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Venue categories used in location-based social networks often exhibit a hierarchical structure, together with

the category sequences derived from users’ check-ins. The two data modalities provide a wealth of informa-

tion for us to capture the semantic relationships between those categories. To understand the venue semantics,

existingmethods usually embed venue categories into low-dimensional spaces bymodeling the linear context

(i.e., the positional neighbors of the given category) in check-in sequences. However, the hierarchical struc-

ture of venue categories, which inherently encodes the relationships between categories, is largely untapped.

In this article, we propose a venue Category EmbeddingModel namedHier-CEM, which generates a latent

representation for each venue category by embedding the Hierarchical structure of categories and utilizing

multiple types of context. Specifically, we investigate two kinds of hierarchical context based on any given

venue category hierarchy and show how to model them together with the linear context collaboratively. We

apply Hier-CEM to three tasks on two real check-in datasets collected from Foursquare. Experimental results

show that Hier-CEM is better at capturing both semantic and sequential information inherent in venues than

state-of-the-art embedding methods.
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1 INTRODUCTION

Location-based social network (LBSN) platforms such as Foursquare have generated a tremen-
dous amount of human mobility data, usually in the form of check-ins. A typical check-in contains
user ID, venue ID, venue category, and time, where venue categories (e.g., Art Museum and Japanese
Restaurant) act as a proxy for functions that a particular venue of a given category affords, and
check-ins of a user over time form the check-in sequence. Availability of such check-in data has
spurred research in capturing venue semantics, which is key to reasoning about Point of Interest
(POI) similarity, geographic information retrieval, recommender systems, ontology engineering,
and so forth [4, 10, 13, 29, 31, 36, 37, 41, 44, 51].

To understand venue semantics, existing studies [5, 6, 19, 30, 40, 42, 46, 47] usually model check-
in sequences to learn representations of venue IDs based on representation learning. They usually
adopt the framework of word embedding models (e.g., CBOW/SkipGram [26]) and follow the dis-
tributional hypothesis that venues occurring in similar contexts tend to have similar semantics and
should appear close to each other in the latent embedding space. Mostly the “context” is defined as
the venues that immediately precede and follow the given venue within a given range. However,
in contrast to text data where many words appear with a high frequency, venue visit in check-in
data is extremely sparse. For example, each venue is visited nine times on average during a pe-
riod of 18 months in Foursquare [39]. The pattern information conveyed by sequences of sparse
venue check-ins is thus highly limited. It proves very difficult, if not impossible, to derive effective
representations of venue IDs using such contexts alone.
In this work, we aim to learn a latent representation for each venue category, instead of a venue

ID, as venue categories can be understood as the summarization of venue semantics, and they are
much “denser” than venue IDs in terms of occurrences in check-in data. For example, Foursquare
contains about 900 categories in total (in contrast to millions of venue IDs), and each category is
visited thousands of times on average during 18 months. This makes it more promising to learn
an effective venue category representation than venue ID representation. Further, tackling the
new category representation learning task, one may exploit the following unique characteristics
of check-in data: (1) a user’s check-ins over time naturally form sequences of venue categories
(e.g., Japanese Restaurant → Museum → · · · ), which makes it possible to capture the relations
between the venue category and its linear context to learn category embeddings, where the lin-
ear context is the positional neighbors of the given category in a venue category sequence; and
(2) venue categories are also organized with a hierarchical structure in LBSNs, in which they are
not independent but hierarchically correlated. For instance, Foursquare organizes venue categories
using a tree structure. The category hierarchy is able to assist in capturing venue semantics better.
Nonetheless, the task of learning representations of venue categories based on two data modali-

ties, namely, venue category sequences and venue category hierarchy, presents some unique chal-
lenges, and existing methods do not directly apply. (1) Exploiting hierarchical relationships:
In the category hierarchy, categories on a path (e.g., Food-Asian Restaurant-Japanese Restaurant-
Sushi Restaurant) from the root (i.e., Food) to the leaf node (i.e., Sushi Restaurant) have similar se-
mantic properties, and such information could help us capture the semantic relationships between
categories. How to explore such structure to guide the venue category representation learning is
largely untapped in the literature. (2) Utilizing multiple types of context: Existing venue em-
bedding methods mainly consider simple linear contexts and model the co-occurrence patterns
of venues based on their contexts. Many different types of context (e.g., dependency-based con-
text and linear context) have been explored in traditional sparse vector-space models [7, 16, 18];
however, it is unclear what contexts are useful in our task and how they can be systematically
incorporated into an embedding model.
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To address the aforementioned challenges, we consider a holistic approach to venue category
representation learning that takes the best of both data modalities (category sequences and cat-
egory hierarchy) simultaneously. A first attempt is to build a model that integrates one model
learned from each of the aforementioned data modalities using linear combination. However, the
two individual models cannot capture the sequential and hierarchical information from twomodal-
ities collaboratively, defeating the purpose of this combined model. Therefore, we propose a venue
Category Embedding Model named Hier-CEM by adding a newly designed collaborative compo-
nent for encoding the Hierarchical structure of categories with these category sequences. Specif-
ically, Hier-CEM consists of two components: category sequence embedding and category hierar-
chy embedding. In the first component, we capture the sequential relatedness between a category
and its neighbors using venue category sequences. The second component aims to improve the
representations of categories by integrating hierarchical category information. To be specific, we
include more semantically relevant categories (parent categories of each category) using the cate-
gory hierarchy and establish connections between categories in the sequence and categories in the
hierarchy and regulate distributional venue category semantics accordingly. Finally, we perform
parameter inference through the stochastic gradient descent method.
To evaluate howwell the proposed Hier-CEM could capture the sequential and semantic proper-

ties in learning the representations of venue categories, we perform three tasks, including venue se-
mantics study, next category prediction, and venue recommendation, on two real check-in datasets
collected from Foursquare. We show that by modeling the category hierarchy and the category se-
quences collaboratively, Hier-CEM outperforms the state-of-the-art embedding methods on these
evaluation tasks.We also provide qualitative analysis on the category embeddings and conclude
that Hier-CEM learns category representations that separate different categories better than the
baselines.
The main contributions of this article are as follows:

• The proposed Hier-CEM is a holistic approach to venue category representation learning
that is able to simultaneously leverage the behavioral data (check-in sequences) and prior
knowledge (category hierarchy), whereas existing methods only model the check-in se-
quences without taking advantage of the wealth of information encoded by the category
hierarchy.
• The proposed Hier-CEM establishes connections between category sequences and category
hierarchy by adding a newly designed collaborative category hierarchy embedding compo-
nent. In this way, Hier-CEM benefits from both the linear contextual information as well as
the hierarchical relations to learn the category embeddings.
• We experiment Hier-CEM on two public check-in datasets and evaluate its performance
using three tasks. Experimental results show that Hier-CEM demonstrates significant per-
formance gains over the baseline methods according to the superiority paired t-test and the
category hierarchy embedding component could help learn better category embeddings.

The remainder of this article is organized as follows: Section 2 reviews related work. Section 3
gives the preliminaries of our work. Section 4 describes our approach of representation learning
for categories. Section 5 introduces three tasks using the venue category embeddings. The ex-
perimental results and performance analysis are presented in Section 6. Section 7 concludes this
article.

2 RELATEDWORK

Ourwork is related to a broad spectrum of check-in datamining including POI embedding learning,
venue category embedding learning, and hierarchical text embedding learning.
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2.1 Point-of-Interest Embedding Learning

Most research on representation learningwith check-in data originates fromword embedding tech-
niques (e.g., Word2vec) [15, 17, 20, 26, 27]. There are two types of Word2vec models: Continuous-
Bag-of-Words (CBOW) and SkipGram. CBOW models word embeddings by predicting a target
word given contextual words, whereas SkipGram does it the other way around. Many studies
adopt the framework of Word2vec to construct check-in embeddings [8, 23, 46, 48] by model-
ing user preference, venue sequences, and time. For example, Zhao et al. [46] assume that the
contextual check-in information implies complementary knowledge of POIs and propose a Geo-
Temporal sequential embedding rank (Geo-Teaser) model for POI recommendation. Specifically,
they capture the check-ins’ sequential contexts, the various temporal characteristics, and the geo-
graphical influence to learn venue embeddings. Liu et al. [23] model the check-in sequences based
on SkipGram. They consider the confidences of observed user preferences for venues with a pair-
wise ranking loss and leverage the representations for personalized venue recommendations. Feng
et al. [8] present a representation model named POI2Vec that captures user preference, location
sequential transition influence, and geographical influence for predicting potential visitors for a
given location. Zhao et al. [48] propose a Time-Aware Trajectory Embedding Model that considers
surrounding locations, dynamic user preference, and time. Specially, they jointly model multiple
kinds of temporal factors in a unified manner.
Pushing further from the check-in data, there are some studies that improve the quality of check-

in embeddings by taking external information (e.g., social relations, taxi trip data, and tag words
of locations) into account. For example, Zhang and Chow [45] exploit the geographical, social, and
categorical correlations learned from historical check-ins to predict the relevance score of a user
to an unvisited POI to make POI recommendation for users. Yang et al. [37] propose a hypergraph
embedding approach (named LBSN2Vec) by revisiting user mobility and social relationships in
LBSNs. LBSN2Vec performs random-walk-with-stay to jointly sample user mobility patterns and
social relationships from the LBSN hypergraph, and then learns node embeddings from the sam-
pled hyperedges. Zhou and Huang [51] propose an embedding model (DeepMove) to learn the
latent representations of locations. They take New York taxi trip data as input and learn loca-
tion representations, which can incorporate the spatial and temporal semantics of locations and
be used for analyzing location similarity and relationships. Xie et al. [35] develop a graph-based
embedding model to capture the sequential effect, geographical influence, temporal cyclic effect,
and semantic effect in a unified way by embedding the four corresponding relational graphs (POI-
POI, POI-Region, POI-Time, POI-Word) into a shared low-dimensional space. Aliannejadi et al. [2]
leverage users’ ratings on venues to compute a personalized ranking function for each user to rank
relevant venues higher than irrelevant ones and learn the latent vectors of users and venues based
on matrix factorization accordingly. Further, they [1] propose a personalized keyword boosting
method (called PK-Boosting) that models user tags and venue taste keywords to address the data
sparsity problem for venue recommendation. However, the above embedding methods can only
be applied to some specific check-in data with these external information.
In addition, there also exist some methods using the recurrent neural networks to model the

sequential patterns of check-in sequences, in which the venue embeddings can be learned as by-
products. For example, Kong and Wu [14] propose a hierarchical spatio-temporal Long Short-

TermMemory (LSTM)model for venue prediction. They introduce spatial-temporal factors into
gate mechanism and leverage historical visit information based on a hierarchical architecture to
boost the prediction performance. Manotumruksa et al. [25] leverage RNN-based framework to
model both sequence of check-ins and the contextual information (e.g., reviews and time) to cap-
ture users’ dynamic preference on venues. Yu et al. [43] propose a category-aware deep model

(CatDM) for next POI prediction using the sparse check-in data. Specifically, they design two
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LSTM encoders to model the time series of POI categories and the temporal patterns to capture
user preferences in POIs, and then consider multiple correlations to calculate the probability of
each POI in the candidate set.

2.2 Venue Category Embedding Learning

Further, some studies consider venue categories in check-in sequences and learn multiple check-in
attribute representations including venue category representations, which are more similar to our
work. Some methods apply matrix/tensor factorization on user-category matrix to learn the latent
vectors of categories. For example, Liu et al. [22] first cluster users based on the similarity of their
check-in behavior and then apply matrix factorization to learn the extent of a user’s preference on
category transitions and finally make category-aware POI recommendation. Further, He et al. [9]
decompose a third-rank transition tensor (where each element represents the observed transition
frequency of a user from a category to another) by a Listwise Bayesian Personalized Rank-

ing (LBPR) approach to learn the latent vectors for users and next categories, and then make
next category prediction accordingly. In addition, there exist some methods that leverage word
embedding techniques to learn category representations. For instance, Zhou et al. [50] propose
a general Multi-Context Trajectory Embedding Model (MC-TEM), which leverages multiple
contexts including users, trajectories, surrounding locations, and their categories to predict the
target location. MC-TEM projects all the context information into the same embedding space and
learns embedding vectors for locations, category labels, user preference, trajectory intent, day and
hour, respectively. Yang and Eickhoff [40] present a Spatio-Temporal Embedding Similarity

algorithm (STES), which concatenates a venue category and its check-in time slot as a feature
word and builds a feature word sequence for each user according to his/her check-ins. Then STES
trains a vector representation for each feature word using the CBOWmodel. Yan et al. [36] propose
an approach, namely, augmented spatial contexts (SCs), to capture the semantics of venue cate-
gories by modeling category embeddings based on the assumption that venues can be categorized
by their neighbors. However, these methods just model the linear context of check-in sequences
without taking into account the hierarchical structure of venue categories.

2.3 Hierarchical Text Embedding Learning

We incorporate the hierarchical structure of venue categories into the embedding method to learn
venue semantics. This is related to a body of literature on hierarchical text embedding. For exam-
ple, Hu et al. [11] train a distributed representation for the whole entity hierarchy of Wikipedia
based on the assumption that far-away entities in the hierarchy tend to be semantically distant
and nearby entities tend to share common semantic features. Liu et al. [21] propose a semantic
structure-based word embedding method (SENSE) that incorporates the constraints of con-
cept convergence and word divergence into the Word2vec model. Specifically, they assume that a
word should be close to the center of words on the lower level and far away from those words in the
same level in the structure of WordNet. Alsuhaibani et al. [3] present a Hierarchical Word Em-

bedding (HWE) method for identifying the hypernymy relations between words. HWE encodes
not only the direct hypernymy relations between the hypernym and hyponym words, but also
the indirect and the full hierarchical hypernym path. Zhou et al. [49] propose a hierarchy-aware

global model (HiAGM) that extracts the label structural information to aggregate the label-wise
text features for hierarchical text classification. HiAGM consists of a traditional text encoder for
extracting textual information and a hierarchy-aware structure encoder for modeling hierarchical
label relations. In contrast to the methods mentioned above that mainly model the relations be-
tween nodes in the hierarchical structure, the proposed Hier-CEMmodels the linear context (from
check-in sequences) and the hierarchical context (from category hierarchy) collaboratively.
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Table 1. Notations and Descriptions

Notations Descriptions

u,v, t , c user, venue, time, and venue category

s,Ns venue category sequence, length of s

C set of venue categories

S set of venue category sequences

H venue category hierarchy

A (c ) ancestor categories of c

vc vector of a context category c

v
′
c vector of a target category c

k context window size

d embedding size

Ne negative sample size

3 PRELIMINARIES

3.1 Formalization

We first define the concepts and the problem, and then list the notations and their descriptions
in Table 1.
Venue category hierarchy.Without loss of generality, we adopt the venue categories used by

Foursquare, which constitute a five-layer hierarchical structure, as the category hierarchy.
The entire tree can be viewed here:1 The top layer includes 10 categories, i.e., Arts & Entertain-

ment, College & University, Event, Food, Nightlife Spot, Outdoors & Recreation, Professional & Other

Places, Residence, Shop & Service, Travel & Transport.
Check-in. A check-in is defined as a tuple <u,v, c, t> that depicts that a user u visits a venue v

at time t , where c demonstrates the category of the visited venue, which could be at any layer of
the category hierarchy.
Venue category sequences. Given a user, we first sort all his/her check-ins over a (config-

urable) period of time according to the visited time and obtain a check-in sequence. Then, we use
the category c in each check-in tuple to construct a chronologically ordered sequence of venue
categories.
Given venue category sequences and venue category hierarchy, our goal is to learn embedding

vectors of venue categories in a latent semantic space.

3.2 Data Preparation

Check-in data. The check-in data are from Foursquare, including long-term (about 18 months
from April 2012 to September 2013) check-ins collected from the United States and Japan [38, 39].
Each check-in contains user ID, venue ID, venue category, and timestamp. To reduce noises, we
remove those users who have less than 50 check-ins and those categories that occur less than
100 times. After this pre-processing, the data collected from Japan contain 2,204,192 check-ins by
10,336 users and those from the United States contain 3,182,412 check-ins by 21,898 users. Finally,
we sort all the check-ins of each user and obtain 10,336 venue category sequences containing
330 venue categories as the JP dataset and 21,898 category sequences containing 398 categories as

1https://developer.foursquare.com/docs/resources/categories.
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Fig. 1. Venue category rank-frequency and log-log plot.

the US dataset. The average length of venue category sequence is 213 in the JP dataset and 145 in
the US dataset, respectively.
After analyzing the venue categories and their frequencies in JP and US datasets, we see a long

tail in the rank-frequency distribution, as shown in Figure 1. The log-log plot also shows a linear
trend. Fitting log(frequency) and log(rank) using the linear regression, yields values of 0.9208 and
0.8421 for R-squared in JP andUS datasets, respectively, which indicates that themodel fits strongly
to the data. Simply put, these statistics show that the rank-frequency indeed follows a power law
distribution by which a few venue categories dominate the data. This is an important motivation
for the proposed category embedding method discussed in the following section.
Venue category hierarchy. Foursquare organizes its venue categories into a five-layer hierar-

chical structure, and we adopt it as the venue category hierarchy. The top-layer of this structure
contains 10 non-leaf nodes (coarse venue categories). To visualize the coverage of categories in JP
and US datasets, we plot and compare the distribution curves over the number of leaf categories
between our datasets and the original structure, as shown in Figure 2. It is worth mentioning that
the number of leaf categories distributed in both our datasets and Foursquare is unbalanced. For
example, the Food category in US dataset contains 86 leaf categories, while the Event category
does not have any leaf nodes. The top two first-layer categories are Food and Shop & Service in our
datasets.
However, we observe that some leaf categories contain only a small number of check-ins. In

our datasets, we have removed those categories with less than 100 check-ins. Tables 2 and 3 list
the top five leaf categories with the most and the least check-ins, respectively. To tackle the issue
of sparseness, we leverage the category hierarchy to build the augmented hierarchical contexts
(detailed in Section 4.3).
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Fig. 2. Top-layer venue category distribution in terms of the number of their leaf categories.

Table 2. Leaf Categories with the Most and the Least Check-ins (JP)

Leaf Category with Num. Leaf Category with Num.

the Most Check-ins the Least Check-ins

Train Station 638,726 Campground 109

Metro Station 140,984 College Residence Hall 108

Noodle House 72,336 Dance Studio 106

Convenience Store 71,819 Eastern European Restaurant 104

Shopping Mall 62,654 Planetarium 103

Table 3. Leaf Categories with the Most and the Least

Check-ins (US)

Leaf Category with Num. Leaf Category with Num.

the Most Check-ins the Least Check-ins

Home (private) 220,710 Swiss Restaurant 127

Office 122,003 Gluten-free Restaurant 119

Coffee Shop 106,287 College Soccer Field 118

Bar 93,533 Distillery 115

Grocery Store 78,809 College Hockey Rink 110

4 THE PROPOSED HIER-CEM

In this section, we describe the category sequences embedding method and how to improve cat-
egory representations by integrating the hierarchical structure of venue categories. The embed-
ding method originates from natural language processing and has been used successfully in many
domains. By acknowledging the similarity between venue category sequences and linguistic ex-
pressions, we first model the linear context from the category sequences directly to learn category
embeddings. We then introduce two approaches to model the category hierarchy in determining
latent category representations. Finally, we propose the parameter learning algorithm for the pro-
posed Hier-CEM.
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Embedding Hierarchical Structures for Venue Category Representation 57:9

Fig. 3. The framework of Hier-CEM.

4.1 Overview

To learn representations of venue categories, we consider two data modalities: venue category se-
quences from users’ check-ins and the pre-defined venue category hierarchy, as shown in the left
part of Figure 3. The category sequences imply users’ mobility patterns while the category hierar-
chy contains the hierarchical semantic relations among categories. Based on the two kinds of data,
we build an embedding model, which comprises two components: category sequences embedding
and category hierarchy embedding. In the first component, we model the relation between the
given category and its linear context. However, some categories are so sparse in the category se-
quences (as reported in Tables 2 and 3) that it is difficult to yield meaningful latent representations
via modeling the linear context. Meanwhile, venue categories are organized with a hierarchical
structure, and their semantics are hierarchically correlated. Therefore, we design a new collabora-
tive component that embeds the hierarchical structure of categories. We separately construct two
kinds of hierarchical context using the category hierarchy and establish connections between cat-
egories in the sequence and categories in the hierarchy. Finally, the proposed Hier-CEM embeds
venue categories into the latent space, where semantically related categories ought to be close to
each other, as shown in the upper-right part of Figure 3.

4.2 Category Sequences Embedding

Recent work has shown that the word embedding models (e.g., CBOW) can effectively capture the
semantic relationships from word sequences based on the distributional semantics assumption
[18, 20, 26, 40]. From analyzing the venue category distribution of category sequences, we know
that, similarly to the word frequency distribution of texts, it follows a power law distribution (as
introduced in Section 3.2). This leads us to taking advantage of the embedding method and the
underlying distributional semantics assumption for the study of category representations.
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As venue categories are the summarization of the semantic information of venues, we directly
learn representations of venue categories by modeling the category sequences. We select the
CBOWmodel, which predicts the target category ci given the preceding and following categories
in a sliding window from ci−k1 to ci+k2 , where k = k1 +k2 is the context window size. For example,
as shown in the left-middle part of Figure 3, given the category sequence, we take Sushi Restaurant
as the target category, and the preceding and following categories (e.g., Train Station, Art Museum,
Zoo, Ice Cream Shop) as the context categories.
Our objective is to approximate the true check-in category probability distribution from the

data. A typical approach is to use cross entropy to measure the difference between the learned
probability and the true probability. Since our data is discrete and we only care about the target
category, the cross entropy for one target category ci can be simplified as

D (ŷci ,yci ) = −yci log ŷci , (1)

where ŷci is the predicted probability of the target category ci given the linear context, and yci is
the true probability of ci given the context. ŷci can be further defined as

ŷci = p (ci |ci−k1 , . . . , ci+k2 ). (2)

To calculate the probability ŷci , we leverage the softmax function to turn the scores into prob-
abilities and substitute the categories with vector representations. Note that yci will always be
1. For simplicity, we use cik to represent the context categories ci−k1 , . . . , ci+k2 in the following
description. It is formally defined as,

min
∑
s ∈S

Ns∑
i=1

− logp (ci |cik ), (3)

where

p (ci |cik ) =
exp
(
v
′
ci
· vcik

)
∑ |C |

j=1 exp
(
v
′
c j · vcik

) ,

vcik =
1

k

(
vci−k1 + · · · + vci+k2

)
.

(4)

In Equations (3) and (4), v′c and vc are the target category vector and the context category vector,
respectively; |C| is the total number of venue categories; S is the set of venue category sequences
and Ns is the length of the category sequence s . In the objective (Equation (3)), the relations be-
tween the linear context and the target category are modeled, and categories with similar linear
context tend to be close in the embedding space.

4.3 Category Hierarchy Embedding

In addition to the category sequences, venue categories can be naturally grouped in a tree-like
hierarchy based on semantics or domain knowledge. The hierarchy contains multiple layers and
categories from the root to the leaf node usually have similar semantics. The representations of
categories obtained via modeling linear context of venue category sequences do not take into ac-
count the semantics of the category hierarchy. Therefore, we propose to improve the category
representations by integrating the category hierarchy. In particular, we build two types of hierar-
chical context to model the co-occurrence patterns between the context and the target to better
learn representations of venue categories.
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4.3.1 Hierarchial Extension of Context Categories. To model the hierarchy of venue categories,
we propose to generalize the concept of “context.” In the component of category sequences em-
bedding, we consider the preceding and following categories of the target as the linear context.
Here, we propose the hierarchical context to encode the hierarchical structure of categories. In a
category hierarchy, the categories at lower layers cover more specific semantics than categories at
upper layers. Based on this observation, for each category in the linear context, we take all its an-
cestors (from the root to itself) as the hierarchical extension of the context category. For instance,
as depicted in the bottom part of Figure 3, for each context category (e.g., Art Museum), we find
all its ancestor categories (i.e., Museum and Art & Entertainment) via the venue category hierar-
chy. Evidently, the newly constructed hierarchical extension of context categories shares similar
semantics with the linear context and is able to include relevant categories that are far away from
the target in the venue category sequences.
We predict the target category (e.g., Sushi Restaurant) given its hierarchical context (i.e., hier-

archical extension of context categories). Intuitively, categories from different layers are included
in the hierarchical context, and an increasing distance of the ancestor category from the context
category in the hierarchy would decrease the power of the ancestor category in predicting the tar-
get category. For example, Art Museum is more relevant toMuseum than Art & Entertainment, and
Museum ought to play a more important role in predicting the target Sushi Restaurant. Hence, we
add weights (i.e., ωa in Figure 3) for the ancestor categories in the hierarchical context and define
the objective as

min
∑
s ∈S

Ns∑
i=1

− logp (ci |A (cik )), (5)

where A (cik ) represents the hierarchical extension of context categories cik .
We compute p (ci |A (cik )) with the softmax function,

p (ci |A (cik )) =
exp
(
v
′
ci
· vA (cik )

)
∑ |C |

j=1 exp
(
v
′
c j · vA (cik )

) ,
vA (cik ) =

∑
ca ∈A (cik )

ωavca ,

ωa ∝
1

dis (cik , ca )
N (ca ),

∑
a

ωa = 1,

(6)

where ωa is the weight of each ancestor category in predicting the target category, dis (cik , ca ) de-
notes the number of steps going down from the ancestor category ca to the corresponding context
category in the given hierarchy, and N (ca ) is the number of category ca acting as the ancestor
of the context categories. With the weighted function ωa , we guarantee that a category is more
relevant to its closer ancestor.

4.3.2 Hierarchial Extension of Target Categories. Further, we propose to build the hierarchical
extension of target categories, i.e., the ancestor categories of the target category, as the other kind
of hierarchical context. As categories along the same vein in the category hierarchy have similar
semantic meanings, the newly designed hierarchical extension of target categories could include
semantically related categories that are far away from the contextual categories in the category
sequences. We model the co-occurrence information of the linear context and any category in the
hierarchical extension. For example, as shown in the bottom-right part of Figure 3, we first find
the ancestors (i.e., Japanese Restaurant, Asian Restaurant, and Food) of the target category Sushi

Restaurant based on the category hierarchy, and then predict each of them given the linear context
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(e.g., Train Station, Ice Cream Shop). Note: A distance decay function is also considered here (i.e.,
ωb in Figure 3). We formulate such learning as follows:

min
∑
s ∈S

Ns∑
i=1

∑
cb ∈A (ci )

−ωb logp (cb |cik ), (7)

where

ωb ∝
1

dis (ci , cb )
,
∑
b

ωb = 1. (8)

A (ci ) represents the hierarchical extension of the target category ci , ωb is the weight of each
target ancestor category, and dis (ci , cb ) denotes the number of steps going down from the ancestor
category cb to the target category ci .
Given venue category sequences and the venue category hierarchy, we jointly model different

types of context (including linear context and two kinds of hierarchical context) and minimize the
overall objective as follows:

min
v,v′

∑
s ∈S

Ns∑
i=1

[− logp (ci |cik ) − logp (ci |A (cik ))

−
∑

cb ∈A (ci )

ωb logp (cb |cik )] + λ

2

(
| |v| |22 + | |v′ | |22

)
,

(9)

where λ is the regularization parameter, and | | · | |2 is the 2-norm.

4.4 Parameter Learning

The parameters of Hier-CEM include the vectors of context categories vc and target categories v
′
c .

For parameter learning, we need to minimize the objective defined in Equation (9). However, it is
impractical to directly optimize this objective, because the cost of computing the full softmax to
predict the target category is extremely high. Hence, we adopt the efficient and effective negative
sampling strategy to approximate the full softmax [18, 28, 33, 34]. When training the vector of
ci , we first obtain a negative sample set N (ci ), in which cx is not the same as ci if cx ∈ N (ci ).
The negatively sampled category cx is randomly selected on the basis of its unigram distribution

( �(c )∑
c �(c )

)ds , where �(c ) is the number of times that category c appears in the training set, and ds

is the distribution smoothing hyper-parameter, which is usually defined as 0.75. Then, we define
F ci (c ) = 1 if c = ci , and F ci (c ) = 0 otherwise, where F ci (c ) is the label of the category c .

Given the context of a target category ci , we maximize the occurrence probability of ci and
meanwhile minimize the occurrence probability of negative samples cx ∈ N (ci ). Therefore, we
can replace logp (ci |cik ) with

log
∏

c ∈ci ⋃N (ci )

p (c |cik ), (10)

where

p (c |cik ) =
{

σ (v′c · vcik ), F ci (c ) = 1;

1 − σ (v′c · vcik ), F ci (c ) = 0,
(11)

in which σ (z) = (1 + exp(−z))−1 is the sigmoid function.
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ALGORITHM 1: Hier-CEM (S,H , k , d , Ne )

Require: venue category sequence set S
venue category hierarchyH
context window size k
embedding size d
negative sample size Ne

Ensure: context category representations vc ∈ Rd
target category representations v′c ∈ Rd

1: initialize vc and v
′
c using a Gaussian distribution

2: for each category sequence s ∈ S do

3: for each target category ci in s do
4: get the linear context cik
5: get the hierarchical extension A (cik ) of cik usingH
6: get the hierarchical extension A (ci ) of ci usingH
7: sample Ne negative target categories cx

8: update vc and v
′
c , where vc = vc − η ∗ ∂L

∂vc
and v

′
c = v

′
c − η ∗

∂L

∂v′c
9: end for

10: end for

Further, with a series of simplifications, we reach the final objective function L as follows:

min
v,v′

∑
s ∈S

Ns∑
i=1

−[logσ
(
v
′
ci
· vcik

)
+
∑

c ∈N (ci )

logσ
(
−v′c · vcik

)
]

− [logσ
(
v
′
ci
· vA (cik )

)
+
∑

c ∈N (ci )

logσ
(
−v′c · vA (cik )

)
]

−
∑

cb ∈A (ci )

ωb [logσ
(
v
′
cb
· vcik

)
+
∑

c ∈N (cb )

logσ (−v′c · vcik )].

(12)

We train the proposed Hier-CEM using the stochastic gradient descent method and show the
pseudo code in Algorithm 1. Lines 2–10 in Algorithm 1 show the core of our Hier-CEM. In the two
loops, we traverse each target category of sequences from the category sequence dataset. For each
target category ci , we first get the linear context cik , the hierarchical extension A (cik ) of each
context category cik , and the hierarchical extensionA (ci ) of each target category ci , based on the
venue category hierarchy, and compute the weight of each category in A (cik ) and A (ci ), respec-
tively. Then, we sample Ne negative categories for each positive target category. Finally, we use
them to update these representations in accordance with our objective function L in Equation (12),
where η is the learning rate.

4.5 Complexity Analysis

We provide the complexity analysis of Hier-CEM. When updating vc and v
′
c , we need to get the

linear context and the hierarchical extension for each target category and build the hierarchical
extension for each category in the linear context. As the number of venue categories is limited
and the hierarchical structure could be stored with a map function, the computational complexity
of finding the ancestors of a category could be O (1). Further, the computational complexity of
constructing the hierarchical context isO (k ), where k is the size of the linear context. In the loops,
we traverse each target category of sequences from the category sequence dataset. Hence, the
computational complexity of Hier-CEM isO (k ·Ns · |S|), where |S| is the number of venue category
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sequences in the training dataset, and Ns is the length of category sequence s . As k is usually a
small number, the complexity of Hier-CEM is linear to the size of the training dataset, which is
efficient in computation complexity.

5 PROBING VENUE CATEGORY REPRESENTATIONS

We propose surface level tasks to probe the properties encoded in venue category representations,
which are important to gain a deeper understanding of the type of information they capture. We
split the surface level tasks into two types: the venue semantics study task that focuses on indi-
vidual venues and the next check-in category prediction task that focuses on check-in sequences.
In addition to the two surface level tasks, we propose a downstream prediction task (i.e., venue
recommendation) to validate the utility of these category representations.

5.1 Venue Semantics Study

As we claim exploiting the category hierarchy could help to capture the semantic relationships be-
tween categories, we first examine whether semantic properties could be encoded in the learned
venue category representations. To evaluate how well these category representations encode the
semantic properties, we use a metric named match rate to measure the semantic overlap of cat-
egories [51]. Specifically, for each venue category ci , we find its nearest neighbor c j in the em-
bedding space based on the cosine similarity of category representations. If ci and c j share the
top-layer category in the hierarchy, then there is a match between c j and ci , and c j is considered
as a matched category of ci . The match rate of a test set is the ratio of matched categories in this
set over its size, i.e.,

match rate =
number of matched categories

number of categories in the test set
. (13)

Naturally, a higher value indicates that the category representations more distinctly capture
semantics.

5.2 Next Category Prediction

Inspired by the methods proposed for making trajectory prediction [5, 43], we propose a next
check-in category prediction task, where the goal is to predict the possible next category that a
usermay visit given his/her current check-in category. This task is to validatewhether the category
representations could retain the sequential patterns inherent in the check-in sequences.
Given the current category ci and a candidate category c , we calculate p (c |ci ) ∝ v

′
c · vci , where

v
′
c is the embedding vector of the target category c and vci is the vector of the context category ci .
Based on the values of p (c |ci ), we generate a ranking of categories from the most possible to the
least possible. Then, we generate the rankings for all the test instances. We use accuracy andMRR
(Mean Reciprocal Rank) to evaluate the performance. accuracy is defined as the frequency of
the true next category appearing in the top-5 predicted list; MRR is defined as

MRR =
1

|Ctest |
|Ctest |∑
i=1

1

ranki
, (14)

where Ctest is the set of test categories, and ranki is the rank of the true next category of category
ci in our rankings.

Note that the evaluation of next category prediction is not the same as that of venue semantics
study. We utilize the embedding vectors of context categories and compute the cosine similarity
in the task of venue semantics study; while we utilize the embedding vectors of both context cate-
gories and target categories and compute the dot product in the task of next category prediction.
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5.3 Venue Recommendation

In addition to the surface level tasks, we want to know whether the learned category representa-
tions could be used in downstream applications. As a case study, we evaluate the learned represen-
tations on the task of venue recommendation. The goal of venue recommendation is to predict a
list of top-r venues that a specific user may visit in the future. Our recommendation algorithm fol-
lows [40], which is based on the user-venue similarity in the newly established embedding space.
The recommendation algorithm works as follows:

• Representing a user.We represent a user u as vu by averaging the embedding vectors vci
of all his/her check-in categories and calculate a user coordinate centroid (coordinateu ) using
those check-in venues (coordinatevi ). That is,

vu =
1

Nu

Nu∑
i=1

vci ,

coordinateu =
1

Nu

Nu∑
i=1

coordinatevi ,

(15)

where Nu is the total number of check-ins of user u, and coordinatevi is the latitude and
longitude of venue vi .
• Determining the order of a user’s favored categories. Given a user, we find his/her
W favored categories based on the cosine similarities between the user vector vu and these
category embedding vectors vc . Here, we list theseW favored categories in descending order
f1, . . . , fW .
• Recommending venues. During the recommendation stage, we first select the W most
favored categories of the user and focus on unique venues within these selected categories.
We then consider both the category preference order fw and the distance distuv between a
venue v and the user u’s coordinate centroid to make recommendation following Reference
[40]. Specifically, we use two exponential decay factors, category decay CD and spatial

decay SD, to calculate the final user-venue similarity score (denoted as Scoreuv ):

CDuv = exp
(−ω1 × f vw

)
,

SDuv = exp (−ω2 × distuv ),
distuv = Distance (coordinatev , coordinateu ),

Scoreuv = CDuv × SDuv ,

(16)

where f vw ∈ {0, 1, . . . ,W − 1} is the user u’s preference order corresponding to v’s cate-
gory, distuv is the Euclidean distance between a venue v and the user coordinate centroid
(coordinateu ),ω1 andω2 are the weights. Afterwards, given a user, we sort all venues belong-
ing to theseW categories in descending order of Scoreuv and make recommendations from
the top.

We evaluate the performance in terms of precision and recall, which are commonly used in
the task of venue recommendation [43, 45]. We denote these metrics at top-r recommendation as
precision@r and recall@r , respectively. The definitions are formulated as follows:

precision@r =
1

|U |
∑
u ∈U

|Vд ∩Vp |
r

,

recall@r =
1

|U |
∑
u ∈U

|Vд ∩Vp |
|Vд | ,

(17)
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Table 4. Parameters of Hier-CEM

Parameters Tested settings

Context window size (k) 2, 4, 6, 8, 10

Embedding size (d) 10, 20, 30, 40, 50, 60, 70, 80, 90, 100

Negative sample size (Ne ) 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

Percentage of training data 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1

where U is the set of users, Vд and Vp denote the set of ground-truth venues and the set of
corresponding predicted venues for each user in the test data, and |U | is the size of setU .

6 EXPERIMENTS

In this section, we begin by introducing the experimental settings; then, we elaborate on the vari-
ous experiments and present the results of both qualitative and quantitative evaluations.

6.1 Experimental Settings

The parameters we use for the experiments are shown in Table 4. We adopt the adaptive learning
rate following the work by Mikolov et al. [26] with the initial learning rate set at η = 0.025 and
the weight of the regularization term at λ = 0.001. Grid search is employed to select the optimal
parameters with a small but adaptive step size.
Baselines. We carry out experiments to compare the overall effectiveness of Hier-CEM with

several state-of-the-art category embedding methods:

• MC-TEM [50]: This is a multi-context trajectory embedding model, in which a venue and
its corresponding category are considered as the context and the CBOW model is used to
predict the target venue.
• STES [40]: This is a spatio-temporal embedding similarity algorithm. As we do not include
check-in timestamps in this work, we adapt STES by considering the venue category as the
feature word and train a vector representation for each feature word with the feature word
sequences.
• SC [36]: The embedding methodmodels the spatial context and the sequential context. Since
we do not include the geographic information of venues in this work, we omit the spatial
context used in SC for fairness and train the category vectors.
• LBPR [9]: This is a tensor factorization model, which decomposes a third-rank transition
tensor (where each element represents the observed transition frequency of a user from a
category to another) by a Listwise Bayesian Personalized Ranking (LBPR) approach to
learn the latent vectors of categories.
• CatDM [43]: This is a category-aware deep method that leverages RNNs to model check-in
sequences. As we do not include check-in timestamps in this work, we adapt CatDM and
use an LSTM encoder to model the sequences of venue categories.
• SENSE [21]: This is a semantic structure-based word embedding method that combines the
semantic constraint (i.e., a category is close to the center of its children and far away from
categories on the same level) and the SkipGram using a linear function.
• Hier-CEM-context: This baseline is a variant of Hier-CEM in that it models the linear con-
text and the hierarchical extension of context categories only. In other words, Hier-CEM-
context does not incorporate the knowledge of the hierarchical extension of target categories.
• Hier-CEM-target:This baseline is a variant of Hier-CEM in that it models the linear context
and the hierarchical extension of target categories simultaneously.
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Table 5. Performance Comparison in Terms of Match Rate on the JP Dataset

Methods
Embedding size (d)

10 20 30 40 50 60 70 80 90 100

MC-TEM [50] 0.314 0.298 0.345 0.339 0.329 0.342 0.373 0.379 0.382 0.379

STES [40] 0.542 0.549 0.564 0.552 0.552 0.552 0.542 0.536 0.539 0.533

SC [36] 0.509 0.6 0.624 0.621 0.649 0.633 0.624 0.639 0.63 0.639

LBPR [9] 0.215 0.294 0.33 0.397 0.324 0.358 0.427 0.421 0.4 0.409

CatDM [43] 0.594 0.512 0.548 0.545 0.57 0.545 0.603 0.591 0.561 0.585

SENSE [21] 0.658 0.677 0.666 0.671 0.676 0.684 0.672 0.681 0.67 0.69

Hier-CEM-context 0.724 0.7 0.721 0.73 0.724 0.697 0.706 0.703 0.709 0.706

Hier-CEM-target 0.721 0.709 0.742 0.73 0.755 0.742 0.724 0.718 0.712 0.712

Hier-CEM 0.703 0.718 0.773 0.749 0.727 0.749 0.755 0.749 0.727 0.73

Table 6. Performance Comparison in Terms of Match Rate on the US Dataset

Methods
Embedding size (d)

10 20 30 40 50 60 70 80 90 100

MC-TEM [50] 0.317 0.371 0.356 0.351 0.361 0.4 0.387 0.376 0.4 0.423

STES [40] 0.558 0.634 0.609 0.578 0.558 0.553 0.525 0.508 0.51 0.5

SC [36] 0.548 0.626 0.588 0.599 0.634 0.611 0.634 0.611 0.639 0.631

LBPR [9] 0.225 0.308 0.338 0.333 0.419 0.429 0.379 0.386 0.396 0.364

CatDM [43] 0.679 0.669 0.611 0.641 0.634 0.604 0.646 0.644 0.667 0.659

SENSE [21] 0.722 0.764 0.769 0.774 0.77 0.776 0.771 0.772 0.773 0.779

Hier-CEM-context 0.814 0.789 0.761 0.719 0.709 0.694 0.701 0.699 0.691 0.683

Hier-CEM-target 0.764 0.781 0.792 0.784 0.764 0.771 0.771 0.769 0.766 0.771

Hier-CEM 0.816 0.854 0.851 0.849 0.846 0.851 0.816 0.843 0.838 0.851

6.2 Evaluation on Venue Semantics Study

6.2.1 Comparison with Baselines. The dimensionality, which is the size of an embedding vector,
is an important factor that influences the performance of embeddingmodels. As the total number of
categories is relatively small compared with the vocabulary size of natural languages, we compare
the performance on dimensionalities ranging from 10 to 100 with a step interval of 10. In our
experiments, we evaluate all the methods on the same dataset and perform 10 runs to obtain 10
values for the match rate and report the mean of 10 values. Tables 5 and 6 show the match rates
with different dimensionalities of all the methods on the JP and US datasets (where the best scores
are highlighted in boldface), from which we can make the following observations:

• Compared with MC-TEM, STES and SC yield better accuracies, indicating that directly mod-
eling the category sequences could better capture venue semantics. Recall that MC-TEM,
STES, and SC model the linear context to learn category representations. MC-TEM predicts
the target venue given multiple contexts (e.g., preceding and following venues, venue cate-
gories); it learns the category representation as a byproduct and performs relatively poorly.
STES and SC directly model check-in category sequences to generate category representa-
tions, with the difference being that STES adopts the CBOW model and SC uses the Skip-
Gram model.
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• LBPR performs the worst, as it only models users’ preference on the category transitions
without considering the high-order sequential patterns. CatDM obtains better performances
than LBPR. The reason lies in that it applies LSTM-based methods to model long-term transi-
tions in the check-in sequences. Comparedwith embedding-basedmethods (e.g., SC), CatDM
does not show obvious advantages. For example, it yields worse results than SC on the JP
dataset while it outperforms SC on the US dataset in terms of match rate.
• SENSE performs better than those baselines that merely model check-in sequences, because
it combines the semantic constraint learned from the hierarchical category structure and the
SkipGram model using a linear function, validating that the category hierarchy is vital in
capturing venue semantics.
• Hier-CEM performs the best, as it models both the linear contextual information as well as
the hierarchical relations to learn the category representations. For example, compared with
SC, our Hier-CEM achieves an average improvement of 20% on the JP data and 37.7% on the
US data, for various embedding sizes.

Further, we validate whether the performance difference between the proposed Hier-CEM and
the baselines is practically significant. To show this, we use superiority paired t-test to validate
whether the difference is indeed significantly greater than a given value M [12, 32]. Suppose we
want to evaluate the superiority of a continuous random variable XT as compared to a second
paired random variable XC . Assume that n paired observations (XTa ,XCa ),a = 1, 2, . . . ,n are
available. The D’s are the differences formed as D = XT − XC . Assume that higher values are
better, that μD = μT−C represents the mean of the differences between the two variables, and that
M is the positive superiority margin. The null and alternative hypotheses are

H0 : μD ≤ M,

H1 : μD > M .
(18)

Note that the paired t-test usually tests that the mean difference is zero. The superiority test com-
pares the difference to a non-zero quantityM .
Taking the results of Hier-CEM and MC-TEM given d = 100 on the JP dataset as an example,

we set M = 0.32 and make the null hypothesis that the mean of the differences between the
10 paired observations of Hier-CEM and MC-TEM is less than 0.32. We perform a paired samples
t-test on the match rates of Hier-CEM and MC-TEM and observe that the calculated p-value is
0.0038. Therefore, we reject the null hypothesis with this data and conclude that the improvement
in match rate by Hier-CEM over MC-TEM, 84.5% (0.32/0.3789), is statistically significant as per
the superiority paired t-test with p-value <0.05. Similarly, we perform superiority paired t-tests
for Hier-CEM and other baseline methods and conclude that the improvement of Hier-CEM over
these baselines in match rate is of practical significance.

6.2.2 Model Analysis. To verify the effectiveness of Hier-CEM, we design two variants: Hier-
CEM-context and Hier-CEM-target. Hier-CEM-context incorporates the hierarchical extension of
context categories, while Hier-CEM-target incorporates the hierarchical extension of target cate-
gories. The two variants are to validate the effects of modeling two kinds of hierarchical context
simultaneously. We record the comparison results in Tables 5 and 6. From the results, we can find
that the performance of the proposed Hier-CEM is better than that of the two variants in most
cases.
Further, we validate whether Hier-CEM could learn meaningful representations for those cate-

gories with sparse check-ins. Specifically, we perform venue semantics study for the 50 categories
with the least check-ins and report their match rates with different embedding sizes for all the
methods in Figure 4. Meanwhile, we also report the results on the 50 categories with the most
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Fig. 4. Performance comparison for top-50 categories with the most and the least check-ins.

check-ins. From Figures 4 (a) and (b), we know that Hier-CEM and SENSE perform better than
other methods for those 50 categories with the least check-ins, as they involve the hierarchical cat-
egory structure to solve the problem of category sparseness. Moreover, as can be observed from
Figures 4(c) and (d), Hier-CEM outperforms these baselines in the task of venue semantics study for
the 50 categories with the most check-ins, indicating that it is effective to model the hierarchical
category structure with the category sequences collaboratively to learn category representations.
Note that the match rates of Hier-CEM could achieve 0.94 and 0.96 for the 50 categories with the
most check-ins on the JP and US datasets, respectively.

6.2.3 Parameter Sensitivity. We analyze the effect of parameters of Hier-CEM on its perfor-
mance. Since context window size determines the number of contextual venue categories that
affect the target category, it will influence the quality of category representations. Figures 5(a) and
(b) show the match rates with different context window sizes on the JP and US datasets. With fixed
d = 20, 50 and Ne = 1, the match rates have an obvious improvement when k increases from 2
to 6 for both datasets. When we increase k further, the performance starts to decline, because it
takes some unrelated contextual venue categories into consideration. Hence, we set k = 6 in the
following experiments. We then vary the negative sample size (Ne ) from 1 to 10 with d = 20, 50,
and report the results in Figures 5(c) and (d). We find that the match rates increase gradually as Ne

increases from 1 to 5. When Ne is greater than 6, the curve starts to fall. As such, we set Ne = 5.
The size of the dataset is also an important factor. To get a good model, we need a certain

number of training samples to make sure the model can learn enough information from the data.
We select the dataset ranging from 10% to 100% with an increasing step-size of 10% to evaluate the
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Fig. 5. Effect of varying parameters of Hier-CEM for venue semantics study.

performance. As shown in Figures 5(e) and (f), the match rates on the 10% dataset are only about
0.4 and 0.6 on the JP and US datasets, respectively. As the size of dataset increases, the match rates
also increase until the percentage of the dataset reaches 90%, after which the match rates do not
change much regardless of data size.

6.3 Evaluation on Next Category Prediction

To evaluate whether the category representations could retain sequential patterns, we design the
task of next check-in category prediction. In this experiment, we use 5-fold cross-validation and
report the average results. We compare Hier-CEM with the baselines on both JP and US datasets
and measure the performance in terms of accuracy and MRR in Figure 6. Here Random refers to
the method that chooses a category from the category set as the predicted next category, which is
regarded as the benchmark. MC-TEM considers both the check-in venues and the corresponding
categories as the context and predicts the target venue. As it does not consider the venue cate-
gory as the target, it performs relatively poorly in this task. SC predicts the context categories
given the target category, while STES predicts the target category given the context categories

ACM Transactions on Information Systems, Vol. 40, No. 3, Article 57. Publication date: November 2021.



Embedding Hierarchical Structures for Venue Category Representation 57:21

Fig. 6. Performance comparison in the task of next category prediction.

when learning category representations based on the venue category sequences; thus, STES per-
forms better than SC on this task. CatDM obtains poor performances, as it focuses on storing
statistical weights for long-term transitions in a check-in sequence, while LBPR generates rela-
tively decent results because it models the category transitions of a user. SENSE models the lin-
ear context and the category hierarchy and outperforms the other baselines. It is interesting to
observe that Hier-CEM-context achieves the best performance. The reason is that incorporating
the hierarchical extension of target categories hinders the prediction performance. When incor-
porating the hierarchical target, we maximize the probability of the ancestor categories of the
target category given the context categories. For example, given a category sequence Train Station
→ Art Museum → Sushi Restaurant → Zoo → Ice Cream Shop, we find the ancestors (i.e., Japan-
ese Restaurant, Asian Restaurant, and Food) of the target category Sushi Restaurant based on the
category hierarchy, and maximize the probability of each ancestor (e.g., Food) given the linear
context (e.g., Art Museum, Zoo). Therefore, we predict Food as the candidate next category of the
query sequence Train Station → Art Museum with a large probability, which results in incorrect
sequential prediction, as Train Station→ Art Museum→ Food does not exist in users’ check-in se-
quences actually. Compared with STES, Hier-CEM-context shows an improvement of 31.5% on the
JP dataset and 35.2% on the US dataset in terms of accuracy, respectively. Note that the improve-
ments over the baselines are statistically significant using superiority paired t-test with p value
<0.01 [12, 32].

6.4 Evaluation on Venue Recommendation

The goal of venue recommendation is to predict a list of top-r venues that a specific user may visit.
In addition to the aforementioned baseline methods, we also compare with the following methods
for venue recommendation:

• GeoSoCa [45]: This is a venue recommendation method that learns geographical and cate-
gorical correlations from the check-in data of users and predicts the relevance score of a user
to an unvisited venue.
• PK-Boosting [1]: This is a personalized keyword boosting method that utilizes additional
information (e.g., venue keywords, user tags, venue categories) to enhance venue recom-
mendation. As in our evaluation there is no text information on users and venues, we adapt
PK-Boosting by considering the venue categories to make venue recommendation.
• CATAPE [31]: This is a category-aware venue embedding method that captures both the
sequential influence and categorical information of venues to make venue recommendation.
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Fig. 7. Performance comparison in the task of venue recommendation.

6.4.1 Comparison with Baselines. We compare the proposed Hier-CEM with these baselines
and report the results of all the methods using the US dataset in Figure 7. Similar results are ob-
served on the JP dataset and are omitted here. Note that Random means that we randomly select
W categories instead of users’ preferred ones calculated using category representations as the
candidates, which is regarded as the benchmark. We have the following observations based on
the results:

• GeoSoCa and PK-Boosting explicitly capture the users’ preference over categories using their
check-ins without modeling the relations among categories. Therefore, they do not have
decent performance compared with those category embedding methods.
• LBPR decomposes a user category transition tensor to learn the representations of categories;
SENSE defines two objectives to separately model the check-in sequences and category hi-
erarchy and integrates them simply via a linear function; CatDM models the long-term de-
pendencies in the check-in sequences to learn category representations. They all perform
worse than the proposed Hier-CEM.
• MC-TEM performs poorly, as it just considers the category as one of the contexts for predict-
ing the venue. STES and SC directlymodel the check-in category sequences to learn category
representations and perform better than MC-TEM. CATAPEmodels both the venues and the
corresponding categories in the check-in sequences and it outperforms STES and SC.
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Fig. 8. Effect of varying embedding size of Hier-CEM for venue recommendation.

• Hier-CEM performs the best in terms of recall and precision for the task of venue recom-
mendation. The improvements over the baselines are statistically significant using superior-
ity paired t-test with p value <0.01 [12, 32], validating the effectiveness of collaboratively
modeling the linear context and the hierarchical context to learn category representations
further.

6.4.2 Parameter Sensitivity. We tune the embedding size of Hier-CEM and report the results
on venue recommendation using the US dataset in terms of recall and precision in Figure 8. As
shown in Figure 8(a), the values of precision improve when we increase the embedding size from
10 to 90, and then remain stable when increasing it further. Similar tendencies in terms of recall
are observed from Figure 8(b).

6.5 Qualitative Analysis of Embedding Vectors

Our embedding vectors are designed to retain venue semantics so venue categories are distin-
guishable. We set the latent embedding dimensionality to 100 and obtain vectors for all the venue
categories in the JP and US datasets. To get a qualitative impression of the resulting embeddings,
we first examine their overall cosine similarities and Euclidean distances. The cosine metric evalu-
ates the similarity bymeasuring the in-between angle and the Euclidean distance demonstrates the
magnitude of difference between two embedding vectors. Specifically, we first calculate the cosine
similarity and Euclidean distance for each pair of category embedding vectors, and then compute
the mean similarity and distance values among the top-layer venue categories. We demonstrate
the results in the form of heatmaps in Figure 9, where several significant trends can be observed.
From Figures 9(a) and (b), we can see that the intra-category embedding vectors show the high-

est mean cosine similarities and that College has the largest intra-category cosine similarity and
the smallest inter-category similarity. The result appears reasonable, as venues related to College

are more concentrated in a small district, and their semantics are relatively explicit. We can also
observe that categories including similar or overlapping venues have large inter-category simi-
larities, e.g., Food - Shop & Service and Food - Nightlife Spot, and that category representations
learned from the JP dataset show larger intra-category and inter-category similarities than those
from the US dataset. Similar tendencies exist with the Euclidean distances between categories in
Figures 9(c) and (d).
Further, we select two top-layer categories Food and Outdoors & Recreation to validate whether

their leaf categories are visually distinguishable in a latent space with distributed representations.
We take the vectors of these leaf categories from the learned category representations and show
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Fig. 9. Heatmaps of mean cosine similarities and Euclidean distances for venue category embeddings.

them in the 2-dimensional space after dimensionality reduction using t-Distributed Stochastic

Neighbor Embedding (t-SNE) [24]. The results of applying Hier-CEM and the state-of-the art
methods (including MC-TEM [50] and STES [40]) on the JP and US datasets are shown in Fig-
ure 10. Evidently, Hier-CEM embeds the leaf categories of Food (dots) and Outdoors & Recreation

(x marks) into two cleanly separated clusters, validating that integrating the hierarchical category
information enables learning better semantics than merely modeling the linear context.
Finally, we use several examples to examine whether Hier-CEM can solve the problem of sparse

venue categories by involving the hierarchical category structure, as well as how well it cap-
tures the semantics of categories with sparse check-ins. Specifically, we perform training of Hier-
CEM on the JP and US datasets and launch a bunch of queries using leaf categories with the
least check-ins (introduced in Tables 2 and 3). For each query, we retrieve the top-5 most similar
categories.
Figure 11 shows the results of MC-TEM, STES and the proposed Hier-CEMwhen we query with

the keywords “Planetarium” and “Campground” on JP dataset and the keywords “College Hockey
Rink” and “Distillery” on the US dataset. We label the semantically related categories in boldface.
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Fig. 10. Hier-CEM learns latent category representations that separate leaf categories of Food (denoted by

dots) and Outdoors & Recreation (denoted by × marks) substantially better than the state-of-the-art MC-

TEM [50] and STES [40] models on the JP and US datasets. Here, a standard dimension reduction method

t-SNE [24] is used to reduce the 100-dimensional category representations to the 2-dimensional space.

Evidently, MC-TEM performs the worst, as it merely takes the venue category as a kind of context
to predict the target venue and is mainly designed to learn representations of venues, difficult to
retain the semantics of categories. STES directly models the category sequences and could cap-
ture venue semantics decently. But it is not able to learn good representations for those sparse
categories. For example, as shown in Figure 11(b), only one of the top-5 results retrieved by STES
is related to the query “Campground.” Hier-CEM embeds the hierarchical structure of categories
in the representation learning of categories. Therefore, though some categories are sparse in the
linear context, they may be modeled in the hierarchical context and could be trained thoroughly.
Observed from Figure 11, we can clearly see that Hier-CEM finds semantically related categories
for the given query. For instance, when we query with the keyword “Distillery,” only Hier-CEM
could find the highly relevant category Brewery.

7 CONCLUSIONS AND FUTURE WORK

In this article, we present an embedding method (Hier-CEM) to generate a latent representation
for each venue category based on two data modalities: venue category sequences and venue cat-
egory hierarchy. We consider the linear context from venue category sequences and leverage the
hierarchical structure of categories to build two kinds of hierarchical context types, and we model
the co-occurrence information of categories and their different contexts jointly. These category
representations could be used to reason about the similarity among categories. We evaluate the
proposedHier-CEMwith two real check-in datasets from Foursquare and compare the embeddings

ACM Transactions on Information Systems, Vol. 40, No. 3, Article 57. Publication date: November 2021.



57:26 M. Chen et al.

Fig. 11. Illustrative cases of retrieving top-5 most similar categories for the query categories with sparse

check-ins.

generated using Hier-CEM with the state-of-the-art embeddings in the task of venue semantics
study, next category prediction, and venue recommendation. The results show that Hier-CEM out-
performs the baselines significantly according to the superiority paired t-test and better captures
the venue semantics.
Several interesting research problems exist for further exploration. First, we can consider more

context types (e.g., spatial context and temporal context) in learning venue category representa-
tions. Second, we model category representations with check-ins from Japan and the United States
separately, andwe could explore the difference between the two groups of representations and how
to bridge them in future work.
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