
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

EXPLAINABLE GRAPH REPRESENTATION LEARNING
VIA GRAPH PATTERN ANALYSIS

Anonymous authors
Paper under double-blind review

ABSTRACT

Explainable artificial intelligence (XAI) is an important area in the AI commu-
nity, and interpretability is crucial for building robust and trustworthy AI mod-
els. While previous work has explored model-level and instance-level explainable
graph learning, there has been limited investigation into explainable graph rep-
resentation learning. In this paper, we focus on representation-level explainable
graph learning and answer a fundamental question: What specific information
about a graph is captured in graph representations? Our approach is inspired by
graph kernels, which evaluate graph similarities by counting substructures within
specific graph patterns. First, we present an unsupervised ensemble graph kernel
method for representation or similarity explanation, which however has limita-
tions such as ignoring node features and being computationally expensive. To
address these limitations, we introduce a deep learning framework for learning
and explaining graph representations through graph pattern analysis. We start by
sampling graph substructures of various patterns. Then, we learn the representa-
tions of these patterns and combine them using a weighted sum, where the weights
indicate the importance of each graph pattern’s contribution. Note that our method
can be both unsupervised and supervised and is a one-shot explanation, not speci-
fied to single samples or predictions. We also theoretically analyze the robustness
and generalization ability of our models. Importantly, the generalization analysis
shows that incorporating multiple graph patterns lowers the generalization error
bound. In our experiments, we show how to learn and explain graph represen-
tations for real-world data using pattern analysis. Additionally, we compare our
method against multiple baselines in both supervised and unsupervised learning
tasks to demonstrate its superiority in terms of accuracy.

1 INTRODUCTION

The field of explainable artificial intelligence (XAI) (Došilović et al., 2018; Adadi & Berrada, 2018;
Angelov et al., 2021; Hassija et al., 2024) is gaining significant attention in both AI and science
communities. Interpretability is crucial for creating robust and trustworthy AI models, especially
in critical domains like transportation, healthcare, law, and finance. Graph learning is an important
area of AI that particularly focuses on graph-structured data widely exist in social science, biology,
chemistry, etc. Explainable graph learning (XGL) (Kosan et al., 2023) can be generally classified
into two categories: model-level methods and instance-level methods.

Model-level methods of XGL provide transparency by analyzing the model behavior. Examples in-
clude XGNN (Yuan et al., 2020), GLG-Explainer (Azzolin et al., 2022), and GCFExplainer (Huang
et al., 2023). Instance-level methods of XGL offer explanations tailored to specific predictions, fo-
cusing on why particular instances are classified in a certain manner. For instance, GNNExplainer
(Ying et al., 2019) identifies a compact subgraph structure crucial for a GNN’s prediction. PGEx-
plainer (Luo et al., 2020) trains a graph generator to incorporate global information and parameterize
the explanation generation process. AutoGR (Wang et al., 2021) introduces an explainable AutoML
approach for graph representation learning. MotifExplainer (Yu & Gao, 2022) identifies critical
motifs (small subgraphs) in a graph. UNR-Explainer (Kang et al., 2024) identifies the top-k most
important nodes in a graph to determine the most significant subgraph as the counterfactual expla-
nation. More about XGL can be found in the Appendix C.1.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

However, these works mainly focus on enhancing the transparency of GNN models or identifying the
most important substructures that contribute to predictions. The exploration of representation-level
explainable graph learning (XGL) is limited. We propose explainable graph representation learning
and ask a fundamental question: What specific information about a graph is captured in graph
representations? Formally, if we represent a graph G as a d-dimensional vector g, our goal is to
understand what specific information about the graph G is embedded in the representation g. This
problem is important and has practical applications. Some graph patterns are highly practical and
crucial in various real-world tasks, and we want this information to be captured in representations.
For instance, in molecular chemistry, bonds between atoms or functional groups often form cycles
(rings), which indicate a molecule’s properties and can be used to generate molecular fingerprints
(Morgan, 1965; Alon et al., 2008; Rahman et al., 2009; O’Boyle & Sayle, 2016). Similarly, cliques
characterize protein complexes in Protein-Protein Interaction networks and help identify community
structures in social networks (Girvan & Newman, 2002; Jiang et al., 2010; Fox et al., 2020).

Although some previous works such as (Kosan et al., 2023) aimed to find the most critical subgraph
S by solving optimization problems based on perturbation-based reasoning, either factual or coun-
terfactual, this kind of approach assumes that the most important subgraph S mainly contributes to
the representation g, neglecting other aspects of the graph, which doesn’t align well with our goal of
thoroughly understanding graph representations. Analyzing all subgraphs of a graph G is imprac-
tical due to their vast number. To address the challenge, we propose to group the subgraphs into
different graph patterns, like paths, trees, cycles, cliques, etc, and then analyze the contribution of
each graph pattern to the graph representation g.

Our idea of pattern analysis is inspired by graph kernels, which compare substructures of specific
graph patterns to evaluate the similarity between two graphs (Kriege et al., 2020). For example, ran-
dom walk kernels (Borgwardt et al., 2005; Gärtner et al., 2003) use path patterns, sub-tree kernels
(Da San Martino et al., 2012; Smola & Vishwanathan, 2002) examine tree patterns, and graphlet ker-
nels (Pržulj, 2007; Shervashidze et al., 2009) focus on graphlet patterns. The graph kernel involves
learning a pattern counting representation vector h, which counts the occurrences of substructures
of a specific pattern within the graph G. While the pattern counting vector h is an explainable rep-
resentation, it has some limitations, such as the high dimensionality and ignorance of node features.

There also exist some representation methods based on subgraphs and substructures, such as Sub-
graph Neural Networks (SubGNN) (Kriege & Mutzel, 2012), Substructure Assembling Network
(SAN) (Zhao et al., 2018), Substructure Aware Graph Neural Networks (SAGNN) (Zeng et al.,
2023a), and Mutual Information (MI) Induced Substructure-aware GRL (Wang et al., 2020). How-
ever, these methods mainly focus on increasing expressiveness and do not provide explainability for
representation learning. We will discuss the details in the Appendix C.2.

In this work, we propose a novel framework to learn and explain graph representations via graph
pattern analysis. We start by sampling graph substructures of various patterns. Then, we learn the
representations of these patterns and combine them adaptively, where the weights indicate the im-
portance of each graph pattern’s contribution. We also provide theoretical analyses of our methods,
including robustness and generalization. Additionally, we compare our method against multiple
baselines in both supervised and unsupervised learning tasks to demonstrate its effectiveness and
superiority. Our contributions are summarized as follows:

• Unlike previous model-level and instance-level XGL, we introduce a new problem —
representation-level explainable graph learning. This problem focuses on understanding
what specific information about a graph is embedded within its representations in unsuper-
vised learning.

• We propose two strategies to learn and explain graph representations, including a graph
ensemble kernel method and a pattern analysis GNN method. The latter involves using
GNNs to learn the representations of each pattern and evaluate its contribution to the en-
semble graph representation.

• We provide robust analyses and generalization analysis for our methods theoretically. Par-
ticularly, our generalization analysis shows adding graph patterns lowers the generalization
error bound.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2 NOTATIONS

In this work, we use x, x, X , and X (orX) to denote scalar, vector, matrix, and set, respectively. We
denote [n] = {1, 2, ..., n}. LetG = (V,E) be a graph with n nodes and d-dimensional node features
{xv ∈ Rd | v ∈ V }. We denote A ∈ {0, 1}n×n the adjacency matrix and X = [x1, . . . ,xn]

⊤ ∈
Rn×d the node features matrix. Let G = {G1, . . . , GN} be a dataset of N graphs belonging C
classes, where Gi = (Vi, Ei). For Gi, we denote its number of nodes as ni, the one-hot graph label
as yi ∈ {0, 1}C , the graph-level representation as a vector gi ∈ Rd, the adjacency matrix as Ai,
and the node feature matrix as Xi. Let S = (VS , ES) be a subgraph of graph G = (V,E) such that
VS ⊆ V and ES ⊆ E. The the adjacency matrix of S is denoted as AS ∈ {0, 1}|VS |×|VS | and the
node feature matrix of S is sampled from the rows of X , denoted as XS ∈ R|VS |×d.

The graph pattern is defined as a set of all graphs that share certain properties, denoted as P =
{P1, P2, . . . , Pi, . . .}, where Pi is the i-th example of this pattern. In this work, the graph patterns
are basic graph families such as paths, trees, cycles, cliques, etc. Detailed mathematical definitions
for some of these patterns are provided in Appendix B. For example:

• Ppath = {ph1, ph2, . . . , phi, . . .} is a path pattern with phi as a path of length i.

• PT = {T1, T2, . . . , Ti, . . .} is a tree pattern where Ti is the i-th tree.

• Pgl = {gl1, gl2, . . . , gli, . . .} is a graphlet pattern where gli is the i-th graphlet.

Figure 1: Examples of graph patterns: Ppath, PT and Pgl

Figure 1 illustrates some intuitive examples of graph patterns. Notably, there are overlaps among
different patterns; for instance, the graph T3 ∈ PT and gl2 ∈ Pgl are identical, being both a tree and
a graphlet. Overlaps are inevitable due to the predefined nature of these basic graph families in graph
theory. We denote a set of M different patterns as {P1,P2, . . . ,Pm, . . . ,PM}. Given the pattern
Pm and the graph Gi, the pattern sampling set is denoted as S(m)

i and the pattern representation is
denoted as z(m)

i ∈ Rd.

3 LEARNING EXPLAINABLE GRAPH REPRESENTATIONS VIA ENSEMBLE
GRAPH KERNEL

In this section, we learn and explain the pattern counting graph representation via graph kernels.

3.1 PATTERN COUNTING KERNEL

A graph kernel K : G × G → R aims to evaluate the similarity between two graphs. Let Gi and
Gj be two graphs in the graph dataset G and let H be a high-dimensional vector space. The key
to a graph kernel is defining a mapping from the graph space to the high-dimensional vector space
as ϕ : G → H, where hi = ϕ(Gi) and hj = ϕ(Gj). Then, the graph kernel can be defined as
the inner product of hi and hj , i.e., K(Gi, Gj) := h⊤

i hj . The most widely used mapping ϕ is the
one counting the occurrences of each example in the pattern P within graph G. The corresponding
pattern counting vector is defined as follows.

Definition 3.1 (Pattern Counting Vector). Given a graphG and a pattern P = {P1, P2, . . . , Pi, . . .},
a pattern counting mapping ϕ : G → H is defined as

h = ϕ(G;P), with h = [h(1), h(2), . . . , h(i), . . .], (1)

where h(i) is the number of occurrences of pattern example Pi as a substructure within graph G. We
call h a pattern counting vector of G related to pattern P .

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Then the pattern counting kernel KP : G×G → R based on pattern P can be defined.
Definition 3.2 (Pattern Counting Kernel). Given the a pattern counting mapping ϕ(G;P), a pattern
counting kernel is defined as

KP(Gi, Gj) := ⟨ϕ(Gi;P), ϕ(Gj ;P)⟩ = h⊤
i hj (2)

The pattern counting kernel KP is uniquely determined by the pattern P . For example, if P is
selected as the path pattern Ppath, we obtain a random walk kernel (Borgwardt et al., 2005; Gärtner
et al., 2003). If P is the tree pattern PT , we get a sub-tree kernel (Da San Martino et al., 2012;
Smola & Vishwanathan, 2002). Similarly, if P is the graphlet pattern Pgl, we derive a graphlet
kernel (Pržulj, 2007).

3.2 PATTERN ANALYSIS USING GRAPH KERNELS

Let {P1,P2, . . . ,PM} be a set of M different graph patterns. For instance, P1 represents the path
pattern and P2 represents the tree pattern. Then, we can define a set of M different graph kernels
as {KP1

,KP2
, . . . ,KPM

}. Since the pattern counting kernel KPm
is uniquely determined by the

pattern Pm, we can analyze the importance of pattern Pm by evaluating the importance of its pattern
counting kernel KPm

. To achieve this, we define a learnable ensemble kernel as follows:
Definition 3.3 (Learnable Ensemble Kernel). Let λ = [λ1, λ2, ..., λm, ..., λM]⊤ be a positive weight
parameter vector. The ensemble kernel matrix K(λ) ∈ R|G|×|G| is defined as the weighted sum of
M different kernels {KP1

,KP2
, . . . ,KPM

}. Given two graphs Gi and Gj in G, the element at the
i-th row and j-th column of K(λ) is given by

Kij(λ) :=

M∑
m=1

λm KPm
(Gi, Gj), s.t

M∑
m=1

λm = 1, and λm ≥ 0, ∀m ∈ [M]. (3)

Here, the weight parameter λm indicates the importance of the kernel KPm
as well as the corre-

sponding graph pattern Pm within the dataset G. Instead of the constrained optimization (3), we
may consider replacing λm with exp(wm)/

∑M
m=1 exp(wm) such that the constraints are satisfied

inherently, which leads to an unconstrained optimization in terms of w = [w1, . . . , wM]⊤. In the
following context, for convenience, we just focus on (3), though all results are applicable to the
unconstrained optimization. To obtain the weight parameter λ, we provide the supervised and un-
supervised loss functions as follows.

Supervised Contrastive Loss Following (Oord et al., 2018), given a kernel matrix K(λ) ∈
RN×N , we define the supervised InfoNEC as follows

LSCL(λ) = −
∑
i ̸=j

I[yi=yj]

(
logKij(λ)− log

[∑
k

I[yi=yk,i̸=k]Kik(λ) + µ
∑
k

I[yi ̸=yk]Kik(λ)

])
,

(4)
where I[·] is an indicator function and µ > 0 is a hyperparameter.

Unsupervised KL Divergence Inspired by (Xie et al., 2016), given a kernel matrix K ∈ RN×N ,
we define the unsupervised KL divergence loss as follows

LKL(λ) = KL(K(λ),K ′(λ)), with K ′
ij(λ) =

K2
ij(λ)/rj∑

j′ K
2
ij′(λ)/rj′

and rj =
∑
j

Kij(λ), (5)

where rj are soft cluster frequencies. By minimizing the KL divergence, the model adjusts the
parameters λ to more accurately represent the natural clustering property of the dataset.

We use the LSCL or LKL as our loss function, i.e., Lker(λ) = LSCL(K(λ)) or LKL(K(λ)), when
the graphs are labeled or unlabeled. Then the weight parameter λ can be obtain by solving

λ∗ = argmin 1⊤
Mλ=1, λ≥0 Lker(λ), (6)

where λ∗ = [λ∗1, ..., λ
∗
m, ...λ

∗
M]⊤ and λ∗m indicates the importance of kernel KPm

as well as pattern
Pm. In Figure 2, we can see that the ensemble Kernel performs better than each single kernel and

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

the pattern analysis identifies the importance of each kernel as well as the related graph pattern. We
call this method pattern-based XGL with ensemble graph kernel, abbreviated as PXGL-EGK. This
method not only yields explainable similarity learning but also provides an approach to selecting
graph kernels and their hyperparameters automatically if we consider different kernel types with
different hyperparameters.

(a) λ

1 2 3
0.0

0.2

0.4

0.6

0.8

1.0

0.75

0.17
0.08

(b) K(λ): ensemble
PROTEINS Class 1: 663 Graphs
PROTEINS Class 0: 450 Graphs

∑M
m=1 λm KPm

(c) KP1 : path
PROTEINS Class 1: 663 Graphs
PROTEINS Class 0: 450 Graphs

(λ1 = 0.7502)

(d) KP2 : tree

PROTEINS Class 1: 663 Graphs
PROTEINS Class 0: 450 Graphs

(λ2 = 0.1707)

(e) KP3 : graphlet
PROTEINS Class 1: 663 Graphs
PROTEINS Class 0: 450 Graphs

(λ3 = 0.07912)
Figure 2: t-SNE visualizations of different kernel embeddings for the dataset PROTEINS.

3.3 LIMITATIONS OF PATTERN COUNTING VECTOR

The pattern counting vector h from Definition 3.1 is easy to understand and its importance can be
evaluated using the weight parameter λ∗ from (6). However, it cannot directly explain the repre-
sentation of graph G due to the following limitations, which are also the limitations of the proposed
PXGL-EGK.

• Ignoring Node Features: h captures the topology of G but ignores node features X . As
shown by previous GNN works, node features are crucial for learning graph representa-
tions.

• High Dimensionality: The pattern set P = {P1, P2, . . . , Pi, . . .} can be vast, making h
high-dimensional and impractical for many tasks.

• High Computational Complexity: Counting patterns Pi in G is time-consuming due to
the large number of patterns in P . The function ϕ(G;P) needs to be run for each new
graph. In addition, in PXGL-EGK, the computation of the M kernel matrices of size |G| ×
|G| is very expensive especially when |G| is large.

• Lacking Implicit Information and Strong Expressiveness: h is fixed and not learnable.
GNN (Kipf & Welling, 2016) shows that message passing can learn implicit information
and provide better representations, which should be considered if possible.

4 LEARNING EXPLAINABLE GRAPH REPRESENTATIONS VIA GNNS

In this section, we address the limitations pointed out in Section 3.3 by proposing a GNN framework
to learn and explain graph representations via pattern analysis. We first present the definitions of the
pattern sample set, pattern representation, and ensemble representation and then show the objective
functions of unsupervised and supervised learning.
Definition 4.1 (Pattern Sample Set). A P-pattern sample set S of a given graph G is defined as

S := {S1, S2, . . . , Sq, . . . , SQ}, (7)
where Sq , q ∈ [Q], is a subgraph of pattern P (see the examples in Figure 1) randomly sampled
from G using some sampling function Φ1.
Definition 4.2 (Pattern Representation). Let S be a P-pattern sample set of a graph G. For each
subgraph S ∈ S, denote its node set, adjacency matrix, and node feature matrix as VS , AS , and XS

respectively. Let F : {0, 1}|VS |×|VS | ×R|VS |×d → Rd′
be a pattern representation learning function

parameterized by W , then the P-pattern representation z ∈ Rd′
of G is defined as

z =
1

|S|
∑
S∈S

F (AS ,XS ;W). (8)

1The specific Φ follows https://ysig.github.io/GraKeL/0.1a8/

5

https://ysig.github.io/GraKeL/0.1a8/

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

The pattern representation learning function F could be any graph neural network such as GCN
(Kipf & Welling, 2016), GIN (Xu et al., 2018), and graph transformer (Rampášek et al., 2022). In
this paper, we use GCN only for convenience. Because of the presence of node features, the chance
that overlaps occur between patterns is tiny. Nevertheless, we can use the WL-test (Huang & Villar,
2021) in each sampling phase to ensure that new samples are unique from existing ones, which is
efficient as the subgraphs are small.

Finally, the ensemble representation g is a weighted sum of theM pattern representations as follows.

Definition 4.3 (Ensemble Representation). Given a graph G and consider a set of M differ-
ent patterns {P1,P2, . . . ,Pm, . . . ,PM}, we denote z(m) the Pm-pattern representation obtained
from the Pm-pattern set S(m) using a pattern representation learning function Fm. Let λ =
[λ1, λ2, . . . , λm, . . . , λM]⊤ be a parameter vector, where 1⊤

Mλ = 1 and λm ≥ 0 ∀ m ∈ [M].
Then the ensemble representation g ∈ Rd′

of G is defined as

g =

M∑
m=1

λmz(m), with z(m) =
1

|S(m)|
∑

S∈S(m)

Fm(AS ,XS ;W(m)), ∀m ∈ [M]. (9)

Note that instead of explicitly considering the constraints for λ, we can use the same softmax trick
in computing the ensemble kernel (3) to simplify the problem.

Let W := {W(1),W(2), . . . ,W(m), . . . ,W(M)} be the parameters of the M GNNs. In unsuper-
vised representation learning, we define the similarity between two graphs’ ensemble representa-
tions as Kij(λ,W) = exp

(
−γ∥gi − gj∥2

)
, where γ > 0 is a hyperparameter. Then similar to (5),

we minimize the following objective function to optimize W

LKL(λ,W) = KL(K(λ,W),K ′(λ,W)) (10)

where the computation of K ′ is the same as that in (5).

In supervised learning, given a graph G ∈ G with ensemble representation g, denote y ∈ {0, 1}C
the ground truth label. Let ŷ ∈ [0, 1]C be the predicted label given by a softmax classifier fc :
Rd → RC parameterized by WC , i.e., ŷ = fc(g). Let ℓCE be the multi-class cross-entropy loss, i.e.,
ℓCE(y, ŷ) =

∑C
c=1 yc log ŷc. Then we minimize the following objective to optimize the parameters

W̄ = {W,WC}:

LCE(λ, W̄) =
1

N

N∑
i=1

ℓCE (yi, fc(gi)) (11)

Let λ∗ = [λ∗1, . . . , λ
∗
m, . . . , λ

∗
M]⊤ be the optimal λ obtained from minimizing (10) or (11). λ∗m

indicates the contribution of the pattern representation z(m) to the ensemble graph representation g.
In Figure 4, we visualize the g and each z(m) and show that the ensemble representation g performs
the best and the λ∗m explains the contribution of each pattern representation z(m) to learning g. For
convenience, we call this method pattern-based XGL with GNNs, abbreviated as PXGL-GNN.

5 THEORETICAL ANALYSIS

In this section, we analyze the robustness property, generalization ability, and computational com-
plexity of our methods theoretically, which not only is important to understand the proposed methods
but also provides theoretical support for the effectiveness of the proposed methods. We defer the
detailed proof to Appendices D and E.

5.1 ROBUSTNESS ANALYSIS

Following (O’Bray et al., 2021), a learning method should be robust to small perturbations. Let
∆A and ∆X be perturbations on the adjacency matrix and node attributes of a graph G whose
representation is denoted as g. Then the perturbed graph is G̃ = (A + ∆A,X + ∆X), of which
the representation is denoted as g̃. We seek the upper bound of ∥g̃ − g∥ and want to know how
it is related to ∆A and ∆X as well as the representation learning function F . Without loss of

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Subgraph Set from

...

... ...
-layer GCN

Pattern Sampling

...
Pattern Representations

Graph Representation

Weighted Combination

......
Input Graph

Figure 3: Proposed GNN framework for computing the ensemble graph representation

generality, we assume that G has n nodes, F is an L-layer GCN (Kipf & Welling, 2016), and all
the activation functions are σ(·). For each pattern Pm, the parameter set of F (A,X;W(m)) are
W(m) = {W (m,1), . . . ,W (m,L)}, where W (m,l) denotes the parameter matrix in the l-th layer.
We further assume that for each pattern Pm, the output vector representation is obtained by the
average pooling. Then we have the following theorem.

Theorem 5.1. Let Ã = A + ∆A and X̃ = X + ∆X . Suppose ∥A∥2 ≤ βA, ∥X∥F ≤ βX ,
∥W (m,l)∥2 ≤ βW for all m ∈ [M] and l ∈ [L], and σ(·) is ρ-Lipschitz continuous. Let α be
the minimum node degree of G, and ∆D := I − diag(1⊤(I + A + ∆A))

1
2 diag(1⊤A)−

1
2 . Let

β̄A = 1 + βA. Then the representation robustness of PXGL-GNN to perturbations ∆A and ∆X is
shown as

∥g̃ − g∥ ≤ 1√
n
ρLβL

W (β̄A + ∥∆A∥2)L−1(1 + α)−L
[
(β̄A + 2∥∆A∥2)∥∆X∥F + 2LβX β̄A∥∆D∥2

]
The bound reveals that PXGL-GNN is sensitive to the graph structure perturbation ∆A when L is
large and is relatively not sensitive to the feature matrix perturbation on ∆X . On the other hand,
when α, the minimum node degree, is larger, the method is more robust.

5.2 GENERALIZATION ANALYSIS

Following (Bousquet & Elisseeff, 2002; Feldman & Vondrak, 2019), we use uniform stability to
derive the generalization bound for PXGL-GNN. Let λ and W be known parameters. The super-
vised loss ℓCE in (11) is guaranteed with a uniform stability parameter η. For convenience, we let
ℓ(λ, W̄;G) := ℓCE(y, ŷ). Considering the empirical risk E [ℓ(λ, W̄;G)] := 1

N

∑N
i=1 ℓ(λ, W̄;Gi)

and true risk E[ℓ(λ, W̄;G)], we have the following high-probability generalization bound: for con-
stant c and δ ∈ (0, 1),

Pr

[
|E[ℓCE(λ, W̄;G)− E [ℓCE(λ, W̄;G)]| ≥ c

(
η log(N) log

(
N

δ

)
+

√
log(1/δ)

N

)]
≤ δ. (12)

Let D := {G1, . . . , GN} be the training data. By removing the i-th graph Gi, we get D\i =

{G1, . . . , Gi−1, Gi+1, . . . , GN}. Let λD and W̄D := {WC ,W
(m,l)
D ,∀m ∈ [M], l ∈ [L]} be the

parameters trained on D. Let λD\i and W̄D\i := {WC\i ,W
(m,l)

D\i ,∀m ∈ [M], l ∈ [L]} be the
parameters trained on D\i. We aim to find an η such that

|ℓCE(λD, W̄D;G)− ℓCE(λD\i , W̄D\i ;G)| ≤ η (13)

We have the following result for η.

Theorem 5.2. Suppose max{maxm∈[M],l∈[L] ∥W
(m,l)
D ∥2,maxm∈[M],l∈[L] ∥W

(m,l)

D\i ∥2} ≤ β̂W

and maxm∈[M],l∈[L] ∥W
(m,l)
D − W

(m,l)

D\i ∥2 ≤ β̂∆W , ∥WC − WC\i∥2 ≤ γ∆C , ∥WC\i∥2 ≤ γC .

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Suppose the fc in ℓCE (11) is a linear classifier, which is τ -Lipschitz continuous. Suppose Thus the
η for estimation error (12) and uniform stability (13) is:

η =
τ√
n
ρLβ̂L−1

W βX(1 + βA)
L(1 + α)−L

[
β̂W γ∆C + γC

(
2β̂W + Lβ̂∆W

)]
(14)

Invoking (14) into (12), we obtain the generalization error bound of our model. We see that when α
is larger and βA, βX are smaller, the generalization ability is stronger. It is worth noting that in the
proof (see (35)) of the theorem, we used an aggressive relaxation such that λ was not present in η.
By keeping λ, we can obtain

η =
τ√
n
ρLβ̂L−1

W βX(1 + βA)
L(1 + α)−L

[
β̂W γ∆C + γC

(
β̂W ∥λD − λD\i∥+ Lβ̂∆W ∥λD\i∥

)]
(15)

Since ∥λD∥1 = ∥λD\i∥1 = 1, when M is larger, ∥λD − λD\i∥ and ∥λD\i∥ are potentially smaller.
This means that when we include more graph patterns, the generalization bound of our PXGL-GNN
becomes tighter, which potentially leads to higher classification accuracy.

5.3 TIME AND SPACE COMPLEXITY

Given a dataset with N graphs (each has n nodes and e edges), we select M different patterns and
sample Q subgraphs of each pattern. First, our PXGL-EGK requires computing M kernel matrices,
of which the space complexity is O(MN2) and the time complexity is O(N2

∑M
m=1 ψi), where

ψi denotes the time complexity of the m-th graph kernel. For instance, the time complexities of
the graphlet kernel, shortest path kernel, and Weisfeiler-Lehman Subtree kernel are O(nk), O(n4),
and O(hn+ he) respectively, where k and h are some kernel-specific hyperparameters. When N is
large, the method has high time and space complexities. Regarding PXGL-GNN, suppose each rep-
resentation learning function Fm is an L-layer GCN, of which the width is linear with d. For both
supervised and unsupervised learning, suppose the batch size and the number of iterations in the
optimization are B and T respectively. Then, in supervised learning, the space complexity and time
complexity are O(BMQ(e+ nd) +MLd2 +Cd) and O(TBMQL(ed+ nd2) +NQ

∑M
m=1 ϑm)

respectively, where ϑm denotes the time complexity of generating a sample of the m-th pattern. For
instance, when the m-th pattern is graphlets with size k ∈ {3, 4, 5}, we have ϑm ≤ nuk−1 (Sher-
vashidze et al., 2009), where u denotes the maximum node degree of the graph. In unsupervised
learning, the space complexity and time complexity are O(BMQ(e+nd)+MLd2+Cd+B2) and
O(TBMQL(ed + nd2) + TB2 + NQ

∑M
m=1 ϑm) respectively. PXGL-GNN is scalable to large

graph datasets because the complexities are linear with BMQ and B2 and ϑm are controllable.

6 RELATED WORKS

Due to space limitation, we introduce previous works on explainable graph learning (XGL), graph
representation learning (GCL), and graph kernels in Appendix C.

7 EXPERIMENTS

Table 1: Statistics of Datasets

Name # of
graphs

of
classes

of
nodes

node
labels

node
attributes

MUTAG 188 2 17.9 yes no
PROTEINS 1113 2 39.1 yes yes

DD 1178 2 284.32 yes no
NCI1 4110 2 29.9 yes no

COLLAB 5000 3 74.49 no no
IMDB-B 1000 2 19.8 no no

REDDIT-B 2000 2 429.63 no no
REDDIT-M5K 4999 5 508.52 no no

We test our method on the TUdataset (Mor-
ris et al., 2020) for both supervised and unsu-
pervised learning tasks, as shown in Table 1.
Our goal is to learn explainable graph repre-
sentations. We provide the weight parameter λ
and visualize the ensemble representation g and
the pattern representation z(m). We use seven
graph patterns: paths, trees, graphlets, cycles,
cliques, wheels, and stars, sampling Q = 50
subgraphs for each. We use a 5-layer GCN for
the representation learning function F and a 3-
layer DNN with softmax for classification func-
tion fc. We repeat the experiments ten times

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

and report the average value with standard de-
viation. Due to the space limitation, the results of PXGL-EGK and other figures are shown in
Appendix F.

(a) λ

1 2 3 4 5 6 7
0.0

0.2

0.4

0.6

0.8

1.0

0.55

0.070.080.100.10
0.040.06

(b) g: ensemble
PROTEINS Class 1: 663 Graphs
PROTEINS Class 0: 450 Graphs

∑M
m=1 λmz(m)

(c) z(1): path
PROTEINS Class 1: 663 Graphs
PROTEINS Class 0: 450 Graphs

(λ1 = 0.5504)

(d) z(2): tree
PROTEINS Class 1: 663 Graphs
PROTEINS Class 0: 450 Graphs

(λ2 = 0.0746)

(e) z(3): graphlet

PROTEINS Class 1: 663 Graphs
PROTEINS Class 0: 450 Graphs

(λ3 = 0.08103)
Figure 4: t-SNE visualizations of GNNs’ pattern representations (supervised) for PROTEINS.

7.1 SUPERVISED LEARNING

We conduct supervised XGL via pattern analysis by solving optimization with the classification loss
(11). The dataset is split into 80% training, 10% validation, and 10% testing data. The weight
parameter λ, indicating each pattern’s contribution to graph representation learning, is reported in
Table 2. We also visualize the graph representation g and three pattern representations z(m) of
PROTEINS in Figure 4. Results show the paths pattern is most important for learning g, and the
ensemble representation g outperforms single pattern representations z(m).

Table 2: λ of supervised PXGL-GNN. The largest value is bold and the second largest value is blue.

Pattern MUTAG PROTEINS DD NCI1 COLLAB IMDB-B REDDIT-B REDDIT-M5K
paths 0.095± 0.014 0.550± 0.070 0.093± 0.012 0.022± 0.002 0.587± 0.065 0.145± 0.018 0.131± 0.027 0.027± 0.003
trees 0.046± 0.005 0.074± 0.009 0.054± 0.006 0.063± 0.008 0.105± 0.013 0.022± 0.003 0.055± 0.007 0.025± 0.003

graphlets 0.062± 0.008 0.081± 0.011 0.125± 0.015 0.101± 0.013 0.063± 0.008 0.084± 0.011 0.026± 0.003 0.054± 0.007
cycles 0.654± 0.085 0.099± 0.013 0.094± 0.012 0.176± 0.022 0.022± 0.003 0.123± 0.016 0.039± 0.005 0.037± 0.005
cliques 0.082± 0.011 0.098± 0.012 0.572± 0.073 0.574± 0.075 0.134± 0.017 0.453± 0.054 0.279± 0.069 0.256± 0.067
wheels 0.026± 0.003 0.039± 0.005 0.051± 0.007 0.012± 0.002 0.068± 0.009 0.037± 0.004 0.036± 0.005 0.023± 0.003
stars 0.035± 0.005 0.056± 0.007 0.011± 0.002 0.052± 0.007 0.021± 0.003 0.136± 0.017 0.447± 0.006 0.578± 0.033

We compare our method with classical GNNs including GIN (Xu et al., 2018), DiffPool (Ying et al.,
2018), DGCNN (Zhang et al., 2018), GRAPHSAGE (Hamilton et al., 2017), subgraph-based GNNs
including SubGNN (Kriege & Mutzel, 2012), SAN (Zhao et al., 2018), SAGNN (Zeng et al., 2023a),
and recent methods including S2GAE (Tan et al., 2023) and ICL (Zhao et al., 2024). The accuracies
in Table 3 show that our method performs the best.

Table 3: Graph Classification Accuracy (%). The best accuracy is bold and the second best is blue.

Method MUTAG PROTEINS DD NCI1 COLLAB IMDB-B REDDIT-B REDDIT-M5K
GIN 84.53 ± 2.38 73.38 ±2.16 76.38 ±1.58 73.36 ±1.78 75.83 ± 1.29 72.52 ± 1.62 83.27 ± 1.30 52.48 ± 1.57

DiffPool 86.72 ± 1.95 76.07 ±1.62 77.42 ±2.14 75.42 ±2.16 78.77 ± 1.36 73.55 ± 2.14 84.16 ± 1.28 51.39 ± 1.48
DGCNN 84.29 ± 1.16 75.53 ±2.14 76.57 ±1.09 74.81 ±1.53 77.59 ± 2.24 72.19 ± 1.97 86.33 ± 2.29 53.18 ± 2.41

GRAPHSAGE 86.35 ± 1.31 74.21 ±1.85 79.24 ±2.25 77.93 ±2.04 76.37 ± 2.11 73.86 ± 2.17 85.59 ± 1.92 51.65 ± 2.55
SubGNN 87.52 ± 2.37 76.38 ±1.57 82.51 ±1.67 82.58 ±1.79 81.26 ± 1.53 71.58 ± 1.20 88.47 ± 1.83 53.27 ± 1.93

SAN 92.65 ± 1.53 75.62 ±2.39 81.36 ±2.10 83.07 ±1.54 82.73 ± 1.92 75.27 ± 1.43 90.38 ± 1.54 55.49 ± 1.75
SAGNN 93.24 ± 2.51 75.61 ±2.28 84.12 ±1.73 81.29 ±1.22 79.94 ± 1.83 74.53 ± 2.57 89.57 ± 2.13 54.11 ± 1.22

ICL 91.34 ± 2.19 75.44 ±1.26 82.77 ±1.42 83.45 ±1.78 81.45 ± 1.21 73.29 ± 1.46 90.13 ± 1.40 56.21 ± 1.35
S2GAE 89.27 ± 1.53 76.47 ±1.12 84.30 ±1.77 82.37 ±2.24 82.35 ± 2.34 75.77 ± 1.72 90.21 ± 1.52 54.53 ± 2.17

PXGL-GNN 94.87 ± 2.26 78.23 ±2.46 86.54 ±1.95 85.78 ±2.07 83.96 ± 1.59 77.35 ± 2.32 91.84 ± 1.69 57.36 ± 2.14

7.2 UNSUPERVISED LEARNING

We conduct unsupervised XGL via pattern analysis by solving optimization (with the KL divergence
loss (10). The weight parameter λ for XGL is reported in Table 4. The visualization of unsupervised
XGL results are in Appendix F.4. Results show that the ensemble representation g outperforms
single pattern representations z(m).

For clustering performance, we use clustering accuracy (ACC) and Normalized Mutual Informa-
tion (NMI). Baselines include four kernels: Random walk kernel (RW) (Borgwardt et al., 2005),

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 4: λ of unsupervised PXGL-GNN. The largest value is bold and the second largest value is
blue.

Pattern MUTAG PROTEINS DD NCI1 COLLAB IMDB-B REDDIT-B REDDIT-M5K
paths 0.085± 0.021 0.463± 0.057 0.083± 0.010 0.023± 0.001 0.478± 0.046 0.153± 0.018 0.101± 0.007 0.084± 0.006
trees 0.027± 0.005 0.082± 0.008 0.069± 0.007 0.042± 0.002 0.127± 0.017 0.082± 0.009 0.060± 0.003 0.036± 0.002

graphlets 0.074± 0.009 0.085± 0.010 0.172± 0.020 0.105± 0.012 0.055± 0.006 0.098± 0.011 0.025± 0.002 0.055± 0.005
cycles 0.546± 0.065 0.095± 0.011 0.108± 0.013 0.276± 0.033 0.022± 0.002 0.124± 0.014 0.043± 0.005 0.028± 0.003
cliques 0.197± 0.023 0.207± 0.025 0.527± 0.063 0.482± 0.058 0.243± 0.029 0.423± 0.051 0.212± 0.061 0.157± 0.067
wheels 0.032± 0.003 0.036± 0.004 0.018± 0.002 0.013± 0.001 0.044± 0.005 0.035± 0.004 0.036± 0.003 0.025± 0.013
stars 0.039± 0.004 0.032± 0.002 0.023± 0.003 0.059± 0.007 0.031± 0.001 0.085± 0.010 0.455± 0.019 0.585± 0.022

Sub-tree kernels (Da San Martino et al., 2012; Smola & Vishwanathan, 2002), Graphlet kernels
(Pržulj, 2007), Weisfeiler-Lehman (WL) kernels (Kriege & Mutzel, 2012); and three unsupervised
graph representation learning methods with Gaussian kernel in (10): InfoGraph (Sun et al., 2019),
GCL (You et al., 2020), GraphACL (Luo et al., 2023). The results are in Table 5. Our method
outperformed all competitors in almost all cases.

Table 5: ACC and NMI of Graph Clustering. The best ACC is bold and the the second best ACC is
blue. The best NMI is green and the second best NMI is with ∗.

Method Metric MUTAG PROTEINS DD NCI1 COLLAB IMDB-B REDDIT-B REDDIT-M5K
RW ACC 0.724 ±0.023 0.718 ± 0.019 0.529 ± 0.017 0.519 ±0.025 0.596 ±0.019 0.669 ±0.028 ≥ 1 day ≥ 1 day

NMI 0.283 ±0.008 0.226 ± 0.008 0.207 ± 0.003 0.218 ±0.009 0.356∗ ±0.002 0.295 ±0.006 ≥ 1 day ≥ 1 day
sub-tree ACC 0.716 ±0.017 0.683 ± 0.023 0.563 ± 0.026 0.532 ±0.016 0.533 ±0.021 0.627 ±0.022 ≥ 1 day ≥ 1 day

NMI 0.217 ±0.005 0.167 ± 0.004 0.225 ± 0.005 0.295 ±0.004 0.198 ±0.005 0.254 ±0.007 ≥ 1 day ≥ 1 day
Graphlet ACC 0.727 ±0.020 0.654 ± 0.017 0.581 ± 0.014 0.526 ±0.032 0.525 ±0.026 0.617 ±0.019 ≥ 1 day ≥ 1 day

NMI 0.225 ±0.003 0.131 ± 0.009 0.320 ± 0.009 0.273 ±0.005 0.217 ±0.003 0.210 ±0.004 ≥ 1 day ≥ 1 day
WL ACC 0.695 ±0.031 0.647 ± 0.032 0.517 ± 0.020 0.517 ±0.028 0.569 ±0.017 0.635 ±0.017 ≥ 1 day ≥ 1 day

NMI 0.185 ±0.007 0.135 ± 0.001 0.192 ± 0.008 0.234 ±0.007 0.253 ±0.007 0.261 ±0.003 ≥ 1 day ≥ 1 day
InfoGraph ACC 0.729 ±0.021 0.716 ± 0.019 0.549 ± 0.035 0.535 ±0.012 0.597 ±0.020 0.624 ±0.016 0.582 ±0.023 0.597 ±0.019

NMI 0.236 ±0.005 0.231 ± 0.003 0.266 ± 0.004 0.263 ±0.005 0.311 ±0.008 0.198 ±0.005 0.206 ±0.006 0.286∗ ±0.006
GCL ACC 0.761 ±0.014 0.723 ± 0.025 0.563 ± 0.016 0.558 ±0.010 0.582 ±0.015 0.653 ±0.024 0.573 ±0.015 0.582 ±0.017

NMI 0.337 ±0.003 0.258 ± 0.002 0.289 ± 0.009 0.341 ±0.002 0.293 ± 0.009 0.253 ±0.008 0.195 ±0.005 0.266 ±0.005
GraphACL ACC 0.742 ±0.023 0.731 ± 0.027 0.572 ± 0.027 0.522 ±0.013 0.554 ±0.013 0.679 ±0.013 0.594 ±0.014 0.567 ±0.023

NMI 0.347∗ ±0.007 0.274∗ ± 0.008 0.312 ± 0.003 0.260 ±0.007 0.236 ±0.006 0.315∗ ±0.007 0.215∗ ± 0.006 0.238 ± 0.009
PXGL-GNN ACC 0.778 ±0.029 0.746 ± 0.019 0.576 ± 0.035 0.564 ±0.013 0.612 ±0.014 0.686 ±0.027 0.616 ±0.017 0.608 ±0.023

NMI 0.352 ±0.006 0.292 ± 0.010 0.317∗ ± 0.003 0.327∗ ±0.008 0.372 ±0.007 0.324 ±0.011 0.224 ± 0.009 0.295 ±0.012

8 CONCLUSION

This paper studied the explainability of graph representations. We proposed two strategies to learn
and explain effective graph representations. The first one is based on graph ensemble kernel and
the second one is based GNNs that learns from different graph patterns such as path, tree, etc. We
also provide some theoretical analysis for the proposed method, including robustness analysis and
generalization bound. The experiments showed that our method not only provides higher accuracy
of classification and clustering than its competitors but also yields explainable results.

REFERENCES

Amina Adadi and Mohammed Berrada. Peeking inside the black-box: a survey on explainable
artificial intelligence (xai). IEEE access, 6:52138–52160, 2018.

Noga Alon, Phuong Dao, Iman Hajirasouliha, Fereydoun Hormozdiari, and S Cenk Sahinalp.
Biomolecular network motif counting and discovery by color coding. Bioinformatics, 24(13):
i241–i249, 2008.

Alireza Amouzad, Zahra Dehghanian, Saeed Saravani, Maryam Amirmazlaghani, and Behnam
Roshanfekr. Graph isomorphism u-net. Expert Systems with Applications, 236:121280, 2024.

Plamen P Angelov, Eduardo A Soares, Richard Jiang, Nicholas I Arnold, and Peter M Atkinson.
Explainable artificial intelligence: an analytical review. Wiley Interdisciplinary Reviews: Data
Mining and Knowledge Discovery, 11(5):e1424, 2021.

Steve Azzolin, Antonio Longa, Pietro Barbiero, Pietro Liò, and Andrea Passerini. Global explain-
ability of gnns via logic combination of learned concepts. arXiv preprint arXiv:2210.07147,
2022.

Karsten M Borgwardt and Hans-Peter Kriegel. Shortest-path kernels on graphs. In Fifth IEEE
international conference on data mining (ICDM’05), pp. 8–pp. IEEE, 2005.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Karsten M Borgwardt, Cheng Soon Ong, Stefan Schönauer, SVN Vishwanathan, Alex J Smola, and
Hans-Peter Kriegel. Protein function prediction via graph kernels. Bioinformatics, 21(suppl 1):
i47–i56, 2005.

Olivier Bousquet and André Elisseeff. Stability and generalization. The Journal of Machine Learn-
ing Research, 2:499–526, 2002.

Ines Chami, Sami Abu-El-Haija, Bryan Perozzi, Christopher Ré, and Kevin Murphy. Machine learn-
ing on graphs: A model and comprehensive taxonomy. Journal of Machine Learning Research,
23(89):1–64, 2022.

Zhengdao Chen, Lei Chen, Soledad Villar, and Joan Bruna. Can graph neural networks count
substructures? Advances in neural information processing systems, 33:10383–10395, 2020.

Giovanni Da San Martino, Nicolo Navarin, and Alessandro Sperduti. A tree-based kernel for graphs.
In Proceedings of the 2012 SIAM International Conference on Data Mining, pp. 975–986. SIAM,
2012.

Kaize Ding, Yancheng Wang, Yingzhen Yang, and Huan Liu. Eliciting structural and semantic
global knowledge in unsupervised graph contrastive learning. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 37, pp. 7378–7386, 2023.

Filip Karlo Došilović, Mario Brčić, and Nikica Hlupić. Explainable artificial intelligence: A survey.
In 2018 41st International convention on information and communication technology, electronics
and microelectronics (MIPRO), pp. 0210–0215. IEEE, 2018.

Jingcan Duan, Siwei Wang, Pei Zhang, En Zhu, Jingtao Hu, Hu Jin, Yue Liu, and Zhibin Dong.
Graph anomaly detection via multi-scale contrastive learning networks with augmented view. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 37, pp. 7459–7467, 2023.

Vitaly Feldman and Jan Vondrak. High probability generalization bounds for uniformly stable al-
gorithms with nearly optimal rate. In Conference on Learning Theory, pp. 1270–1279. PMLR,
2019.

Aasa Feragen, Niklas Kasenburg, Jens Petersen, Marleen de Bruijne, and Karsten Borgwardt. Scal-
able kernels for graphs with continuous attributes. Advances in neural information processing
systems, 26, 2013.

Jacob Fox, Tim Roughgarden, C Seshadhri, Fan Wei, and Nicole Wein. Finding cliques in social
networks: A new distribution-free model. SIAM journal on computing, 49(2):448–464, 2020.

Fabrizio Frasca, Beatrice Bevilacqua, Michael Bronstein, and Haggai Maron. Understanding and
extending subgraph gnns by rethinking their symmetries. Advances in Neural Information Pro-
cessing Systems, 35:31376–31390, 2022.

Thomas Gärtner, Peter Flach, and Stefan Wrobel. On graph kernels: Hardness results and efficient
alternatives. In Learning theory and kernel machines, pp. 129–143. Springer, 2003.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In International conference on machine learning, pp.
1263–1272. PMLR, 2017.

Michelle Girvan and Mark EJ Newman. Community structure in social and biological networks.
Proceedings of the national academy of sciences, 99(12):7821–7826, 2002.

Lorenzo Giusti, Teodora Reu, Francesco Ceccarelli, Cristian Bodnar, and Pietro Liò. Cin++: En-
hancing topological message passing. arXiv preprint arXiv:2306.03561, 2023.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
Advances in neural information processing systems, 30, 2017.

William L Hamilton. Graph representation learning. Synthesis Lectures on Artifical Intelligence and
Machine Learning, 14(3):1–159, 2020.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Vikas Hassija, Vinay Chamola, Atmesh Mahapatra, Abhinandan Singal, Divyansh Goel, Kaizhu
Huang, Simone Scardapane, Indro Spinelli, Mufti Mahmud, and Amir Hussain. Interpreting
black-box models: a review on explainable artificial intelligence. Cognitive Computation, 16(1):
45–74, 2024.

Shohei Hido and Hisashi Kashima. A linear-time graph kernel. In 2009 Ninth IEEE International
Conference on Data Mining, pp. 179–188. IEEE, 2009.

Ningyuan Teresa Huang and Soledad Villar. A short tutorial on the weisfeiler-lehman test and its
variants. In ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pp. 8533–8537. IEEE, 2021.

Zexi Huang, Mert Kosan, Sourav Medya, Sayan Ranu, and Ambuj Singh. Global counterfactual ex-
plainer for graph neural networks. In Proceedings of the Sixteenth ACM International Conference
on Web Search and Data Mining, pp. 141–149, 2023.

Suk-Geun Hwang. Cauchy’s interlace theorem for eigenvalues of hermitian matrices. The American
mathematical monthly, 111(2):157–159, 2004.

Chuntao Jiang, Frans Coenen, and Michele Zito. Finding frequent subgraphs in longitudinal social
network data using a weighted graph mining approach. In Advanced Data Mining and Appli-
cations: 6th International Conference, ADMA 2010, Chongqing, China, November 19-21, 2010,
Proceedings, Part I 6, pp. 405–416. Springer, 2010.

Hyunju Kang, Geonhee Han, and Hogun Park. Unr-explainer: Counterfactual explanations for
unsupervised node representation learning models. In The Twelfth International Conference on
Learning Representations, 2024.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. arXiv preprint arXiv:1609.02907, 2016.

Risi Kondor and Horace Pan. The multiscale laplacian graph kernel. Advances in neural information
processing systems, 29, 2016.

Mert Kosan, Samidha Verma, Burouj Armgaan, Khushbu Pahwa, Ambuj Singh, Sourav Medya, and
Sayan Ranu. Gnnx-bench: Unravelling the utility of perturbation-based gnn explainers through
in-depth benchmarking. arXiv preprint arXiv:2310.01794, 2023.

Nils Kriege and Petra Mutzel. Subgraph matching kernels for attributed graphs. arXiv preprint
arXiv:1206.6483, 2012.

Nils M Kriege, Fredrik D Johansson, and Christopher Morris. A survey on graph kernels. Applied
Network Science, 5:1–42, 2020.

O-Joun Lee et al. Transitivity-preserving graph representation learning for bridging local connec-
tivity and role-based similarity. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 38, pp. 12456–12465, 2024.

Dongsheng Luo, Wei Cheng, Dongkuan Xu, Wenchao Yu, Bo Zong, Haifeng Chen, and Xiang
Zhang. Parameterized explainer for graph neural network. Advances in neural information pro-
cessing systems, 33:19620–19631, 2020.

Xiao Luo, Wei Ju, Yiyang Gu, Zhengyang Mao, Luchen Liu, Yuhui Yuan, and Ming Zhang. Self-
supervised graph-level representation learning with adversarial contrastive learning. ACM Trans-
actions on Knowledge Discovery from Data, 2023.

Haggai Maron, Ethan Fetaya, Nimrod Segol, and Yaron Lipman. On the universality of invariant
networks. In International conference on machine learning, pp. 4363–4371. PMLR, 2019.

Harry L Morgan. The generation of a unique machine description for chemical structures-a tech-
nique developed at chemical abstracts service. Journal of chemical documentation, 5(2):107–113,
1965.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Christopher Morris, Nils M. Kriege, Franka Bause, Kristian Kersting, Petra Mutzel, and Marion
Neumann. Tudataset: A collection of benchmark datasets for learning with graphs. In ICML
2020 Workshop on Graph Representation Learning and Beyond (GRL+ 2020), 2020. URL www.
graphlearning.io.

Leslie O’Bray, Max Horn, Bastian Rieck, and Karsten Borgwardt. Evaluation metrics for graph
generative models: Problems, pitfalls, and practical solutions. arXiv preprint arXiv:2106.01098,
2021.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predic-
tive coding. arXiv preprint arXiv:1807.03748, 2018.

Noel M O’Boyle and Roger A Sayle. Comparing structural fingerprints using a literature-based
similarity benchmark. Journal of cheminformatics, 8:1–14, 2016.

Nataša Pržulj. Biological network comparison using graphlet degree distribution. Bioinformatics,
23(2):e177–e183, 2007.

Syed Asad Rahman, Matthew Bashton, Gemma L Holliday, Rainer Schrader, and Janet M Thornton.
Small molecule subgraph detector (smsd) toolkit. Journal of cheminformatics, 1:1–13, 2009.

Ladislav Rampášek, Michael Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, and Do-
minique Beaini. Recipe for a general, powerful, scalable graph transformer. Advances in Neural
Information Processing Systems, 35:14501–14515, 2022.

Caihua Shan, Yifei Shen, Yao Zhang, Xiang Li, and Dongsheng Li. Reinforcement learning en-
hanced explainer for graph neural networks. Advances in Neural Information Processing Systems,
34:22523–22533, 2021.

Xiao Shen, Dewang Sun, Shirui Pan, Xi Zhou, and Laurence T Yang. Neighbor contrastive learning
on learnable graph augmentation. In Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 37, pp. 9782–9791, 2023.

Nino Shervashidze, SVN Vishwanathan, Tobias Petri, Kurt Mehlhorn, and Karsten Borgwardt. Ef-
ficient graphlet kernels for large graph comparison. In Artificial intelligence and statistics, pp.
488–495. PMLR, 2009.

Qinfeng Shi, James Petterson, Gideon Dror, John Langford, Alex Smola, and SVN Vishwanathan.
Hash kernels for structured data. Journal of Machine Learning Research, 10(11), 2009.

Giannis Siglidis, Giannis Nikolentzos, Stratis Limnios, Christos Giatsidis, Konstantinos Skianis,
and Michalis Vazirgiannis. Grakel: A graph kernel library in python. J. Mach. Learn. Res., 21
(54):1–5, 2020.

Geri Skenderi, Hang Li, Jiliang Tang, and Marco Cristani. Graph-level representation learning with
joint-embedding predictive architectures. arXiv preprint arXiv:2309.16014, 2023.

Alex Smola and SVN Vishwanathan. Fast kernels for string and tree matching. Advances in neural
information processing systems, 15, 2002.

Fan-Yun Sun, Jordan Hoffmann, Vikas Verma, and Jian Tang. Infograph: Unsupervised and
semi-supervised graph-level representation learning via mutual information maximization. arXiv
preprint arXiv:1908.01000, 2019.

Susheel Suresh, Pan Li, Cong Hao, and Jennifer Neville. Adversarial graph augmentation to im-
prove graph contrastive learning. Advances in Neural Information Processing Systems, 34:15920–
15933, 2021.

Qiaoyu Tan, Ninghao Liu, Xiao Huang, Soo-Hyun Choi, Li Li, Rui Chen, and Xia Hu. S2gae: self-
supervised graph autoencoders are generalizable learners with graph masking. In Proceedings of
the sixteenth ACM international conference on web search and data mining, pp. 787–795, 2023.

Quang Truong and Peter Chin. Weisfeiler and lehman go paths: Learning topological features via
path complexes. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pp.
15382–15391, 2024.

13

www.graphlearning.io
www.graphlearning.io

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

Cédric Vincent-Cuaz, Rémi Flamary, Marco Corneli, Titouan Vayer, and Nicolas Courty. Template
based graph neural network with optimal transport distances. Advances in Neural Information
Processing Systems, 35:11800–11814, 2022.

Pengyang Wang, Yanjie Fu, Yuanchun Zhou, Kunpeng Liu, Xiaolin Li, and Kien A Hua. Exploiting
mutual information for substructure-aware graph representation learning. In IJCAI, pp. 3415–
3421, 2020.

Xin Wang, Shuyi Fan, Kun Kuang, and Wenwu Zhu. Explainable automated graph representation
learning with hyperparameter importance. In International Conference on Machine Learning, pp.
10727–10737. PMLR, 2021.

Chunyu Wei, Yu Wang, Bing Bai, Kai Ni, David Brady, and Lu Fang. Boosting graph contrastive
learning via graph contrastive saliency. In International conference on machine learning, pp.
36839–36855. PMLR, 2023.

Junyuan Xie, Ross Girshick, and Ali Farhadi. Unsupervised deep embedding for clustering analysis.
In International conference on machine learning, pp. 478–487. PMLR, 2016.

Dongkuan Xu, Wei Cheng, Dongsheng Luo, Haifeng Chen, and Xiang Zhang. Infogcl: Information-
aware graph contrastive learning. Advances in Neural Information Processing Systems, 34:30414–
30425, 2021.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? arXiv preprint arXiv:1810.00826, 2018.

Yihang Yin, Qingzhong Wang, Siyu Huang, Haoyi Xiong, and Xiang Zhang. Autogcl: Automated
graph contrastive learning via learnable view generators. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 36, pp. 8892–8900, 2022.

Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren, Will Hamilton, and Jure Leskovec. Hier-
archical graph representation learning with differentiable pooling. Advances in neural information
processing systems, 31, 2018.

Zhitao Ying, Dylan Bourgeois, Jiaxuan You, Marinka Zitnik, and Jure Leskovec. Gnnexplainer:
Generating explanations for graph neural networks. Advances in neural information processing
systems, 32, 2019.

Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and Yang Shen. Graph
contrastive learning with augmentations. Advances in Neural Information Processing Systems,
33:5812–5823, 2020.

Yuning You, Tianlong Chen, Yang Shen, and Zhangyang Wang. Graph contrastive learning auto-
mated. In International Conference on Machine Learning, pp. 12121–12132. PMLR, 2021.

Zhaoning Yu and Hongyang Gao. Motifexplainer: a motif-based graph neural network explainer.
arXiv preprint arXiv:2202.00519, 2022.

Hao Yuan, Jiliang Tang, Xia Hu, and Shuiwang Ji. Xgnn: Towards model-level explanations of
graph neural networks. In Proceedings of the 26th ACM SIGKDD international conference on
knowledge discovery & data mining, pp. 430–438, 2020.

Hao Yuan, Haiyang Yu, Jie Wang, Kang Li, and Shuiwang Ji. On explainability of graph neural
networks via subgraph explorations. In International conference on machine learning, pp. 12241–
12252. PMLR, 2021.

Dingyi Zeng, Wanlong Liu, Wenyu Chen, Li Zhou, Malu Zhang, and Hong Qu. Substructure aware
graph neural networks. In Proceedings of the AAAI Conference on Artificial Intelligence, vol-
ume 37, pp. 11129–11137, 2023a.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Liang Zeng, Lanqing Li, Ziqi Gao, Peilin Zhao, and Jian Li. Imgcl: Revisiting graph contrastive
learning on imbalanced node classification. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 37, pp. 11138–11146, 2023b.

Jiaxing Zhang, Dongsheng Luo, and Hua Wei. Mixupexplainer: Generalizing explanations for graph
neural networks with data augmentation. In Proceedings of the 29th ACM SIGKDD Conference
on Knowledge Discovery and Data Mining, pp. 3286–3296, 2023a.

Muhan Zhang, Zhicheng Cui, Marion Neumann, and Yixin Chen. An end-to-end deep learning
architecture for graph classification. In Proceedings of the AAAI conference on artificial intelli-
gence, volume 32, 2018.

Yifei Zhang, Hao Zhu, Zixing Song, Piotr Koniusz, and Irwin King. Spectral feature augmentation
for graph contrastive learning and beyond. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 37, pp. 11289–11297, 2023b.

Xiaohan Zhao, Bo Zong, Ziyu Guan, Kai Zhang, and Wei Zhao. Substructure assembling network
for graph classification. In Proceedings of the AAAI Conference on Artificial Intelligence, vol-
ume 32, 2018.

Zhe Zhao, Pengkun Wang, Haibin Wen, Yudong Zhang, Zhengyang Zhou, and Yang Wang. A
twist for graph classification: Optimizing causal information flow in graph neural networks. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pp. 17042–17050,
2024.

A APPENDIX

You may include other additional sections here.

B MATH DEFINITIONS OF PATTERNS

In our work, graph patterns refer to as subgraphs with practical meanings. Let G = (V,E) be a
graph. A subgraph S = (VS , ES) of G is defined such that VS ⊆ V and ES ⊆ E ∩ (VS × VS). The
math definitions of graph patterns are as follows:

• Paths: S is a path if there exists a sequence of distinct vertices v1, . . . , vk ∈ VS such that
ES = ((vi, vi+1) : i = 1, . . . , k − 1).

• Trees: S is a tree if it is connected and contains no cycles, i.e., it is acyclic and |ES | =
|VS | − 1.

• Graphlets: S is a graphlet if it is a small connected induced subgraph of G, typically
consisting of 2 to 5 vertices.

• Cycles: S is a cycle if there exists a sequence of distinct vertices v1, . . . , vk ∈ VS such that
ES = ((vi, vi+1) : i = 1, . . . , k − 1) ∪ ((vk, v1)).

• Cliques: S is a clique if every two distinct vertices in VS are adjacent, thusES = ((vi, vj) :
vi, vj ∈ VS , i ̸= j).

• Wheels: S is a wheel if it consists of a cycle with vertices v1, . . . , vk−1 and an additional
central vertex vk such that vk is connected to all vertices of the cycle.

• Stars: S is a star if it consists of one central vertex vc and several leaf vertices
v1, . . . , vk−1, where each leaf vertex is only connected to vc. Thus, ES = ((vc, vi) :
i = 1, . . . , k − 1).

C RELATED WORKS

In this section, we introduce previous works on explainable graph learning (XGL), graph represen-
tation learning (GRL), and graph kernels.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

C.1 EXPLAINABLE GRAPH LEARNING (XGL)

Explainable artificial intelligence (XAI) is a rapidly growing area in the AI community (Došilović
et al., 2018; Adadi & Berrada, 2018; Angelov et al., 2021; Hassija et al., 2024). Explainable graph
learning (XGL) (Kosan et al., 2023) can be roughly classified into two categories: model-level
methods and instance-level methods.

Model-level Model-level or global explanations aim to understand the overall behavior of a model
by identifying patterns in its predictions. For example, XGNN(Yuan et al., 2020) trains a graph
generator to create graph patterns that maximize a certain prediction, providing high-level insights
into GNN behavior. GLG-Explainer(Azzolin et al., 2022) combines local explanations into a logi-
cal formula over graphical concepts, offering human-interpretable global explanations aligned with
ground-truth or domain knowledge. GCFExplainer(Huang et al., 2023) uses global counterfactual
reasoning to find representative counterfactual graphs, providing a summary of global explanations
through vertex-reinforced random walks on an edit map of graphs.

Instance-level Instance-level methods offer explanations tailored to specific predictions, focusing
on why particular instances are classified in a certain manner. For instance, GNNExplainer (Ying
et al., 2019) identifies a compact subgraph structure and a small subset of node features crucial for
a GNN’s prediction. PGExplainer (Luo et al., 2020) trains a graph generator to incorporate global
information and uses a deep neural network (DNN) to parameterize the explanation generation pro-
cess. SubgraphX (Yuan et al., 2021) efficiently explores different subgraphs using Monte Carlo tree
search to explain predictions. RG-Explainer (Shan et al., 2021) constructs a connected explanatory
subgraph by sequentially adding nodes, consistent with the message passing scheme. MixupEx-
plainer (Zhang et al., 2023a) introduces a general form of Graph Information Bottleneck (GIB) to
address distribution shifting issues in post-hoc graph explanation. AutoGR (Wang et al., 2021) in-
troduces an explainable AutoML approach for graph representation learning. UNR-Explainer (Kang
et al., 2024) identifies the top-k most important nodes in a graph to determine the most significant
subgraph. It is a classic instance-level explainable graph learning method focused on node rep-
resentation. However, this task is entirely different from our approach, as it addresses node-level
representation rather than representation-level explainability. For this reason, we did not include a
comparison.

C.2 GRAPH REPRESENTATION LEARNING

Graph representation learning is crucial for transforming complex graphs into vectors, particularly
for tasks like classification. The methods for graph representation learning are mainly classified into
two categories: supervised and unsupervised learning.

Supervised Representation Learning Most GNNs can be used in supervised graph represen-
tation learning tasks by aggregating all the node embeddings into a graph representation using a
readout function (Hamilton, 2020; Chami et al., 2022). Besides traditional GNNs like GCN (Kipf
& Welling, 2016), GIN (Xu et al., 2018), and GAT (Veličković et al., 2017), recent works include:
Template-based Fused Gromov-Wasserstein (FGW) (Vincent-Cuaz et al., 2022) computes a vec-
tor of FGW distances to learnable graph templates, acting as an alternative to global pooling lay-
ers. Path Isomorphism Network (PIN) (Truong & Chin, 2024) introduces a graph isomorphism test
and a topological message-passing scheme operating on path complexes. Graph U-Net (Amouzad
et al., 2024) proposes GIUNet for graph classification, combining node features and graph struc-
ture information using a pqPooling layer. Unified Graph Transformer Networks (UGT) (Lee et al.,
2024) integrate local and global structural information into fixed-length vector representations us-
ing self-attention. CIN++ (Giusti et al., 2023) enhances topological message passing to account for
higher-order and long-range interactions, achieving state-of-the-art results. Graph Joint-Embedding
Predictive Architectures (Graph-JEPA) (Skenderi et al., 2023) use masked modeling to learn em-
beddings for subgraphs and predict their coordinates on the unit hyperbola in the 2D plane.

Unsupervised Representation Learning Unsupervised methods aim to learn graph representa-
tions without labeled data. Notable methodologies include: InfoGraph (Sun et al., 2019) emphasizes
mutual information between graph-level and node-level representations. Graph Contrastive Learn-

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

ing techniques (You et al., 2020; Suresh et al., 2021; You et al., 2021) enhance graph representations
through diverse augmentation strategies. AutoGCL (Yin et al., 2022) introduces learnable graph
view generators. GraphACL (Luo et al., 2023) adopts a novel self-supervised approach. InfoGCL
(Xu et al., 2021) and SFA (Zhang et al., 2023b) focus on information transfer and feature augmen-
tation in contrastive learning. Techniques like GCS (Wei et al., 2023), NCLA (Shen et al., 2023),
S3-CL (Ding et al., 2023), and ImGCL (Zeng et al., 2023b) refine graph augmentation and learn-
ing methods. GRADATE (Duan et al., 2023) integrates subgraph contrast into multi-scale learning
networks.

GNNs using Subgraphs and Substructures Our pattern analysis method samples subgraphs
from different graph patterns to conduct explainable graph representation learning. The key novelty
and contribution of our paper is that graph pattern analysis provides explainability for representa-
tions. We discuss other GNN methods based on subgraphs and substructures here: Subgraph Neural
Networks (SubGNN) (Kriege & Mutzel, 2012) learn disentangled subgraph representations using
a novel subgraph routing mechanism, but they sample subgraphs randomly, lacking explainability.
Substructure Aware Graph Neural Networks (SAGNN) (Zeng et al., 2023a) use cut subgraphs and
return probability to capture structural information but focus on expressiveness rather than explain-
ability. Mutual Information (MI) Induced Substructure-aware GRL (Wang et al., 2020) maximizes
MI between original and learned representations at both node and graph levels but does not pro-
vide explainable representation learning. Substructure Assembling Network (SAN) (Zhao et al.,
2018) hierarchically assembles graph components using an RNN variant but lacks explainability in
representation learning.

Several works focus on analyzing the expressiveness of methods by their ability to count substruc-
tures, but they do not provide explainable representation learning. For example: (Chen et al., 2020)
analyze the expressiveness of MPNNs (Gilmer et al., 2017) and 2nd-order Invariant Graph Networks
(2-IGNs) (Maron et al., 2019) based on their ability to count specific subgraphs, highlighting tasks
that are challenging for classical GNN architectures but not focusing on explainability. (Frasca et al.,
2022) compare the expressiveness of SubGNN (Kriege & Mutzel, 2012) and 2-IGNs (Maron et al.,
2019) using symmetry analysis, establishing a link between Subgraph GNNs and Invariant Graph
Networks.

C.3 GRAPH KERNELS

Graph kernels evaluate the similarity between two graphs. Over the past decades, numerous graph
kernels have been proposed (Siglidis et al., 2020). We classify them into two categories: pattern
counting kernels and non-pattern counting kernels.

Pattern Counting Kernels Pattern counting kernels compare specific substructures within graphs
to evaluate similarity (Kriege et al., 2020). For examples, Random walk kernels (Borgwardt et al.,
2005; Gärtner et al., 2003) measure graph similarity by counting common random walks between
graphs. Shortest-path kernels(Borgwardt & Kriegel, 2005) compare graphs using the shortest dis-
tance matrix generated by the Floyd-Warshall algorithm, based on edge values and node labels.
Sub-tree kernels (Da San Martino et al., 2012; Smola & Vishwanathan, 2002) decompose graphs
into ordered Directed Acyclic Graphs (DAGs) and use tree kernels extended to DAGs. Graphlet
kernels (Pržulj, 2007) count small connected non-isomorphic subgraphs (graphlets) within graphs
and compare their distributions. Weisfeiler-Lehman subtree kernels (Kriege & Mutzel, 2012) use
small subgraphs, like graphlets, to compare graphs, allowing flexibility to compare vertex and edge
attributes with arbitrary kernel functions.

Non-pattern Counting Kernels Non-pattern counting kernels evaluate graph similarity without
relying on specific substructure counts. For examples, Neighborhood hash kernel (Hido & Kashima,
2009) use binary arrays to represent node labels and logical operations on connected node labels.
This kernel has linear time complexity. GraphHopper kernel (Feragen et al., 2013) compare shortest
paths between node pairs using kernels on nodes encountered while hopping along shortest paths.
Graph hash kernel (Shi et al., 2009) use hashing for efficient kernel computation, suitable for data
streams and sparse feature spaces, with deviation bounds from the exact kernel matrix. Multiscale
Laplacian Graph (MLG) kernel (Kondor & Pan, 2016) account for structure at different scales using

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Feature Space Laplacian Graph (FLG) kernels, applied recursively to subgraphs. They introduce a
randomized projection procedure similar to the Nystrom method for RKHS operators.

D PROOF FOR ROBUSTNESS ANALYSIS

Let ∆A and ∆X be some perturbations on adjacency matrix and node attributes, then the perturbed
graph is denoted as G̃ = (A+∆A,X +∆X). Let g be the graph representation of G and g̃ be the
graph representation of G̃. The robustness analysis is to find the upper bound of ∥g̃ − g∥.

Assumptions and Notations: Let Ã = A+∆A and X̃ = X+∆X . We suppose that ∥A∥2 ≤ βA,
∥X∥F ≤ βB and ∥W (m,l)∥2 ≤ βW , (∀ m ∈ [M], l ∈ [L]), the activation σ(·) of GCN is ρ-
Lipschitz continuous. We denote the minimum node degree of G as α, the effects of structural
perturbation as κ = min(1⊤∆A), and ∆D := I − diag(1⊤(I +A+∆A))

1
2 diag(1⊤A)−

1
2 .

Theorem: Our conclusion for robustness analysis is as follows:

∥g̃ − g∥ ≤ 1√
n
ρLβL

WβX(1 + α)−L(1 + βA + ∥∆A∥2)L
(
1 + 2L∥∆D∥2 + L(1 + βA + ∥∆A∥2)−1∥∆A∥2)

)
(16)

To provide a clearer analysis, we first use the whole graph G and G̃ as the input of the pattern
representation learning function F without sampling the subgraphs. Then we consider using the
subgraph sampling to analyze g and g̃ and finally finish the proof of robustness analysis.

D.1 LEARNING PATTERN REPRESENTATIONS USING THE WHOLE GRAPH WITHOUT
SAMPLING

In this section, we first consider using the whole graph G and G̃ as the input of the pattern represen-
tation learning function F without sampling the subgraphs, i.e., we analyze F (A,X;W(m)) and
F (Ã, X̃;W(m)).

Representation Learning Function F In theoretical analysis, we suppose the pattern represen-
tation learning function F is a L-layer GCN (Kipf & Welling, 2016) with an average pooling
avg-pool : Rn×d → Rd as the output layer. The pattern learning function for the pattern Pm is
denoted as F (A,X;W(m)), where W(m) = {W (m,1), ...,W (m,l), ...,W (m,L)} and W (m,l) is
the trainable parameter of the l-th layer. We use the adjacency matrix A and node feature matrix
X of G as the input. Then the self-connected adjacency matrix is Â = I +A, the diagonal matrix
is D̂ = diag(1⊤Â), then the normalized self-connected adjacency matrix is U = D̂− 1

2 ÂD̂− 1
2 .

Let σ(·) be an activation function, then the hidden embedding X(m,L) of the l-th layer is defined as
follows

X(m,l) = σ(U ...σ(U︸ ︷︷ ︸
l times

XW (m,1))...W (m,l))︸ ︷︷ ︸
l times

, ∀ l ∈ [L],
(17)

The pattern representation z(m) of pattern Pm is obtained by

z(m) = F (A,X;W(m)) = avg-pool(X(m,L)) =
1

n
1⊤X(m,L) (18)

For a perturbed graph G̃, we use Ã and X̃ to denote the adjacency matrix and feature matrix respec-
tively. The corresponding self-connected adjacency matrix is Â′ = I + Ã and the degree matrix as
D̂′ = diag(1⊤Â′). Then the normalized self-connected adjacency matrix is Ũ = D̂′− 1

2 Â′D̂′− 1
2 .

The l-th layer hidden embedding of G̃ is defined as follows

X̃(m,l) = σ(Ũ ...σ(Ũ︸ ︷︷ ︸
l times

X̃ W (m,1))...W (m,l))︸ ︷︷ ︸
l times

, ∀ l ∈ [L],
(19)

The perturbed pattern representation z̃(m) of pattern Pm is obtained by

z̃(m) = F (Ã, X̃;W(m)) = avg-pool(X̃(m,L)) =
1

n
1⊤X̃(m,L) (20)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Lemma D.1. Let X and Y be two square matrices, ∥ · ∥2 be the spectral norm and ∥ · ∥F be the
Frobenius norm , then ∥X∥2 ≤ ∥X∥F , ∥XY ∥2 ≤ ∥X∥2∥Y ∥2 and ∥XY ∥F ≤ ∥X∥2∥Y ∥F .

Lemma D.2 (Inequalities). Some inequalities that will be used in our proof:

∥U∥2 ≤ (1 + α)−1(1 + βA)

∥Ũ∥2 ≤ (1 + α+ κ)−1(1 + βA + ∥∆A∥2)
∥∆U∥2 ≤ 2(1 + βA)(1 + α)−1∥∆D∥2 + (1 + α+ κ)−1∥∆A∥2

∥∆X(m,l)∥F ≤ ρlβl
WβX(1 + α)−l(1 + βA + ∥∆A∥2)l

(
1 + 2l∥∆D∥2 + l(1 + βA + ∥∆A∥2)−1∥∆A∥2)

)

Proof. Since the minimum node degree of G is α, then we have ∥D̂− 1
2 ∥2 ≤ (1 + α)−

1
2 . Since

∥A∥2 ≤ βA, then ∥Â∥2 ≤ 1 + βA. We have

∥U∥2 ≤ ∥D̂− 1
2 ∥2∥Â∥2∥D̂− 1

2 ∥2 ≤ (1 + α)−1(1 + βA). (21)

Similarly, since the effects of structural perturbation is κ = min(1⊤∆A), we have ∥D̂′− 1
2 ∥2 ≤

(1 + α+ κ)−
1
2 . Since ∥Ã′∥2 ≤ ∥Â∥2 + ∥∆A∥2 ≤ 1 + βA + ∥∆A∥2, we obtain

∥Ũ∥2 ≤ ∥D̂′− 1
2 ∥2∥Â′∥2∥D̂′− 1

2 ∥2 ≤ (1 + α+ κ)−1(1 + βA + ∥∆A∥2). (22)

Letting ∆U = Ũ −U , we have

∥∆U∥2 = ∥Ũ −U∥2 = ∥D̂′− 1
2 (Â+∆A)D̂

′− 1
2 − D̂− 1

2 ÂD̂− 1
2 ∥2

= ∥D̂′− 1
2 ÂD̂′− 1

2 − D̂′− 1
2 ÂD̂− 1

2 + D̂′− 1
2 ÂD̂− 1

2 − D̂− 1
2 ÂD̂− 1

2 + D̂′− 1
2∆AD̂

′− 1
2 ∥2

≤ ∥D̂′− 1
2 Â(D̂′− 1

2 − D̂− 1
2)∥2 + ∥(D̂′− 1

2 − D̂− 1
2)ÂD̂− 1

2 ∥2 + ∥D̂′− 1
2∆AD̂

′− 1
2 ∥2

≤ (∥D̂− 1
2 ∥2 + ∥D̂′− 1

2 ∥2)∥Â∥2∥D̂′− 1
2 − D̂− 1

2 ∥2 + ∥D̂′− 1
2 ∥2∥∆A∥2∥D̂′− 1

2 ∥2
≤ ((1 + α)−

1
2 + (1 + α+ κ)−

1
2)(1 + βA)∥D̂′− 1

2 − D̂− 1
2 ∥2 + (1 + α+ κ)−1∥∆A∥2

≤ 2(1 + βA)(1 + α)−
1
2 ∥D̂′− 1

2 − D̂− 1
2 ∥2 + (1 + α+ κ)−1∥∆A∥2

≤ 2(1 + βA)(1 + α)−
1
2 (1 + α+ κ)−

1
2 ∥I − D̂′ 12 D̂− 1

2 ∥2 + (1 + α+ κ)−1∥∆A∥2
= 2(1 + βA)(1 + α)−

1
2 (1 + α+ κ)−

1
2 ∥∆D∥2 + (1 + α+ κ)−1∥∆A∥2

≤ 2(1 + βA)(1 + α)−1∥∆D∥2 + (1 + α+ κ)−1∥∆A∥2
(23)

where ∆D = I − D̂′ 12 D̂− 1
2 = I − diag(1⊤(I +A+∆A))

1
2 diag(1⊤A)−

1
2 .

The X(m,l) is the hidden embedding of the l-layer GCN of F (A, (X);W(m,l)), which is the repre-
sentation learning function related to Pm. Then we have

∥X(m,l)∥F = ∥σ(UX(m,l−1)W (m,l))∥F
≤ ρ∥UX(m,l−1)W (m,l)∥F
≤ ρ∥U∥2∥X(m,l−1)∥F ∥W (m,l)∥2
≤ ρβW (1 + α)−1(1 + βA)∥X(m,l−1)∥F
≤ ρlβl

W (1 + βA)
l(1 + α)−l∥X∥F

≤ ρlβl
WβX(1 + βA)

l(1 + α)−l

(24)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

For ∆X(m,l) = X̃(m,l) −X(m,l), we have

∥∆X(m,l)∥F = ∥X̃(m,l) −X(m,l)∥F
= ∥σ(ŨX̃(m,l−1)W (l))− σ(UX(l−1)W (l))∥F
≤ ρ∥ŨX̃(m,l−1) −UX(m,l−1)∥F ∥W (m,l)∥2

≤ ρβW

(
∥Ũ∥2∥∆X(m,l−1)∥F + ∥∆U∥2∥X(m,l−1)∥F

)
≤ ρ2β2

W ∥Ũ∥22∥∆X(m,l−2)∥F + ρ2β2
W ∥Ũ∥2∥∆U∥2∥X(m,l−2)∥F + ρβW ∥∆U∥2∥X(m,l−1)∥F

≤ ρlβl
W ∥Ũ∥l2∥∆X∥F +

l∑
k=1

ρkβk
W ∥Ũ∥k−1

2 ∥∆U∥2∥X(m,l−k)∥F

≤ ρlβl
W (1 + βA + ∥∆A∥2)l−1(1 + α)−l [(1 + βA + 2∥∆A∥2)∥∆X∥F + 2lβX(1 + βA)∥∆D∥2]

(25)

D.2 LEARNING GRAPH REPRESENTATIONS VIA SAMPLING SUBGRAPHS

In this section, we consider learning the graph representation g and g̃ respectively by sampling
subgraphs of graph patterns. That is, we analyse F (AS ,XS ;W(m)) and F (ÃS̃ , X̃S̃ ;W(m)). And
then we provide the upper bound of ∥g̃ − g∥.

Let S be a subgraph of graph G and S̃ be a subgraph of graph G̃. Let ∆AS
and ∆XS

be some
perturbations on adjacency matrix and node attributes, then the perturbed graph is denoted as S̃ =
(AS +∆AS

,XS +∆XS
).

Assumptions and Notations: Let Ã = A+∆A and X̃ = X+∆X . We suppose that ∥A∥2 ≤ βA,
∥X∥F ≤ βB and ∥W (m,l)∥2 ≤ βW , (∀ m ∈ [M], l ∈ [L]), the activation σ(·) of GCN is ρ-
Lipschitz continuous. We denote the minimum node degree of G as α, the effects of structural
perturbation as κ = min(1⊤∆A), and ∆D := I − diag(1⊤(I + A + ∆A))

1
2 diag(1⊤A)−

1
2 . We

present the following useful lemmas.

Lemma D.3 (Eigenvalue Interlacing Theorem (Hwang, 2004)). Suppose A ∈ Rn×n is symmetric.
Let B ∈ Rm×m with m < n be a principal submatrix (obtained by deleting both the i-th row and
i-th column for some value of i). Suppose A has eigenvalues λ1 ≤ · · · ≤ λn and B has eigenvalues
β1 ≤ · · · ≤ βm. Then

λk ≤ βk ≤ λk+n−m for k = 1, · · · ,m.

Lemma D.4. Since XS and ∆XS
are submatrices of X and ∆X respectively, then we have

∥XS∥F ≤ ∥X∥F , and ∥∆XS
∥F ≤ ∥∆X∥F .

Let ∆DS
:= I − diag(1⊤(I +AS +∆AS

))
1
2 diag(1⊤AS)

− 1
2 . Base on the Eigenvalue Interlacing

Theorem, for any subgraph S of graph G, since AS , ∆AS
, ∆DS

are principal submatrices of A,
∆A, ∆D respectively, then we have

∥AS∥2 ≤ ∥A∥2 ≤ βA, ∥∆AS
∥2 ≤ ∥∆A∥2, ∥∆DS

∥2 ≤ ∥∆D∥2.

Notations: For a subgraph S of graph G, the self-connected adjacency matrix is ÂS = I +AS ,
the degree matrix is D̂S = diag(1⊤ÂS), and the normalized self-connected adjacency matrix is

US = D̂
− 1

2

S ÂSD̂
− 1

2

S .

For a subgraph S̃ of graph G̃, we define some notations here. We denote the self-connected adja-
cency matrix as Â′

S̃
= I + ÃS̃ , the diagonal matrix as D̂′

S̃
= diag(1⊤Â′

S̃
), and the normalized

self-connected adjacency matrix as ŨS̃ = D̂′
S̃
− 1

2 Â′
S̃
D̂′

S̃
− 1

2 . We also denote ∆US
= ŨS̃ −US and

∆
X

(m,l)
S

= X̃S̃
(m,l) −X

(m,l)
S .

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Lemma D.5 (Inequalities). Base on Lemma D.4, for any subgraph S of graph G, the inequalities
in the Lemma D.2 still holds for S, shown as follows:

∥US∥2 ≤ (1 + α)−1(1 + βA)

∥ŨS∥2 ≤ (1 + α+ κ)−1(1 + βA + ∥∆A∥2)
∥∆US

∥2 ≤ 2(1 + βA)(1 + α)−1∥∆D∥2 + (1 + α+ κ)−1∥∆A∥2
∥X(m,l)

S ∥F ≤ ρlβl
WβX(1 + βA)

l(1 + α)−l

∥∆
X

(m,l)
S

∥F ≤ ρlβl
W (1 + βA + ∥∆A∥2)l−1(1 + α)−l [(1 + βA + 2∥∆A∥2)∥∆X∥F + 2lβX(1 + βA)∥∆D∥2]

(26)

Proof. The proof is mainly based on Lemma D.4.

Similar to (21), we have

∥US∥2 ≤ ∥D̂− 1
2

S ∥2∥ÂS∥2∥D̂
− 1

2

S ∥2 ≤ ∥D̂− 1
2 ∥2∥Â∥2∥D̂− 1

2 ∥2 ≤ (1 + α)−1(1 + βA). (27)

Similar to (22), we have

∥ŨS∥2 ≤ ∥D̂′
S̃
− 1

2 ∥2∥Â′∥2∥D̂′
S̃
− 1

2 ∥2 ≤ ∥D̂′− 1
2 ∥2∥Â′∥2∥D̂′− 1

2 ∥2
≤ (1 + α+ κ)−1(1 + βA + ∥∆A∥2).

(28)

Similar to (23), we have

∥∆U∥2 ≤ (∥D̂− 1
2

S ∥2 + ∥D̂′
S̃
− 1

2 ∥2)∥Â∥2∥D̂′
S̃
− 1

2 − D̂
− 1

2

S ∥2 + ∥D̂′
S̃
− 1

2 ∥∆A∥2∥D̂′
S̃
− 1

2 ∥2
≤ (∥D̂− 1

2 ∥2 + ∥D̂′− 1
2 ∥2)∥Â∥2∥D̂′− 1

2 − D̂− 1
2 ∥2 + ∥D̂′− 1

2 ∥2∥∆A∥2∥D̂′− 1
2 ∥2

≤ 2(1 + βA)(1 + α)−1∥∆D∥2 + (1 + α+ κ)−1∥∆A∥2

(29)

Similar to (24), we have

∥X(m,l)
S ∥F ≤ ρ∥US∥2∥X(m,l−1)

S ∥F ∥W (m,l)∥2
≤ ρ∥U∥2∥X(m,l−1)∥F ∥W (m,l)∥2
≤ ρlβl

WβX(1 + βA)
l(1 + α)−l

(30)

Similar to (25), we have

∥∆
X

(m,l)
S

∥F ≤ ρ2β2
W ∥ŨS∥22∥∆X

(l−2)
S

∥F + ρ2β2
W ∥ŨS∥2∥∆US

∥2∥X(l−2)
S ∥F + ρβW ∥∆US

∥2∥X(l−1)
S ∥F

≤ ρ2β2
W ∥Ũ∥22∥∆X(l−2)∥F + ρ2β2

W ∥Ũ∥2∥∆U∥2∥X(l−2)∥F + ρβW ∥∆U∥2∥X(l−1)∥F
≤ ρlβl

W (1 + βA + ∥∆A∥2)l−1(1 + α)−l [(1 + βA + 2∥∆A∥2)∥∆X∥F + 2lβX(1 + βA)∥∆D∥2]
(31)

Finally, we can prove our theorem of robustness analysis in the main paper using Lemma D.5 as
follows.

Proof. Given a pattern sampling set S(m), we assume the S∗ satisfies

S∗ = argmax
S∈S(m)

∥∆
X

(m,L)
S

∥F .

Since the Lemma D.5 holds for any subgraph S, we have

∥∆
X

(m,l)

S∗
∥F ≤ ρlβl

W (1+βA+∥∆A∥2)l−1(1+α)−l [(1 + βA + 2∥∆A∥2)∥∆X∥F + 2lβX(1 + βA)∥∆D∥2]

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Then the upper bound of ∥g̃ − g∥ is given by

∥g̃ − g∥ =

∥∥∥∥∥
M∑

m=1

λm (z̃(m) − z(m))

∥∥∥∥∥ ≤
M∑

m=1

λm ∥z̃(m) − z(m)∥

=
1

Q

M∑
m=1

λm

∥∥∥∥∥∥
∑

S∈S(m)

F (ÃS , X̃S ;W(m))−
∑

S∈S(m)

F (AS ,XS ;W(m))

∥∥∥∥∥∥
≤ 1

Q

M∑
m=1

λm
∑

S∈S(m)

∥∥∥F (ÃS , X̃S ;W(m))− F (AS ,XS ;W(m))
∥∥∥

=
1

Q

M∑
m=1

λm
∑

S∈S(m)

1

n

∥∥∥1⊤(X̃
(m,L)
S −X

(m,L)
S)

∥∥∥
F

≤ 1

Q

M∑
m=1

λm
1

n

∑
S∈S(m)

∥1∥
∥∥∥X̃(m,L)

S −X
(m,L)
S

∥∥∥
F

=
1

Q
√
n

M∑
m=1

λm
∑

S∈S(m)

∥∥∥∆X
(m,L)
S

∥∥∥
F

≤ 1

Q
√
n

M∑
m=1

λm Q
∥∥∥∆X

(m,L)

S∗

∥∥∥
F

≤ 1√
n
ρlβl

W (1 + βA + ∥∆A∥2)l−1(1 + α)−l [(1 + βA + 2∥∆A∥2)∥∆X∥F + 2LβX(1 + βA)∥∆D∥2]

(32)

E PROOF FOR GENERALIZATION ANALYSIS OF SUPERVISED LOSS

Before providing our theorem, we need to provide the classification loss function fc.

Classification loss function fc: We use a linear classifier with parameter WC ∈ Rd×C and use
softmax as the activation function as the classification function fc, i.e., ŷ = softmax(gWC). We
suppose that ∥WC∥2 ≤ βC .

Then the classification loss is as follows
ℓCE(λ,W) = cross-entropy(y, ŷ) = cross-entropy(y, softmax(gWC)). (33)

To simplify the proof, we rewrite supervised loss ℓCE(λ,W) function as
φ(gWC) := cross-entropy(y, ŷ) = cross-entropy(y, softmax(gWC)).

Lemma E.1. Let v be a vector, there exits a positive constant τ such that φ(v) is a τ -Lipschitz
continuous function.

Generalization Error Let D := {G1, ..., G|D|} be the training data. By removing the i-th graph
of D, we have D\i = {G1, ..., Gi−1, Gi+1, ..., G|D|−1}. Let λD and W̄D := {WC ,W

(m,l)
D , ∀m ∈

[M], l ∈ [L]} be the parameters trained on D. Let λD\i and W̄D\i := {WC\i ,W
(m,l)

D\i , ∀ m ∈
[M], l ∈ [L]} be the parameters trained on D\i. Then our goal is to find a η such that

|ℓCE(λD, W̄D;G)− ℓCE(λD\i , W̄D\i ;G)| ≤ η (34)
Theorem E.2. Given a graph G, let g be the graph representations learned with parameter λD and
W̄D and g\i be the graph representations learned with parameter λD\i and W̄D\i .

To simplify the proof, we denote that β̂W = max(β̂WD, β̂WD\i), where

β̂WD = max
m∈[M],l∈[L]

∥W (m,l)
D ∥2, and β̂WD\i = max

m∈[M],l∈[L]
∥W (m,l)

D\i ∥2.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

We also denote that
β̂∆W = max

m∈[M],l∈[L]
∥W(m,l)

D −W(m,l)

D\i ∥2.

Then we have

η =
τ√
n
ρLβ̂L−1

W βX(1+βA)
L(1+α)−L

[
β̂W ∥WC −WC\i∥2 + ∥WC\i∥2

(
β̂W ∥λD − λD\i∥+ Lβ̂∆W ∥λD\i∥

)]
Proof. We provide two lemmas used in our proof

Lemma E.3. ∥g∥ ≤ 1√
n
ρLβ̂L

WβX(1 + βA)
L(1 + α)−L

Lemma E.4.

∥g − g\i∥ ≤ 1√
n
ρLβ̂L−1

W βX(1 + βA)
L(1 + α)−L

(
β̂W ∥λD − λD\i∥+ Lβ̂∆W ∥λD\i∥

)
The main proof of our Theorem

|ℓCE(λD, W̄D;G)− ℓCE(λD\i , W̄D\i ;G)| = ∥φ(g\iWC\i)− φ(gWC)∥
≤τ∥gWC − g\iWC\i∥
=τ∥gWC − gWC\i + gWC\i − g\iWC\i∥
≤τ∥g∥∥WC −WC\i∥2 + τ∥g − g\i∥∥WC\i∥2

≤τ∥WC −WC\i∥2
1√
n
ρLβ̂L

WβX(1 + βA)
L(1 + α)−L

+ τ∥WC\i∥2
1√
n
ρLβ̂L−1

W βX(1 + βA)
L(1 + α)−L

(
β̂W ∥λD − λD\i∥+ Lβ̂∆W ∥λD\i∥

)
=

τ√
n
ρLβ̂L−1

W βX(1 + βA)
L(1 + α)−L

[
β̂W ∥WC −WC\i∥2 + ∥WC\i∥2

(
β̂W ∥λD − λD\i∥+ Lβ̂∆W ∥λD\i∥

)]
(35)

Since
∑M

i=1 λi ≤ 1 and λi ≥ 0, we have ∥λ∥ ≤ 1 and ∥λ−λD\i∥ ≤ 2. This finished the proof.

E.1 PROOF FOR LEMMAS

Lemma E.5. Let v be a vector, there exits a positive constant τ such that φ(v) is a τ -Lipschitz
continuous function.

Proof. Step 1: Softmax is Lipschitz The softmax function is known to be Lipschitz continuous.
Specifically, there exists a constant K such that:

∥softmax(v)− softmax(w)∥1 ≤ L1∥v − w∥2,

where ∥ · ∥1 is the ℓ1-norm and ∥ · ∥2 is the ℓ2-norm. For the ℓ1-norm, L1 can be bounded by 1, but
generally, for different norms, the exact Lipschitz constant might vary.

Step 2: Cross-Entropy is Lipschitz on the Simplex Given q = softmax(v) and r = softmax(w),
we need to check the Lipschitz continuity of the cross-entropy loss function with respect to these
distributions:

|cross-entropy(p,q)− cross-entropy(p, r)| ≤ L2∥q− r∥.
The cross-entropy loss is a convex function and it is smooth with respect to the probability distribu-
tions q and r. Given the boundedness of the probability values (since q and r lie in the probability
simplex), the gradient of the cross-entropy loss is also bounded.

Combining Steps Since both the softmax function and the cross-entropy loss function are Lipschitz
continuous, their composition will also be Lipschitz continuous. Therefore, there exists a constant
τ = L1L2 such that:

|φ(v)− φ(w)| ≤ τ∥v − w∥.

Hence, φ(v) = cross-entropy(softmax(v)) is τ -Lipschitz continuous.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Lemma E.6. ∥g∥ ≤ 1√
n
ρLβ̂L

WβX(1 + βA)
L(1 + α)−L

Proof. Given a pattern sampling set S(m), we assume the S∗ satisfies

S∗ = argmax
S∈S(m)

∥X(L)
S ∥F .

Since the Lemma D.5 holds for any subgraph S, then we have

∥X(m,l)
S∗ ∥F ≤ ρlβ̂l

WβX(1 + βA)
l(1 + α)−l.

Then, we have

∥g∥ = ∥
M∑

m=1

λm z(m)∥ ≤
M∑

m=1

λm ∥z(m)∥

=
1

Q

M∑
m=1

λm ∥
∑

S∈S(m)

F (AS ,XS ;W(m))∥

≤ 1

Q

M∑
m=1

λm
∑

S∈S(m)

∥F (AS ,XS ;W(m))∥

=
1

Q

M∑
m=1

λm
∑

S∈S(m)

1

n
∥1⊤(X

(m,L)
S)∥F

≤ 1

Q

M∑
m=1

λm
1

n

∑
S∈S(m)

∥1∥2∥X(m,L)
S ∥F

=
1

Q
√
n

M∑
m=1

λm
∑

S∈S(m)

∥X(m,L)
S ∥F

≤ 1√
n

M∑
m=1

λm ∥X(m,L)
S∗ ∥F

≤ 1√
n
ρLβ̂L

WβX(1 + βA)
L(1 + α)−L

(36)

Lemma E.7.

∥g − g\i∥ ≤ 1√
n
ρLβ̂L−1

W βX(1 + βA)
L(1 + α)−L

(
β̂W ∥λD − λD\i∥+ Lβ̂∆W ∥λD\i∥

)
Proof. To simplify the proof, we denote

β̂W = max{ max
m∈[M],l∈[L]

∥W (m,l)
D ∥2, max

m∈[M],l∈[L]
∥W (m,l)

D\i ∥2}

β̂∆W = max
m∈[M],l∈[L]

∥W(m,l)
D −W(m,l)

D\i ∥2.
(37)

Let X(m,l)
SD be the embedding features of the l-th layer GCN with the parameter W(m)

D learned from
dataset D. Let X(m,l)

SD\i be the embedding features of the l-th layer GCN with the parameter W(m)

D\i

learned from dataset D\i.

We denote ZD = [z
(1)
D , ...,z

(m)
D]⊤ and ZD\i = [z

(1)

D\i , ...,z
(m)

D\i]
⊤. Let

q1 = argmax
m∈[M]

∥z(m)
D ∥, q2 = argmax

m∈[M]

∥z(l2)
D − z

(l2)

D\i∥.

Then we have
∥ZD∥2 ≤ ∥z(q1)

D ∥, ∥ZD −ZD\i∥2 ≤ ∥z(q2)
D − z

(q2)

D\i ∥.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Similar to (36), we have

∥z(q1)
D ∥ ≤ 1√

n
ρLβ̂L

WβX(1 + βA)
L(1 + α)−L (38)

Denote ∆
X

(q2,l)

SD
:= X

(q2,l)
SD −X

(q2,l)

SD\i , then, similar to inequality (25) we have

∥∆
X

(q2,l)

SD
∥F = ∥σ(USX

(q2,l−1)
SD W(q2)

D)− σ(USX
(q2,l)

SD\i W
(q2)

D\i)∥F

≤ ρ∥US∥2∥X(q2,l−1)
SD W

(q2,l−1)
D −X

(q2,l−1)

SD\i W
(q2,l−1)

D\i ∥F
≤ ρ∥US∥2∥X(q2,l−1)

SD W
(q2,l−1)
D −X

(q2,l−1)
SD W

(q2,l−1)

D\i +X
(q2,l−1)
SD W

(q2,l−1)

D\i −X
(q2,l−1)

SD\i W
(q2,l−1)

D\i ∥F
≤ ρ∥US∥2∥X(q2,l−1)

SD (W
(q2,l−1)
D −W

(q2,l−1)

D\i) + (X
(q2,l−1)
SD −X

(q2,l−1)

SD\i)W
(q2,l−1)

D\i ∥F
≤ ρ∥US∥2(∥X(q2,l−1)

SD ∥F ∥W (q2,l−1)
D −W

(q2,l−1)

D\i ∥2 + ∥X(q2,l−1)
SD −X

(q2,l−1)

SD\i ∥F ∥W (q2,l−1)

D\i ∥2)

= ρ∥US∥2β̂W ∥∆
X

(q2,l−1)

SD
∥F + ρ∥US∥2β̂∆W ∥X(q2,l−1)

SD ∥F

≤ ρl∥US∥l2β̂l
W ∥∆

X
(q2,0)

SD
∥F +

l∑
k=1

ρk∥US∥k2 β̂k−1
W β̂∆W ∥X(q2,l−k)

SD ∥F

(39)
where ∥∆

X
(q2,0)

SD
∥F = ∥XS −XS∥F = 0. We can directly use the inequality (24), such that

∥X(m,l)
SD ∥F ≤ ρlβ̂l

WβX(1 + βA)
l(1 + α)−l (40)

Thus, we continue the proof

∥∆
X

(q2,l)

SD
∥F ≤ ρl∥US∥l2β̂l

W ∥∆
X

(q2,0)

SD
∥F +

l∑
k=1

ρk∥US∥k2 β̂k−1
W β̂∆W ∥X(q2,l−k)

SD ∥F

≤ lρl(1 + α)−l(1 + βA)
lβ̂l−1

W β̂∆WβX

(41)

Also similar to (D.5), we have

∥z(q2)
D − z

(q2)

D\i ∥ = ∥F (AS ,XS ;W(q2)
D)− F (AS ,XS ;W(q2)

D\i)∥

=
1

n
∥1⊤(X

(q2,L)
SD)− 1⊤(X

(q2,L)

SD\i)∥

=
1√
n
∥X(q2,L)

SD −X
(q2,L)

SD\i ∥F =
1√
n
∥∆

X
(q2,L)

SD
∥F

≤ L√
n
ρL(1 + α)−L(1 + βA)

Lβ̂L−1
W β̂∆WβX

(42)

Finally, we have

∥g − g\i∥ = ∥λ⊤
DZD − λ⊤

D\iZD\i∥
= ∥λ⊤

DZD − λ⊤
D\iZD + λ⊤

D\iZD − λ⊤
D\iZD\i∥

= ∥(λD − λD\i)⊤ZD + λ⊤
D\i(ZD −ZD\i)∥

≤ ∥λD − λD\i∥∥ZD∥2 + ∥λD\i∥∥ZD −ZD\i∥2
≤ ∥λD − λD\i∥∥z(q1)

D ∥+ ∥λD\i∥∥z(q2)
D − z

(q2)

D\i ∥

≤ ∥λD − λD\i∥
1√
n
ρLβ̂L

WβX(1 + βA)
L(1 + α)−L

+ ∥λD\i∥
L√
n
ρL(1 + α)−L(1 + βA)

Lβ̂L−1
W β̂∆WβX

=
1√
n
ρLβ̂L−1

W βX(1 + βA)
L(1 + α)−L

(
β̂W ∥λD − λD\i∥+ Lβ̂∆W ∥λD\i∥

)

(43)

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

F MORE EXPERIMENTAL RESULTS

In this section, we present additional experiments and supplementary figures.

F.1 EVALUATING THE ENSEMBLE KERNEL (PXGL-EGK)

Here, we compare our ensemble kernel (PXGL-EGK) as defined in Definition 3.3 with individual
kernels KP . We report the results as follows. Specifically, we use three pattern counting kernels in
the ensemble method: Random Walk (RW) kernels (Borgwardt et al., 2005; Gärtner et al., 2003),
Sub-tree kernels (Da San Martino et al., 2012; Smola & Vishwanathan, 2002), and Graphlet kernels
(Pržulj, 2007). Since graph kernels are unsupervised learning methods, we compare the clustering
accuracy and Normalized Mutual Information (NMI) of each kernel, as shown in Table 6. The result
shows that PXGL-EGK outperform each individual kernels it used.

Table 6: ACC and NMI of Graph Clustering. The best ACC is bold and the best NMI is green.

Method Metric MUTAG PROTEINS DD IMDB-B
RW ACC 0.743 ± 0.052 0.712 ± 0.021 0.516 ± 0.015 0.658 ± 0.014

NMI 0.238 ± 0.016 0.268 ± 0.016 0.187 ± 0.002 0.266 ± 0.019
Sub-tree ACC 0.729 ± 0.013 0.692 ± 0.027 0.542 ± 0.016 0.612 ± 0.018

NMI 0.195 ± 0.047 0.151 ± 0.028 0.229 ± 0.015 0.242 ± 0.013
Graphlet ACC 0.735 ± 0.026 0.636 ± 0.017 0.568 ± 0.013 0.614 ± 0.012

NMI 0.214 ± 0.019 0.154 ± 0.026 0.285 ± 0.011 0.214 ± 0.025

PXGL-EGK ACC 0.761 ± 0.025 0.721 ± 0.028 0.572 ± 0.025 0.672 ± 0.023
NMI 0.328 ± 0.046 0.321 ± 0.019 0.296 ± 0.013 0.310 ± 0.021

F.2 SENSITIVITY ANALYSIS

Sensitivity of PXGL-GNN to Q Here we use the MUTAG dataset to show the sensitivity of
accuracy and time cost to the number of samples Q for each pattern. We see that the time cost is
roughly linear with Q and the accuracy is not sensitive to Q when it is larger than 5.

Table 7: Impact of sampling number Q on MUTAG dataset (20 epochs, 7 patterns)

Q 3 5 7 10 15
Accuracy (%) 87.63 ± 1.42 94.87 ± 2.26 94.26 ± 2.17 95.35 ± 1.89 95.33 ± 2.48

Training Time (s) 636s 877s 1035s 1563s 2351s

Sensitivity of PXGL-GNN to L In the following table, we use three datasets to show the accuracy
of the graph classification of our PXGL-EGK model with different number of layers L. The results

Table 8: Impact of the number of layers of GNN

Model L = 1 L = 3 L = 5 L = 7 L = 9
MUTAG 81.44 ± 1.29 86.73 ± 2.78 94.87 ± 2.26 91.25 ± 1.14 89.66 ± 1.15

PROTEINS 62.17 ± 1.53 67.22 ± 1.16 78.23 ± 2.46 73.21 ± 1.98 71.07 ± 1.63
DD 75.36 ± 1.21 79.35 ± 1.20 86.54 ± 1.95 82.36 ± 1.24 82.17 ± 1.54

reveal that the model performs best at L = 5. With fewer layers, the model lacks sufficient capacity
for representation; with more layers, the model is too complex and has overfitting performances.
This is consistent with our theoretical analysis, since when the model is complex the gap between
training error and the testing error becomes large.

Sensitivity of PXGL-GNN to pattern combination The following table shows the classification
accuracy given by PXGL-GNN with different combinations of patterns on the MUTAG dataset. We
see that by including more patterns, the classification accuracy tends to be higher.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Table 9: Classification accuracy of PXGL-GNN with different pattern combinations on MUTAG
dataset. The best performance is shown in bold.

Pattern Combinations Accuracy (%) λ weights
Paths only 80.47 ± 1.24 1.0
Trees only 86.39 ± 2.73 1.0
Cycles only 89.24 ± 1.76 1.0
Paths + Trees 87.11 ± 2.93 0.274 / 0.716
Paths + Cycles 91.62 ± 1.14 0.207 / 0.793
Trees + Cycles 92.31 ± 2.65 0.325 / 0.675
All Patterns 94.87 ± 2.26 0.095/0.046/0.654

F.3 SUPERVISED LEARNING

In this section, we provide the figures to visualize weight vector λ, graph representation g and
pattern representations z(m) learned by solving the supervised loss (11).

F.4 UNSUPERVISED LEARNING

In this section, we provide the figures to visualize weight vector λ, graph representation g and
pattern representations z(m) learned by solving the unsupervised loss (10).

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

(a) λ

1 2 3 4 5 6 7
0.0

0.2

0.4

0.6

0.8

1.0

0.55

0.070.080.100.10
0.040.06

(b) g: ensemble
PROTEINS Class 1: 663 Graphs
PROTEINS Class 0: 450 Graphs

∑M
m=1 λmz(m)

(c) z(1): path
PROTEINS Class 1: 663 Graphs
PROTEINS Class 0: 450 Graphs

(λ1 = 0.5504)

(d) z(2): tree
PROTEINS Class 1: 663 Graphs
PROTEINS Class 0: 450 Graphs

(λ2 = 0.0746)

(e) z(3): graphlet

PROTEINS Class 1: 663 Graphs
PROTEINS Class 0: 450 Graphs

(λ3 = 0.08103)

(f) z(4): cycle
PROTEINS Class 1: 663 Graphs
PROTEINS Class 0: 450 Graphs

(λ4 = 0.0992)

(g) z(5): clique

PROTEINS Class 1: 663 Graphs
PROTEINS Class 0: 450 Graphs

(λ5 = 0.0987)

(h) z(6): wheel

PROTEINS Class 1: 663 Graphs
PROTEINS Class 0: 450 Graphs

(λ6 = 0.03927)

(i) z(7): star
PROTEINS Class 1: 663 Graphs
PROTEINS Class 0: 450 Graphs

(λ7 = 0.0568)
Figure 5: t-SNE visualizations of GNNs’ pattern representations (supervised) for the dataset PRO-
TEINS.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

(a) λ

1 2 3 4 5 6 7
0.0

0.2

0.4

0.6

0.8

1.0

0.100.050.06

0.65

0.08
0.030.04

(b) g: ensemble
 Class 1: 63 Graphs

 Class 0: 125 Graphs

∑M
m=1 λmz(m)

(c) z(1): path
Class 1: 63 Graphs

Class 0: 125 Graphs

(λ1 = 0.095)

(d) z(2): tree
Class 1: 63 Graphs

Class 0: 125 Graphs

(λ2 = 0.046)

(e) z(3): graphlet
Class 1: 63 Graphs

Class 0: 125 Graphs

(λ3 = 0.062)

(f) z(4): cycle
 Class 1: 63 Graphs

 Class 0: 125 Graphs

(λ4 = 0.654)

(g) z(5): clique
 Class 1: 63 Graphs

 Class 0: 125 Graphs

(λ5 = 0.082)

(h) z(6): wheel
Class 1: 63 Graphs

Class 0: 125 Graphs

(λ6 = 0.026)

(i) z(7): star
Class 1: 63 Graphs

Class 0: 125 Graphs

(λ7 = 0.035)
Figure 6: t-SNE visualizations of GNNs’ pattern representations (supervised) for the dataset MU-
TAG.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

(a) λ

1 2 3 4 5 6 7
0.0

0.2

0.4

0.6

0.8

1.0

0.020.060.10
0.18

0.57

0.010.05

(b) g: ensemble
Class 1: 2053 Graphs
Class 2: 2057 Graphs

∑M
m=1 λmz(m)

(c) z(1): path
Class 1: 2053 Graphs
Class 2: 2057 Graphs

(λ1 = 0.022)

(d) z(2): tree
Class 1: 2053 Graphs
Class 2: 2057 Graphs

(λ2 = 0.063)

(e) z(3): graphlet
Class 1: 2053 Graphs
Class 2: 2057 Graphs

(λ3 = 0.101)

(f) z(4): cycle
Class 1: 2053 Graphs
Class 2: 2057 Graphs

(λ4 = 0.176)

(g) z(5): clique
Class 1: 2053 Graphs
Class 2: 2057 Graphs

(λ5 = 0.574)

(h) z(6): wheel
Class 1: 2053 Graphs
Class 2: 2057 Graphs

(λ6 = 0.012)

(i) z(7): star
Class 1: 2053 Graphs
Class 2: 2057 Graphs

(λ7 = 0.052)
Figure 7: t-SNE visualizations of GNNs’ pattern representations (supervised) for the dataset NCI1.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

(a) λ

1 2 3 4 5 6 7
0.0

0.2

0.4

0.6

0.8

1.0

0.59

0.100.060.02
0.13

0.070.02

(b) g: ensemble

COLLAB Class 0: 2600 Graphs
COLLAB Class 1: 775 Graphs
COLLAB Class 2: 1625 Graphs∑M

m=1 λmz(m)

(c) z(1): path
COLLAB Class 0: 2600 Graphs
COLLAB Class 1: 775 Graphs
COLLAB Class 2: 1625 Graphs

(λ1 = 0.587)

(d) z(2): tree
COLLAB Class 0: 2600 Graphs
COLLAB Class 1: 775 Graphs
COLLAB Class 2: 1625 Graphs

(λ2 = 0.105)

(e) z(3): graphlet
COLLAB Class 0: 2600 Graphs
COLLAB Class 1: 775 Graphs
COLLAB Class 2: 1625 Graphs

(λ3 = 0.063)

(f) z(4): cycle
COLLAB Class 0: 2600 Graphs
COLLAB Class 1: 775 Graphs
COLLAB Class 2: 1625 Graphs

(λ4 = 0.022)

(g) z(5): clique
COLLAB Class 0: 2600 Graphs
COLLAB Class 1: 775 Graphs
COLLAB Class 2: 1625 Graphs

(λ5 = 0.134)

(h) z(6): wheel

COLLAB Class 0: 2600 Graphs
COLLAB Class 1: 775 Graphs
COLLAB Class 2: 1625 Graphs

(λ6 = 0.068)

(i) z(7): star
COLLAB Class 0: 2600 Graphs
COLLAB Class 1: 775 Graphs
COLLAB Class 2: 1625 Graphs

(λ7 = 0.021)
Figure 8: t-SNE visualizations of GNNs’ pattern representations (supervised) for the dataset COL-
LAB.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

(a) λ

1 2 3 4 5 6 7
0.0

0.2

0.4

0.6

0.8

1.0

0.090.05
0.120.09

0.57

0.050.01

(b) g: ensemble
DD Class 1 : 691 Graphs
DD Class 0 : 487 Graphs

∑M
m=1 λmz(m)

(c) z(1): path
DD Class 1 : 691 Graphs
DD Class 0 : 487 Graphs

(λ1 = 0.093)

(d) z(2): tree

DD Class 1 : 691 Graphs
DD Class 0 : 487 Graphs

(λ2 = 0.054)

(e) z(3): graphlet
DD Class 1 : 691 Graphs
DD Class 0 : 487 Graphs

(λ3 = 0.125)

(f) z(4): cycle
DD Class 1 : 691 Graphs
DD Class 0 : 487 Graphs

(λ4 = 0.094)

(g) z(5): clique
DD Class 1 : 691 Graphs
DD Class 0 : 487 Graphs

(λ5 = 0.572)

(h) z(6): wheel
DD Class 1 : 691 Graphs
DD Class 0 : 487 Graphs

(λ6 = 0.051)

(i) z(7): star
DD Class 1 : 691 Graphs
DD Class 0 : 487 Graphs

(λ7 = 0.011)
Figure 9: t-SNE visualizations of GNNs’ pattern representations (supervised) for the dataset DD.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

(a) λ

1 2 3 4 5 6 7
0.0

0.2

0.4

0.6

0.8

1.0

0.23

0.060.030.04

0.58

0.040.04

(b) g: ensemble
REDDIT-BINARY Class 1 : 1000 Graphs
REDDIT-BINARY Class 0 : 1000 Graphs

∑M
m=1 λmz(m)

(c) z(1): path
REDDIT-BINARY Class 1 : 1000 Graphs
REDDIT-BINARY Class 0 : 1000 Graphs

(λ1 = 0.231)

(d) z(2): tree
REDDIT-BINARY Class 1 : 1000 Graphs
REDDIT-BINARY Class 0 : 1000 Graphs

(λ2 = 0.055)

(e) z(3): graphlet

REDDIT-BINARY Class 1 : 1000 Graphs
REDDIT-BINARY Class 0 : 1000 Graphs

(λ3 = 0.026)

(f) z(4): cycle
REDDIT-BINARY Class 1 : 1000 Graphs
REDDIT-BINARY Class 0 : 1000 Graphs

(λ4 = 0.039)

(g) z(5): clique
REDDIT-BINARY Class 1 : 1000 Graphs
REDDIT-BINARY Class 0 : 1000 Graphs

(λ5 = 0.579)

(h) z(6): wheel
REDDIT-BINARY Class 1 : 1000 Graphs
REDDIT-BINARY Class 0 : 1000 Graphs

(λ6 = 0.036)

(i) z(7): star

REDDIT-BINARY Class 1 : 1000 Graphs
REDDIT-BINARY Class 0 : 1000 Graphs

(λ7 = 0.044)
Figure 10: t-SNE visualizations of GNNs’ pattern representations (supervised) for the dataset
REDDIT-BINARY.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

(a) λ

1 2 3 4 5 6 7
0.0

0.2

0.4

0.6

0.8

1.0

0.46

0.080.090.10
0.21

0.040.03

(b) g: ensemble

PROTEINS Class 1: 663 Graphs
PROTEINS Class 0: 450 Graphs∑M

m=1 λmz(m)

(c) z(1): path
PROTEINS Class 1: 663 Graphs
PROTEINS Class 0: 450 Graphs

(λ1 = 0.463)

(d) z(2): tree

PROTEINS Class 1: 663 Graphs
PROTEINS Class 0: 450 Graphs

(λ2 = 0.082)

(e) z(3): graphlet
PROTEINS Class 1: 663 Graphs
PROTEINS Class 0: 450 Graphs

(λ3 = 0.085)

(f) z(4): cycle
PROTEINS Class 1: 663 Graphs
PROTEINS Class 0: 450 Graphs

(λ4 = 0.095)

(g) z(5): clique
PROTEINS Class 1: 663 Graphs
PROTEINS Class 0: 450 Graphs

(λ5 = 0.207)

(h) z(6): wheel

PROTEINS Class 1: 663 Graphs
PROTEINS Class 0: 450 Graphs

(λ6 = 0.036)

(i) z(7): star

PROTEINS Class 1: 663 Graphs
PROTEINS Class 0: 450 Graphs

(λ7 = 0.032)
Figure 11: t-SNE visualizations of GNNs’ pattern representations (unsupervised) for the dataset
PROTEINS.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

(a) λ

1 2 3 4 5 6 7
0.0

0.2

0.4

0.6

0.8

1.0

0.09
0.030.07

0.55

0.20

0.030.04

(b) g: ensemble
 Class 1: 63 Graphs

 Class 0: 125 Graphs

∑M
m=1 λmz(m)

(c) z(1): path
Class 1: 63 Graphs

Class 0: 125 Graphs

(λ1 = 0.085)

(d) z(2): tree
Class 1: 63 Graphs

Class 0: 125 Graphs

(λ2 = 0.027)

(e) z(3): graphlet
Class 1: 63 Graphs

Class 0: 125 Graphs

(λ3 = 0.074)

(f) z(4): cycle
 Class 1: 63 Graphs

 Class 0: 125 Graphs

(λ4 = 0.546)

(g) z(5): clique
 Class 1: 63 Graphs
 Class 0: 125 Graphs

(λ5 = 0.197)

(h) z(6): wheel
Class 1: 63 Graphs

Class 0: 125 Graphs

(λ6 = 0.032)

(i) z(7): star
Class 1: 63 Graphs
Class 0: 125 Graphs

(λ7 = 0.039)
Figure 12: t-SNE visualizations of GNNs’ pattern representations (unsupervised) for the dataset
MUTAG.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

(a) λ

1 2 3 4 5 6 7
0.0

0.2

0.4

0.6

0.8

1.0

0.48

0.13
0.060.02

0.24

0.040.03

(b) g: ensemble
COLLAB Class 0: 2600 Graphs
COLLAB Class 1: 775 Graphs
COLLAB Class 2: 1625 Graphs

∑M
m=1 λmz(m)

(c) z(1): path
COLLAB Class 0: 2600 Graphs
COLLAB Class 1: 775 Graphs
COLLAB Class 2: 1625 Graphs

(λ1 = 0.478)

(d) z(2): tree
COLLAB Class 0: 2600 Graphs
COLLAB Class 1: 775 Graphs
COLLAB Class 2: 1625 Graphs

(λ2 = 0.127)

(e) z(3): graphlet
COLLAB Class 0: 2600 Graphs
COLLAB Class 1: 775 Graphs
COLLAB Class 2: 1625 Graphs

(λ3 = 0.055)

(f) z(4): cycle
COLLAB Class 0: 2600 Graphs
COLLAB Class 1: 775 Graphs
COLLAB Class 2: 1625 Graphs

(λ4 = 0.022)

(g) z(5): clique

COLLAB Class 0: 2600 Graphs
COLLAB Class 1: 775 Graphs
COLLAB Class 2: 1625 Graphs

(λ5 = 0.243)

(h) z(6): wheel
COLLAB Class 0: 2600 Graphs
COLLAB Class 1: 775 Graphs
COLLAB Class 2: 1625 Graphs

(λ6 = 0.044)

(i) z(7): star
COLLAB Class 0: 2600 Graphs
COLLAB Class 1: 775 Graphs
COLLAB Class 2: 1625 Graphs

(λ7 = 0.031)
Figure 13: t-SNE visualizations of GNNs’ pattern representations (unsupervised) for the dataset
COLLAB.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

(a) λ

1 2 3 4 5 6 7
0.0

0.2

0.4

0.6

0.8

1.0

0.020.04
0.10

0.28

0.48

0.010.06

(b) g: ensemble
Class 1: 2053 Graphs
Class 2: 2057 Graphs

∑M
m=1 λmz(m)

(c) z(1): path
Class 1: 2053 Graphs
Class 2: 2057 Graphs

(λ1 = 0.023)

(d) z(2): tree
Class 1: 2053 Graphs
Class 2: 2057 Graphs

(λ2 = 0.042)

(e) z(3): graphlet
Class 1: 2053 Graphs
Class 2: 2057 Graphs

(λ3 = 0.105)

(f) z(4): cycle
Class 1: 2053 Graphs
Class 2: 2057 Graphs

(λ4 = 0.276)

(g) z(5): clique
Class 1: 2053 Graphs

Class 2: 2057 Graphs

(λ5 = 0.482)

(h) z(6): wheel
Class 1: 2053 Graphs
Class 2: 2057 Graphs

(λ6 = 0.013)

(i) z(7): star
Class 1: 2053 Graphs
Class 2: 2057 Graphs

(λ7 = 0.059)
Figure 14: t-SNE visualizations of GNNs’ pattern representations (unsupervised) for the dataset
NCI1.

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

(a) λ

1 2 3 4 5 6 7
0.0

0.2

0.4

0.6

0.8

1.0

0.080.07
0.17

0.11

0.53

0.020.02

(b) g: ensemble
DD Class 1 : 691 Graphs
DD Class 0 : 487 Graphs

∑M
m=1 λmz(m)

(c) z(1): path

DD Class 1 : 691 Graphs
DD Class 0 : 487 Graphs

(λ1 = 0.083)

(d) z(2): tree
DD Class 1 : 691 Graphs
DD Class 0 : 487 Graphs

(λ2 = 0.069)

(e) z(3): graphlet
DD Class 1 : 691 Graphs
DD Class 0 : 487 Graphs

(λ3 = 0.172)

(f) z(4): cycle
DD Class 1 : 691 Graphs
DD Class 0 : 487 Graphs

(λ4 = 0.108)

(g) z(5): clique

DD Class 1 : 691 Graphs
DD Class 0 : 487 Graphs

(λ5 = 0.527)

(h) z(6): wheel
DD Class 1 : 691 Graphs
DD Class 0 : 487 Graphs

(λ6 = 0.018)

(i) z(7): star
DD Class 1 : 691 Graphs
DD Class 0 : 487 Graphs

(λ7 = 0.023)
Figure 15: t-SNE visualizations of GNNs’ pattern representations (unsupervised) for the dataset
DD.

38

	Introduction
	Notations
	Learning Explainable Graph Representations via Ensemble Graph Kernel
	Pattern Counting Kernel
	Pattern Analysis using Graph Kernels
	Limitations of Pattern Counting Vector

	Learning Explainable Graph Representations via GNNs
	Theoretical Analysis
	Robustness Analysis
	Generalization Analysis
	Time and Space Complexity

	Related Works
	Experiments
	Supervised Learning
	Unsupervised Learning

	Conclusion
	Appendix
	Math Definitions of Patterns
	Related Works
	Explainable Graph Learning (XGL)
	Graph Representation Learning
	Graph Kernels

	Proof for Robustness Analysis
	Learning Pattern Representations using the Whole Graph without Sampling
	Learning Graph Representations via Sampling Subgraphs

	Proof for Generalization Analysis of Supervised Loss
	Proof for Lemmas

	More Experimental Results
	Evaluating the Ensemble Kernel (PXGL-EGK)
	Sensitivity Analysis
	Supervised Learning
	Unsupervised Learning

