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ABSTRACT

Explainable artificial intelligence (XAI) is an important area in the AI commu-
nity, and interpretability is crucial for building robust and trustworthy AI mod-
els. While previous work has explored model-level and instance-level explainable
graph learning, there has been limited investigation into explainable graph rep-
resentation learning. In this paper, we focus on representation-level explainable
graph learning and answer a fundamental question: What specific information
about a graph is captured in graph representations? Our approach is inspired by
graph kernels, which evaluate graph similarities by counting substructures within
specific graph patterns. First, we present an unsupervised ensemble graph kernel
method for representation or similarity explanation, which however has limita-
tions such as ignoring node features and being computationally expensive. To
address these limitations, we introduce a deep learning framework for learning
and explaining graph representations through graph pattern analysis. We start by
sampling graph substructures of various patterns. Then, we learn the representa-
tions of these patterns and combine them using a weighted sum, where the weights
indicate the importance of each graph pattern’s contribution. Note that our method
can be both unsupervised and supervised and is a one-shot explanation, not speci-
fied to single samples or predictions. We also theoretically analyze the robustness
and generalization ability of our models. Importantly, the generalization analysis
shows that incorporating multiple graph patterns lowers the generalization error
bound. In our experiments, we show how to learn and explain graph represen-
tations for real-world data using pattern analysis. Additionally, we compare our
method against multiple baselines in both supervised and unsupervised learning
tasks to demonstrate its superiority in terms of accuracy.

1 INTRODUCTION

The field of explainable artificial intelligence (XAI) (Došilović et al., 2018; Adadi & Berrada, 2018;
Angelov et al., 2021; Hassija et al., 2024) is gaining significant attention in both AI and science
communities. Interpretability is crucial for creating robust and trustworthy AI models, especially
in critical domains like transportation, healthcare, law, and finance. Graph learning is an important
area of AI that particularly focuses on graph-structured data widely exist in social science, biology,
chemistry, etc. Explainable graph learning (XGL) (Kosan et al., 2023) can be generally classified
into two categories: model-level methods and instance-level methods.

Model-level methods of XGL provide transparency by analyzing the model behavior. Examples in-
clude XGNN (Yuan et al., 2020), GLG-Explainer (Azzolin et al., 2022), and GCFExplainer (Huang
et al., 2023). Instance-level methods of XGL offer explanations tailored to specific predictions, fo-
cusing on why particular instances are classified in a certain manner. For instance, GNNExplainer
(Ying et al., 2019) identifies a compact subgraph structure crucial for a GNN’s prediction. PGEx-
plainer (Luo et al., 2020) trains a graph generator to incorporate global information and parameterize
the explanation generation process. AutoGR (Wang et al., 2021) introduces an explainable AutoML
approach for graph representation learning. MotifExplainer (Yu & Gao, 2022) identifies critical
motifs (small subgraphs) in a graph. UNR-Explainer (Kang et al., 2024) identifies the top-k most
important nodes in a graph to determine the most significant subgraph as the counterfactual expla-
nation. More about XGL can be found in the Appendix C.1.
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However, these works mainly focus on enhancing the transparency of GNN models or identifying the
most important substructures that contribute to predictions. The exploration of representation-level
explainable graph learning (XGL) is limited. We propose explainable graph representation learning
and ask a fundamental question: What specific information about a graph is captured in graph
representations? Formally, if we represent a graph G as a d-dimensional vector g, our goal is to
understand what specific information about the graph G is embedded in the representation g. This
problem is important and has practical applications. Some graph patterns are highly practical and
crucial in various real-world tasks, and we want this information to be captured in representations.
For instance, in molecular chemistry, bonds between atoms or functional groups often form cycles
(rings), which indicate a molecule’s properties and can be used to generate molecular fingerprints
(Morgan, 1965; Alon et al., 2008; Rahman et al., 2009; O’Boyle & Sayle, 2016). Similarly, cliques
characterize protein complexes in Protein-Protein Interaction networks and help identify community
structures in social networks (Girvan & Newman, 2002; Jiang et al., 2010; Fox et al., 2020).

Although some previous works such as (Kosan et al., 2023) aimed to find the most critical subgraph
S by solving optimization problems based on perturbation-based reasoning, either factual or coun-
terfactual, this kind of approach assumes that the most important subgraph S mainly contributes to
the representation g, neglecting other aspects of the graph, which doesn’t align well with our goal of
thoroughly understanding graph representations. Analyzing all subgraphs of a graph G is imprac-
tical due to their vast number. To address the challenge, we propose to group the subgraphs into
different graph patterns, like paths, trees, cycles, cliques, etc, and then analyze the contribution of
each graph pattern to the graph representation g.

Our idea of pattern analysis is inspired by graph kernels, which compare substructures of specific
graph patterns to evaluate the similarity between two graphs (Kriege et al., 2020). For example, ran-
dom walk kernels (Borgwardt et al., 2005; Gärtner et al., 2003) use path patterns, sub-tree kernels
(Da San Martino et al., 2012; Smola & Vishwanathan, 2002) examine tree patterns, and graphlet ker-
nels (Pržulj, 2007; Shervashidze et al., 2009) focus on graphlet patterns. The graph kernel involves
learning a pattern counting representation vector h, which counts the occurrences of substructures
of a specific pattern within the graph G. While the pattern counting vector h is an explainable rep-
resentation, it has some limitations, such as the high dimensionality and ignorance of node features.

There also exist some representation methods based on subgraphs and substructures, such as Sub-
graph Neural Networks (SubGNN) (Kriege & Mutzel, 2012), Substructure Assembling Network
(SAN) (Zhao et al., 2018), Substructure Aware Graph Neural Networks (SAGNN) (Zeng et al.,
2023a), and Mutual Information (MI) Induced Substructure-aware GRL (Wang et al., 2020). How-
ever, these methods mainly focus on increasing expressiveness and do not provide explainability for
representation learning. We will discuss the details in the Appendix C.2.

In this work, we propose a novel framework to learn and explain graph representations via graph
pattern analysis. We start by sampling graph substructures of various patterns. Then, we learn the
representations of these patterns and combine them adaptively, where the weights indicate the im-
portance of each graph pattern’s contribution. We also provide theoretical analyses of our methods,
including robustness and generalization. Additionally, we compare our method against multiple
baselines in both supervised and unsupervised learning tasks to demonstrate its effectiveness and
superiority. Our contributions are summarized as follows:

• Unlike previous model-level and instance-level XGL, we introduce a new problem —
representation-level explainable graph learning. This problem focuses on understanding
what specific information about a graph is embedded within its representations in unsuper-
vised learning.

• We propose two strategies to learn and explain graph representations, including a graph
ensemble kernel method and a pattern analysis GNN method. The latter involves using
GNNs to learn the representations of each pattern and evaluate its contribution to the en-
semble graph representation.

• We provide robust analyses and generalization analysis for our methods theoretically. Par-
ticularly, our generalization analysis shows adding graph patterns lowers the generalization
error bound.
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2 NOTATIONS

In this work, we use x, x, X , and X (orX) to denote scalar, vector, matrix, and set, respectively. We
denote [n] = {1, 2, ..., n}. LetG = (V,E) be a graph with n nodes and d-dimensional node features
{xv ∈ Rd | v ∈ V }. We denote A ∈ {0, 1}n×n the adjacency matrix and X = [x1, . . . ,xn]

⊤ ∈
Rn×d the node features matrix. Let G = {G1, . . . , GN} be a dataset of N graphs belonging C
classes, where Gi = (Vi, Ei). For Gi, we denote its number of nodes as ni, the one-hot graph label
as yi ∈ {0, 1}C , the graph-level representation as a vector gi ∈ Rd, the adjacency matrix as Ai,
and the node feature matrix as Xi. Let S = (VS , ES) be a subgraph of graph G = (V,E) such that
VS ⊆ V and ES ⊆ E. The the adjacency matrix of S is denoted as AS ∈ {0, 1}|VS |×|VS | and the
node feature matrix of S is sampled from the rows of X , denoted as XS ∈ R|VS |×d.

The graph pattern is defined as a set of all graphs that share certain properties, denoted as P =
{P1, P2, . . . , Pi, . . .}, where Pi is the i-th example of this pattern. In this work, the graph patterns
are basic graph families such as paths, trees, cycles, cliques, etc. Detailed mathematical definitions
for some of these patterns are provided in Appendix B. For example:

• Ppath = {ph1, ph2, . . . , phi, . . .} is a path pattern with phi as a path of length i.

• PT = {T1, T2, . . . , Ti, . . .} is a tree pattern where Ti is the i-th tree.

• Pgl = {gl1, gl2, . . . , gli, . . .} is a graphlet pattern where gli is the i-th graphlet.

    

   

Figure 1: Examples of graph patterns: Ppath, PT and Pgl

Figure 1 illustrates some intuitive examples of graph patterns. Notably, there are overlaps among
different patterns; for instance, the graph T3 ∈ PT and gl2 ∈ Pgl are identical, being both a tree and
a graphlet. Overlaps are inevitable due to the predefined nature of these basic graph families in graph
theory. We denote a set of M different patterns as {P1,P2, . . . ,Pm, . . . ,PM}. Given the pattern
Pm and the graph Gi, the pattern sampling set is denoted as S(m)

i and the pattern representation is
denoted as z(m)

i ∈ Rd.

3 LEARNING EXPLAINABLE GRAPH REPRESENTATIONS VIA ENSEMBLE
GRAPH KERNEL

In this section, we learn and explain the pattern counting graph representation via graph kernels.

3.1 PATTERN COUNTING KERNEL

A graph kernel K : G × G → R aims to evaluate the similarity between two graphs. Let Gi and
Gj be two graphs in the graph dataset G and let H be a high-dimensional vector space. The key
to a graph kernel is defining a mapping from the graph space to the high-dimensional vector space
as ϕ : G → H, where hi = ϕ(Gi) and hj = ϕ(Gj). Then, the graph kernel can be defined as
the inner product of hi and hj , i.e., K(Gi, Gj) := h⊤

i hj . The most widely used mapping ϕ is the
one counting the occurrences of each example in the pattern P within graph G. The corresponding
pattern counting vector is defined as follows.

Definition 3.1 (Pattern Counting Vector). Given a graphG and a pattern P = {P1, P2, . . . , Pi, . . .},
a pattern counting mapping ϕ : G → H is defined as

h = ϕ(G;P), with h = [h(1), h(2), . . . , h(i), . . .], (1)

where h(i) is the number of occurrences of pattern example Pi as a substructure within graph G. We
call h a pattern counting vector of G related to pattern P .

3
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Then the pattern counting kernel KP : G×G → R based on pattern P can be defined.
Definition 3.2 (Pattern Counting Kernel). Given the a pattern counting mapping ϕ(G;P), a pattern
counting kernel is defined as

KP(Gi, Gj) := ⟨ϕ(Gi;P), ϕ(Gj ;P)⟩ = h⊤
i hj (2)

The pattern counting kernel KP is uniquely determined by the pattern P . For example, if P is
selected as the path pattern Ppath, we obtain a random walk kernel (Borgwardt et al., 2005; Gärtner
et al., 2003). If P is the tree pattern PT , we get a sub-tree kernel (Da San Martino et al., 2012;
Smola & Vishwanathan, 2002). Similarly, if P is the graphlet pattern Pgl, we derive a graphlet
kernel (Pržulj, 2007).

3.2 PATTERN ANALYSIS USING GRAPH KERNELS

Let {P1,P2, . . . ,PM} be a set of M different graph patterns. For instance, P1 represents the path
pattern and P2 represents the tree pattern. Then, we can define a set of M different graph kernels
as {KP1

,KP2
, . . . ,KPM

}. Since the pattern counting kernel KPm
is uniquely determined by the

pattern Pm, we can analyze the importance of pattern Pm by evaluating the importance of its pattern
counting kernel KPm

. To achieve this, we define a learnable ensemble kernel as follows:
Definition 3.3 (Learnable Ensemble Kernel). Let λ = [λ1, λ2, ..., λm, ..., λM ]⊤ be a positive weight
parameter vector. The ensemble kernel matrix K(λ) ∈ R|G|×|G| is defined as the weighted sum of
M different kernels {KP1

,KP2
, . . . ,KPM

}. Given two graphs Gi and Gj in G, the element at the
i-th row and j-th column of K(λ) is given by

Kij(λ) :=

M∑
m=1

λm KPm
(Gi, Gj), s.t

M∑
m=1

λm = 1, and λm ≥ 0, ∀m ∈ [M ]. (3)

Here, the weight parameter λm indicates the importance of the kernel KPm
as well as the corre-

sponding graph pattern Pm within the dataset G. Instead of the constrained optimization (3), we
may consider replacing λm with exp(wm)/

∑M
m=1 exp(wm) such that the constraints are satisfied

inherently, which leads to an unconstrained optimization in terms of w = [w1, . . . , wM ]⊤. In the
following context, for convenience, we just focus on (3), though all results are applicable to the
unconstrained optimization. To obtain the weight parameter λ, we provide the supervised and un-
supervised loss functions as follows.

Supervised Contrastive Loss Following (Oord et al., 2018), given a kernel matrix K(λ) ∈
RN×N , we define the supervised InfoNEC as follows

LSCL(λ) = −
∑
i ̸=j

I[yi=yj ]

(
logKij(λ)− log

[∑
k

I[yi=yk,i̸=k]Kik(λ) + µ
∑
k

I[yi ̸=yk]Kik(λ)

])
,

(4)
where I[·] is an indicator function and µ > 0 is a hyperparameter.

Unsupervised KL Divergence Inspired by (Xie et al., 2016), given a kernel matrix K ∈ RN×N ,
we define the unsupervised KL divergence loss as follows

LKL(λ) = KL(K(λ),K ′(λ)), with K ′
ij(λ) =

K2
ij(λ)/rj∑

j′ K
2
ij′(λ)/rj′

and rj =
∑
j

Kij(λ), (5)

where rj are soft cluster frequencies. By minimizing the KL divergence, the model adjusts the
parameters λ to more accurately represent the natural clustering property of the dataset.

We use the LSCL or LKL as our loss function, i.e., Lker(λ) = LSCL(K(λ)) or LKL(K(λ)), when
the graphs are labeled or unlabeled. Then the weight parameter λ can be obtain by solving

λ∗ = argmin 1⊤
Mλ=1, λ≥0 Lker(λ), (6)

where λ∗ = [λ∗1, ..., λ
∗
m, ...λ

∗
M ]⊤ and λ∗m indicates the importance of kernel KPm

as well as pattern
Pm. In Figure 2, we can see that the ensemble Kernel performs better than each single kernel and

4
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the pattern analysis identifies the importance of each kernel as well as the related graph pattern. We
call this method pattern-based XGL with ensemble graph kernel, abbreviated as PXGL-EGK. This
method not only yields explainable similarity learning but also provides an approach to selecting
graph kernels and their hyperparameters automatically if we consider different kernel types with
different hyperparameters.

(a) λ

1 2 3
0.0

0.2

0.4

0.6

0.8

1.0

0.75

0.17
0.08

(b) K(λ): ensemble
PROTEINS Class 1: 663 Graphs
PROTEINS Class 0: 450 Graphs

∑M
m=1 λm KPm

(c) KP1 : path
PROTEINS Class 1: 663 Graphs
PROTEINS Class 0: 450 Graphs

(λ1 = 0.7502)

(d) KP2 : tree

PROTEINS Class 1: 663 Graphs
PROTEINS Class 0: 450 Graphs

(λ2 = 0.1707)

(e) KP3 : graphlet
PROTEINS Class 1: 663 Graphs
PROTEINS Class 0: 450 Graphs

(λ3 = 0.07912)
Figure 2: t-SNE visualizations of different kernel embeddings for the dataset PROTEINS.

3.3 LIMITATIONS OF PATTERN COUNTING VECTOR

The pattern counting vector h from Definition 3.1 is easy to understand and its importance can be
evaluated using the weight parameter λ∗ from (6). However, it cannot directly explain the repre-
sentation of graph G due to the following limitations, which are also the limitations of the proposed
PXGL-EGK.

• Ignoring Node Features: h captures the topology of G but ignores node features X . As
shown by previous GNN works, node features are crucial for learning graph representa-
tions.

• High Dimensionality: The pattern set P = {P1, P2, . . . , Pi, . . .} can be vast, making h
high-dimensional and impractical for many tasks.

• High Computational Complexity: Counting patterns Pi in G is time-consuming due to
the large number of patterns in P . The function ϕ(G;P) needs to be run for each new
graph. In addition, in PXGL-EGK, the computation of the M kernel matrices of size |G| ×
|G| is very expensive especially when |G| is large.

• Lacking Implicit Information and Strong Expressiveness: h is fixed and not learnable.
GNN (Kipf & Welling, 2016) shows that message passing can learn implicit information
and provide better representations, which should be considered if possible.

4 LEARNING EXPLAINABLE GRAPH REPRESENTATIONS VIA GNNS

In this section, we address the limitations pointed out in Section 3.3 by proposing a GNN framework
to learn and explain graph representations via pattern analysis. We first present the definitions of the
pattern sample set, pattern representation, and ensemble representation and then show the objective
functions of unsupervised and supervised learning.
Definition 4.1 (Pattern Sample Set). A P-pattern sample set S of a given graph G is defined as

S := {S1, S2, . . . , Sq, . . . , SQ}, (7)
where Sq , q ∈ [Q], is a subgraph of pattern P (see the examples in Figure 1) randomly sampled
from G using some sampling function Φ1.
Definition 4.2 (Pattern Representation). Let S be a P-pattern sample set of a graph G. For each
subgraph S ∈ S, denote its node set, adjacency matrix, and node feature matrix as VS , AS , and XS

respectively. Let F : {0, 1}|VS |×|VS | ×R|VS |×d → Rd′
be a pattern representation learning function

parameterized by W , then the P-pattern representation z ∈ Rd′
of G is defined as

z =
1

|S|
∑
S∈S

F (AS ,XS ;W). (8)

1The specific Φ follows https://ysig.github.io/GraKeL/0.1a8/
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The pattern representation learning function F could be any graph neural network such as GCN
(Kipf & Welling, 2016), GIN (Xu et al., 2018), and graph transformer (Rampášek et al., 2022). In
this paper, we use GCN only for convenience. Because of the presence of node features, the chance
that overlaps occur between patterns is tiny. Nevertheless, we can use the WL-test (Huang & Villar,
2021) in each sampling phase to ensure that new samples are unique from existing ones, which is
efficient as the subgraphs are small.

Finally, the ensemble representation g is a weighted sum of theM pattern representations as follows.

Definition 4.3 (Ensemble Representation). Given a graph G and consider a set of M differ-
ent patterns {P1,P2, . . . ,Pm, . . . ,PM}, we denote z(m) the Pm-pattern representation obtained
from the Pm-pattern set S(m) using a pattern representation learning function Fm. Let λ =
[λ1, λ2, . . . , λm, . . . , λM ]⊤ be a parameter vector, where 1⊤

Mλ = 1 and λm ≥ 0 ∀ m ∈ [M ].
Then the ensemble representation g ∈ Rd′

of G is defined as

g =

M∑
m=1

λmz(m), with z(m) =
1

|S(m)|
∑

S∈S(m)

Fm(AS ,XS ;W(m)), ∀m ∈ [M ]. (9)

Note that instead of explicitly considering the constraints for λ, we can use the same softmax trick
in computing the ensemble kernel (3) to simplify the problem.

Let W := {W(1),W(2), . . . ,W(m), . . . ,W(M)} be the parameters of the M GNNs. In unsuper-
vised representation learning, we define the similarity between two graphs’ ensemble representa-
tions as Kij(λ,W) = exp

(
−γ∥gi − gj∥2

)
, where γ > 0 is a hyperparameter. Then similar to (5),

we minimize the following objective function to optimize W

LKL(λ,W) = KL(K(λ,W),K ′(λ,W)) (10)

where the computation of K ′ is the same as that in (5).

In supervised learning, given a graph G ∈ G with ensemble representation g, denote y ∈ {0, 1}C
the ground truth label. Let ŷ ∈ [0, 1]C be the predicted label given by a softmax classifier fc :
Rd → RC parameterized by WC , i.e., ŷ = fc(g). Let ℓCE be the multi-class cross-entropy loss, i.e.,
ℓCE(y, ŷ) =

∑C
c=1 yc log ŷc. Then we minimize the following objective to optimize the parameters

W̄ = {W,WC}:

LCE(λ, W̄) =
1

N

N∑
i=1

ℓCE (yi, fc(gi)) (11)

Let λ∗ = [λ∗1, . . . , λ
∗
m, . . . , λ

∗
M ]⊤ be the optimal λ obtained from minimizing (10) or (11). λ∗m

indicates the contribution of the pattern representation z(m) to the ensemble graph representation g.
In Figure 4, we visualize the g and each z(m) and show that the ensemble representation g performs
the best and the λ∗m explains the contribution of each pattern representation z(m) to learning g. For
convenience, we call this method pattern-based XGL with GNNs, abbreviated as PXGL-GNN.

5 THEORETICAL ANALYSIS

In this section, we analyze the robustness property, generalization ability, and computational com-
plexity of our methods theoretically, which not only is important to understand the proposed methods
but also provides theoretical support for the effectiveness of the proposed methods. We defer the
detailed proof to Appendices D and E.

5.1 ROBUSTNESS ANALYSIS

Following (O’Bray et al., 2021), a learning method should be robust to small perturbations. Let
∆A and ∆X be perturbations on the adjacency matrix and node attributes of a graph G whose
representation is denoted as g. Then the perturbed graph is G̃ = (A + ∆A,X + ∆X), of which
the representation is denoted as g̃. We seek the upper bound of ∥g̃ − g∥ and want to know how
it is related to ∆A and ∆X as well as the representation learning function F . Without loss of

6
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Figure 3: Proposed GNN framework for computing the ensemble graph representation

generality, we assume that G has n nodes, F is an L-layer GCN (Kipf & Welling, 2016), and all
the activation functions are σ(·). For each pattern Pm, the parameter set of F (A,X;W(m)) are
W(m) = {W (m,1), . . . ,W (m,L)}, where W (m,l) denotes the parameter matrix in the l-th layer.
We further assume that for each pattern Pm, the output vector representation is obtained by the
average pooling. Then we have the following theorem.

Theorem 5.1. Let Ã = A + ∆A and X̃ = X + ∆X . Suppose ∥A∥2 ≤ βA, ∥X∥F ≤ βX ,
∥W (m,l)∥2 ≤ βW for all m ∈ [M ] and l ∈ [L], and σ(·) is ρ-Lipschitz continuous. Let α be
the minimum node degree of G, and ∆D := I − diag(1⊤(I + A + ∆A))

1
2 diag(1⊤A)−

1
2 . Let

β̄A = 1 + βA. Then the representation robustness of PXGL-GNN to perturbations ∆A and ∆X is
shown as

∥g̃ − g∥ ≤ 1√
n
ρLβL

W (β̄A + ∥∆A∥2)L−1(1 + α)−L
[
(β̄A + 2∥∆A∥2)∥∆X∥F + 2LβX β̄A∥∆D∥2

]
The bound reveals that PXGL-GNN is sensitive to the graph structure perturbation ∆A when L is
large and is relatively not sensitive to the feature matrix perturbation on ∆X . On the other hand,
when α, the minimum node degree, is larger, the method is more robust.

5.2 GENERALIZATION ANALYSIS

Following (Bousquet & Elisseeff, 2002; Feldman & Vondrak, 2019), we use uniform stability to
derive the generalization bound for PXGL-GNN. Let λ and W be known parameters. The super-
vised loss ℓCE in (11) is guaranteed with a uniform stability parameter η. For convenience, we let
ℓ(λ, W̄;G) := ℓCE(y, ŷ). Considering the empirical risk E [ℓ(λ, W̄;G)] := 1

N

∑N
i=1 ℓ(λ, W̄;Gi)

and true risk E[ℓ(λ, W̄;G)], we have the following high-probability generalization bound: for con-
stant c and δ ∈ (0, 1),

Pr

[
|E[ℓCE(λ, W̄;G)− E [ℓCE(λ, W̄;G)]| ≥ c

(
η log(N) log

(
N

δ

)
+

√
log(1/δ)

N

)]
≤ δ. (12)

Let D := {G1, . . . , GN} be the training data. By removing the i-th graph Gi, we get D\i =

{G1, . . . , Gi−1, Gi+1, . . . , GN}. Let λD and W̄D := {WC ,W
(m,l)
D ,∀m ∈ [M ], l ∈ [L]} be the

parameters trained on D. Let λD\i and W̄D\i := {WC\i ,W
(m,l)

D\i ,∀m ∈ [M ], l ∈ [L]} be the
parameters trained on D\i. We aim to find an η such that

|ℓCE(λD, W̄D;G)− ℓCE(λD\i , W̄D\i ;G)| ≤ η (13)

We have the following result for η.

Theorem 5.2. Suppose max{maxm∈[M ],l∈[L] ∥W
(m,l)
D ∥2,maxm∈[M ],l∈[L] ∥W

(m,l)

D\i ∥2} ≤ β̂W

and maxm∈[M ],l∈[L] ∥W
(m,l)
D − W

(m,l)

D\i ∥2 ≤ β̂∆W , ∥WC − WC\i∥2 ≤ γ∆C , ∥WC\i∥2 ≤ γC .
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Suppose the fc in ℓCE (11) is a linear classifier, which is τ -Lipschitz continuous. Suppose Thus the
η for estimation error (12) and uniform stability (13) is:

η =
τ√
n
ρLβ̂L−1

W βX(1 + βA)
L(1 + α)−L

[
β̂W γ∆C + γC

(
2β̂W + Lβ̂∆W

)]
(14)

Invoking (14) into (12), we obtain the generalization error bound of our model. We see that when α
is larger and βA, βX are smaller, the generalization ability is stronger. It is worth noting that in the
proof (see (35)) of the theorem, we used an aggressive relaxation such that λ was not present in η.
By keeping λ, we can obtain

η =
τ√
n
ρLβ̂L−1

W βX(1 + βA)
L(1 + α)−L

[
β̂W γ∆C + γC

(
β̂W ∥λD − λD\i∥+ Lβ̂∆W ∥λD\i∥

)]
(15)

Since ∥λD∥1 = ∥λD\i∥1 = 1, when M is larger, ∥λD − λD\i∥ and ∥λD\i∥ are potentially smaller.
This means that when we include more graph patterns, the generalization bound of our PXGL-GNN
becomes tighter, which potentially leads to higher classification accuracy.

5.3 TIME AND SPACE COMPLEXITY

Given a dataset with N graphs (each has n nodes and e edges), we select M different patterns and
sample Q subgraphs of each pattern. First, our PXGL-EGK requires computing M kernel matrices,
of which the space complexity is O(MN2) and the time complexity is O(N2

∑M
m=1 ψi), where

ψi denotes the time complexity of the m-th graph kernel. For instance, the time complexities of
the graphlet kernel, shortest path kernel, and Weisfeiler-Lehman Subtree kernel are O(nk), O(n4),
and O(hn+ he) respectively, where k and h are some kernel-specific hyperparameters. When N is
large, the method has high time and space complexities. Regarding PXGL-GNN, suppose each rep-
resentation learning function Fm is an L-layer GCN, of which the width is linear with d. For both
supervised and unsupervised learning, suppose the batch size and the number of iterations in the
optimization are B and T respectively. Then, in supervised learning, the space complexity and time
complexity are O(BMQ(e+ nd) +MLd2 +Cd) and O(TBMQL(ed+ nd2) +NQ

∑M
m=1 ϑm)

respectively, where ϑm denotes the time complexity of generating a sample of the m-th pattern. For
instance, when the m-th pattern is graphlets with size k ∈ {3, 4, 5}, we have ϑm ≤ nuk−1 (Sher-
vashidze et al., 2009), where u denotes the maximum node degree of the graph. In unsupervised
learning, the space complexity and time complexity are O(BMQ(e+nd)+MLd2+Cd+B2) and
O(TBMQL(ed + nd2) + TB2 + NQ

∑M
m=1 ϑm) respectively. PXGL-GNN is scalable to large

graph datasets because the complexities are linear with BMQ and B2 and ϑm are controllable.

6 RELATED WORKS

Due to space limitation, we introduce previous works on explainable graph learning (XGL), graph
representation learning (GCL), and graph kernels in Appendix C.

7 EXPERIMENTS

Table 1: Statistics of Datasets

Name # of
graphs

# of
classes

# of
nodes

node
labels

node
attributes

MUTAG 188 2 17.9 yes no
PROTEINS 1113 2 39.1 yes yes

DD 1178 2 284.32 yes no
NCI1 4110 2 29.9 yes no

COLLAB 5000 3 74.49 no no
IMDB-B 1000 2 19.8 no no

REDDIT-B 2000 2 429.63 no no
REDDIT-M5K 4999 5 508.52 no no

We test our method on the TUdataset (Mor-
ris et al., 2020) for both supervised and unsu-
pervised learning tasks, as shown in Table 1.
Our goal is to learn explainable graph repre-
sentations. We provide the weight parameter λ
and visualize the ensemble representation g and
the pattern representation z(m). We use seven
graph patterns: paths, trees, graphlets, cycles,
cliques, wheels, and stars, sampling Q = 50
subgraphs for each. We use a 5-layer GCN for
the representation learning function F and a 3-
layer DNN with softmax for classification func-
tion fc. We repeat the experiments ten times

8
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and report the average value with standard de-
viation. Due to the space limitation, the results of PXGL-EGK and other figures are shown in
Appendix F.

(a) λ

1 2 3 4 5 6 7
0.0

0.2

0.4

0.6

0.8

1.0

0.55

0.070.080.100.10
0.040.06

(b) g: ensemble
PROTEINS Class 1: 663 Graphs
PROTEINS Class 0: 450 Graphs

∑M
m=1 λmz(m)

(c) z(1): path
PROTEINS Class 1: 663 Graphs
PROTEINS Class 0: 450 Graphs

(λ1 = 0.5504)

(d) z(2): tree
PROTEINS Class 1: 663 Graphs
PROTEINS Class 0: 450 Graphs

(λ2 = 0.0746)

(e) z(3): graphlet

PROTEINS Class 1: 663 Graphs
PROTEINS Class 0: 450 Graphs

(λ3 = 0.08103)
Figure 4: t-SNE visualizations of GNNs’ pattern representations (supervised) for PROTEINS.

7.1 SUPERVISED LEARNING

We conduct supervised XGL via pattern analysis by solving optimization with the classification loss
(11). The dataset is split into 80% training, 10% validation, and 10% testing data. The weight
parameter λ, indicating each pattern’s contribution to graph representation learning, is reported in
Table 2. We also visualize the graph representation g and three pattern representations z(m) of
PROTEINS in Figure 4. Results show the paths pattern is most important for learning g, and the
ensemble representation g outperforms single pattern representations z(m).

Table 2: λ of supervised PXGL-GNN. The largest value is bold and the second largest value is blue.

Pattern MUTAG PROTEINS DD NCI1 COLLAB IMDB-B REDDIT-B REDDIT-M5K
paths 0.095± 0.014 0.550± 0.070 0.093± 0.012 0.022± 0.002 0.587± 0.065 0.145± 0.018 0.131± 0.027 0.027± 0.003
trees 0.046± 0.005 0.074± 0.009 0.054± 0.006 0.063± 0.008 0.105± 0.013 0.022± 0.003 0.055± 0.007 0.025± 0.003

graphlets 0.062± 0.008 0.081± 0.011 0.125± 0.015 0.101± 0.013 0.063± 0.008 0.084± 0.011 0.026± 0.003 0.054± 0.007
cycles 0.654± 0.085 0.099± 0.013 0.094± 0.012 0.176± 0.022 0.022± 0.003 0.123± 0.016 0.039± 0.005 0.037± 0.005
cliques 0.082± 0.011 0.098± 0.012 0.572± 0.073 0.574± 0.075 0.134± 0.017 0.453± 0.054 0.279± 0.069 0.256± 0.067
wheels 0.026± 0.003 0.039± 0.005 0.051± 0.007 0.012± 0.002 0.068± 0.009 0.037± 0.004 0.036± 0.005 0.023± 0.003
stars 0.035± 0.005 0.056± 0.007 0.011± 0.002 0.052± 0.007 0.021± 0.003 0.136± 0.017 0.447± 0.006 0.578± 0.033

We compare our method with classical GNNs including GIN (Xu et al., 2018), DiffPool (Ying et al.,
2018), DGCNN (Zhang et al., 2018), GRAPHSAGE (Hamilton et al., 2017), subgraph-based GNNs
including SubGNN (Kriege & Mutzel, 2012), SAN (Zhao et al., 2018), SAGNN (Zeng et al., 2023a),
and recent methods including S2GAE (Tan et al., 2023) and ICL (Zhao et al., 2024). The accuracies
in Table 3 show that our method performs the best.

Table 3: Graph Classification Accuracy (%). The best accuracy is bold and the second best is blue.

Method MUTAG PROTEINS DD NCI1 COLLAB IMDB-B REDDIT-B REDDIT-M5K
GIN 84.53 ± 2.38 73.38 ±2.16 76.38 ±1.58 73.36 ±1.78 75.83 ± 1.29 72.52 ± 1.62 83.27 ± 1.30 52.48 ± 1.57

DiffPool 86.72 ± 1.95 76.07 ±1.62 77.42 ±2.14 75.42 ±2.16 78.77 ± 1.36 73.55 ± 2.14 84.16 ± 1.28 51.39 ± 1.48
DGCNN 84.29 ± 1.16 75.53 ±2.14 76.57 ±1.09 74.81 ±1.53 77.59 ± 2.24 72.19 ± 1.97 86.33 ± 2.29 53.18 ± 2.41

GRAPHSAGE 86.35 ± 1.31 74.21 ±1.85 79.24 ±2.25 77.93 ±2.04 76.37 ± 2.11 73.86 ± 2.17 85.59 ± 1.92 51.65 ± 2.55
SubGNN 87.52 ± 2.37 76.38 ±1.57 82.51 ±1.67 82.58 ±1.79 81.26 ± 1.53 71.58 ± 1.20 88.47 ± 1.83 53.27 ± 1.93

SAN 92.65 ± 1.53 75.62 ±2.39 81.36 ±2.10 83.07 ±1.54 82.73 ± 1.92 75.27 ± 1.43 90.38 ± 1.54 55.49 ± 1.75
SAGNN 93.24 ± 2.51 75.61 ±2.28 84.12 ±1.73 81.29 ±1.22 79.94 ± 1.83 74.53 ± 2.57 89.57 ± 2.13 54.11 ± 1.22

ICL 91.34 ± 2.19 75.44 ±1.26 82.77 ±1.42 83.45 ±1.78 81.45 ± 1.21 73.29 ± 1.46 90.13 ± 1.40 56.21 ± 1.35
S2GAE 89.27 ± 1.53 76.47 ±1.12 84.30 ±1.77 82.37 ±2.24 82.35 ± 2.34 75.77 ± 1.72 90.21 ± 1.52 54.53 ± 2.17

PXGL-GNN 94.87 ± 2.26 78.23 ±2.46 86.54 ±1.95 85.78 ±2.07 83.96 ± 1.59 77.35 ± 2.32 91.84 ± 1.69 57.36 ± 2.14

7.2 UNSUPERVISED LEARNING

We conduct unsupervised XGL via pattern analysis by solving optimization (with the KL divergence
loss (10). The weight parameter λ for XGL is reported in Table 4. The visualization of unsupervised
XGL results are in Appendix F.4. Results show that the ensemble representation g outperforms
single pattern representations z(m).

For clustering performance, we use clustering accuracy (ACC) and Normalized Mutual Informa-
tion (NMI). Baselines include four kernels: Random walk kernel (RW) (Borgwardt et al., 2005),
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Table 4: λ of unsupervised PXGL-GNN. The largest value is bold and the second largest value is
blue.

Pattern MUTAG PROTEINS DD NCI1 COLLAB IMDB-B REDDIT-B REDDIT-M5K
paths 0.085± 0.021 0.463± 0.057 0.083± 0.010 0.023± 0.001 0.478± 0.046 0.153± 0.018 0.101± 0.007 0.084± 0.006
trees 0.027± 0.005 0.082± 0.008 0.069± 0.007 0.042± 0.002 0.127± 0.017 0.082± 0.009 0.060± 0.003 0.036± 0.002

graphlets 0.074± 0.009 0.085± 0.010 0.172± 0.020 0.105± 0.012 0.055± 0.006 0.098± 0.011 0.025± 0.002 0.055± 0.005
cycles 0.546± 0.065 0.095± 0.011 0.108± 0.013 0.276± 0.033 0.022± 0.002 0.124± 0.014 0.043± 0.005 0.028± 0.003
cliques 0.197± 0.023 0.207± 0.025 0.527± 0.063 0.482± 0.058 0.243± 0.029 0.423± 0.051 0.212± 0.061 0.157± 0.067
wheels 0.032± 0.003 0.036± 0.004 0.018± 0.002 0.013± 0.001 0.044± 0.005 0.035± 0.004 0.036± 0.003 0.025± 0.013
stars 0.039± 0.004 0.032± 0.002 0.023± 0.003 0.059± 0.007 0.031± 0.001 0.085± 0.010 0.455± 0.019 0.585± 0.022

Sub-tree kernels (Da San Martino et al., 2012; Smola & Vishwanathan, 2002), Graphlet kernels
(Pržulj, 2007), Weisfeiler-Lehman (WL) kernels (Kriege & Mutzel, 2012); and three unsupervised
graph representation learning methods with Gaussian kernel in (10): InfoGraph (Sun et al., 2019),
GCL (You et al., 2020), GraphACL (Luo et al., 2023). The results are in Table 5. Our method
outperformed all competitors in almost all cases.

Table 5: ACC and NMI of Graph Clustering. The best ACC is bold and the the second best ACC is
blue. The best NMI is green and the second best NMI is with ∗.

Method Metric MUTAG PROTEINS DD NCI1 COLLAB IMDB-B REDDIT-B REDDIT-M5K
RW ACC 0.724 ±0.023 0.718 ± 0.019 0.529 ± 0.017 0.519 ±0.025 0.596 ±0.019 0.669 ±0.028 ≥ 1 day ≥ 1 day

NMI 0.283 ±0.008 0.226 ± 0.008 0.207 ± 0.003 0.218 ±0.009 0.356∗ ±0.002 0.295 ±0.006 ≥ 1 day ≥ 1 day
sub-tree ACC 0.716 ±0.017 0.683 ± 0.023 0.563 ± 0.026 0.532 ±0.016 0.533 ±0.021 0.627 ±0.022 ≥ 1 day ≥ 1 day

NMI 0.217 ±0.005 0.167 ± 0.004 0.225 ± 0.005 0.295 ±0.004 0.198 ±0.005 0.254 ±0.007 ≥ 1 day ≥ 1 day
Graphlet ACC 0.727 ±0.020 0.654 ± 0.017 0.581 ± 0.014 0.526 ±0.032 0.525 ±0.026 0.617 ±0.019 ≥ 1 day ≥ 1 day

NMI 0.225 ±0.003 0.131 ± 0.009 0.320 ± 0.009 0.273 ±0.005 0.217 ±0.003 0.210 ±0.004 ≥ 1 day ≥ 1 day
WL ACC 0.695 ±0.031 0.647 ± 0.032 0.517 ± 0.020 0.517 ±0.028 0.569 ±0.017 0.635 ±0.017 ≥ 1 day ≥ 1 day

NMI 0.185 ±0.007 0.135 ± 0.001 0.192 ± 0.008 0.234 ±0.007 0.253 ±0.007 0.261 ±0.003 ≥ 1 day ≥ 1 day
InfoGraph ACC 0.729 ±0.021 0.716 ± 0.019 0.549 ± 0.035 0.535 ±0.012 0.597 ±0.020 0.624 ±0.016 0.582 ±0.023 0.597 ±0.019

NMI 0.236 ±0.005 0.231 ± 0.003 0.266 ± 0.004 0.263 ±0.005 0.311 ±0.008 0.198 ±0.005 0.206 ±0.006 0.286∗ ±0.006
GCL ACC 0.761 ±0.014 0.723 ± 0.025 0.563 ± 0.016 0.558 ±0.010 0.582 ±0.015 0.653 ±0.024 0.573 ±0.015 0.582 ±0.017

NMI 0.337 ±0.003 0.258 ± 0.002 0.289 ± 0.009 0.341 ±0.002 0.293 ± 0.009 0.253 ±0.008 0.195 ±0.005 0.266 ±0.005
GraphACL ACC 0.742 ±0.023 0.731 ± 0.027 0.572 ± 0.027 0.522 ±0.013 0.554 ±0.013 0.679 ±0.013 0.594 ±0.014 0.567 ±0.023

NMI 0.347∗ ±0.007 0.274∗ ± 0.008 0.312 ± 0.003 0.260 ±0.007 0.236 ±0.006 0.315∗ ±0.007 0.215∗ ± 0.006 0.238 ± 0.009
PXGL-GNN ACC 0.778 ±0.029 0.746 ± 0.019 0.576 ± 0.035 0.564 ±0.013 0.612 ±0.014 0.686 ±0.027 0.616 ±0.017 0.608 ±0.023

NMI 0.352 ±0.006 0.292 ± 0.010 0.317∗ ± 0.003 0.327∗ ±0.008 0.372 ±0.007 0.324 ±0.011 0.224 ± 0.009 0.295 ±0.012

8 CONCLUSION

This paper studied the explainability of graph representations. We proposed two strategies to learn
and explain effective graph representations. The first one is based on graph ensemble kernel and
the second one is based GNNs that learns from different graph patterns such as path, tree, etc. We
also provide some theoretical analysis for the proposed method, including robustness analysis and
generalization bound. The experiments showed that our method not only provides higher accuracy
of classification and clustering than its competitors but also yields explainable results.
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A APPENDIX

You may include other additional sections here.

B MATH DEFINITIONS OF PATTERNS

In our work, graph patterns refer to as subgraphs with practical meanings. Let G = (V,E) be a
graph. A subgraph S = (VS , ES) of G is defined such that VS ⊆ V and ES ⊆ E ∩ (VS × VS). The
math definitions of graph patterns are as follows:

• Paths: S is a path if there exists a sequence of distinct vertices v1, . . . , vk ∈ VS such that
ES = ((vi, vi+1) : i = 1, . . . , k − 1).

• Trees: S is a tree if it is connected and contains no cycles, i.e., it is acyclic and |ES | =
|VS | − 1.

• Graphlets: S is a graphlet if it is a small connected induced subgraph of G, typically
consisting of 2 to 5 vertices.

• Cycles: S is a cycle if there exists a sequence of distinct vertices v1, . . . , vk ∈ VS such that
ES = ((vi, vi+1) : i = 1, . . . , k − 1) ∪ ((vk, v1)).

• Cliques: S is a clique if every two distinct vertices in VS are adjacent, thusES = ((vi, vj) :
vi, vj ∈ VS , i ̸= j).

• Wheels: S is a wheel if it consists of a cycle with vertices v1, . . . , vk−1 and an additional
central vertex vk such that vk is connected to all vertices of the cycle.

• Stars: S is a star if it consists of one central vertex vc and several leaf vertices
v1, . . . , vk−1, where each leaf vertex is only connected to vc. Thus, ES = ((vc, vi) :
i = 1, . . . , k − 1).

C RELATED WORKS

In this section, we introduce previous works on explainable graph learning (XGL), graph represen-
tation learning (GRL), and graph kernels.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

C.1 EXPLAINABLE GRAPH LEARNING (XGL)

Explainable artificial intelligence (XAI) is a rapidly growing area in the AI community (Došilović
et al., 2018; Adadi & Berrada, 2018; Angelov et al., 2021; Hassija et al., 2024). Explainable graph
learning (XGL) (Kosan et al., 2023) can be roughly classified into two categories: model-level
methods and instance-level methods.

Model-level Model-level or global explanations aim to understand the overall behavior of a model
by identifying patterns in its predictions. For example, XGNN(Yuan et al., 2020) trains a graph
generator to create graph patterns that maximize a certain prediction, providing high-level insights
into GNN behavior. GLG-Explainer(Azzolin et al., 2022) combines local explanations into a logi-
cal formula over graphical concepts, offering human-interpretable global explanations aligned with
ground-truth or domain knowledge. GCFExplainer(Huang et al., 2023) uses global counterfactual
reasoning to find representative counterfactual graphs, providing a summary of global explanations
through vertex-reinforced random walks on an edit map of graphs.

Instance-level Instance-level methods offer explanations tailored to specific predictions, focusing
on why particular instances are classified in a certain manner. For instance, GNNExplainer (Ying
et al., 2019) identifies a compact subgraph structure and a small subset of node features crucial for
a GNN’s prediction. PGExplainer (Luo et al., 2020) trains a graph generator to incorporate global
information and uses a deep neural network (DNN) to parameterize the explanation generation pro-
cess. SubgraphX (Yuan et al., 2021) efficiently explores different subgraphs using Monte Carlo tree
search to explain predictions. RG-Explainer (Shan et al., 2021) constructs a connected explanatory
subgraph by sequentially adding nodes, consistent with the message passing scheme. MixupEx-
plainer (Zhang et al., 2023a) introduces a general form of Graph Information Bottleneck (GIB) to
address distribution shifting issues in post-hoc graph explanation. AutoGR (Wang et al., 2021) in-
troduces an explainable AutoML approach for graph representation learning. UNR-Explainer (Kang
et al., 2024) identifies the top-k most important nodes in a graph to determine the most significant
subgraph. It is a classic instance-level explainable graph learning method focused on node rep-
resentation. However, this task is entirely different from our approach, as it addresses node-level
representation rather than representation-level explainability. For this reason, we did not include a
comparison.

C.2 GRAPH REPRESENTATION LEARNING

Graph representation learning is crucial for transforming complex graphs into vectors, particularly
for tasks like classification. The methods for graph representation learning are mainly classified into
two categories: supervised and unsupervised learning.

Supervised Representation Learning Most GNNs can be used in supervised graph represen-
tation learning tasks by aggregating all the node embeddings into a graph representation using a
readout function (Hamilton, 2020; Chami et al., 2022). Besides traditional GNNs like GCN (Kipf
& Welling, 2016), GIN (Xu et al., 2018), and GAT (Veličković et al., 2017), recent works include:
Template-based Fused Gromov-Wasserstein (FGW) (Vincent-Cuaz et al., 2022) computes a vec-
tor of FGW distances to learnable graph templates, acting as an alternative to global pooling lay-
ers. Path Isomorphism Network (PIN) (Truong & Chin, 2024) introduces a graph isomorphism test
and a topological message-passing scheme operating on path complexes. Graph U-Net (Amouzad
et al., 2024) proposes GIUNet for graph classification, combining node features and graph struc-
ture information using a pqPooling layer. Unified Graph Transformer Networks (UGT) (Lee et al.,
2024) integrate local and global structural information into fixed-length vector representations us-
ing self-attention. CIN++ (Giusti et al., 2023) enhances topological message passing to account for
higher-order and long-range interactions, achieving state-of-the-art results. Graph Joint-Embedding
Predictive Architectures (Graph-JEPA) (Skenderi et al., 2023) use masked modeling to learn em-
beddings for subgraphs and predict their coordinates on the unit hyperbola in the 2D plane.

Unsupervised Representation Learning Unsupervised methods aim to learn graph representa-
tions without labeled data. Notable methodologies include: InfoGraph (Sun et al., 2019) emphasizes
mutual information between graph-level and node-level representations. Graph Contrastive Learn-
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ing techniques (You et al., 2020; Suresh et al., 2021; You et al., 2021) enhance graph representations
through diverse augmentation strategies. AutoGCL (Yin et al., 2022) introduces learnable graph
view generators. GraphACL (Luo et al., 2023) adopts a novel self-supervised approach. InfoGCL
(Xu et al., 2021) and SFA (Zhang et al., 2023b) focus on information transfer and feature augmen-
tation in contrastive learning. Techniques like GCS (Wei et al., 2023), NCLA (Shen et al., 2023),
S3-CL (Ding et al., 2023), and ImGCL (Zeng et al., 2023b) refine graph augmentation and learn-
ing methods. GRADATE (Duan et al., 2023) integrates subgraph contrast into multi-scale learning
networks.

GNNs using Subgraphs and Substructures Our pattern analysis method samples subgraphs
from different graph patterns to conduct explainable graph representation learning. The key novelty
and contribution of our paper is that graph pattern analysis provides explainability for representa-
tions. We discuss other GNN methods based on subgraphs and substructures here: Subgraph Neural
Networks (SubGNN) (Kriege & Mutzel, 2012) learn disentangled subgraph representations using
a novel subgraph routing mechanism, but they sample subgraphs randomly, lacking explainability.
Substructure Aware Graph Neural Networks (SAGNN) (Zeng et al., 2023a) use cut subgraphs and
return probability to capture structural information but focus on expressiveness rather than explain-
ability. Mutual Information (MI) Induced Substructure-aware GRL (Wang et al., 2020) maximizes
MI between original and learned representations at both node and graph levels but does not pro-
vide explainable representation learning. Substructure Assembling Network (SAN) (Zhao et al.,
2018) hierarchically assembles graph components using an RNN variant but lacks explainability in
representation learning.

Several works focus on analyzing the expressiveness of methods by their ability to count substruc-
tures, but they do not provide explainable representation learning. For example: (Chen et al., 2020)
analyze the expressiveness of MPNNs (Gilmer et al., 2017) and 2nd-order Invariant Graph Networks
(2-IGNs) (Maron et al., 2019) based on their ability to count specific subgraphs, highlighting tasks
that are challenging for classical GNN architectures but not focusing on explainability. (Frasca et al.,
2022) compare the expressiveness of SubGNN (Kriege & Mutzel, 2012) and 2-IGNs (Maron et al.,
2019) using symmetry analysis, establishing a link between Subgraph GNNs and Invariant Graph
Networks.

C.3 GRAPH KERNELS

Graph kernels evaluate the similarity between two graphs. Over the past decades, numerous graph
kernels have been proposed (Siglidis et al., 2020). We classify them into two categories: pattern
counting kernels and non-pattern counting kernels.

Pattern Counting Kernels Pattern counting kernels compare specific substructures within graphs
to evaluate similarity (Kriege et al., 2020). For examples, Random walk kernels (Borgwardt et al.,
2005; Gärtner et al., 2003) measure graph similarity by counting common random walks between
graphs. Shortest-path kernels(Borgwardt & Kriegel, 2005) compare graphs using the shortest dis-
tance matrix generated by the Floyd-Warshall algorithm, based on edge values and node labels.
Sub-tree kernels (Da San Martino et al., 2012; Smola & Vishwanathan, 2002) decompose graphs
into ordered Directed Acyclic Graphs (DAGs) and use tree kernels extended to DAGs. Graphlet
kernels (Pržulj, 2007) count small connected non-isomorphic subgraphs (graphlets) within graphs
and compare their distributions. Weisfeiler-Lehman subtree kernels (Kriege & Mutzel, 2012) use
small subgraphs, like graphlets, to compare graphs, allowing flexibility to compare vertex and edge
attributes with arbitrary kernel functions.

Non-pattern Counting Kernels Non-pattern counting kernels evaluate graph similarity without
relying on specific substructure counts. For examples, Neighborhood hash kernel (Hido & Kashima,
2009) use binary arrays to represent node labels and logical operations on connected node labels.
This kernel has linear time complexity. GraphHopper kernel (Feragen et al., 2013) compare shortest
paths between node pairs using kernels on nodes encountered while hopping along shortest paths.
Graph hash kernel (Shi et al., 2009) use hashing for efficient kernel computation, suitable for data
streams and sparse feature spaces, with deviation bounds from the exact kernel matrix. Multiscale
Laplacian Graph (MLG) kernel (Kondor & Pan, 2016) account for structure at different scales using
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Feature Space Laplacian Graph (FLG) kernels, applied recursively to subgraphs. They introduce a
randomized projection procedure similar to the Nystrom method for RKHS operators.

D PROOF FOR ROBUSTNESS ANALYSIS

Let ∆A and ∆X be some perturbations on adjacency matrix and node attributes, then the perturbed
graph is denoted as G̃ = (A+∆A,X +∆X). Let g be the graph representation of G and g̃ be the
graph representation of G̃. The robustness analysis is to find the upper bound of ∥g̃ − g∥.

Assumptions and Notations: Let Ã = A+∆A and X̃ = X+∆X . We suppose that ∥A∥2 ≤ βA,
∥X∥F ≤ βB and ∥W (m,l)∥2 ≤ βW , (∀ m ∈ [M ], l ∈ [L]), the activation σ(·) of GCN is ρ-
Lipschitz continuous. We denote the minimum node degree of G as α, the effects of structural
perturbation as κ = min(1⊤∆A), and ∆D := I − diag(1⊤(I +A+∆A))

1
2 diag(1⊤A)−

1
2 .

Theorem: Our conclusion for robustness analysis is as follows:

∥g̃ − g∥ ≤ 1√
n
ρLβL

WβX(1 + α)−L(1 + βA + ∥∆A∥2)L
(
1 + 2L∥∆D∥2 + L(1 + βA + ∥∆A∥2)−1∥∆A∥2)

)
(16)

To provide a clearer analysis, we first use the whole graph G and G̃ as the input of the pattern
representation learning function F without sampling the subgraphs. Then we consider using the
subgraph sampling to analyze g and g̃ and finally finish the proof of robustness analysis.

D.1 LEARNING PATTERN REPRESENTATIONS USING THE WHOLE GRAPH WITHOUT
SAMPLING

In this section, we first consider using the whole graph G and G̃ as the input of the pattern represen-
tation learning function F without sampling the subgraphs, i.e., we analyze F (A,X;W(m)) and
F (Ã, X̃;W(m)).

Representation Learning Function F In theoretical analysis, we suppose the pattern represen-
tation learning function F is a L-layer GCN (Kipf & Welling, 2016) with an average pooling
avg-pool : Rn×d → Rd as the output layer. The pattern learning function for the pattern Pm is
denoted as F (A,X;W(m)), where W(m) = {W (m,1), ...,W (m,l), ...,W (m,L)} and W (m,l) is
the trainable parameter of the l-th layer. We use the adjacency matrix A and node feature matrix
X of G as the input. Then the self-connected adjacency matrix is Â = I +A, the diagonal matrix
is D̂ = diag(1⊤Â), then the normalized self-connected adjacency matrix is U = D̂− 1

2 ÂD̂− 1
2 .

Let σ(·) be an activation function, then the hidden embedding X(m,L) of the l-th layer is defined as
follows

X(m,l) = σ(U ...σ(U︸ ︷︷ ︸
l times

XW (m,1))...W (m,l))︸ ︷︷ ︸
l times

, ∀ l ∈ [L],
(17)

The pattern representation z(m) of pattern Pm is obtained by

z(m) = F (A,X;W(m)) = avg-pool(X(m,L)) =
1

n
1⊤X(m,L) (18)

For a perturbed graph G̃, we use Ã and X̃ to denote the adjacency matrix and feature matrix respec-
tively. The corresponding self-connected adjacency matrix is Â′ = I + Ã and the degree matrix as
D̂′ = diag(1⊤Â′). Then the normalized self-connected adjacency matrix is Ũ = D̂′− 1

2 Â′D̂′− 1
2 .

The l-th layer hidden embedding of G̃ is defined as follows

X̃(m,l) = σ(Ũ ...σ(Ũ︸ ︷︷ ︸
l times

X̃ W (m,1))...W (m,l))︸ ︷︷ ︸
l times

, ∀ l ∈ [L],
(19)

The perturbed pattern representation z̃(m) of pattern Pm is obtained by

z̃(m) = F (Ã, X̃;W(m)) = avg-pool(X̃(m,L)) =
1

n
1⊤X̃(m,L) (20)
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Lemma D.1. Let X and Y be two square matrices, ∥ · ∥2 be the spectral norm and ∥ · ∥F be the
Frobenius norm , then ∥X∥2 ≤ ∥X∥F , ∥XY ∥2 ≤ ∥X∥2∥Y ∥2 and ∥XY ∥F ≤ ∥X∥2∥Y ∥F .

Lemma D.2 (Inequalities). Some inequalities that will be used in our proof:

∥U∥2 ≤ (1 + α)−1(1 + βA)

∥Ũ∥2 ≤ (1 + α+ κ)−1(1 + βA + ∥∆A∥2)
∥∆U∥2 ≤ 2(1 + βA)(1 + α)−1∥∆D∥2 + (1 + α+ κ)−1∥∆A∥2

∥∆X(m,l)∥F ≤ ρlβl
WβX(1 + α)−l(1 + βA + ∥∆A∥2)l

(
1 + 2l∥∆D∥2 + l(1 + βA + ∥∆A∥2)−1∥∆A∥2)

)

Proof. Since the minimum node degree of G is α, then we have ∥D̂− 1
2 ∥2 ≤ (1 + α)−

1
2 . Since

∥A∥2 ≤ βA, then ∥Â∥2 ≤ 1 + βA. We have

∥U∥2 ≤ ∥D̂− 1
2 ∥2∥Â∥2∥D̂− 1

2 ∥2 ≤ (1 + α)−1(1 + βA). (21)

Similarly, since the effects of structural perturbation is κ = min(1⊤∆A), we have ∥D̂′− 1
2 ∥2 ≤

(1 + α+ κ)−
1
2 . Since ∥Ã′∥2 ≤ ∥Â∥2 + ∥∆A∥2 ≤ 1 + βA + ∥∆A∥2, we obtain

∥Ũ∥2 ≤ ∥D̂′− 1
2 ∥2∥Â′∥2∥D̂′− 1

2 ∥2 ≤ (1 + α+ κ)−1(1 + βA + ∥∆A∥2). (22)

Letting ∆U = Ũ −U , we have

∥∆U∥2 = ∥Ũ −U∥2 = ∥D̂′− 1
2 (Â+∆A)D̂

′− 1
2 − D̂− 1

2 ÂD̂− 1
2 ∥2

= ∥D̂′− 1
2 ÂD̂′− 1

2 − D̂′− 1
2 ÂD̂− 1

2 + D̂′− 1
2 ÂD̂− 1

2 − D̂− 1
2 ÂD̂− 1

2 + D̂′− 1
2∆AD̂

′− 1
2 ∥2

≤ ∥D̂′− 1
2 Â(D̂′− 1

2 − D̂− 1
2 )∥2 + ∥(D̂′− 1

2 − D̂− 1
2 )ÂD̂− 1

2 ∥2 + ∥D̂′− 1
2∆AD̂

′− 1
2 ∥2

≤ (∥D̂− 1
2 ∥2 + ∥D̂′− 1

2 ∥2)∥Â∥2∥D̂′− 1
2 − D̂− 1

2 ∥2 + ∥D̂′− 1
2 ∥2∥∆A∥2∥D̂′− 1

2 ∥2
≤ ((1 + α)−

1
2 + (1 + α+ κ)−

1
2 )(1 + βA)∥D̂′− 1

2 − D̂− 1
2 ∥2 + (1 + α+ κ)−1∥∆A∥2

≤ 2(1 + βA)(1 + α)−
1
2 ∥D̂′− 1

2 − D̂− 1
2 ∥2 + (1 + α+ κ)−1∥∆A∥2

≤ 2(1 + βA)(1 + α)−
1
2 (1 + α+ κ)−

1
2 ∥I − D̂′ 12 D̂− 1

2 ∥2 + (1 + α+ κ)−1∥∆A∥2
= 2(1 + βA)(1 + α)−

1
2 (1 + α+ κ)−

1
2 ∥∆D∥2 + (1 + α+ κ)−1∥∆A∥2

≤ 2(1 + βA)(1 + α)−1∥∆D∥2 + (1 + α+ κ)−1∥∆A∥2
(23)

where ∆D = I − D̂′ 12 D̂− 1
2 = I − diag(1⊤(I +A+∆A))

1
2 diag(1⊤A)−

1
2 .

The X(m,l) is the hidden embedding of the l-layer GCN of F (A, (X);W(m,l)), which is the repre-
sentation learning function related to Pm. Then we have

∥X(m,l)∥F = ∥σ(UX(m,l−1)W (m,l))∥F
≤ ρ∥UX(m,l−1)W (m,l)∥F
≤ ρ∥U∥2∥X(m,l−1)∥F ∥W (m,l)∥2
≤ ρβW (1 + α)−1(1 + βA)∥X(m,l−1)∥F
≤ ρlβl

W (1 + βA)
l(1 + α)−l∥X∥F

≤ ρlβl
WβX(1 + βA)

l(1 + α)−l

(24)
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For ∆X(m,l) = X̃(m,l) −X(m,l), we have

∥∆X(m,l)∥F = ∥X̃(m,l) −X(m,l)∥F
= ∥σ(ŨX̃(m,l−1)W (l))− σ(UX(l−1)W (l))∥F
≤ ρ∥ŨX̃(m,l−1) −UX(m,l−1)∥F ∥W (m,l)∥2

≤ ρβW

(
∥Ũ∥2∥∆X(m,l−1)∥F + ∥∆U∥2∥X(m,l−1)∥F

)
≤ ρ2β2

W ∥Ũ∥22∥∆X(m,l−2)∥F + ρ2β2
W ∥Ũ∥2∥∆U∥2∥X(m,l−2)∥F + ρβW ∥∆U∥2∥X(m,l−1)∥F

≤ ρlβl
W ∥Ũ∥l2∥∆X∥F +

l∑
k=1

ρkβk
W ∥Ũ∥k−1

2 ∥∆U∥2∥X(m,l−k)∥F

≤ ρlβl
W (1 + βA + ∥∆A∥2)l−1(1 + α)−l [(1 + βA + 2∥∆A∥2)∥∆X∥F + 2lβX(1 + βA)∥∆D∥2]

(25)

D.2 LEARNING GRAPH REPRESENTATIONS VIA SAMPLING SUBGRAPHS

In this section, we consider learning the graph representation g and g̃ respectively by sampling
subgraphs of graph patterns. That is, we analyse F (AS ,XS ;W(m)) and F (ÃS̃ , X̃S̃ ;W(m)). And
then we provide the upper bound of ∥g̃ − g∥.

Let S be a subgraph of graph G and S̃ be a subgraph of graph G̃. Let ∆AS
and ∆XS

be some
perturbations on adjacency matrix and node attributes, then the perturbed graph is denoted as S̃ =
(AS +∆AS

,XS +∆XS
).

Assumptions and Notations: Let Ã = A+∆A and X̃ = X+∆X . We suppose that ∥A∥2 ≤ βA,
∥X∥F ≤ βB and ∥W (m,l)∥2 ≤ βW , (∀ m ∈ [M ], l ∈ [L]), the activation σ(·) of GCN is ρ-
Lipschitz continuous. We denote the minimum node degree of G as α, the effects of structural
perturbation as κ = min(1⊤∆A), and ∆D := I − diag(1⊤(I + A + ∆A))

1
2 diag(1⊤A)−

1
2 . We

present the following useful lemmas.

Lemma D.3 (Eigenvalue Interlacing Theorem (Hwang, 2004)). Suppose A ∈ Rn×n is symmetric.
Let B ∈ Rm×m with m < n be a principal submatrix (obtained by deleting both the i-th row and
i-th column for some value of i). Suppose A has eigenvalues λ1 ≤ · · · ≤ λn and B has eigenvalues
β1 ≤ · · · ≤ βm. Then

λk ≤ βk ≤ λk+n−m for k = 1, · · · ,m.

Lemma D.4. Since XS and ∆XS
are submatrices of X and ∆X respectively, then we have

∥XS∥F ≤ ∥X∥F , and ∥∆XS
∥F ≤ ∥∆X∥F .

Let ∆DS
:= I − diag(1⊤(I +AS +∆AS

))
1
2 diag(1⊤AS)

− 1
2 . Base on the Eigenvalue Interlacing

Theorem, for any subgraph S of graph G, since AS , ∆AS
, ∆DS

are principal submatrices of A,
∆A, ∆D respectively, then we have

∥AS∥2 ≤ ∥A∥2 ≤ βA, ∥∆AS
∥2 ≤ ∥∆A∥2, ∥∆DS

∥2 ≤ ∥∆D∥2.

Notations: For a subgraph S of graph G, the self-connected adjacency matrix is ÂS = I +AS ,
the degree matrix is D̂S = diag(1⊤ÂS), and the normalized self-connected adjacency matrix is

US = D̂
− 1

2

S ÂSD̂
− 1

2

S .

For a subgraph S̃ of graph G̃, we define some notations here. We denote the self-connected adja-
cency matrix as Â′

S̃
= I + ÃS̃ , the diagonal matrix as D̂′

S̃
= diag(1⊤Â′

S̃
), and the normalized

self-connected adjacency matrix as ŨS̃ = D̂′
S̃
− 1

2 Â′
S̃
D̂′

S̃
− 1

2 . We also denote ∆US
= ŨS̃ −US and

∆
X

(m,l)
S

= X̃S̃
(m,l) −X

(m,l)
S .

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Lemma D.5 (Inequalities). Base on Lemma D.4, for any subgraph S of graph G, the inequalities
in the Lemma D.2 still holds for S, shown as follows:

∥US∥2 ≤ (1 + α)−1(1 + βA)

∥ŨS∥2 ≤ (1 + α+ κ)−1(1 + βA + ∥∆A∥2)
∥∆US

∥2 ≤ 2(1 + βA)(1 + α)−1∥∆D∥2 + (1 + α+ κ)−1∥∆A∥2
∥X(m,l)

S ∥F ≤ ρlβl
WβX(1 + βA)

l(1 + α)−l

∥∆
X

(m,l)
S

∥F ≤ ρlβl
W (1 + βA + ∥∆A∥2)l−1(1 + α)−l [(1 + βA + 2∥∆A∥2)∥∆X∥F + 2lβX(1 + βA)∥∆D∥2]

(26)

Proof. The proof is mainly based on Lemma D.4.

Similar to (21), we have

∥US∥2 ≤ ∥D̂− 1
2

S ∥2∥ÂS∥2∥D̂
− 1

2

S ∥2 ≤ ∥D̂− 1
2 ∥2∥Â∥2∥D̂− 1

2 ∥2 ≤ (1 + α)−1(1 + βA). (27)

Similar to (22), we have

∥ŨS∥2 ≤ ∥D̂′
S̃
− 1

2 ∥2∥Â′∥2∥D̂′
S̃
− 1

2 ∥2 ≤ ∥D̂′− 1
2 ∥2∥Â′∥2∥D̂′− 1

2 ∥2
≤ (1 + α+ κ)−1(1 + βA + ∥∆A∥2).

(28)

Similar to (23), we have

∥∆U∥2 ≤ (∥D̂− 1
2

S ∥2 + ∥D̂′
S̃
− 1

2 ∥2)∥Â∥2∥D̂′
S̃
− 1

2 − D̂
− 1

2

S ∥2 + ∥D̂′
S̃
− 1

2 ∥∆A∥2∥D̂′
S̃
− 1

2 ∥2
≤ (∥D̂− 1

2 ∥2 + ∥D̂′− 1
2 ∥2)∥Â∥2∥D̂′− 1

2 − D̂− 1
2 ∥2 + ∥D̂′− 1

2 ∥2∥∆A∥2∥D̂′− 1
2 ∥2

≤ 2(1 + βA)(1 + α)−1∥∆D∥2 + (1 + α+ κ)−1∥∆A∥2

(29)

Similar to (24), we have

∥X(m,l)
S ∥F ≤ ρ∥US∥2∥X(m,l−1)

S ∥F ∥W (m,l)∥2
≤ ρ∥U∥2∥X(m,l−1)∥F ∥W (m,l)∥2
≤ ρlβl

WβX(1 + βA)
l(1 + α)−l

(30)

Similar to (25), we have

∥∆
X

(m,l)
S

∥F ≤ ρ2β2
W ∥ŨS∥22∥∆X

(l−2)
S

∥F + ρ2β2
W ∥ŨS∥2∥∆US

∥2∥X(l−2)
S ∥F + ρβW ∥∆US

∥2∥X(l−1)
S ∥F

≤ ρ2β2
W ∥Ũ∥22∥∆X(l−2)∥F + ρ2β2

W ∥Ũ∥2∥∆U∥2∥X(l−2)∥F + ρβW ∥∆U∥2∥X(l−1)∥F
≤ ρlβl

W (1 + βA + ∥∆A∥2)l−1(1 + α)−l [(1 + βA + 2∥∆A∥2)∥∆X∥F + 2lβX(1 + βA)∥∆D∥2]
(31)

Finally, we can prove our theorem of robustness analysis in the main paper using Lemma D.5 as
follows.

Proof. Given a pattern sampling set S(m), we assume the S∗ satisfies

S∗ = argmax
S∈S(m)

∥∆
X

(m,L)
S

∥F .

Since the Lemma D.5 holds for any subgraph S, we have

∥∆
X

(m,l)

S∗
∥F ≤ ρlβl

W (1+βA+∥∆A∥2)l−1(1+α)−l [(1 + βA + 2∥∆A∥2)∥∆X∥F + 2lβX(1 + βA)∥∆D∥2]
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Then the upper bound of ∥g̃ − g∥ is given by

∥g̃ − g∥ =

∥∥∥∥∥
M∑

m=1

λm (z̃(m) − z(m))

∥∥∥∥∥ ≤
M∑

m=1

λm ∥z̃(m) − z(m)∥

=
1

Q

M∑
m=1

λm

∥∥∥∥∥∥
∑

S∈S(m)

F (ÃS , X̃S ;W(m))−
∑

S∈S(m)

F (AS ,XS ;W(m))

∥∥∥∥∥∥
≤ 1

Q

M∑
m=1

λm
∑

S∈S(m)

∥∥∥F (ÃS , X̃S ;W(m))− F (AS ,XS ;W(m))
∥∥∥

=
1

Q

M∑
m=1

λm
∑

S∈S(m)

1

n

∥∥∥1⊤(X̃
(m,L)
S −X

(m,L)
S )

∥∥∥
F

≤ 1

Q

M∑
m=1

λm
1

n

∑
S∈S(m)

∥1∥
∥∥∥X̃(m,L)

S −X
(m,L)
S

∥∥∥
F

=
1

Q
√
n

M∑
m=1

λm
∑

S∈S(m)

∥∥∥∆X
(m,L)
S

∥∥∥
F

≤ 1

Q
√
n

M∑
m=1

λm Q
∥∥∥∆X

(m,L)

S∗

∥∥∥
F

≤ 1√
n
ρlβl

W (1 + βA + ∥∆A∥2)l−1(1 + α)−l [(1 + βA + 2∥∆A∥2)∥∆X∥F + 2LβX(1 + βA)∥∆D∥2]

(32)

E PROOF FOR GENERALIZATION ANALYSIS OF SUPERVISED LOSS

Before providing our theorem, we need to provide the classification loss function fc.

Classification loss function fc: We use a linear classifier with parameter WC ∈ Rd×C and use
softmax as the activation function as the classification function fc, i.e., ŷ = softmax(gWC). We
suppose that ∥WC∥2 ≤ βC .

Then the classification loss is as follows
ℓCE(λ,W) = cross-entropy(y, ŷ) = cross-entropy(y, softmax(gWC)). (33)

To simplify the proof, we rewrite supervised loss ℓCE(λ,W) function as
φ(gWC) := cross-entropy(y, ŷ) = cross-entropy(y, softmax(gWC)).

Lemma E.1. Let v be a vector, there exits a positive constant τ such that φ(v) is a τ -Lipschitz
continuous function.

Generalization Error Let D := {G1, ..., G|D|} be the training data. By removing the i-th graph
of D, we have D\i = {G1, ..., Gi−1, Gi+1, ..., G|D|−1}. Let λD and W̄D := {WC ,W

(m,l)
D , ∀m ∈

[M ], l ∈ [L]} be the parameters trained on D. Let λD\i and W̄D\i := {WC\i ,W
(m,l)

D\i , ∀ m ∈
[M ], l ∈ [L]} be the parameters trained on D\i. Then our goal is to find a η such that

|ℓCE(λD, W̄D;G)− ℓCE(λD\i , W̄D\i ;G)| ≤ η (34)
Theorem E.2. Given a graph G, let g be the graph representations learned with parameter λD and
W̄D and g\i be the graph representations learned with parameter λD\i and W̄D\i .

To simplify the proof, we denote that β̂W = max(β̂WD, β̂WD\i), where

β̂WD = max
m∈[M ],l∈[L]

∥W (m,l)
D ∥2, and β̂WD\i = max

m∈[M ],l∈[L]
∥W (m,l)

D\i ∥2.
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We also denote that
β̂∆W = max

m∈[M ],l∈[L]
∥W(m,l)

D −W(m,l)

D\i ∥2.

Then we have

η =
τ√
n
ρLβ̂L−1

W βX(1+βA)
L(1+α)−L

[
β̂W ∥WC −WC\i∥2 + ∥WC\i∥2

(
β̂W ∥λD − λD\i∥+ Lβ̂∆W ∥λD\i∥

)]
Proof. We provide two lemmas used in our proof

Lemma E.3. ∥g∥ ≤ 1√
n
ρLβ̂L

WβX(1 + βA)
L(1 + α)−L

Lemma E.4.

∥g − g\i∥ ≤ 1√
n
ρLβ̂L−1

W βX(1 + βA)
L(1 + α)−L

(
β̂W ∥λD − λD\i∥+ Lβ̂∆W ∥λD\i∥

)
The main proof of our Theorem

|ℓCE(λD, W̄D;G)− ℓCE(λD\i , W̄D\i ;G)| = ∥φ(g\iWC\i)− φ(gWC)∥
≤τ∥gWC − g\iWC\i∥
=τ∥gWC − gWC\i + gWC\i − g\iWC\i∥
≤τ∥g∥∥WC −WC\i∥2 + τ∥g − g\i∥∥WC\i∥2

≤τ∥WC −WC\i∥2
1√
n
ρLβ̂L

WβX(1 + βA)
L(1 + α)−L

+ τ∥WC\i∥2
1√
n
ρLβ̂L−1

W βX(1 + βA)
L(1 + α)−L

(
β̂W ∥λD − λD\i∥+ Lβ̂∆W ∥λD\i∥

)
=

τ√
n
ρLβ̂L−1

W βX(1 + βA)
L(1 + α)−L

[
β̂W ∥WC −WC\i∥2 + ∥WC\i∥2

(
β̂W ∥λD − λD\i∥+ Lβ̂∆W ∥λD\i∥

)]
(35)

Since
∑M

i=1 λi ≤ 1 and λi ≥ 0, we have ∥λ∥ ≤ 1 and ∥λ−λD\i∥ ≤ 2. This finished the proof.

E.1 PROOF FOR LEMMAS

Lemma E.5. Let v be a vector, there exits a positive constant τ such that φ(v) is a τ -Lipschitz
continuous function.

Proof. Step 1: Softmax is Lipschitz The softmax function is known to be Lipschitz continuous.
Specifically, there exists a constant K such that:

∥softmax(v)− softmax(w)∥1 ≤ L1∥v − w∥2,

where ∥ · ∥1 is the ℓ1-norm and ∥ · ∥2 is the ℓ2-norm. For the ℓ1-norm, L1 can be bounded by 1, but
generally, for different norms, the exact Lipschitz constant might vary.

Step 2: Cross-Entropy is Lipschitz on the Simplex Given q = softmax(v) and r = softmax(w),
we need to check the Lipschitz continuity of the cross-entropy loss function with respect to these
distributions:

|cross-entropy(p,q)− cross-entropy(p, r)| ≤ L2∥q− r∥.
The cross-entropy loss is a convex function and it is smooth with respect to the probability distribu-
tions q and r. Given the boundedness of the probability values (since q and r lie in the probability
simplex), the gradient of the cross-entropy loss is also bounded.

Combining Steps Since both the softmax function and the cross-entropy loss function are Lipschitz
continuous, their composition will also be Lipschitz continuous. Therefore, there exists a constant
τ = L1L2 such that:

|φ(v)− φ(w)| ≤ τ∥v − w∥.

Hence, φ(v) = cross-entropy(softmax(v)) is τ -Lipschitz continuous.
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Lemma E.6. ∥g∥ ≤ 1√
n
ρLβ̂L

WβX(1 + βA)
L(1 + α)−L

Proof. Given a pattern sampling set S(m), we assume the S∗ satisfies

S∗ = argmax
S∈S(m)

∥X(L)
S ∥F .

Since the Lemma D.5 holds for any subgraph S, then we have

∥X(m,l)
S∗ ∥F ≤ ρlβ̂l

WβX(1 + βA)
l(1 + α)−l.

Then, we have

∥g∥ = ∥
M∑

m=1

λm z(m)∥ ≤
M∑

m=1

λm ∥z(m)∥

=
1

Q

M∑
m=1

λm ∥
∑

S∈S(m)

F (AS ,XS ;W(m))∥

≤ 1

Q

M∑
m=1

λm
∑

S∈S(m)

∥F (AS ,XS ;W(m))∥

=
1

Q

M∑
m=1

λm
∑

S∈S(m)

1

n
∥1⊤(X

(m,L)
S )∥F

≤ 1

Q

M∑
m=1

λm
1

n

∑
S∈S(m)

∥1∥2∥X(m,L)
S ∥F

=
1

Q
√
n

M∑
m=1

λm
∑

S∈S(m)

∥X(m,L)
S ∥F

≤ 1√
n

M∑
m=1

λm ∥X(m,L)
S∗ ∥F

≤ 1√
n
ρLβ̂L

WβX(1 + βA)
L(1 + α)−L

(36)

Lemma E.7.

∥g − g\i∥ ≤ 1√
n
ρLβ̂L−1

W βX(1 + βA)
L(1 + α)−L

(
β̂W ∥λD − λD\i∥+ Lβ̂∆W ∥λD\i∥

)
Proof. To simplify the proof, we denote

β̂W = max{ max
m∈[M ],l∈[L]

∥W (m,l)
D ∥2, max

m∈[M ],l∈[L]
∥W (m,l)

D\i ∥2}

β̂∆W = max
m∈[M ],l∈[L]

∥W(m,l)
D −W(m,l)

D\i ∥2.
(37)

Let X(m,l)
SD be the embedding features of the l-th layer GCN with the parameter W(m)

D learned from
dataset D. Let X(m,l)

SD\i be the embedding features of the l-th layer GCN with the parameter W(m)

D\i

learned from dataset D\i.

We denote ZD = [z
(1)
D , ...,z

(m)
D ]⊤ and ZD\i = [z

(1)

D\i , ...,z
(m)

D\i ]
⊤. Let

q1 = argmax
m∈[M ]

∥z(m)
D ∥, q2 = argmax

m∈[M ]

∥z(l2)
D − z

(l2)

D\i∥.

Then we have
∥ZD∥2 ≤ ∥z(q1)

D ∥, ∥ZD −ZD\i∥2 ≤ ∥z(q2)
D − z

(q2)

D\i ∥.
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Similar to (36), we have

∥z(q1)
D ∥ ≤ 1√

n
ρLβ̂L

WβX(1 + βA)
L(1 + α)−L (38)

Denote ∆
X

(q2,l)

SD
:= X

(q2,l)
SD −X

(q2,l)

SD\i , then, similar to inequality (25) we have

∥∆
X

(q2,l)

SD
∥F = ∥σ(USX

(q2,l−1)
SD W(q2)

D )− σ(USX
(q2,l)

SD\i W
(q2)

D\i )∥F

≤ ρ∥US∥2∥X(q2,l−1)
SD W

(q2,l−1)
D −X

(q2,l−1)

SD\i W
(q2,l−1)

D\i ∥F
≤ ρ∥US∥2∥X(q2,l−1)

SD W
(q2,l−1)
D −X

(q2,l−1)
SD W

(q2,l−1)

D\i +X
(q2,l−1)
SD W

(q2,l−1)

D\i −X
(q2,l−1)

SD\i W
(q2,l−1)

D\i ∥F
≤ ρ∥US∥2∥X(q2,l−1)

SD (W
(q2,l−1)
D −W

(q2,l−1)

D\i ) + (X
(q2,l−1)
SD −X

(q2,l−1)

SD\i )W
(q2,l−1)

D\i ∥F
≤ ρ∥US∥2(∥X(q2,l−1)

SD ∥F ∥W (q2,l−1)
D −W

(q2,l−1)

D\i ∥2 + ∥X(q2,l−1)
SD −X

(q2,l−1)

SD\i ∥F ∥W (q2,l−1)

D\i ∥2)

= ρ∥US∥2β̂W ∥∆
X

(q2,l−1)

SD
∥F + ρ∥US∥2β̂∆W ∥X(q2,l−1)

SD ∥F

≤ ρl∥US∥l2β̂l
W ∥∆

X
(q2,0)

SD
∥F +

l∑
k=1

ρk∥US∥k2 β̂k−1
W β̂∆W ∥X(q2,l−k)

SD ∥F

(39)
where ∥∆

X
(q2,0)

SD
∥F = ∥XS −XS∥F = 0. We can directly use the inequality (24), such that

∥X(m,l)
SD ∥F ≤ ρlβ̂l

WβX(1 + βA)
l(1 + α)−l (40)

Thus, we continue the proof

∥∆
X

(q2,l)

SD
∥F ≤ ρl∥US∥l2β̂l

W ∥∆
X

(q2,0)

SD
∥F +

l∑
k=1

ρk∥US∥k2 β̂k−1
W β̂∆W ∥X(q2,l−k)

SD ∥F

≤ lρl(1 + α)−l(1 + βA)
lβ̂l−1

W β̂∆WβX

(41)

Also similar to (D.5), we have

∥z(q2)
D − z

(q2)

D\i ∥ = ∥F (AS ,XS ;W(q2)
D )− F (AS ,XS ;W(q2)

D\i )∥

=
1

n
∥1⊤(X

(q2,L)
SD )− 1⊤(X

(q2,L)

SD\i )∥

=
1√
n
∥X(q2,L)

SD −X
(q2,L)

SD\i ∥F =
1√
n
∥∆

X
(q2,L)

SD
∥F

≤ L√
n
ρL(1 + α)−L(1 + βA)

Lβ̂L−1
W β̂∆WβX

(42)

Finally, we have

∥g − g\i∥ = ∥λ⊤
DZD − λ⊤

D\iZD\i∥
= ∥λ⊤

DZD − λ⊤
D\iZD + λ⊤

D\iZD − λ⊤
D\iZD\i∥

= ∥(λD − λD\i)⊤ZD + λ⊤
D\i(ZD −ZD\i)∥

≤ ∥λD − λD\i∥∥ZD∥2 + ∥λD\i∥∥ZD −ZD\i∥2
≤ ∥λD − λD\i∥∥z(q1)

D ∥+ ∥λD\i∥∥z(q2)
D − z

(q2)

D\i ∥

≤ ∥λD − λD\i∥
1√
n
ρLβ̂L

WβX(1 + βA)
L(1 + α)−L

+ ∥λD\i∥
L√
n
ρL(1 + α)−L(1 + βA)

Lβ̂L−1
W β̂∆WβX

=
1√
n
ρLβ̂L−1

W βX(1 + βA)
L(1 + α)−L

(
β̂W ∥λD − λD\i∥+ Lβ̂∆W ∥λD\i∥

)

(43)
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F MORE EXPERIMENTAL RESULTS

In this section, we present additional experiments and supplementary figures.

F.1 EVALUATING THE ENSEMBLE KERNEL (PXGL-EGK)

Here, we compare our ensemble kernel (PXGL-EGK) as defined in Definition 3.3 with individual
kernels KP . We report the results as follows. Specifically, we use three pattern counting kernels in
the ensemble method: Random Walk (RW) kernels (Borgwardt et al., 2005; Gärtner et al., 2003),
Sub-tree kernels (Da San Martino et al., 2012; Smola & Vishwanathan, 2002), and Graphlet kernels
(Pržulj, 2007). Since graph kernels are unsupervised learning methods, we compare the clustering
accuracy and Normalized Mutual Information (NMI) of each kernel, as shown in Table 6. The result
shows that PXGL-EGK outperform each individual kernels it used.

Table 6: ACC and NMI of Graph Clustering. The best ACC is bold and the best NMI is green.

Method Metric MUTAG PROTEINS DD IMDB-B
RW ACC 0.743 ± 0.052 0.712 ± 0.021 0.516 ± 0.015 0.658 ± 0.014

NMI 0.238 ± 0.016 0.268 ± 0.016 0.187 ± 0.002 0.266 ± 0.019
Sub-tree ACC 0.729 ± 0.013 0.692 ± 0.027 0.542 ± 0.016 0.612 ± 0.018

NMI 0.195 ± 0.047 0.151 ± 0.028 0.229 ± 0.015 0.242 ± 0.013
Graphlet ACC 0.735 ± 0.026 0.636 ± 0.017 0.568 ± 0.013 0.614 ± 0.012

NMI 0.214 ± 0.019 0.154 ± 0.026 0.285 ± 0.011 0.214 ± 0.025

PXGL-EGK ACC 0.761 ± 0.025 0.721 ± 0.028 0.572 ± 0.025 0.672 ± 0.023
NMI 0.328 ± 0.046 0.321 ± 0.019 0.296 ± 0.013 0.310 ± 0.021

F.2 SENSITIVITY ANALYSIS

Sensitivity of PXGL-GNN to Q Here we use the MUTAG dataset to show the sensitivity of
accuracy and time cost to the number of samples Q for each pattern. We see that the time cost is
roughly linear with Q and the accuracy is not sensitive to Q when it is larger than 5.

Table 7: Impact of sampling number Q on MUTAG dataset (20 epochs, 7 patterns)

Q 3 5 7 10 15
Accuracy (%) 87.63 ± 1.42 94.87 ± 2.26 94.26 ± 2.17 95.35 ± 1.89 95.33 ± 2.48

Training Time (s) 636s 877s 1035s 1563s 2351s

Sensitivity of PXGL-GNN to L In the following table, we use three datasets to show the accuracy
of the graph classification of our PXGL-EGK model with different number of layers L. The results

Table 8: Impact of the number of layers of GNN

Model L = 1 L = 3 L = 5 L = 7 L = 9
MUTAG 81.44 ± 1.29 86.73 ± 2.78 94.87 ± 2.26 91.25 ± 1.14 89.66 ± 1.15

PROTEINS 62.17 ± 1.53 67.22 ± 1.16 78.23 ± 2.46 73.21 ± 1.98 71.07 ± 1.63
DD 75.36 ± 1.21 79.35 ± 1.20 86.54 ± 1.95 82.36 ± 1.24 82.17 ± 1.54

reveal that the model performs best at L = 5. With fewer layers, the model lacks sufficient capacity
for representation; with more layers, the model is too complex and has overfitting performances.
This is consistent with our theoretical analysis, since when the model is complex the gap between
training error and the testing error becomes large.

Sensitivity of PXGL-GNN to pattern combination The following table shows the classification
accuracy given by PXGL-GNN with different combinations of patterns on the MUTAG dataset. We
see that by including more patterns, the classification accuracy tends to be higher.
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Table 9: Classification accuracy of PXGL-GNN with different pattern combinations on MUTAG
dataset. The best performance is shown in bold.

Pattern Combinations Accuracy (%) λ weights
Paths only 80.47 ± 1.24 1.0
Trees only 86.39 ± 2.73 1.0
Cycles only 89.24 ± 1.76 1.0
Paths + Trees 87.11 ± 2.93 0.274 / 0.716
Paths + Cycles 91.62 ± 1.14 0.207 / 0.793
Trees + Cycles 92.31 ± 2.65 0.325 / 0.675
All Patterns 94.87 ± 2.26 0.095/0.046/0.654

F.3 SUPERVISED LEARNING

In this section, we provide the figures to visualize weight vector λ, graph representation g and
pattern representations z(m) learned by solving the supervised loss (11).

F.4 UNSUPERVISED LEARNING

In this section, we provide the figures to visualize weight vector λ, graph representation g and
pattern representations z(m) learned by solving the unsupervised loss (10).
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(a) λ

1 2 3 4 5 6 7
0.0

0.2

0.4

0.6

0.8

1.0

0.55

0.070.080.100.10
0.040.06

(b) g: ensemble
PROTEINS Class 1: 663 Graphs
PROTEINS Class 0: 450 Graphs

∑M
m=1 λmz(m)

(c) z(1): path
PROTEINS Class 1: 663 Graphs
PROTEINS Class 0: 450 Graphs

(λ1 = 0.5504)

(d) z(2): tree
PROTEINS Class 1: 663 Graphs
PROTEINS Class 0: 450 Graphs

(λ2 = 0.0746)

(e) z(3): graphlet

PROTEINS Class 1: 663 Graphs
PROTEINS Class 0: 450 Graphs

(λ3 = 0.08103)

(f) z(4): cycle
PROTEINS Class 1: 663 Graphs
PROTEINS Class 0: 450 Graphs

(λ4 = 0.0992)

(g) z(5): clique

PROTEINS Class 1: 663 Graphs
PROTEINS Class 0: 450 Graphs

(λ5 = 0.0987)

(h) z(6): wheel

PROTEINS Class 1: 663 Graphs
PROTEINS Class 0: 450 Graphs

(λ6 = 0.03927)

(i) z(7): star
PROTEINS Class 1: 663 Graphs
PROTEINS Class 0: 450 Graphs

(λ7 = 0.0568)
Figure 5: t-SNE visualizations of GNNs’ pattern representations (supervised) for the dataset PRO-
TEINS.
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(a) λ

1 2 3 4 5 6 7
0.0

0.2

0.4

0.6

0.8

1.0

0.100.050.06

0.65

0.08
0.030.04

(b) g: ensemble
 Class 1: 63 Graphs 

 Class 0: 125 Graphs

∑M
m=1 λmz(m)

(c) z(1): path
Class 1: 63 Graphs 

Class 0: 125 Graphs

(λ1 = 0.095)

(d) z(2): tree
Class 1: 63 Graphs 

Class 0: 125 Graphs

(λ2 = 0.046)

(e) z(3): graphlet
Class 1: 63 Graphs 

Class 0: 125 Graphs

(λ3 = 0.062)

(f) z(4): cycle
 Class 1: 63 Graphs 

 Class 0: 125 Graphs

(λ4 = 0.654)

(g) z(5): clique
 Class 1: 63 Graphs 

 Class 0: 125 Graphs

(λ5 = 0.082)

(h) z(6): wheel
Class 1: 63 Graphs 

Class 0: 125 Graphs

(λ6 = 0.026)

(i) z(7): star
Class 1: 63 Graphs 

Class 0: 125 Graphs

(λ7 = 0.035)
Figure 6: t-SNE visualizations of GNNs’ pattern representations (supervised) for the dataset MU-
TAG.
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(a) λ

1 2 3 4 5 6 7
0.0

0.2

0.4

0.6

0.8

1.0

0.020.060.10
0.18

0.57

0.010.05

(b) g: ensemble
Class 1: 2053 Graphs 
Class 2: 2057 Graphs

∑M
m=1 λmz(m)

(c) z(1): path
Class 1: 2053 Graphs 
Class 2: 2057 Graphs

(λ1 = 0.022)

(d) z(2): tree
Class 1: 2053 Graphs 
Class 2: 2057 Graphs

(λ2 = 0.063)

(e) z(3): graphlet
Class 1: 2053 Graphs 
Class 2: 2057 Graphs

(λ3 = 0.101)

(f) z(4): cycle
Class 1: 2053 Graphs 
Class 2: 2057 Graphs

(λ4 = 0.176)

(g) z(5): clique
Class 1: 2053 Graphs 
Class 2: 2057 Graphs

(λ5 = 0.574)

(h) z(6): wheel
Class 1: 2053 Graphs 
Class 2: 2057 Graphs

(λ6 = 0.012)

(i) z(7): star
Class 1: 2053 Graphs 
Class 2: 2057 Graphs

(λ7 = 0.052)
Figure 7: t-SNE visualizations of GNNs’ pattern representations (supervised) for the dataset NCI1.
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(a) λ

1 2 3 4 5 6 7
0.0

0.2

0.4

0.6

0.8

1.0

0.59

0.100.060.02
0.13

0.070.02

(b) g: ensemble

COLLAB Class 0: 2600 Graphs
COLLAB Class 1: 775 Graphs
COLLAB Class 2: 1625 Graphs∑M

m=1 λmz(m)

(c) z(1): path
COLLAB Class 0: 2600 Graphs
COLLAB Class 1: 775 Graphs
COLLAB Class 2: 1625 Graphs

(λ1 = 0.587)

(d) z(2): tree
COLLAB Class 0: 2600 Graphs
COLLAB Class 1: 775 Graphs
COLLAB Class 2: 1625 Graphs

(λ2 = 0.105)

(e) z(3): graphlet
COLLAB Class 0: 2600 Graphs
COLLAB Class 1: 775 Graphs
COLLAB Class 2: 1625 Graphs

(λ3 = 0.063)

(f) z(4): cycle
COLLAB Class 0: 2600 Graphs
COLLAB Class 1: 775 Graphs
COLLAB Class 2: 1625 Graphs

(λ4 = 0.022)

(g) z(5): clique
COLLAB Class 0: 2600 Graphs
COLLAB Class 1: 775 Graphs
COLLAB Class 2: 1625 Graphs

(λ5 = 0.134)

(h) z(6): wheel

COLLAB Class 0: 2600 Graphs
COLLAB Class 1: 775 Graphs
COLLAB Class 2: 1625 Graphs

(λ6 = 0.068)

(i) z(7): star
COLLAB Class 0: 2600 Graphs
COLLAB Class 1: 775 Graphs
COLLAB Class 2: 1625 Graphs

(λ7 = 0.021)
Figure 8: t-SNE visualizations of GNNs’ pattern representations (supervised) for the dataset COL-
LAB.
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(a) λ

1 2 3 4 5 6 7
0.0

0.2

0.4

0.6

0.8

1.0

0.090.05
0.120.09

0.57

0.050.01

(b) g: ensemble
DD Class 1   : 691 Graphs
DD Class 0   : 487 Graphs

∑M
m=1 λmz(m)

(c) z(1): path
DD Class 1   : 691 Graphs
DD Class 0   : 487 Graphs

(λ1 = 0.093)

(d) z(2): tree

DD Class 1   : 691 Graphs
DD Class 0   : 487 Graphs

(λ2 = 0.054)

(e) z(3): graphlet
DD Class 1   : 691 Graphs
DD Class 0   : 487 Graphs

(λ3 = 0.125)

(f) z(4): cycle
DD Class 1   : 691 Graphs
DD Class 0   : 487 Graphs

(λ4 = 0.094)

(g) z(5): clique
DD Class 1   : 691 Graphs
DD Class 0   : 487 Graphs

(λ5 = 0.572)

(h) z(6): wheel
DD Class 1   : 691 Graphs
DD Class 0   : 487 Graphs

(λ6 = 0.051)

(i) z(7): star
DD Class 1   : 691 Graphs
DD Class 0   : 487 Graphs

(λ7 = 0.011)
Figure 9: t-SNE visualizations of GNNs’ pattern representations (supervised) for the dataset DD.
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(a) λ
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0.0

0.2

0.4

0.6

0.8

1.0

0.23

0.060.030.04

0.58

0.040.04

(b) g: ensemble
REDDIT-BINARY Class 1   : 1000 Graphs
REDDIT-BINARY Class 0   : 1000 Graphs

∑M
m=1 λmz(m)

(c) z(1): path
REDDIT-BINARY Class 1   : 1000 Graphs
REDDIT-BINARY Class 0   : 1000 Graphs

(λ1 = 0.231)

(d) z(2): tree
REDDIT-BINARY Class 1   : 1000 Graphs
REDDIT-BINARY Class 0   : 1000 Graphs

(λ2 = 0.055)

(e) z(3): graphlet

REDDIT-BINARY Class 1   : 1000 Graphs
REDDIT-BINARY Class 0   : 1000 Graphs

(λ3 = 0.026)

(f) z(4): cycle
REDDIT-BINARY Class 1   : 1000 Graphs
REDDIT-BINARY Class 0   : 1000 Graphs

(λ4 = 0.039)

(g) z(5): clique
REDDIT-BINARY Class 1   : 1000 Graphs
REDDIT-BINARY Class 0   : 1000 Graphs

(λ5 = 0.579)

(h) z(6): wheel
REDDIT-BINARY Class 1   : 1000 Graphs
REDDIT-BINARY Class 0   : 1000 Graphs

(λ6 = 0.036)

(i) z(7): star

REDDIT-BINARY Class 1   : 1000 Graphs
REDDIT-BINARY Class 0   : 1000 Graphs

(λ7 = 0.044)
Figure 10: t-SNE visualizations of GNNs’ pattern representations (supervised) for the dataset
REDDIT-BINARY.
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(d) z(2): tree
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(g) z(5): clique
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(λ5 = 0.207)

(h) z(6): wheel
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PROTEINS Class 0: 450 Graphs

(λ6 = 0.036)

(i) z(7): star

PROTEINS Class 1: 663 Graphs
PROTEINS Class 0: 450 Graphs

(λ7 = 0.032)
Figure 11: t-SNE visualizations of GNNs’ pattern representations (unsupervised) for the dataset
PROTEINS.
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Figure 12: t-SNE visualizations of GNNs’ pattern representations (unsupervised) for the dataset
MUTAG.
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(c) z(1): path
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(λ1 = 0.478)

(d) z(2): tree
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COLLAB Class 0: 2600 Graphs
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(h) z(6): wheel
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Figure 13: t-SNE visualizations of GNNs’ pattern representations (unsupervised) for the dataset
COLLAB.
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Figure 14: t-SNE visualizations of GNNs’ pattern representations (unsupervised) for the dataset
NCI1.
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(b) g: ensemble
DD Class 1   : 691 Graphs
DD Class 0   : 487 Graphs

∑M
m=1 λmz(m)
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Figure 15: t-SNE visualizations of GNNs’ pattern representations (unsupervised) for the dataset
DD.
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