 0.927037 0.905642
climate-model-simulation-crashes 0.840724 0.935571 0.947857 0.904025 0.937306 0.946051 0.825571
cme 0.686016 0.710134 0.700557 0.687757 0.642394 0.692772 0.689043
cnae-9 0.994801 0.500463 0.992911 0.996595 - 0.997415 0.912423
connect-4 0.922969 0.915051 0.909829 0.926041 0.756318 0.938629 0.856762
credit-approval 0.915482 0931215 0.914193 0.916769 0.908623 0.920201 0.875614
credit-g 0.731714 0.726875 0.758571 0.735071 0.744000 0.782714 0.632571
cylinder-bands 0.908565 0.874205 0.904906 0.891759 0.909314 0.924863 0.710240
diabetes 0.755846 0.829853 0.822211 0.789923 0.737127 0.789142 0.785077
dna 0.988362 0.990128 0.988320 0.992218 0.520670 0.993741 0.962713
dresses-sales 0.571921 0.536782 0.525944 0.536617 0.568144 0.542365 0.560591
electricity 0.963347 0.950665 0.950555 0.930924 0.960991 0.959830 0.911419
eucalyptus 0.917340 0.922173 0.903412 0.897582 0.904708 0.925170 0.877684
first-order-theorem-proving 0.796282 0.782461 0.781809 0.793079 0.772449 0.814144 0.743350
GesturePhaseSegmentationProcessed 0.827939 0.819054 0.890444 0.853272 0.893255 0.874995 0.781506
har 0.999876 0.999848 0.999630 0.999859 - 0.999937 0.999147
ilpd 0.724591 0.748217 0.727899 0.758030 0.713191 0.759658 0.715948
Internet-Advertisements 0.973465 0.982883 0.961953 0.967077 - 0.981634 0.892480
isolet 0.999463 0.847095 0.999135 0.999307 - 0.999671 0.997706
jml 0.723314 0.726646 0.721977 0.734238 0.652524 0.738839 0.722615
jungle_chess_2pcs_raw_endgame_complete 0.998738 0.998486 0.996257 0.977410 0.999876 0.998544 0.974173
kel 0.804719 0.801565 0.806604 0.795200 0.742990 0.820436 0.792858
ke2 0.805644 0.840419 0.829826 0.771497 0.742400 0.818842 0.806986
kr-vs-kp 0.999792 0.999765 0.998737 0.999476 0.723052 0.999796 0.987183
letter 0.999825 0.999640 0.999820 0.999864 0.999784 0.999918 0.997271
madelon 0.770769 0.500000 0.915592 0.600713 - 0.758018 0.559015
mfeat-factors 0.998765 0.998668 0.999075 0.998892 0.499849 0.999589 0.993717
mfeat-fourier 0.977475 0.978653 0.974028 0.980419 0.971772 0.986450 0.961111
mfeat-karhunen 0.997503 0.998582 0.999439 0.998097 0.998387 0.998958 0.982592
mfeat-morphological 0.967733 0.965494 0.968706 0.969308 0.967478 0.967408 0.963611
mfeat-pixel 0.997658 0.946632 0.999500 0.998676 0.553414 0.999317 0.992500
mfeat-zernike 0.978039 0.980681 0.965872 0.980858 0.969257 0.978049 0.966992
MiceProtein 1.000000 0.999963 1.000000 0.999963 1.000000 0.999991 0.987043
nomao 0.992049 0.991436 0.983015 0.992530 0.499521 0.994784 0.991441
numerai28.6 0.507813 0.513601 0.522412 0.517071 0.507780 0.523854 0.522797
optdigits 0.999631 0.999454 0.999927 0.999837 0.999057 0.999927 0.998476
ozone-level-8hr 0.893747 0.906572 0.822254 0.826296 0.881560 0.921495 0.869228
pel 0.852119 0.853077 0.828996 0.820008 0.866325 0.891588 0.863233
pe3 0.810311 0.784672 0.768438 0.771759 0.804479 0.832408 0.809443
pcd 0.944764 0.940799 0.906347 0.936765 0.931286 0.949946 0.900752
pendigits 0.999740 0.999687 0.999850 0.999691 0.999785 0.999748 0.999088
PhishingWebsites 0.996882 0.996479 0.994417 0.997134 0.996805 0.997615 0.993856
phoneme 0.956543 0.948168 0.952913 0.938565 0.956949 0.963998 0.933545
gsar-biodeg 0.916158 0.924529 0911174 0.916804 0.918103 0.934609 0.893489
satimage 0.992141 0.990975 0.986944 0.990613 0.985874 0.993552 0.986280
segment 0.994709 0.993795 0.994189 0.993821 0.993989 0.994829 0.992101
semeion 0.995507 0.968306 0.998289 0.996745 0.576269 0.998174 0.957550
sick 0.997877 0.989590 0.976784 0.969015 0.991121 0.995715 0.929353
spambase 0.983325 0.983168 0.978382 0.985056 0.981111 0.988298 0.978240
splice 0.989898 0.990919 0.991318 0.990917 0.991932 0.995071 0.972882
steel-plates-fault 0.959626 0.963250 0.955133 0.959356 0.948021 0.966012 0.916561
texture 0.999976 0.999956 0.999992 0.999999 0.996944 0.999997 0.999441
tic-tac-toe 0.998605 0.999145 0.997548 0.999375 0.996921 0.999904 0.899715
vehicle 0.956404 0.944588 0.961117 0.963268 0.944376 0.962549 0.923325
vowel 0.999618 0.997520 0.999641 0.999966 0.999888 0.999854 0.986644
wall-robot-navigation 0.999757 0.999245 0.998582 0.998972 0.999104 0.999520 0.997972
wdbc 0.994847 0.994219 0.998021 0.997080 0.997234 0.997765 0.985323
wilt 0.994235 0.994105 0.993080 0.994057 0.988766 0.994455 0.991840

37

Table 23 shows the raw results for the meta-learned neural networks using the default hyperparam-
eter configurations.

Table 23: Average test ROC-AUC per dataset for meta-learned neural networks using default hyper-
parameter configurations across CV folds. Missing datasets are represented by ”-”.

Dataset CARTE TPBerta TabPEN XTab
adult 0.897259 - - -
analcatdata_authorship 0.998103 - 1.000000 0.997620
analcatdata_dmft 0.572113 - 0.586630 0.550627
balance-scale 0.998116 - 0.997656 0.895083
bank-marketing 0.907972 - - -
banknote-authentication 1.000000 0.997535 - 0.996615
blood-transfusion-service-center 0.705189 0.659754 0.752586 -
breast-w 0.984775 0.967673 0.994131 0.988527
car 0.992862 - - -
churn 0.920360 - - -
climate-model-simulation-crashes 0.938031 - 0.968010 0.568735
cme 0.730370 - - -
cnae-9 0.986921 - - -
connect-4 0.500681 - - -
credit-approval 0.906552 0.891294 0.932397 0.922447
credit-g 0.700952 - 0.768476 -
cylinder-bands 0.810318 0.814857 0.886616 0.778646
diabetes 0.755348 0.768974 0.836120 0.822370
dna 0.981979 - - 0.992857
dresses-sales 0.591297 0.565189 0.538916 0.585057
electricity 0.874950 - - 0.900765
eucalyptus 0.907418 - 0.928493 0.814121
first-order-theorem-proving 0.735870 - - 0.721997
GesturePhaseSegmentationProcessed 0.771707 - - 0.737155
har - - - 0.999241
ilpd 0.729851 0.672431 0.757892 0.724427
isolet 0.995113 - - 0.998455
jml 0.704730 - - 0.721445
jungle_chess_2pcs_raw_endgame_complete 0.918894 - - 0.965961
kel 0.805108 - - 0.793122
ke2 0.826925 - 0.850065 0.835398
kr-vs-kp 0.958715 0.999107 - 0.995940
letter 0.998939 - - 0.989493
madelon 0.789929 - - 0.689657
mfeat-factors 0.794171 - - 0.997867
mfeat-fourier 0.969911 - - 0.956494
mfeat-karhunen 0.978967 - - 0.990728
mfeat-morphological 0.961442 - - 0.948069
mfeat-pixel 0.759099 - - 0.997478
mfeat-zernike 0.964453 - - 0.965907
MiceProtein 0.986177 - - 0.972404
nomao 0.981817 - - 0.991110
numerai28.6 0.521094 - - 0.527797
optdigits 0.998452 - - 0.999031
ozone-level-8hr 0.861468 - - 0.915294
pel 0.791339 - - 0.729942
pe3 0.784448 0.683751 - 0.816464
pc4 0.907759 0.699487 - 0.888728
pendigits 0.999522 - - 0.999222
PhishingWebsites 0.991886 - - 0.987949
phoneme 0.932082 0.798855 - 0.911417
gsar-biodeg 0.914703 0.817997 - 0.919134
satimage 0.982299 - - 0.982955
segment 0.992163 - - 0.974072
semeion 0.983218 - - 0.989977
sick 0.991907 - - 0.950283
spambase 0.748573 - - 0.982966
splice 0.701980 - - 0.991116
steel-plates-fault 0.925718 - - 0.848468
texture 0.993709 - - 0.999521
tic-tac-toe 0.861176 0.958328 0.996086 0.744202
vehicle 0.929483 - 0.970556 0.893891
vowel 0.995589 - - 0.812581
wall-robot-navigation 0.998981 - - 0.986489
wdbc 0.993948 0.996298 0.984744

wilt 0.994112 0.960758 - 0.979966

38

Lastly, Table 24 shows the raw results of AutoGluon using the default settings.

Table 24: Average test ROC-AUC per dataset for AutoGluon using default configurations across CV
folds.

Dataset AutoGluon
adult 0.931179
analcatdata_authorship 0.999782
analcatdata_dmft 0.584732
balance-scale 0.594936
bank-marketing 0.939889
banknote-authentication 0.999957
Bioresponse 0.884276
blood-transfusion-service-center 0.741962
breast-w 0.992231
car 0.999593
churn 0.922201
climate-model-simulation-crashes 0.957745
cme 0.691344
cnae-9 0.997878
connect-4 0.936000
credit-approval 0.935450
credit-g 0.783286
cylinder-bands 0.900459
diabetes 0.821997
dna 0.994904
dresses-sales 0.586043
electricity 0.987262
eucalyptus 0.754274
first-order-theorem-proving 0.830805
GesturePhaseSegmentationProcessed 0.920355
har 0.999938
ilpd 0.737184
Internet-Advertisements 0.984077
isolet 0.999636
jml 0.764863
jungle_chess_2pcs_raw_endgame_complete 0.992186
kel 0.821507
ke2 0.812567
kr-vs-kp 0.999619
letter 0.999901
madelon 0.925627
mfeat-factors 0.999142
mfeat-fourier 0.984642
mfeat-karhunen 0.998693
mfeat-morphological 0.969200
mfeat-pixel 0.998731
mfeat-zernike 0.982779
MiceProtein 0.899990
nomao 0.996397
numerai28.6 0.527789
optdigits 0.999670
ozone-level-8hr 0.927357
pel 0.876676
pe3 0.849770
pc4 0.952137
pendigits 0.999684
PhishingWebsites 0.997256
phoneme 0.966521
gsar-biodeg 0.931279
satimage 0.992096
segment 0.996333
semeion 0.998341
sick 0.997864
spambase 0.989571
splice 0.995584
steel-plates-fault 0.971070
texture 0.999996
tic-tac-toe 0.999951
vehicle 0.958256
vowel 0.999641
wall-robot-navigation 0.898793
wdbc 0.992978
wilt 0.994524

39

E DATASETS
In Table 25 we show a summary of all the OpenMLCC18 datasets used in this study.

Table 25: Summary of OpenML-CC18 Datasets with Feature and Class Frequency Statistics.

Dataset Dataset Name Number of Number of Numerical Categorical Binary Fea- Number of Min-Max Class
D Instances Features Features Features tures Classes Freq
3 kr-vs-kp 3196 37 0 37 35 2 0.91
6 letter 20000 17 16 1 0 26 0.90
11 balance-scale 625 5 4 1 0 3 0.17
12 mfeat-factors 2000 217 216 1 0 10 1.00
14 mfeat-fourier 2000 77 76 1 0 10 1.00
15 breast-w 699 10 9 1 1 2 0.53
16 mfeat-karhunen 2000 65 64 1 0 10 1.00
18 mfeat-morphological 2000 7 6 1 0 10 1.00
22 mfeat-zernike 2000 48 47 1 0 10 1.00
23 cmc 1473 10 2 8 3 3 0.53
28 optdigits 5620 65 64 1 0 10 0.97
29 credit-approval 690 16 6 10 5 2 0.80
31 credit-g 1000 21 7 14 3 2 0.43
32 pendigits 10992 17 16 1 0 10 0.92
37 diabetes 768 9 8 1 1 2 0.54
38 sick 3772 30 7 23 21 2 0.07
44 spambase 4601 58 57 1 1 2 0.65
46 splice 3190 61 0 61 0 3 0.46
50 tic-tac-toe 958 10 0 10 1 2 0.53
54 vehicle 846 19 18 1 0 4 0.91
151 electricity 45312 9 7 2 1 2 0.74
182 satimage 6430 37 36 1 0 6 0.41
188 eucalyptus 736 20 14 6 0 5 0.49
300 isolet 7797 618 617 1 0 26 0.99
307 vowel 990 13 10 3 1 11 1.00
458 analcatdata_authorship 841 71 70 1 0 4 0.17
469 analcatdata_dmft 797 5 0 5 1 6 0.79
1049 pcd 1458 38 37 1 1 2 0.14
1050 pe3 1563 38 37 1 1 2 0.11
1053 jml 10885 22 21 1 1 2 0.24
1063 ke2 522 22 21 1 1 2 0.26
1067 kel 2109 22 21 1 1 2 0.18
1068 pel 1109 22 21 1 1 2 0.07
1461 bank-marketing 45211 17 7 10 4 2 0.13
1462 banknote-authentication 1372 5 4 1 1 2 0.80
1464 blood-transfusion-service-center 748 5 4 1 1 2 0.31
1468 cnae-9 1080 857 856 1 0 9 1.00
1475 first-order-theorem-proving 6118 52 51 1 0 6 0.19
1478 har 10299 562 561 1 0 6 0.72
1480 ilpd 583 11 9 2 2 2 0.40
1485 madelon 2600 501 500 1 1 2 1.00
1486 nomao 34465 119 89 30 3 2 0.40
1487 ozone-level-8hr 2534 73 72 1 1 2 0.07
1489 phoneme 5404 6 5 1 1 2 0.42
1494 gsar-biodeg 1055 42 41 1 1 2 0.51
1497 wall-robot-navigation 5456 25 24 1 0 4 0.15
1501 semeion 1593 257 256 1 0 10 0.96
1510 wdbc 569 31 30 1 1 2 0.59
1590 adult 48842 15 6 9 2 2 0.31
4134 Bioresponse 3751 1777 1776 1 1 2 0.84
4534 PhishingWebsites 11055 31 0 31 23 2 0.80
4538 GesturePhaseSegmentationProcessed 9873 33 32 1 0 5 0.34
6332 cylinder-bands 540 40 18 22 4 2 0.73
23381 dresses-sales 500 13 1 12 1 2 0.72
23517 numerai28.6 96320 22 21 1 1 2 0.98
40499 texture 5500 41 40 1 0 11 1.00
40668 connect-4 67557 43 0 43 0 3 0.15
40670 dna 3186 181 0 181 180 3 0.46
40701 churn 5000 21 16 5 3 2 0.16
40966 MiceProtein 1080 82 71 5 3 8 0.70
40975 car 1728 7 0 7 0 4 0.05
40978 Internet-Advertisements 3279 1559 3 1556 1556 2 0.16
40979 mfeat-pixel 2000 241 240 1 0 10 1.00
40982 steel-plates-fault 1941 28 27 1 0 7 0.08
40983 wilt 4839 6 5 1 1 2 0.06
40984 segment 2310 20 19 1 0 7 1.00
40994 climate-model-simulation-crashes 540 21 20 1 1 2 0.09
41027 jungle_chess_2pcs_raw_endgame_complete 44819 7 6 1 0 3 0.19

40

Table 26: Dataset coverage on OpenML CC-18 after excluding four image datasets (IDs: 40923,
554, 40996, 40927). Default pool = 68 datasets.

Method Used Missing Primary reason for missing datasets

AutoGluon 68 0 -

CatBoost 68 0 -

LightGBM 68 0 -

XGBoost 68 0 -

RealMLP 68 0 -

TabM 68 0 -

ResNet 68 0 -

FT-Transformer 68 0 -

MLP 67 1 Memory constraint on one dataset

SAINT 61 7 Memory constraints

TabNet 62 6 Memory constraints

CARTE 62 6 Memory constraints

TabICL 68 0 -

TP-BERTa 15 53 Memory constraints

TabPFN 17 51 Method limits: <1000 samples, <100 features, <10 classes
TabPFNv2 49 19 Method limits: <10,000 samples, <500 features, <10 classes
XTab 55 13 Excluded due to pretraining overlap

We evaluate all methods on the OpenML CC-18 benchmark. Four very large image datasets are
excluded a priori due to memory issues affecting most baselines: Devnagari-Script (OpenML ID
40923), MNIST (554), Fashion-MNIST (40996), and CIFAR-10 (40927). This leaves 68 datasets
as the default pool. Some methods are run on fewer datasets due to memory limits, method-specific
constraints, or pretraining overlap. Table 26 reports the coverage per method and the reason for any
missing datasets.

41

F COMPARISON WITH AUTOML METHODS

In our study, we include AutoGluon Erickson et al. (2020), a prominent AutoML library, to compare
against the Deep Learning methods. We consider two versions of AutoGluon: one where we per-
form hyperparameter optimization (HPO) and the officially recommended version configured with
presets=best_quality. We compare all methods within the Deep Learning family to these
versions of AutoGluon.

[Deep Learning [AutoML

= .
12.5 [Deep Learning @ AutoML
100 o] 12.5
~ —
(=
575 100 ﬂ
5.0 <
—- % §7l5
2.5
= 5.0
R R xS & & L& @9 &~ O O o
S SITLFILEFEEL $ >3
RTINS
& & A & & Q 3R EIAL L NSy S NS
< & S NN S I8 L O & & o
S VR CTITEECSTET s
S & Y & T L & O
S & & o w0 & L § o
¥ Ry K~ &‘"’Qs'
< A

Figure 27: Distribution of ranks for the Deep Learning Models (13 methods) and AutoML (1
method) classifier families. Left: AutoGluon with hyperparameter optimization (HPO). Right:
AutoGluon in its recommended configuration. The boxplot illustrates the rank spread, with medians
represented by red lines and whiskers showing the range.

Figure 27 presents boxplots of the rank distributions for all Deep Learning methods compared to Au-
toGluon. The left-hand side shows results against the HPO-tuned version of AutoGluon. TabPFNv2
and TabICL achieve the best overall performance, sharing the same mean rank, with TabICL hav-
ing a slightly better median rank. Both outperform all other methods, including AutoGluon (HPO).
TabM also performs competitively with a median rank around 3, while most other Deep Learning
methods rank lower.

The right-hand side compares against the recommended version of AutoGluon and reveals a sim-
ilar picture. TabPFNv2 matches AutoGluon in both mean and median rank, though AutoGluon’s
interquartile range extends slightly lower, indicating marginally better performance. TabICL attains
the same mean rank as TabPFNv2 and AutoGluon, but with a better median rank.

CD CcD

— —
1211109 8 7 6 5 4 3 2 1 1211109 8 7 6 5 4 3 2 1
TabNet — TabICL TabNet — TabICL
CARTE TabPFNv2 CARTE TabPFNv2
ResNet TabM XTab ———— AutoGluon
XTab AutoGluon (HPO) ResNet ——— L——— TabM
SAINT MLP SAINT MLP
FT-Transformer RealMLP FT-Transformer RealMLP

Figure 28: Comparative analysis of Deep learning models against AutoGluon. Left: AutoGluon
with hyperparameter optimization (HPO). Right: AutoGluon in its recommended configuration.
Consistent with our previous analyses, we also present critical difference (CD) diagrams to summa-
rize the ranking comparisons. Figure 28 shows, on the left, the CD diagram comparing AutoGluon
with HPO against the Deep Learning methods across all datasets, and on the right, the diagram for
AutoGluon with its recommended configuration.

On the left, TabICL and TabPFNv2 achieve the best average rank of 3, followed by TabM and then
AutoGluon (HPO). The diagram indicates that differences among TabICL, TabPFNv2, and TabM are
not statistically significant; however, TabICL and TabPFNv2 significantly outperform all remaining
methods.

On the right, TabICL is the top-ranked method, followed closely by TabPFNv2 and AutoGluon. The
absence of connecting bars for these three methods indicates that their performance is statistically
significantly better than that of all other Deep Learning baselines.

42

CD CD

| —
131211109 8 7 6 5 4 3 2 1 131211109 8 7 6 5 4 3 2 1
TabNet — TabPFNv2 TabNet — AutoGluon
CARTE TabICL CARTE TabICL
AutoGluon (HPO) —— TabM SAINT —— TabPFNv2
XTab TabPFN XTab TabM
SAINT RealMLP ResNet TabPFN
ResNet FT-Transformer FT-Transformer RealMLP
MLP —78M8M8¥——- MLP

Figure 29: Comparative analysis of Deep learning models against AutoGluon in the small data
domain (number of instances < 1000). Left: AutoGluon with hyperparameter optimization (HPO).
Right: AutoGluon in its recommended configuration.

We further perform the same analysis in the small-data setting, defined as datasets with < 1000
instances, which allows us to include TabPFN in the comparison. The results are shown in Figure 29.

In the left diagram, TabPFNv2 and TabICL lead the rankings, closely followed by TabM, all out-
performing the HPO-tuned version of AutoGluon. In contrast, the right diagram shows that Auto-
Gluon with its recommended configuration ranks highest, surpassing even TabICL and TabPFNv2,
although the differences are not statistically significant.

G ANALYSIS OF DATASET CHARACTERISTICS: INSTANCES AND FEATURES

To analyze the relationship between dataset size and the performance of different methods, we cat-
egorize datasets based on two key attributes: the number of instances and the number of features.

 Instance-based Categorization:

— Datasets with 1000 or fewer instances.

— Datasets with 1001 to 5000 instances.

— Datasets with 5001 to 10000 instances.

— Datasets with 10001 to 50000 instances.

— Datasets with more than 50000 instances.
» Feature-based Categorization: Within each instance-based group, datasets are further

divided based on the number of features:

Datasets with 100 or fewer features.
Datasets with 101 to 500 features.
Datasets with 501 to 1000 features.
Datasets with more than 1000 features.

» Unavailable Results: Having split the datasets into these groups, we note the ones in which
no dataset belongs:

— Datasets with instances between 5001 and 10000, and features between 100 and 500.
Datasets with instances between 5001 and 10000, and features greater than 1000.
Datasets with instances between 10001 and 50000, and features greater than 1000.
For datasets with more than 50000 instances, we only have results for datasets with
100 or fewer features.

For datasets with fewer than 1000 instances, we only have results for datasets with
100 or fewer features.

For the analysis, we present boxplots and critical difference diagrams, if the number of datasets is
at least 10 for meaningful analysis. If the number of datasets in a group is fewer than 10, we use
tabular results instead of boxplots or critical difference diagrams.

G.1 DATASETS WITH FEWER THAN 1000 INSTANCES

In this section, we focus on datasets with fewer than 100 features and fewer than 1000 instances,
resulting in a total of 18 datasets used in our study. Consequently, most methods in Figure 30

43

are evaluated on 18 datasets. However, there are a few exceptions: TabPFN and TabPFNv2 are
incompatible with one dataset, ”vowel,” due to it containing more than 10 classes; XTab excludes 2
datasets that were part of its pretraining phase; and TP-Berta encounters memory limitations on 10
out of the 18 datasets, reducing its coverage.

[Classical ML X0 Deep Learning [AutoML

T %

AR T 5 &2 _ N

§FTEFFESE &Y &4 £ S
T LT 9 I 5 FLCQ
& ST &5 & 878
N © ~ 5

Figure 30: Distribution of ranks for all the methods in the small data domain. The boxplot illus-
trates the rank spread, with medians represented by black lines, means represented by diamonds and
whiskers showing the range.

Figure 30 reveals that AutoGluon achieves the strongest overall performance, closely followed by
TabPFNV2 and TabICL. Among feedforward networks, TabM, MLP and RealMLP rank well, though
TabM reaches a lower rank, while RealMLP has a better mean and median rank compared to MLP.
Among the other dataset-specific neural networks, FT-Transformer and SAINT perform compara-
bly. Interestingly, MLP-like methods also show a lower median rank than the classical CatBoost,
LightGBM and XGBoost, although CatBoost occasionally achieves ranks as low as 2.5. By contrast,
TabNet and the fine-tuning—based models generally exhibit the weakest performance.

CD
[Classical ML [Deep Learning I AutoML 1615141312111098 76 543 2 1
15 @
TabNet — AutoGluon
x 10 CARTE TabPFNv2
] SAINT TabICL
XTab TabM
5 LightGBM TabPFN
ResNet RealMLP
. CaGtBoost MLP
XGBoost FTT
SAE SIS TS ITITO LS
FEE TIT GGES SEFT LS
ST 55 F& S$@ 9 &F
FETLENFS TIETEs

Figure 31: Left: Distribution of ranks for all the methods in the small data domain. The boxplot
illustrates the rank spread, with medians represented by black lines, means represented by diamonds
and whiskers showing the range. Right: Comparative analysis of all the methods.

Similarly, Figure 31 shows a boxplot on the left, evaluated on the same datasets but excluding TP-
BERTa—and a critical difference diagram on the right. A clear pattern emerges: in the small-data
domain, in-context learning methods, are highly competitive, followed by dataset-specific neural
architectures (e.g., TabM, MLP with PLR embeddings and RealMLP), surpassing even CatBoost,
LightGBM and XGBoost.

G.2 DATASETS WITH 1,000 TO 5,000 INSTANCES

Following the previous analysis, we now examine datasets with 1,000-5,000 instances and fewer
than 100 features. The results are shown in Figure 32. Similar to the small-data setting, TabICL
and TabPFNv2 dominate, outperforming even AutoGluon. A notable shift, however, is the strong
performance of CatBoost, which rises to fourth place overall, just behind TabM in third, while
XGBoost maintains performance levels comparable to those in the smaller datasets. Furthermore,
dataset-specific neural networks continue to outperform fine-tuned networks, with TabM and MLP
with PLR embeddings standing out for their strong performance. Both achieve better median ranks
and narrower interquartile ranges than XGBoost and LightGBM.

44

[Classical ML 3 Deep Learning 3 AutoML

X & &9 & & R ¥R & S vy
LILFL ¢ T8 IS §5 §&¢
S Y o;vg\qf SR FIX
Lo I FES S g &
& S$EY & £F
N <

Figure 32: Distribution of ranks for all the methods in the datasets with 1000 to 5000 instances, and
less than 100 features. The boxplot illustrates the rank spread, with medians represented by black
lines, means represented by diamonds and whiskers showing the range.

cD

| —
I Classical ML~ [Deep Learning [AutoML 1514131211109 8 76 543 2 1

15 [é]
L1 @% TabNet — TabICL

< CARTE TabPFNv2
L4 = XTab —M8 AutoGluon

: e B

alb00s

@é © SAINT MLP
= RealMLP XGBoost
& -

&S &
QVQ_‘\TH
&S T E

Figure 33: Left: Distribution of ranks for all the methods in the common datasets with instances
between 1000 and 5000, and features fewer than 100. The boxplot illustrates the rank spread, with
medians represented by red lines and whiskers showing the range. Right: Comparative analysis of
all the methods.

In Figure 33, we exclude TP-BERTa again to ensure a reasonable number of common datasets,
resulting in a total of 19 datasets. The left plot tells a similar story, with XGBoost now achieving
slightly better median rank as the MLP with PLR embeddings. The right plot presents a critical
difference diagram, showing TabICL, TabPFNv2, and AutoGluon as the top-performing methods.

For the remaining dataset categorization groups, we present only tabular results due to the limited
number of datasets in these categories. Table 27 provides the results for datasets with 1000 to 5000
instances and 100 to 500 features. Similarly, Table 28 summarizes the performance for datasets in
the 500 to 1000 features range, while Table 29 presents results for datasets with more than 1000
features. Detailed results for all other dataset categorization groups can be found below.

Table 28: Classifier Performance for Instance Range: 1000-5000 and Feature Range: 500-1000

Dataset cnae-9 madelon
AutoGluon 0.998524 0.932817
CARTE 0.990151 0.836760
CatBoost 0.996316 0.937562
FT-Transformer 0.994497 0.747391
LightGBM 0.984404 0.924095
MLP 0.996716 0.883991
RealMLP 0.997569 0.930302
ResNet 0.997106 0.605018
TabICL 0.997840 0.711538
TabM 0.998100 0.809941
TabNet - 0.630669
XGBoost 0.997454 0.932249
XTab - 0.845746

45

Table 27: Classifier Performance for Instance Range: 1000-5000 and Feature Range: 100-500

Dataset dna mfeat-factors mfeat-pixel semeion
AutoGluon 0.995385 0.999350 0.999403 0.998506
CARTE 0.986120 0.996064 0.996175 0.993378
CatBoost 0.995028 0.998910 0.999422 0.998687
FT-Transformer 0.990937 0.999015 0.997451 0.995548
LightGBM 0.994942 0.999125 0.999131 0.997646
MLP 0.992220 0.998875 0.998674 0.997350
RealMLP 0.994111 0.999625 0.999492 0.998976
ResNet 0.992543 0.999472 0.998690 0.997689
SAINT 0.992473 0.999385 0.999217 0.997630
TabICL 0.994123 0.999808 0.999664 0.999033
TabM 0.994505 0.999700 0.999478 0.998425
TabNet 0.991448 0.998125 0.998200 0.994019
TabPFNv2 0.995658 0.999650 0.999503 0.998288
XGBoost 0.995278 0.999004 0.999378 0.998272
XTab 0.992479 0.998443 0.998642 0.997064

Table 29: Classifier Performance for Instance Range: 1000-5000 and Feature Range: > 1000

Dataset Bioresponse Internet-Advertisements
AutoGluon 0.888693 0.985963
CatBoost 0.885502 0.979120
FT-Transformer 0.820159 0.974513
LightGBM 0.886734 0.980094
MLP 0.825631 -
RealMLP 0.859065 0.973810
ResNet 0.850801 0.974187
TabICL 0.885075 0.989308
TabM 0.876671 0.985640
XGBoost 0.888615 0.982276

G.3 DATASETS WITH 5,000 TO 10,000 INSTANCES

Table 30: Classifier Performance for Instance Range: 5000-10000 and Feature Range: < 100

Dataset GPhaseSeg first-ord-TP optdigits phoneme satimage texture wall-rob-nav
AutoGluon 0.936667 0.835425 0.999925 0.973342 0.993557 0.999998 0.999993
CARTE 0.798024 0.764092 0.999112 0.948702 0.988038 0.999541 0.999505
CatBoost 0.916674 0.831775 0.999844 0.968024 0.991978 0.999948 0.999990
FT-Transformer 0.895166 0.796707 0.999616 0.965071 0.993516 0.999983 0.999900
LightGBM 0.920034 0.833949 0.999818 0.965147 0.991309 0.999890 0.999968
MLP 0.911434 0.798812 0.999794 0.967617 0.992308 0.999991 0.999689
RealMLP 0.901441 0.795637 0.999968 0.966456 0.993034 0.999999 0.998720
ResNet 0.914196 0.784636 0.999927 0.963591 0.991995 0.999999 0.999042
SAINT 0.919006 0.802392 0.999841 0.960382 0.992630 0.999976 0.999844
TabPFNv2 0.936548 0.825502 0.999897 0.973546 0.995122 0.999963 0.999936
TabM 0.933828 0.818255 0.999939 0.971200 0.994291 0.999997 0.999912
TabNet 0.850596 0.774094 0.998871 0.956279 0.987482 0.999763 0.997585
TabICL 0.951408 0.834629 0.999989 0.977493 0.993373 1.000000 0.999610
XGBoost 0.916761 0.834883 0.999855 0.967421 0.992114 0.999940 0.999981
XTab 0.886960 0.798803 0.999712 0.961749 0.992918 0.999962 0.999846

46

Table 31: Classifier Performance for Instance Range: 5000-10000 and Feature Range: 500-1000

G.4 DATASETS WITH 10,000 TO 50,000 INSTANCES

Dataset isolet
AutoGluon 0.999744
CatBoost 0.999389
FT-Transformer 0.998817
LightGBM 0.999401
MLP 0.998295
RealMLP 0.999635
ResNet 0.999401
SAINT -
TabICL 0.999570
TabM 0.999750
TabNet 0.998813
XGBoost 0.999488

Table 32: Classifier Performance for Instance Range: 10000-50000 and Feature Range: < 100

Dataset Phishing Adult BankMkt Elec JM1 JngChess Letter PenDigits
AutoGluon 0.997572 0.931792 0.941273 0.987260 0.770272 0.999278 0.999934 0.999725
CARTE 0.994582 0.902677 0.924664 0.909407 0.728512 0.973383 0.999440 0.999468
CatBoost 0.996482 0.930747 0.938831 0.980993 0.756611 0.976349 0.999854 0.999752
FT-Transformer 0.996760 0.914869 0.938198 0.963076 0.709321 0.999975 0.999919 0.999703
LightGBM 0.997542 0.931261 0.938470 0.989807 0.753206 0.977605 0.999825 0.999735
MLP 0.996991 0.928689 0.937054 0.969201 0.715620 0.999965 0.999894 0.999705
RealMLP 0.997208 0.923327 0.937031 0.961467 0.713988 0.999774 0.999914 0.999659
ResNet 0.996975 0913790 0.935740 0.960658 0.720444 0.999956 0.999926 0.999638
SAINT 0.996746 0.920246 0.936560 0.967012 0.719464 0.999926 0.999853 0.999782
TabICL 0.998342 0.914430 0.940210 0.970809 0.784425 0.975471 0.999957 0.999852
TabM 0.997636 0.919662 0.941872 0.968760 0.751557 0.999985 0.999943 0.999739
TabNet 0.996196 0.882450 0.887319 0.938656 0.674043 0.991981 0.999606 0.999753
XGBoost 0.997425 0930482 0.938384 0.987790 0.759652 0.974087 0.999819 0.999703
XTab 0.996896 - - 0966899 0.727984 0.999950 0.999859 0.999751
Table 33: Classifier Performance for Instance Range: 10000-50000 and Feature Range: 100-500

Dataset nomao
AutoGluon 0.996892
CatBoost 0.996439
FT-Transformer 0.990908
LightGBM 0.996835
MLP 0.986577
RealMLP 0.989803
ResNet 0.993048
TabICL 0.996055
TabM 0.994828
XGBoost 0.996676
XTab 0.992727

47

Table 34: Classifier Performance for Instance Range: 10000-50000 and Feature Range: 500-1000

Dataset har
AutoGluon 0.999958
CatBoost 0.999941
FT-Transformer 0.999685
LightGBM 0.999959
MLP 0.999783
RealMLP 0.999959
ResNet 0.999921
TabICL 0.999913
TabM 0.999966
TabNet 0.999515
XGBoost 0.999960

G.5 DATASETS WITH MORE THAN 50,000 INSTANCES

Table 35: Classifier Performance for Instance Range: > 50000 and Feature Range: < 100

Dataset connect-4 numerai28.6
AutoGluon 0.934636 0.530150
CARTE - 0.514361
CatBoost 0.921050 0.529404
FT-Transformer 0.901170 0.530315
LightGBM 0.932440 0.529077
MLP 0.927373 0.525920
RealMLP 0.928258 0.529534
ResNet 0.933333 0.528012
SAINT - 0.525822
TabICL 0.897904 0.526838
TabM 0.941654 0.529336
XGBoost 0.931952 0.529457
XTab - 0.528062

H CoST vS. EFFICIENCY RELATION OF VARIOUS MODEL FAMILIES

To observe what is the cost vs. efficiency relation of various model families, we plot the intra-search
space normalized Average Distance to the Maximum (ADTM) Wistuba et al. (2016) in Figure 34,
illustrating how quickly each method converges to its best solution during the HPO process.

The plot shows that XGBoost is the fastest, reaching nearly optimal performance within just 5 hours.
The ResNet and MLP architecture also demonstrate notable speed, followed closely by CatBoost.

—— CARTE
CatBoost
—— FT-Transformer
—— ResNet
—— SAINT
—— TabNet

°

o

XGBoost
—— XTab
TP-BERTa

°
=

MLP
— TabM
LightGBM

Normalized Performance
°

°

o 10000 20000 30000 40000 50000 60000 70000 80000
Cumulative Time (seconds)

Figure 34: Intra-search space normalized average distance to the maximum over cumulative training
time (seconds).

48

Best.

Best.
10 | S 1.0

0.8

o
N

Cumulative Proportion of Datasets
IS
N e
e e N
%\L{‘ S
)
=

0.2

0.0 0.0
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Performance Ratio (T) Performance Ratio (T)
—— AutoGluon —— FT-Transformer ResNet ~—— TabNet TPBERTa
AutoGluon (HPO) LightGBM —— SAINT —— TabPFN XGBoost
CARTE MLP TabICL TabPFNv2 XTab
CatBoost —— RealMLP TabM

Figure 35: Left: Performance profiles based on inference time. Right: Performance profiles based
on total time. Steeper curves indicate better overall performance and efficiency across datasets.

Overall, the gradient boosting methods (GBDTs) converge faster than the deep learning models.
XTab, which shares the same transformer architecture as FT-Transformer, exhibits quicker conver-
gence, likely due to its static architecture, while the FT-Transformer’s architectural components
were also tuned. On the other hand, TP-BERTa is the slowest to converge, likely due to the high
computational demands of its BERT-like architecture.

In Figure 35, we show the performance profiles of the models considered. We first normalize the
performance values and the logarithmic time values.

Formally, let Pi(j) denote the performance of an algorithm ¢ on dataset j, and Ti(j) the corresponding
executing time. We define mf.f) = max; P,i(J) to be the best performance achieved across all

algorithms, and tgj) = max; Ti(j) as the longest runtime observed. Next, we compute for each
algorithm ¢ and dataset j the performance gap gapl(j) = (m&j) _p, (7)) /m&j) and the temporal
gain tgain?) = (t? Y tfrj). Using these, we define the Performance-Time Ratio ptr')) =

gapgj) / tgainl(-J) quantifying the trade-off between performance loss and time savings. To further
enable comparison across datasets, we normalize the PTR values to the range [0, 1], such that values
closer to 1 (0) indicate a better (poorer) performance-time trade-off. When computing the cumulative
distribution of these normalized values, we count how many PTR values are less than or equal to a
threshold 7 € [0, 1] for each algorithm ¢. Hence, the resulting plot indicates how often an algorithm
achieves favorable performance-time trade-offs. Curves that rise more steeply and reach higher
proportions for lower 7 values correspond to better overall performance-time characteristics. A red
dashed corner frame in the top-left highlights the optimal trade-off.

On the left, the performance profiles are shown w.r.t. the measured inference time. The evaluation
shows that feed-forward neural network models yield high performance-time ratios. TabM leads the
performance-time ratios, followed by AutoGluon, RealMLP, and CatBoost. Although the AutoML
framework AutoGluon shows strong performance values as discussed in more detail in Appendix F,
this entails a high computational burden resulting in increased temporal costs. Both TP-Berta and
TabPFN are only evaluated on a small subset of the available datasets as reflected in their low cu-
mulative dataset coverage, where the latter shows its strong performance on the datasets it has been
evaluated on by a steep increase for low values of 7. The approaches SAINT, TabNet, CARTE, and
XTab lie in an intermediate range, where CARTE and SAINT show slightly better performance-cost
ratios compared to AutoGluon with increased values for the performance ratio 7, i.e., consider-
ing a broader range of various datasets. The right plot shows the equivalent performance profiles
w.r.t. the measured total time. Notably, XGBoost, AutoGluon with hyperparameter optimization,
and TabM achieve strong performance-time ratios. Transformer-based models are outperformed by
more lightweight models like CatBoost and ResNet which both show competitive results. From the
model family encompassing foundation models, XTab shows the strongest performance. However,
it is outperformed by classical GBDT approaches. TabPFN, an in-context learning model, is only
applicable on small data regimes, and is therefore not competitive across the full benchmark suite.

49

Best 1.0 Best.

-
o

o
©

o
o

o
IS

e
N

o
o

Cumulative Proportion of Datasets

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Performance Ratio (1) Performance Ratio (1)
—— AutoGluon CatBoost —— RealMLP —— TabM TPBERTa
AutoGluon (HPO) ~ —— FT-Transformer ResNet TabNet XGBoost
CARTE MLP —— SAINT —— TabPFN XTab

Figure 36: Performance profiles in the small data domain. Left: Performance profiles based on
inference time. Right: Performance profiles based on total time. Steeper curves indicate better
overall performance and efficiency across datasets.

Best 1.0 Best

g
=}

0.8

o o
o ©

0.6

Cumulative Proportion of Datasets

0.4 //f/—/:_f‘—'_f 0.4
02 e — 0.2
£ —
0.0 0.0
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Performance Ratio (T) Performance Ratio ()
—— AutoGluon CatBoost —— RealMLP —— TabM XGBoost
AutoGluon (HPO) —— FT-Transformer ResNet TabNet XTab
CARTE MLP —— SAINT TPBERTa

Figure 37: Performance profiles in the large data domain. Left: Performance profiles based on
inference time. Right: Performance profiles based on total time. Steeper curves indicate better
overall performance and efficiency across datasets.

Small-Data Domain. In Figure 36, the performance profiles are shown w.r.t. the measured infer-
ence time (left) and the measured total time (right) in the small-data regime. The models CatBoost
and AutoGluon yield the best performance-time ratios, with SAINT as a transformer-based model
and TabM being competitors when increasing the performance ratio 7. The models FT-Transformer,
ResNet, and TabNet yield similar results, where amongst these models FT-Transformer performs
slightly better for small performance ratios. All of them yield a better performance-cost ratio for
a larger amount of datasets. TB-BERTa exhibits the least favorable trade-off as the inference time
largely outweighs the performance.

On the right side, the performance plots are given w.r.t. the total time. In the small-data regime, the
model TabPFN yields strong performance-cost ratios resulting in a superior performance followed
by XGBoost and the feedforward models MLP and ResNet. Due to the larger training time, the
fine-tuned models CARTE, TabNet, and TP-BERTa do not match the performance ratios of models
from other architectural classes.

Large-Data Domain. In Figure 37, the performance profiles are shown w.r.t. the measured in-
ference time (left) and the measured total time (right) in the large-data regime. As discussed in
Section 5, TabPFN is only applicable to small-data, hence, it is not included in the large-data analy-
sis. Regarding the inference time, TabM is superior to all other competitors, followed by the models
AutoGluon as an AutoML-driven approach and CatBoost from the GDBTs. FT-Transformer shows
strong results on about half the datasets used in our analysis, but fails to maintain performance
across the entire benchmark suite and is comparable to the models TabNet, CARTE, and SAINT.
This group of models shows slightly better trade-off values compared to other competitors for an
increase performance ratio 7. Like before, TP-Berta struggles to be competitive and shows the worst
performance-cost ratios.

When considering the total amount of time, the models AutoGluon (HPO) and XGBoost show the

50

strongest performance-cost trade-offs. It is followed by CatBoost from the GDBTs family, and
the lightweight feedforward networks, ResNet and MLP. From the fine-tuned models, XTab beats
CARTE, whereas FT-Transformer wins over SAINT and TabNet from the transformer-based ap-
proaches. TP-BERTa is not competitive with any of the other approaches.

51

I INFLUENCE OF META-FEATURE CHARACTERISTICS ON THE PREDICTIVE
PERFORMANCE

Following the methodology of McElfresh et al. (2023), we employed the PyMFE library (Alcobaca
et al., 2020) to extract meta-features from the datasets used in our study. Specifically, we extracted
General, Statistical, and Information-theoretical meta-features.

Figure 38 displays the mean correlation coefficients of the most significant meta-features concerning
the performance of all methods, averaged across datasets. To produce this plot, we first calculate the
correlation coefficients between each method’s performance and each meta-feature for all datasets.
For each method, we then selected the top k£ meta-features with the highest absolute value of the
correlation coefficients across all datasets, identifying them as the most important ones for that

specific method. We compiled a list of significant meta-features by taking the union of these top
meta-features across all methods.

-
c
o 0.6 mmm AutoGluon
2 AutoGluon (HPO)
& 04 mmm CARTE
8 CatBoost
O 0.2 s FT-Transformer
< MLP
_L_D 0.0 Nl G Wi B Vil 0 Wl b . RealMLP
o | | ResNet
L-0.2 = SAINT
S TPBERTa
O _04 . TabM
% TabNet
0 —-0.6 TabPFN
= XGBoost

c b= o c kel c kel o] c kel ©

©) 7] © 7] © 7] S o © 0 o s XTab

9] ©, e o c 9] « © I 9] c 2

€ £ @ € o £ = o = € S €

g 2 ! 8 3 E 5 < = 5 S ~

cl o S € S o S g o z

© 9] - E’ |

o -

Meta-Feature

Figure 38: Mean correlation coefficient of most important meta-features with performance across
all methods

For each meta-feature in this combined list, we computed the mean of its correlation coefficients
across datasets for all methods. Figure 38 illustrates that TabPFN and TPBERTa significantly deviate
from the overall pattern observed in the other methods, exhibiting negative correlations for the meta-
features mad.mean, median. sd, t_mean.mean, and t _mean. sd. To determine whether this
deviation is due to the inherent properties of these methods or is a consequence of the limited number

of datasets they were evaluated on, we repeated the analysis for all methods using only the datasets
on which TabPFN and TPBERTa were run.

-
5 = AutoGluon
‘© 0.50 AutoGluon (HPO)
& mmm CARTE
8 0.25 CatBoost
o I | mmm FT-Transformer
S 0.00 I|||| MLP
2 2% |y ||||||| |||||| ”“” | =
© ResNet
o -0.25 = SAINT
S TPBERTa
O -0.50 = TabM
% TabNet
v —0.75 TabPFN
= s 5§ % £ % £ 3 = & & 3% =2 =

191] o 9] c 1] o ® © o c a

£ g g E 8 E 5, S5 £ s E

s 2 £ % ¢ E 5 & = & &

¢ ¢ =B E B S E g -

S = o

Meta-Feature

Figure 39: Mean correlation coefficient of most important meta-features with performance across
all methods on datasets with results for TabPFN and TPBERTa

52

Figure 39 demonstrates that when the analysis is confined to only the intersection of datasets on
which TabPFN and TPBERTa were evaluated, the previously observed deviation disappears. This
suggests that the initial divergence was likely due to the limited number of datasets rather than the in-
herent properties of these methods. Therefore, it appears that all methods, regardless of their method
families, are similarly influenced by the meta-features in terms of their predictive performance. In
general, the strongest correlation coefficients are observed for three meta-features: eq_num_attr,
w_lambda, and can_cor.mean.

The egq_num_attr meta-feature, which measures the number of attributes equivalent in informa-
tion content for the predictive task, exhibits a strong negative correlation with performance across
most methods. This suggests that methods generally perform worse on datasets with high feature
redundancy, likely due to challenges in handling overlapping information or overfitting. Similarly,
the w_lambda meta-feature, which computes Wilk’s Lambda to quantify the separability of classes
in the feature space, also shows a consistently negative correlation. This indicates that methods
struggle on datasets with poor class separability, where the features do not adequately distinguish
between the target classes. Conversely, the can_cor .mean meta-feature, representing the mean
canonical correlation between features and the target, shows a positive correlation with performance.
This implies that methods perform better on datasets where the features are strongly predictive of
the target variable, highlighting their reliance on well-aligned feature-target relationships.

Generally, the findings align with the common intuition of the performance of ML methods under
sub-optimal class separation and further validate the empirical protocol of our study. For detailed
explanations of the meta-feature abbreviations used in the plots, please refer to the official PyMFE
documentation'4.

Yhttps://pymfe.readthedocs.io/en/latest/auto_pages/meta_features_
description.html

53

https://pymfe.readthedocs.io/en/latest/auto_pages/meta_features_description.html
https://pymfe.readthedocs.io/en/latest/auto_pages/meta_features_description.html

	Introduction
	Related Work
	Experimental Protocol
	Learning with Tabular Data
	Experimental Setup

	Baselines
	Experiments and Results
	Conclusion
	Evaluation protocol and Configuration Spaces
	Evaluation Protocol
	CatBoost
	XGBoost
	LightGBM
	FT-Transformer
	SAINT
	TabNet
	ResNet
	MLP-PLR
	TabM
	RealMLP
	XTab
	CARTE
	TP-BERTa
	TabPFN
	TabICL
	AutoGluon

	Hyperparameter analysis
	CatBoost
	ResNet
	MLP-PLR
	RealMLP
	TabM
	XGBoost
	FT-Transformer
	SAINT
	TabNet
	XTab
	CARTE
	TP-BERTa
	HPO influence on a per-model level

	Ablating the Choice of Refitting
	Raw results tables
	Results after hyperparameter optimization
	Results using default hyperparameter configurations

	Datasets
	Comparison with AutoML methods
	Analysis of Dataset Characteristics: Instances and Features
	Datasets with fewer than 1000 instances
	Datasets with 1,000 to 5,000 instances
	Datasets with 5,000 to 10,000 instances
	Datasets with 10,000 to 50,000 instances
	Datasets with more than 50,000 instances

	Cost vs. Efficiency Relation of Various Model Families
	Influence of meta-feature characteristics on the predictive performance

