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ABSTRACT

Personalized alignment of large language models seeks to adapt responses to indi-
vidual user preferences, typically via reinforcement learning. A key challenge is
obtaining accurate, user-specific reward signals in open-ended scenarios. Existing
personalized reward models face two persistent limitations: (1) oversimplifying
diverse, scenario-specific preferences into a small, fixed set of evaluation princi-
ples, and (2) struggling with generalization to new users with limited feedback.
To this end, we propose P-GenRM, the first Personalized Generative Reward
Model with test-time user-based scaling. P-GenRM transforms preference signals
into structured evaluation chains that derive adaptive personas and scoring rubrics
across various scenarios. It further clusters users into User Prototypes and intro-
duces a dual-granularity scaling mechanism: at the individual level, it adaptively
scales and aggregates each user’s scoring scheme; at the prototype level, it incor-
porates preferences from similar users. This design mitigates noise in inferred
preferences and enhances generalization to unseen users through prototype-based
transfer. Empirical results show that P-GenRM achieves state-of-the-art results on
widely-used personalized reward model benchmarks, with an average improve-
ment of 2.31%, and demonstrates strong generalization on an out-of-distribution
dataset. Notably, Test-time User-based scaling provides an additional 3% boost,
demonstrating stronger personalized alignment with test-time scalability.

1 INTRODUCTION

Reinforcement learning from human feedback has recently become a prevailing paradigm for align-
ing large language models (LLMs) with broadly accepted human values, such as helpfulness and
harmlessness (Askell et al., 2021; Bai et al., 2022). Central to this approach is the reward model,
which provides reliable scoring signals to steer the LLM’s outputs towards desired behaviors (Wang
et al., 2024).

While conventional alignment targets universal values, personalized alignment aims to tailor model
behavior to the diverse preferences of individual users (Jang et al., 2023; Salemi et al., 2023; Zollo
et al., 2024; Ryan et al., 2025). This shift poses challenges, especially in open-ended tasks like dia-
logue (Salemi & Zamani, 2025), where evaluation depends heavily on subjective standards: Explicit
preference signals (e.g., “I prefer concise answers”) are often sparse, while implicit signals (e.g.,
conversation history) are richer but noisy (Guan et al., 2025). Hybrid approaches that combine de-
mographics, behavior, and context have been explored (Zhang et al., 2024b; Maghakian et al., 2022;
Zhao et al., 2023; Poddar et al., 2024), but two key limitations remain: (1) Static modeling of prefer-
ences. Most methods reduce diverse and dynamic user preferences to a fixed set of evaluation rules,
failing to capture scenario-dependent variability, even within a user (e.g., preferring brevity while
driving but expressiveness in casual settings); (2) Weak generalization to new users. Current models
struggle to adapt to new users with sparse feedback, limiting effectiveness in cold-start scenarios.

To address these challenges, we introduce P-GenRM, a Personalized Generative Reward Model with
test-time user-based scaling. Our approach leverages user personas as priors for interpreting im-
plicit signals, enriched by explicit preference cues when available. We design a three-stage training
framework: (1) Persona-guided Scoring Induction (PSI) via supervised fine-tuning, which translates
hybrid preference signals into explicit evaluation chains; (2) Criteria-based Reasoning Enhancement
(CRE) with reinforcement learning, which strengthens evaluation chain generation, especially in set-

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

d
d
d

d
d

Query qt

……

User 𝒖’s 
Preference Signals

Persona and core preference analysis

Scoring Scheme Derivation

Seek practical, actionable guidance …

A conscientious professional seeking…

We derive the weighted evaluation criteria 
for the current scenario: ……

1. Utility/Actionable Detail 40%...
A. Evaluation Criteria (Weights): 

B. Score Breakdown:
Response 1:
Utility: Very brief, almost no …→ 4/10 ……
Weighted Score = (40.40)+…= 1.6+…= 5.8
Response 2:
Utility: Still brief but …→ 5/10 ……
Weighted Score = (50.40)+… = 2.0+… = 6.9

Final score:
Response 1: 5.8    Response 2: 6.9

Final Scoring Scheme

Scaling
  ×m

J’s Preference
Signals

Prototype
User

User-Prototype Distribution

P-GenRM

……

Prototype-level 
Scaling

Response 1
Response 2

Response 1
Response 2

Scaling × n

Individual-level 
Scaling

User-Prototype Initialization and Optimization (Offline)

Kmeans
Embedding

Collective 
User Modeling

User Group
(Training Data)

…… …… …… I would like to see AI 
be more empathetic ……

User	𝒖 A
ggregation

Final Score

𝒖’s Preference 
Signals

 

Personality Snapshot for this scenario

……

{score 1, score 2}

{score 1, score 2}
……

Dialogue History Stated Criteria

(optional)

{score 1, score 2}

{score 1, score 2}
……

User J

Hybrid Signals 

……

Query qt

Evaluation Chain

Preference Modeling

× n

P-GenRM

𝑷𝒕
(𝒖)

𝑺𝒕
(𝒖)

P-GenRM

History-aware Attentive 
Prototype Refinement

Implicit Preference Explicit Preference

Figure 1: Workflow of P-GenRM. P-GenRM infers a scenario-specific user persona and preference
analysis from hybrid preference signals, generates dynamic scoring rubrics, and assesses candi-
date responses accordingly. At test-time, P-GenRM can aggregate multiple individual-level scoring
schemes and incorporate similar users’ preferences to improve scoring accuracy and generalization.

tings with missing preference information; and (3) hard-negative-aware curriculum learning, which
progressively improves robustness in handling challenging instances.

After the three-stage training, the P-GenRM can now interpret multi-faceted user preference indica-
tors into comprehensive, structured evaluation chains that derive adaptive user personas and scoring
rubrics in variable contexts. We further investigate two questions: (1) How to mitigate the noise
inherent in inferred user preference; (2) How to develop a transfer mechanism that enhances gen-
eralization to new users by adapting learned preferences? Inspired by the collaborative filtering
algorithms (Goldberg et al., 1992; Sarwar et al., 2001) in recommendation systems, we propose a
prototype-based, dual-granularity scaling mechanism to address this issue in a unified manner. As
shown in Figure 1, at test-time, P-GenRM dynamically scales the generation of scoring schemes
for each user according to their individual preferences, while simultaneously incorporating
ratings from similar users within the same prototype. This mechanism reduces noise in inferred
preferences and provides strong generalization to unseen users through prototype-based transfer.

Extensive experiments demonstrate that P-GenRM not only sets a new state of the art on person-
alized reward model benchmarks but also achieves an additional 3% gain from test-time scaling,
highlighting its scalability and effectiveness in real-world personalization.

In summary, the main contributions of this paper are as follows:

1. We present P-GenRM, to the best of our knowledge, the first personalized generative re-
ward model that transforms diverse preference signals into structured evaluation chains,
including personas and rubrics, in open-domain settings.

2. We fully leverage the scalability of GenRM and propose a Test-time User-based Scaling
mechanism, which substantially improves model performance.

3. Experimental results demonstrate that P-GenRM achieves state-of-the-art performance on
personalized reward benchmarks and exhibits strong generalization to new users.

2 RELATED WORKS

Personalized alignment of Large Language Models Personalized alignment of large language
models aims to tailor responses to diverse user preferences. This can be achieved both by train-
ing models with user-specific parameters (Li et al., 2023a; Wang et al., 2023b; Li et al., 2024), or
steering the LLMs’ behavior at inference time (Wang et al., 2023a; Salemi et al., 2023; Lee et al.,
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2024). We focus here on an important paradigm of the former-Personalized alignment via rein-
forcement learning, in which one essential component is the personalized reward model. Poddar
et al. (2024) constructs a reward model conditioned on a novel, inferred user-specific latent. Chen
et al. (2024) model user preferences as a convex combination of finite prototypes to construct re-
ward models. Rame et al. (2023) promote diversity by combining a mixture of experts conditioned
on user preferences to learn diverse rewards. Jang et al. (2023) decompose preferences into multi-
ple dimensions and train separate reward models to balance different objectives. Building on user
responses, Shenfeld et al. (2025) represent user-specific rewards as a linear combination of base
reward functions. Ryan et al. (2025) propose SynthesizeMe, which infers synthetic personas from
historical preferences to build personalized prompts and reward models, but its static design cannot
adapt to context-dependent and shifting user preferences.

User Preference Modeling User preference modeling is a prominent research topic across diverse
fields. Here, we introduce several User preference modeling methods used in LLM alignment tasks;
more details can be found in Appendix A.5. Dong et al. (2023) define explicit multi-dimensional
attributes to model human preferences and enhance response customizability. Lee et al. (2024)
encode thousands of user-specified preferences as combinations of values within system prompts.
Zhao et al. (2023) train a transformer module to predict group preferences and guide LLM generation
in a few-shot setting.

Generative Reward Models Recently, generative reward models (GenRM) have attracted increas-
ing attention for their strong generalization, support for test-time scaling, and effective utilization of
the powerful generative capabilities of LLMs. Zhang et al. (2024a) train generative verifiers via the
ubiquitous next-token prediction objective, thereby seamlessly integrating reward modeling. Li et al.
(2023b) propose a generative judge to enhance generality, flexibility, and interpretability in align-
ment evaluation tasks. Liu et al. (2025) introduce Self-Principled Critique Tuning, which scales the
generation of high-quality principles and precise critiques to enhance scalability. Zhao et al. (2025)
incorporate generative chain-of-thought reasoning and code verification into process-level reward-
ing. Xiong et al. (2025) develop a generative judge that evaluates a policy model’s intermediate
reasoning steps for stepwise reward modeling.

3 PROBLEM FORMULATION

In a dialogue system, at turn t, the current user u issues a query qt. For each previous turn τ < t, the
user’s preferred response and dispreferred response are denoted as y+τ and y−τ . The user’s historical
interaction up to turn t is therefore

H
(u)
t =

{
(q1, y

+
1 , y

−
1 ), . . . , (qτ , y

+
τ , y

−
τ ), . . . , (qt−1, y

+
t−1, y

−
t−1)

}(u)
. (1)

In practice, to avoid excessive reliance on historical data, the history size is limited to h via random
selection, i.e., |H(u)

t | = h. In addition to these implicit interaction signals, the user may also provide
explicit preference criteria E(u) (e.g., desired style, tone, etc.). Both explicit criteria and implicit
signals extracted from historical interactions are treated as signals of the user’s preferences. Based
on this, the personalized generative reward model is designed to first infer a context-aware textual
description of the user’s personalized preference modeling P

(u)
t , and subsequently to generate a set

of scoring rubrics with associated weights, thereby defining a scoring process S
(u)
t that evaluates

responses based on their adherence to these rubrics. This process can be formalized as:

[P
(u)
t ;S

(u)
t ] ∼ Rθ

(
qt, H

(u)
t , E(u), yit

)
, {sit}bi=1 = Extract(S

(u)
t ) (2)

where Rθ denotes the personalized generative reward model parameterized by θ, sit represents the
scalar reward assigned to the i-th candidate response yit, and b denotes the number of candidate
responses (typically b = 2). Extract denotes the operation of extracting each response’s score from
a text-based scoring process.

4 METHODOLOGY

As shown in Figure 1, given the user’s current query qt and preference signals {H(u)
t , E(u)}, P-

GenRM transforms these signals into structured evaluation chains that derive adaptive personas and
scenario-specific scoring rubrics, built upon our proposed three-stage training strategy:

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Persona and core preference analysis

Personality Snapshot

Scoring Scheme Derivation

● Seek practical, actionable guidance
● Prefer a warm yet professional tone
● ……

A conscientious professional seeking…
communication and concrete advice… 

Based on above analysis, we derive the 
weighted evaluation criteria for the
current scenario:
● Utility / Actionable Detail (40%): …
● Clarity and Structure (20%): …
● ……

1. Utility/Actionable Detail 40%, 
2. Clarity & Structure 20%, 
3. ……

A. Evaluation Criteria (Weights): 

B. Score Breakdown:
Response 1:
Utility: Very brief, almost no …→ 4/10
……
Weighted Score = (40.40)+…= 1.6+…= 6.8
Response 2:
Utility: Still brief but mentions pros→ 5/10
……
Weighted Score = (50.40)+… = 2.0+… = 6.95

Final score:
Response 1: 6.8    Response 2: 6.95

Preference ModelingPersona and core preference analysis
1. Utility/Actionable Detail 40%...Seek practical, actionable guidance …
A. Evaluation Criteria (Weights): 

Final Scoring Scheme

P-GenRM

Pref Modeling Final Scoring 

P/HN Ratio

Query
Response1, 2

Preference History
Stated Criteria

Filtering

Query

Response1, 2

Preference History score 1
score 2

Query

Stated Criteria

First Infer the user’s 
plausible preference 

criteria…

LLM-as-a-Judge Process 
Reward

Outcome 
Reward

Reward

Rule

Assess to what extent the 
entire evaluation chain covers 
these preference criteria

Preference Criteria 
for current user:

Persona and core 
preference ……

A. Evaluation Criteria 
(Weights): …….

Persona-guided Scoring Induction (SFT)

Criteria-based Reasoning Enhancement (RL)

Hard negative-aware Curriculum Learning (RL)

P-GenRM

Query

Response1, 2

Dialogue History

score 1
score 2

Rule
P-GenRM……

Training  steps
Reward

× α

× β

Final Scoring Scheme

SFT
Evaluation Chain

GRPO

GRPO

Pref Modeling Final Scoring 
Persona and core 
preference ……

A. Evaluation Criteria 
(Weights): …….

𝑷𝒕
(𝒖)

𝑺𝒕
(𝒖)

Preference Modeling

(a) (b)

Figure 2: (a) The three-stage training framework of P-GenRM (b) An illustration of the person-
alized evaluation chain, showing how preference modeling and derived scoring schemes lead to
interpretable, criterion-weighted judgments for responses.

4.1 MULTI-STAGE TRAINING FRAMEWORK

Our training pipeline consists of three stages, as illustrated in Figure 2: SFT equips the model with
basic personalized scoring abilities; RL further improves the quality of the evaluation chains; and
curriculum learning enhances the model’s robustness on difficult negative cases for such highly
subjective task setting.

Persona-guided Scoring Induction. The basic premise of P-GenRM is to integrate self-generated
analyses of user preferences into the generative reward modeling process, so as to enhance scoring
accuracy in subjective settings. We conduct a preliminary experiment to investigate how various
preference-related factors affect the accuracy of personalized scoring. Detailed information is pro-
vided in Table 6, and the conclusions are as follows:

(i): User persona inferred from interaction histories can serve as an effective prior to infer the user’s
preference, while (ii) user’s explicitly stated criteria further sharpen the evaluation precision.

Building on these findings, we first construct a Structured Evaluation Chain (SEC) dataset for re-
sponse scoring. As shown in Figure 2, an instruct LLM is prompted with both the user’s implicit and
explicit preference signals {H(u)

t , E(u)} to first induce the user’s preference modeling P
(u)
t , con-

sisting of a scenario-specific persona and then derive the corresponding preference criteria. Then
each candidate’s response yit is evaluated against these criteria to yield a personalized score sit . We
utilize the data filtered through rejection sampling as the SFT stage, enabling P-GenRM to acquire
the initial capability of transforming hybrid preference factors into an adaptive personalized scoring
scheme.

Criteria-based Reasoning Enhancement. To generate high-quality evaluation chains in scenarios
lacking explicit user feedback, we propose Criteria-based Reasoning Enhancement via reinforce-
ment learning.

Our method builds on the standard GRPO (Shao et al., 2024) algorithm and incorporates both
process-level and rule-based outcome rewards. Specifically, we instruct P-GenRM with limited
number of history interactions to first infer plausible explicit preference from historical interactions.
Based on these, P-GenRM likewise generates the evaluation chain in the Persona-guided Scoring
Induction manner. We then adopt LLM-as-a-judge (Gu et al., 2024) to score the process, where the
judge is tasked to assess how well the evaluation process covers user-stated or synthetic (details in
Appendix C ) explicit preferences and output a score (ranging from 0 to 1), denoted as PRt.

Moreover, we define rule-based outcome rewards based on the correctness of the final output
ORt = 1{sct > srt )}, where c and r are the indices of the responses labeled as chosen and rejected,
respectively. Additionally, in cases of formatting error, a penalty of −0.1 is imposed.
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The overall reward is computed as a weighted sum of the process reward and the outcome reward.

Rt = α · PRt +β ·ORt, (3)

where α and β are hyperparameters to balance the relative contributions of the two reward signals.
Rt is further utilized to compute the advantage function in the GRPO algorithm. Therefore, the
objective function of GRPO training can be formulated as:

JGRPO(θ) = E
(qt,H

(u)
t ,yi

t)

[
1

K

K∑
k=1

min

(
πθ(c

(k)
t | qt, H(u)

t , yit)

πθold(c
(k)
t | qt, H(u)

t , yit)
A

(k)
t ,

clip
( πθ(c

(k)
t | qt, H(u)

t , yit)

πθold(c
(k)
t | qt, H(u)

t , yit)
, 1− ε, 1 + ε

)
A

(k)
t

)
− β DKL

(
πθ ∥πref

)]
.

where c
(k)
t = [P

(u)
t ;S

(u)
t ] denotes the k-th sampled structured evaluation chain, and A

(k)
t is the

relative advantage computed from the corresponding reward R
(k)
t .

This reward function encourages the P-GenRM not only to generate correct outputs but also to ensure
that the evaluation chain reflects the user’s preferences. Moreover, by adjusting the weighting factor
α, the model’s sensitivity to explicit user preferences can be modulated. This helps prevent the
model from overfitting to specific preference dimensions and preserves its ability to freely explore
the broader preference space. We provide the impact of variations in α and β in Appendix A.4

Hard negative-aware Curriculum Learning. Following the SFT and RL stages, we introduce
a hard negative-aware curriculum learning (Bengio et al., 2009) phase to enhance the P-GenRM’s
ability to learn from challenging cases. Specifically, we gradually increase the proportion of hard
negatives during the training phase. In addition, to enable a larger exploration space for hard negative
samples, we disable process-level reward here. Accordingly, the objective function in this stage
retains the same form as in the previous stage, except that the reward function Rt omits the process
reward PRt .

4.2 TEST-TIME USER-BASED SCALING

In this subsection, we propose a Test-time User-based Scaling mechanism to jointly address the two
key challenges of personalized reward modeling: (1) the inherent noise in inferring user preferences;
(2) the limited generalization on new users with sparse feedback. It comprises two aspects: offline
prototype initialization and optimization, and test-time dual-granularity scaling, as detailed below.

4.2.1 OFFLINE PROTOTYPE INITIALIZATION AND OPTIMIZATION

User Prototype Initiation. We first employ Qwen3-Embedding-0.6B(Zhang et al., 2025) to com-
pute an embedding for each P

(u)
t ∈ Rd. We then concatenate these embeddings to form P, an

overall cross-scenario user-preference embedding matrix. Subsequently, we apply K-means cluster-
ing to P to obtain k centroids, denoted as A ∈ Rk×d, which serve as the initial user prototypes.

History-aware Attentive Prototype Refinement

The goal of prototype refinement is to transform them from mere semantic centers into effective
priors that can represent subordinate users’ preference choices, which consists of the following steps

(1) Historical selection and prior construction. Given the j-th prototype aj = A[j,:] and the historical

records of its associated user u at turn t: H
(u)
t =

{
(qτ , y

+
τ , y

−
τ )
∣∣ τ ∈ Random(t − 1,h)

}(u)
,

Random(t− 1,h) denotes that we randomly sample h items from the history up to step t.

For brevity, we assume that these letters represent their embeddings, where qτ ∈ Rd is the τ -th input
embedding and y+τ , y−τ ∈ Rd are the embeddings of positive and negative feedback, each history
triple is first encoded as oτ = σ

(
W · concat(qτ , y+τ − y−τ )

)
A prototype-augmented attention mechanism assigns importance weights to historical records:

vH =

h∑
τ=1

ατoτ , ατ = softmaxτ

(
o⊤τ qt√

d
+ ρ

o⊤τ aj√
d

)
(4)
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This procedure ensures that the prototype selectively exploits those historical records most informa-
tive for the current query.

(2) Discriminative prior update with regularization. We integrate the salient historical information
with the prototype representation, forming a prior that is expected to guide the current query qt in
effectively discriminating between y+τ and y−τ .

zt = aj + λqWqqt + λsWsvH , z ∈ Rd (5)

The prior zt is then employed to quantify the preference for y+t over y−t . This preference is captured
by a discriminative score difference, ∆t, which is then used to formulate a pairwise loss Lpair. The
model aims to maximize this difference by minimizing the loss:

∆t = z⊤t y+t − z⊤t y−t , Lpair = − log σ(∆t) (6)

To avoid excessive drift, the overall objective function for a given prototype aj is augmented with
two regularization terms. The final loss is defined as:

L = Lpair + λcent∥aj − µj∥22 + λtr∥aj − pj∥22. (7)
Here, µj is the center of the j-th cluster (i.e., the mean of its associated sample embeddings), and pj
is the state of the prototype aj from the previous update step. The first regularizer encourages the
prototype to stay close to its cluster center, while the second ensures that the prototype’s evolution
remains smooth across updates. The hyperparameters λcent and λtr control the strength of these
regularization effects. This L will backpropagate to update the prototype aj . We perform this proce-
dure on all samples within each prototype, subsequently reassigning them to the nearest prototype.
An algorithmic procedure is in Appendix 1

4.2.2 TEST-TIME DUAL-GRANULARITY SCALING

We propose two scaling mechanisms that fully leverage the inherent test-time scalability of GenRM:
individual-level scaling and prototype-level scaling. The former performs parallel sampling on the
user’s current query to generate multiple scoring schemes, while the latter incorporates preference
signals from similar users when evaluating the candidate responses. Details are as follows.

We employed the resulting updated user–prototype distribution in 4.2.1 to perform test time scaling.
Specifically, given the user’s query qt, preference signals Hu

t , candidate response yit, P-GenRM
performs parallel sampling to constructs m individual-level scoring schemes that reflect the user’s
own preference. Moreover, given the user’s preference embedding, P-GenRM assign it to the nearest
prototype and then select the n most similar users {uw}nw=1 according to the embedding. Based
on these references, P-GenRM simultaneously incorporates n additional scores inferred from the
preferences of similar users. This process can be formalized as follows:

Si
t,x ∼ Rθ

(
qt, H

(u)
t , yit, P

(u)
t,x

)
,
(
Si
t

)(uw) ∼ Rθ

(
qt, H

(uw)
t , yit, P

(uw)
t

)
(8)

sit =
1

m

m∑
x=1

Extract(Si
t,x) +

1

n

n∑
w=1

Extract
((
Si
t

)(uw))
(9)

where P
(u)
t,x is the preference analysis obtained from the x-th sampling, P (uw)

t represents the pref-
erence signals of a similar user uw, Extract denotes the operation for extracting the score from the
generated textual analysis, and sit is the final score assigned to yit after aggregating all scaled results.

The effectiveness of this approach can be attributed as follows: At the individual level, it explores
multiple hypotheses about a user’s preferences to obtain richer and more robust scoring rubrics,
while at the prototype level it refines these inferences using preferences from similar users. More-
over, for new users under sparse historical data, assigning them to suitable prototypes allows the
model to approximate their preferences through those of similar users.

5 EXPERIMENTS

5.1 DATASETS AND EXPERIMENTAL SETTINGS

We evaluate P-GenRM and various baselines on three popular personalized alignment datasets:
Chatbot Arena-personalized and Prism-personalized: Ryan et al. (2025) devise a data-filtering

6
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pipeline to extract challenging and highly personalizable user data from Chatbot Arena (Zheng et al.,
2023) and PRISM (Kirk et al., 2024) 1.

LaMP-QA: LaMP-QA(Salemi & Zamani, 2025) evaluates personalized long-form question answer-
ing by testing how well LLMs generate informative, coherent, and contextually relevant answers
given a user profile. More information on these three datasets is in Appendix B.1

Experimental Settings: For experiments on PersonalRewardBench, we implement both P-GenRM
and multiple baseline models across two model scales: LLaMA-3.1-8B and LLaMA-3.1-70B. Ex-
periments on LaMP-QA are conducted only with LLaMA-3.1-8B. Experiments involving 8B/70B
models utilize 8/32 GPUs, respectively. LLaMA-3.1-70B training is performed using LoRA (Hu
et al., 2022). The weight parameters α and β of process reward and outcome reward in Equation 3
are 0.5 and 1.0 in our RL stage training. The impact of variations in their values is shown in Table 7
in Appendix A.4. The model used for embedding the prototype is Qwen3-Embedding-0.6B. The
instruction model used in Persona-guided Scoring Induction is OpenAI o3 (https://openai.com)

5.2 PERSONALIZED ALIGNMENT PERFORMANCE ON PERSONALREWARDBENCH

Baselines. We compare P-GenRM with various baselines on PersonalRewardBench:

In-Context LLM as a Judge: We provide the LLMs with varied personalization information in the
prompt, instructing them to infer the user’s preference and determine which response is superior.

Finetuned Reward Models: (a) Following Ryan et al. (2025), we train the Bradley–Terry (Bradley
& Terry, 1952) Reward Model on the unfiltered data from PersonalRewardBench to capture and
fit the overall preference distribution of this specific population. (b) We implement other Existing
Personalized Reward Models with distinct motivations and methodologies, including GPO(Zhao
et al., 2023), VPL(Poddar et al., 2024), PAL(Chen et al., 2024), and SynthesizeMe. (Ryan et al.,
2025). More details of these baselines are in Appendix B.2.

Overall Results. Performances of different baselines and P-GenRM are shown in Table 1. We find
that P-GenRM consistently outperforms the previous state-of-the-art (SOTA) across model scales.
Specifically, on the 8B model, P-GenRM achieves an average improvement of 2.77% over the prior
SOTA, while on the 70B model (trained with LORA), it delivers an average gain of 1.99%. Further-
more, P-GenRM-8B surpasses the previously best-performing 70B model by an average of 1.04%.
In addition, as shown in Table 4, P-GenRM also significantly outperforms the leading proprietary
model, OpenAI-o3, instructed with strong prompting. Moreover, to ensure that the preferences of
minority groups are given equal consideration, we provide additional comparative experiments in
Appendix A.6 using macro accuracy as the metric, where accuracy is computed separately for
each persona group and then averaged across all groups. P-GenRM still achieves the highest macro
accuracy (65.21%) among all evaluated baselines and does not overfit to any majority persona.
The effectiveness of Test-time User-based Scaling. Leveraging the test-time scalability of P-
GenRM, P-GenRM generates multiple scoring schemes tailored to the current user and aggregates
the corresponding results to improve scoring accuracy. More importantly, by incorporating scoring
schemes from similar users, P-GenRM achieves higher accuracy while requiring only a mod-
est increase in scaling operations. For instance, the best result comes from the setting of Ind-16
and Pro-8, which surpasses the performance of Ind-32 with fewer scaling steps (16+8), yielding an
average improvement of 2.99 % over P-GenRM itself and a substantial average over both SOTA
open-source and proprietary models. This demonstrates the effectiveness of our proposed Test-time
User-based Scaling strategy. Notably, simply increasing the number of ratings from similar users
does not necessarily yield performance gains (as shown in the last two rows of Table 4), further
underscoring the highly user-specific nature of the personalized scoring task.

Notably, we measured the end-to-end inference time of P-GenRM-8B at different scaling levels
on Chatbot Arena-Personalized test set and compared it against several baselines. The proposed
test-time user-based scaling incurs only a limited increase in inference time while yielding supe-
rior performance and retaining lower latency than prior SOTA methods. Details are presented in
Appendix A.10

1Ryan et al. (2025) name the combined benchmark PersonalRewardBench, which we also adopt hereafter.
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Table 1: Results on PersonalRewardBench. P-GenRM outperforms all baselines on both datasets
and model scales, while Test-time User-based Scaling brings further gains. Best and second-best
results are marked in bold and underline. Ind and Pro denote the Individual and Prototype level
scaling, respectively. Results are reported as “mean ± standard deviation” over 5 independent runs.

Chatbot Arena-Personalized PRISM-Personalized
Base Model Llama 3.1 8B Llama 3.1 70B Llama 3.1 8B Llama 3.1 70B

In-Context LLM as a Judge
Default 56.37 ± 4.82% 57.02 ± 4.60% 52.04 ± 1.21% 54.02 ± 1.85%

+ CoT 57.05 ± 4.58% 57.61 ± 4.08% 52.58 ± 1.89% 54.09 ± 1.43%

+ Demographics — — 52.96 ± 1.32% 54.21 ± 1.26%

+ Preference History 58.53 ± 3.24% 58.65 ± 4.69% 56.24 ± 1.07% 57.11 ± 1.69%

+ SynthesizeMe 61.07 ± 4.50% 63.14 ± 4.26% 54.70 ± 1.94% 58.19 ± 1.37%

+ Persona-guided Scoring Induction (Ours) 62.20 ± 3.16% 65.55 ± 3.66% 58.33 ± 1.14% 61.61 ± 1.61%

Finetuned Reward Models
Bradley-Terry
Finetuned Reward Model 67.21 ± 4.62% 71.12 ± 3.82% 63.27 ± 1.39% 63.44 ± 1.73%

Existing Personalized Reward Model
GPO 57.87 ± 4.92% 58.50 ± 5.29% 57.29 ± 2.36% 59.16 ± 2.79%

VPL 58.12 ± 5.90% 59.02 ± 4.66% 58.25 ± 1.52% 59.70 ± 2.45%

PAL 57.31 ± 5.56% 59.40 ± 6.01% 56.74 ± 2.63% 57.75 ± 1.85%

FT RM + SynthesizeMe 69.78 ± 4.43% 72.05 ± 5.01% 62.84 ± 1.90% 63.74 ± 1.47%

Personalized Generative Reward Model
P–GenRM 72.68 ± 4.14% 73.42 ± 3.88% 65.32 ± 1.26% 66.21 ± 1.71%

Test-time User-based Scaling
+ Ind-8, Pro-4 74.30 ± 3.58% — 67.54 ± 1.29% —
+ Ind-16, Pro-8 75.92 ± 3.81% — 68.06 ± 1.55% —

Ablation Study. We conduct ablation studies to assess the contribution of each component of P-
GenRM (Table 2). Removing any component leads to a significant performance drop. Notably, the
RL-stage ablation indicates that both process and outcome rewards are necessary for this task.

Table 2: Ablation studies of P-GenRM compo-
nents: CL (Curriculum Learning), PR (Process
Reward), OR (Outcome Reward). Results are
reported as “mean ± standard deviation” over 5
independent runs.

Chatbot Arena PRISM

P-GenRM 72.68 ± 4.14% 65.32 ± 1.26%
w/o CL 71.07 ± 3.21% 63.82 ± 1.44%
w/o CL, PR 70.22 ± 3.89% 62.70 ± 1.63%
w/o CL, OR 69.05 ± 3.56% 60.94 ± 1.72%
w/o CL, RL 66.76 ± 3.18% 57.08 ± 1.98%
w/o CL, RL, SFT 56.37 ± 4.87% 52.04 ± 1.21%

Table 3: Comparison of adaptive (PSI, Persona-
guided Scoring Induction) and static (SMe, Syn-
thesizeMe) persona methods across base models.
Results are reported as “mean ± standard devia-
tion” over 5 independent runs.

Chatbot Arena PRISM
Qwen3–8B 61.82 ± 3.28% 55.01 ± 1.73%
Qwen3–8B + SMe 62.57 ± 4.11% 56.33 ± 2.04%
Qwen3–8B + PSI (ours) 64.22 ± 3.54% 58.01 ± 1.86%

o3 64.47 ± 3.62% 56.34 ± 1.44%
o3 + SMe 67.73 ± 4.33% 58.49 ± 2.72%
o3 + PSI (ours) 69.14 ± 3.27% 63.87 ± 1.91%

Adaptive vs. Static Personas. A key design of our method is to infer dynamic user persona and
corresponding evaluation criteria, unlike methods that treat user persona as static priors. To validate
its effectiveness, we conduct all experiments under the LLM-as-a-judge setting in Table 3, where
our method consistently outperforms SynthesizeMe (SMe) across base models.

We also investigate the number of samples required for generating reasonable user preference, and
details are in Appendix A.12

Broader Preference Space. As previously discussed, a major challenge in personalized reward
modeling within open-domain settings is comprehensively capturing user preferences, rather than
confining them to a limited set of static dimensions. The Prism dataset offers predefined pref-
erence criteria, such as {Style, Values, Fluency, Factuality, Safety, Diversity, Helpfulness, etc. }
P-GenRM, however, exploits a broader range of highly personalized scoring dimensions, encom-
passing {Philosophical Engagement, Openness, Structure, Depth, Nuance, Sensitivity, Breadth of
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Figure 3: Determination of prototype numbers and their effect on scaling performance. Left: re-
tained variance ratio as a function of the number of singular vectors on Chatbot Arena and PRISM.
Right: performance of P-GenRM with different prototype numbers.

Ideas} and beyond. We present in Figures 6 and Figure 7 the diverse preferences of a non-cherry-
picked user across different scenarios.

5.3 ANALYSIS OF PROTOTYPE

Table 4: Comparison of different scaling strate-
gies on Chatbot Arena and PRISM benchmarks,
where Ind, Pro denotes the Individual and Pro-
totype level scaling, respectively. Results are re-
ported as “mean ± standard deviation” over 5 in-
dependent runs.

Model Chatbot Arena PRISM

Proprietary Model
o3 64.47 ± 3.62% 56.34 ± 1.44%
o3 + PSI 69.14 ± 3.27% 63.87 ± 1.91%

P–GenRM (8B) 72.68 ± 4.14% 65.32 ± 1.26%
+ Ind-8 73.61 ± 3.45% 65.79 ± 1.52%
+ Ind-4 , Pro-4 73.66 ± 3.11% 66.20 ± 1.67%
+ Ind-16 73.87 ± 3.77% 66.66 ± 1.84%
+ Ind-8 , Pro-4 74.30 ± 3.58% 67.54 ± 1.29%
+ Ind-8 , Pro-8 74.89 ± 3.92% 67.44 ± 1.88%
+ Ind-32 75.59 ± 3.66% 67.65 ± 1.47%
+ Ind-16 , Pro-8 75.92 ± 3.81% 68.06 ± 1.55%
+ Ind-0 , Pro-8 66.90 ± 3.44% 57.65 ± 1.92%
+ Ind-16 , Pro-16 72.59 ± 3.59% 64.61 ± 1.61%

We analyze how the number of prototypes is de-
termined and examine its impact on the results.

Determining Prototype Numbers. User pro-
totypes serve as representative characteriza-
tions of the overall user preferences. To
select an appropriate number, we perform
PCA dimensionality reduction on the cross-
scenario user-preference embedding matrix P
and record the proportion of singular values re-
tained when preserving only the leading singu-
lar vectors, as illustrated in Figure 3. We set the
number of prototypes to 50; beyond this point,
additional prototypes provide only marginal in-
formation gains while incurring substantially
higher inference costs.

Impact of Prototype Numbers. We investi-
gate the effect of prototype number on test-
time user-based scaling under the (Ind-8, Pro-4)
setting, evaluating 0, 25, 50, 100, and 125 pro-
totypes. As shown in Figure 3, across both
datasets, performance improves substantially as the number of prototypes increases from 0 to 50,
validating the effectiveness of introducing prototypes in test-time user-based scaling. However, be-
yond 50, performance plateaus and slightly degrades at 100, suggesting that excessive prototypes
may introduce inference noise owing to overly fine-grained partitioning. We provide the mean and
variance of P-GenRM-8B’s performance under different numbers of prototypes in Appendix A.13.

Visualization and Case Study. To better understand the role of prototypes in the user-based scaling
process, we visualize user–prototype distributions and their representative preference patterns (Fig-
ure 4, with further details in Appendix 8). Users form distinct clusters around prototypes, validating
the optimization approach described in Section 4.2. Within each cluster, users share core preferences
(e.g., fluency, factuality) yet still exhibit individual variation (e.g., creativity), whereas users from
different clusters display clearly divergent preferences. This balance between intra-group similarity
and inter-group heterogeneity underpins the effectiveness of prototype-based test-time scaling.

5.4 PERFORMANCES ON LAMP-QA WITH SPARSE FEEDBACK

We evaluate the generalization of P-GenRM to unseen users with limited interaction histories us-
ing the Lamp-QA dataset, an OOD benchmark. Since Lamp-QA lacks candidate responses with
preference ground truth, we construct an evaluation framework (Appendix A.8) in which six LLMs
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P15

P49

P40

P36 P46

P8

P2

P7

factually correct… and well-develop…
Fluent and easy to read…
Respectful and balanced in values language; dislike forced cultural slang ...
Nuance & Creativity…
immediately deliver substantive, factual information…
Fluency & Clarity – writing quality is expected…
go beyond a mere disclaimer and actually outline key points or …
appreciate neutrality ….

Conciseness is valued; chosen answers tend to be tighter …
Clear structure (often bullet points) and smooth flow are liked; 
Courteous, moderately formal, and empathetic…
A small amount of engagement (asking follow-up questions) is a plus but …
They value brevity and clarity… consistently pick the more concise answer
Bullet-point structure or crisp sentences are preferred
friendly… a light, informal touch is acceptable and even welcome
Professional/Friendly Tone – respectful, mildly upbeat

Two users in P7 favors

Two users in P36 values

User-Prototype
Distribution

Figure 4: Visualization of User–prototype distributions and representative preference patterns. Blue
highlights show shared intra-group preferences, red highlights show individual diversity. Distinct
clusters capture inter-group heterogeneity, validating prototype-based modeling.

generate responses that are scored by three advanced models based on personalized rubric aspects
to form a ground-truth ranking.

Reward models, trained solely on PersonalRewardBench, are then fed with sparse user histories
and tasked with ranking the same responses. We measure agreement with the ground-truth ranking
using Spearman correlation (Spearman, 1961). As shown in Table 5, P-GenRM (8B) with the (Ind-8,
Pro-4) setting outperforms all baselines, even surpassing the much larger Qwen3-235B-A22B. This
demonstrates its robustness under sparse feedback and strong generalization to new users.

5.5 P-GENRM FOR POLICY MODEL’S TRAINING

Table 5: Performances with cold-start settings
measured by Spearman’s rank correlation on
Lamp-QA (↑ = better). Arts = Arts & Entertain-
ment, Pers. = Personal Life & Development, Soc.
= Society & Culture, Avg. = Average.

Reward Model Arts Pers. Soc. Avg.

Qwen3–8B 0.486 0.543 0.600 0.543
Qwen3–32B 0.543 0.600 0.543 0.562
Qwen3–235B–A22B 0.600 0.657 0.600 0.619
LLaMA3.1–8B 0.486 0.543 0.543 0.524
SynthMe–8B 0.486 0.657 0.600 0.581
LLaMA3.1–70B 0.543 0.657 0.600 0.600
P-GenRM-8B + Ind-8, Pro-4 0.543 0.714 0.657 0.638

We train policy models with P-GenRM under
DPO and GRPO settings to further validate its
effectiveness. P-GenRM boosts an 8B policy
model to surpass the performance of 70B-sized
models, demonstrating its strong efficacy. More
details are in Appendix A.14.

6 CONCLUSION

We introduced P-GenRM, a personalized gen-
erative reward model that transforms diverse
preference signals into structured, scenario-
aware evaluation chains and uses test-time user-
based scaling to combine individual and prototype-level preferences. Across personalized reward
benchmarks, P-GenRM sets a new state of the art, with test-time scaling offering additional gains at
modest compute cost. P-GenRM improves subjective evaluation fidelity, generalizes well to users
with sparse feedback, and offers interpretability through explicit personas and rubrics.
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A APPENDIX

A.1 THE USE OF LARGE LANGUAGE MODELS

We utilized ChatGPT 5 (https://chatgpt.com/) solely for language refinement and for checking gram-
mar and typographical errors. The study design, experimental procedures, data analysis, interpre-
tation of results, and formulation of scientific ideas were conducted entirely by the authors. All
substantive intellectual contributions remain exclusively those of the authors, who thoroughly re-
viewed and approved the final manuscript.

A.2 PRELIMINARY EXPERIMENTS ON EFFECTIVENESS OF USER PERSONA

In this section, we conduct a preliminary investigation into the effectiveness of incorporating user
preference indicators through prompt engineering, i.e., the LLM-as-a-Judge paradigm. For the
dataset, we employ PRISM as it contains diverse and well-structured user preference descriptions
that are suitable for controlled experiments. We sampled 15% of the data from this dataset for
testing. The judge model used in experiments is OpenAI o3-2025-04-16.

To evaluate the impact of different user preference indicators, we directly append the corresponding
preference description to the original prompt, thereby enabling the model to explicitly condition its
reasoning and judgment on the stated user preferences. The only exception is when using persona:
we first let the model infer the current user’s persona, and then score the response accordingly. The
evaluation is calculated by mean accuracy (ACC) averaged over five independent runs to mitigate
randomness in model outputs.

As summarized in Table 6, the experimental results indicate that explicitly providing preference-
related descriptions leads to a consistent improvement in scoring accuracy compared to the baseline
without persona information. Among them, the most pronounced performance gain is obtained by
Persona, OSR, and SDim, suggesting that current LLMs may not be able to effectively infer the
users’ explicit preferences, and persona can serve as a useful preference indicator.

A.3 EXAMPLE OF A SINGLE USER’S DIFFERING PREFERENCES ACROSS VARIOUS
SCENARIOS.

Table 6: Accuracy(%) of LLM-as-a-Judge with different types of user preference indicators.

Condition Description ACC (%)
N-CoT Baseline model instructed by a simple Chain-of-Thought prompt

without any user-specific information.
62.42

+ Persona First, develop a user persona that characterizes the user and out-
lines their potential preferences, and subsequently assign a score
based on this analysis.

64.02

+SD User provides a self-description. Example: “I value honesty and
integrity above all. Trust is essential in building and maintaining
both personal and business relationships . . . ”

63.22

+OSR System String, i.e., explicit output style requirements specified.
Example: “The AI should be kind and respectful, and produce
only truthful or factual content . . . ”

64.24

+BDI Basic demographic information, such as age, gender, employ-
ment status, education level, English proficiency, marital status,
religion, ethnicity, and location.

63.34

+SDim Choice attributes, i.e., user-defined scoring dimensions and their
weights. Example: { "values": 61, "fluency": 98,
"factuality": 98, "safety": 29, "diversity":
20, "creativity": 9, "helpfulness": 100}

63.63

+Persona, OSR, SDim —- 66.17
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Table 7: Performance changes of the model after reinforcement learning under different α-β settings

α and β setting Chatbot Arena PRISM.

α = 0.5, β = 1 71.07 63.82
α = 0.5, β = 0.5 70.65 63.33
α = 1, β = 0 69.05 60.94
α = 0, β = 1 70.22 62.70

A.4 THE IMPACT OF VARIATIONS IN α AND β

We experimented with different combinations of α and β, documenting their influence on the out-
comes of reinforcement learning in Table 7. The experimental results indicate that: (1): Both
process-related and outcome-related rewards are essential; removing either leads to a significant
degradation in performance. (2): Excessive emphasis on process-related rewards may cause the
model to overfit to certain specific criteria, thereby impairing overall performance.

A.5 USER PREFERENCE MODELING

User preference modeling is a prominent research topic across diverse fields, including psychol-
ogy, marketing, recommender systems, and natural language processing. For LLM alignment tasks,
Argyle et al. (2023) and Aher et al. (2023) both infer preferences from demographic information.
Dong et al. (2023) define explicit multi-dimensional attributes to model human preferences and en-
hance response customizability. Lee et al. (2024) encode thousands of user-specified preferences
as combinations of values within system prompts. Zhao et al. (2023) train a transformer module
to predict group preferences and guide LLM generation in a few-shot setting. Singh et al. (2025)
apply meta-learning to rapidly adapt an LLM to individual preferences using a small number of la-
beled examples. Zhang (2024) generate personal profiles to extract key features from user histories,
tailoring responses to individual needs.

A.6 PERFORMANCE ACROSS DIFFERENT PROTOTYPES

Figure 5: The number of samples assigned to each prototype and the corresponding performance of
P-GenRM across them.

To ensure that the preferences of minority groups are given equal consideration, in the context
of personalized preference learning, evaluating performance across user groups of different sizes
provides a more faithful measure of personalization capability.

We conduct an additional prototype-wise analysis using macro accuracy, where accuracy is com-
puted separately for each persona group and then averaged across all groups, ensuring that minority
personas are equally weighted. As shown in Figure 5 and Table 8, based on our clustering method,
the user groups in the PRISM dataset exhibit a clear long-tail distribution.

Despite this pronounced long-tail distribution, our method maintains stable performance across pro-
totypes: The prototype-level macro accuracy is 0.6521, and the sample-level average accuracy is
0.6532, differing by only 0.0011, indicating that the model does not overfit to majority personas.
Moreover, persona-level accuracies have moderate dispersion (median 0.6500, std 0.0401, IQR
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Table 8: Distribution of user groups in the PRISM dataset

Min Max Mean Median 25th pct 75th pct

Num of samples 18 930 154.8 105 63 176

Table 9: Stable performance of P-GenRM across prototypes

Macro Min Max Median Std IQR

Prototype-level Acc 0.6521 0.5806 0.7508 0.6500 0.0401 0.0544

A single user’s preference analysis under music recommendation setting

Query: Can you recommend music?
PART 1: User Preference Model Analysis (Chain-of-Thought)
1. Persona and Core Preference Synthesis:
The user is a pragmatic but inquisitive music-lover who also enjoys thoughtful, open-ended discussions.
They explicitly ask the AI to “share correct information and avoid misinformation” and appreciate answers
that feel useful, specific, and conversational. In the music domain, their past “chosen” replies either asked
clarifying questions to personalise suggestions or supplied concrete lists (artists plus actual song titles).
Those choices consistently scored extremely high on “helpfulness,” indicating that actionable detail is their
top priority.
In historical exchanges, they preferred nuanced, balanced statements that recognise complexity rather than
absolute claims. They assigned relatively high scores to “factuality,” “fluency,” and “values,” showing that
they like articulate, well-reasoned, value-sensitive answers that acknowledge multiple perspectives.
Overall preferences inferred: • Helpfulness / actionability is king. • Accuracy (factuality) is very important.
• Clear, fluent writing is expected. • They enjoy nuance and will punish over-certainty or dogmatism. •
Creativity and diversity matter, but only after the core need (useful, correct content) is met. • Safety and
respectful tone are necessary hygiene factors.
2. Scoring Model Derivation:
Weights are assigned according to how strongly each attribute seemed to influence their historical choices:
Helpfulness / Specificity – 30 Factuality / Correctness – 20 Fluency / Clarity – 15 Creativity / Depth – 10
Diversity / Breadth of ideas – 10 Values Alignment and Openness – 10 Safety / Tone – 5
Positive marks: concrete recommendations, nuance, accuracy, fluent wording, some creative variety. Neg-
ative marks: generic or repetitive phrasing, factual slips, lack of actionable detail, dogmatism, unsafe or
disrespectful wording.

Figure 6: A single user’s preference analysis under music recommendation setting

0.0544), showing that the model performs consistently across both large and small persona groups,
as provided in the Figure 5 and Table 9.

We further compare the macro accuracy performance of P-GenRM against other baseline methods,
as shown in Table 10, P-GenRM achieves the highest macro accuracy (65.21%) among all eval-
uated baselines, outperforming both open-source and proprietary models with strong prompting
strategies.

A.7 EXAMPLE OF A SINGLE USER’S DIFFERING PREFERENCES ACROSS VARIOUS
SCENARIOS.
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Table 10: P-GenRM outperforms baselines methods using macro-accuracy as the metric

Llama3.1-8B Llama3.1-70B o3 Fine-tuned BT-70B SynthesizeMe 70B P-GenRM-8B

macro acc 56.24 ± 1.74% 58.27 ± 1.71% 63.33 ± 1.52% 60.64 ± 1.87% 61.51 ± 1.63% 65.21 ± 1.42%

A single user’s preference analysis under serious discussion setting

Query: Are people really responsible for their immoral actions?
”PART 1: User Preference Model Analysis (Chain-of-Thought)
1. Persona and Core Preference Synthesis • Conversational style: The user prefers concise, straight-to-
the-point answers that feel like a real dialogue (e.g., “Yes, I can recommend music! What genre. . . ?” got
picked over a longer, fluffier alternative). • Helpfulness first: In every pair the chosen answer either offered
concrete next steps (song titles, meditation effects) or a clearer structure. The “helpfulness” attribute re-
peatedly carries the highest numeric weight (90-plus in music examples, 80-plus in meditation). • Balanced
factuality: The user likes nuance and avoids over-confident claims. In the philosophy examples the winning
replies admitted uncertainty but still outlined contrasting views; they avoided dogmatic statements (“there
is no scientific evidence to definitively answer” was preferred to “it is unlikely we will ever. . . ”). • Fluency
matters: Chosen texts are tidy, error-free, and easy to read. • Philosophical engagement: The request history
shows repeat interest in free-will / moral responsibility. The stated preference asks that the AI “be willing to
engage in hypothetical and philosophical conversations.” So openness to multiple perspectives is valuable.
• Creativity and diversity: Moderate importance—chosen music answers include specific, varied titles. But
creativity never outweighs clarity or helpfulness. • Values and tone: For ethical topics, the user’s “values”
weight jumps to 30, suggesting a desire for respectful, neutral, non-judgmental tone. • Safety: Always
acceptable in the examples; user hasn’t highlighted safety concerns, so it gets the lowest weight.
2. Scoring Model Derivation Based on the pattern above, I’ll rate future responses on six principles, each
with a weight mirroring the implicit priorities:
1. Helpfulness and Depth (30) – actionable, structured, or insight-producing content. 2. Factuality and
Nuance (25) – avoids misinformation, acknowledges complexity. 3. Fluency and Clarity (20) – readability,
coherence, concision. 4. Philosophical Engagement / Openness (15) – explores multiple viewpoints, en-
courages reflection. 5. Values Alignment and Tone (5) – respectful, balanced, non-dogmatic. 6. Safety (5)
– complies with policy, no harmful content.
Lower scores are given for: shallow or generic answers, dogmatic certainty, lack of nuance, verbosity
without value, grammatical issues, or unsafe content.

Figure 7: A single user’s preference analysis under serious discussion setting
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A.8 EVALUATION FRAMEWORK USED IN LAMP-QA DATASET

LaMP-QA does not provide a fixed set of candidate responses or corresponding ground truth. Conse-
quently, the procedure for evaluating the quality of reward models becomes somewhat more intricate.
We adopt the following testing pipeline to enhance the stability of the evaluation results. We invoke
six LLMs (Qwen3-8B, Qwen3-32B, Qwen-235B-A22B, GPT-5, GPT-4o, and Gemini-2.5-pro) to
generate, for each user query, a set of candidate responses. To assign scores to these responses, we
adopt the following procedure: we provide three highly-advanced LLMs (Gemini-2.5-pro, Claude-
3.7-Sonnet, and GPT-4o) with the rubric aspects corresponding to the current user query, and instruct
them to score each response according to how well each aspect is addressed. We sum up the scores
obtained by these models across all responses to represent their overall performance.

We then evaluate a set of reward models—Qwen3-8B, Qwen3-32B, Qwen-235B-A22B, LLaMA-
3.1-8B, LLaMA-3.1-70B, LLaMA-3.1-8B + SynthesizeMe, and P-GenRM-scale—under a sparse-
feedback scenario, where each model received either three of a user’s historical interactions as input.
For fairness, the scoring of all reward models was normalized by repeating the scaling procedure
eight times and taking the average.

The LaMP-QA dataset comprises three subsets. We examine whether the rankings of the six genera-
tion models, as induced by these reward models on each subset, are consistent with the ground-truth
rankings. To this end, we compute the Spearman rank correlation coefficient between the reward-
model rankings and the ground-truth rankings.

A.9 VISUALIZATION OF USER-PROTOTYPE DISTRIBUTION

Here we provide a broader visualization of user–prototype distributions and representative prefer-
ence patterns.

factually correct… and well-develop…
Fluent and easy to read…
Respectful and balanced in values language; dislike forced cultural slang ...
Ethically safe (contain disclaimers when violence/illegality is discussed)
Nuance & Creativity…
immediately deliver substantive, factual information…
Fluency & Clarity – writing quality is expected…
go beyond a mere disclaimer and actually outline key points or …
appreciate neutrality ….
Safety/harmlessness must be preserved…

Accuracy & relevance are paramount
Conciseness is valued; chosen answers tend to be tighter …
Clear structure (often bullet points) and smooth flow are liked; 
Courteous, moderately formal, and empathetic…
A small amount of engagement (asking follow-up questions) is a plus but …

Helpfulness & Factual Accuracy 
They value brevity and clarity… consistently pick the more concise answer
Bullet-point structure or crisp sentences are preferred
friendly… a light, informal touch is acceptable and even welcome
Professional/Friendly Tone – respectful, mildly upbeat

P7 P36

P5

P15

P49

P40

P36
P46

P8

P2
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P34

P17
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Figure 8: Visualization of user–prototype distributions and representative preference patterns. Each
cluster corresponds to a learned prototype, around which users with similar preferences are grouped.
(1) Within the same cluster, users share common preferences (highlighted in blue), yet also exhibit
subtle variations and diversity (highlighted in red). (2) Across different clusters, users demonstrate
clearly distinct preference tendencies, underscoring the effectiveness of prototype-based modeling
for capturing both intra-group commonality and inter-group heterogeneity.
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Table 11: Inference time comparison between P-GenRM with test-time user-based scaling and base-
line methods.

Model Inference Time (Wall-clock) Performance

LLaMA3.1-8B-Instruct + PSI 00:14:06 62.20
LLaMA3.1-70B-Instruct + PSI 00:39:17 65.55
SynthesizeMe + FT RM-8B 00:24:10 69.78
SynthesizeMe + FT RM-70B 01:29:59 72.05
o3+PSI 01:25:45 69.14

P-GenRM-8B 00:14:16 72.68
P-GenRM-8B + Ind-8, Pro-4 00:18:22 74.30
P-GenRM-8B + Ind-16, Pro-8 00:23:05 75.92

A.10 COMPARISONS OF INFERENCE TIME

We measured the end-to-end inference time of P-GenRM-8B at different scaling levels on the full
Chatbot Arena-Personalized test set and compared it against several baselines. Both the open-source
models and our method were deployed using vLLM on 8 NVIDIA A100 GPUs, while proprietary
models were accessed via the Alibaba Cloud API with a maximum concurrency of 40. The results
are presented in Table 11.

The observed increase in inference time for our method remains limited (00:14:16 → 00:23:05), and
it outperforms larger models while requiring less inference time. We believe this is mainly due to
two factors:

First, the task requires including a certain number (specifically, 3) of prior user preference selections
in the prompt to allow the model to infer meaningful user preferences. This leads to long input se-
quences, making the construction of the KV cache for the prompt the major component of inference
latency. This prompt encoding is performed exactly once per query and shared across all samples.

Second, our test-time user-based scaling introduces only limited additional cost. It consists of two
parts: – For individual-level scaling, we perform parallel sampling via the OpenAI-compatible n
parameter, allowing multiple outputs to be generated in a single model call with latency comparable
to single-output generation. – For prototype-level scaling, similarity computation is lightweight and
the preference-based scoring over similar users can also be parallelized efficiently handled through
vLLM’s batching capabilities.

As a result, the overall increase in inference cost remains modest, especially considering the perfor-
mance improvements brought by the Test-time User-based Scaling, which yields a 3.24% gain over
P-GenRM-8B without scaling and a 3.74% advantage with less inference time over the previous
state-of-the-art.

A.11 HISTORY-AWARE ATTENTIVE REFINEMENT ALGORITHM

Here, we provide an algorithm procedure 1 of History-aware Attentive Refinement.

A.12 NUMBER OF SAMPLES REQUIRED FOR GENERATING REASONABLE USER PREFERENCE

Intuitively, a single preference instance only reflects a one-off choice, and two instances are still
insufficient to form a consistent pattern. In contrast, three preference samples provide the minimal
structure needed to assess preference consistency, reduce randomness, and support reliable person-
alization by the model. We also conducted experiments on Chatbot Arena-Personalized evaluating
P-GenRM-8B trained with 1–4 preference samples per user, and the performance differences are
shown in Table 12

We observe that the model performance improves significantly when the number of preference sam-
ples reaches 3. Adding more samples beyond this point primarily contributes to improved evaluation
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Table 12: P-GenRM’s performance with different numbers of preference pairs

Preference Pairs 1 2 3 4

Accuracy (%) 59.78 ± 5.94 64.62 ± 4.63 72.68 ± 4.14 72.50 ± 3.67

Table 13: P-GenRM-8B performance under different numbers of prototypes with (Ind-8, Pro-4)
setting

# Prototypes 0 25 50 100 125

Chatbot Arena 72.68 ± 4.14% 73.23 ± 3.78% 74.30 ± 3.58% 73.69 ± 3.55% 73.45 ± 3.89%

PRISM 65.32 ± 1.26% 66.29 ± 1.67% 67.54 ± 1.29% 67.28 ± 1.52% 67.19 ± 1.88%

stability, but does not necessarily lead to substantial performance gains. Therefore, we set the num-
ber of preference samples to 3 for both training and evaluation.

A.13 P-GENRM’S PERFORMANCE UNDER DIFFERENT NUMBERS OF PROTOTYPES

The performance of P-GenRM-8B with (Ind-8, Pro-4) setting under different numbers of prototypes
are listed in Table 13:

A.14 P-GENRM FOR POLICY MODEL’S TRAINING

Assessing the downstream policy model is essential for further validating the effectiveness of the
reward model. We conduct extensive experiments using both GRPO and DPO to train policy models
with P-GenRM and evaluate their personalization performance. The details are as follows:

We train the policy model on Llama 3.1 8B-Instruct using the Chatbot Arena–Personalized dataset
under two different setups.: (1) P-GenRM is integrated into GRPO to score each response and
compute the corresponding relative advantage. Specifically, given the user’s historical preference
pairs, P-GenRM assesses how well each candidate response aligns with the user’s preferences (using
the same prompting format as in P-GenRM’s training). These scores are then incorporated into
advantage estimation and loss computation to update the policy model.

(2) P-GenRM serves as the implicit reward model in DPO. Samples labeled as chosen by P-GenRM
are treated as positive instances, whereas those labeled as rejected are treated as negative instances.
These preference pairs are then utilized to train the policy model via DPO.

The policy model is evaluated as follows: given a user’s historical preferences, we prompt the model
to generate responses that align with the user’s tastes. We then employ three advanced LLMs (GPT-
4o, Claude-Sonnet-4, Gemini 2.5-Pro) as judges to rate the personalized quality of each response
on a 1–5 scale. For each query, we compute the average score across the three judges. We record
the overall score and repeat 5 independent runs of the evaluation and report the mean performance
along with the standard error (SE) and 95% confidence intervals (CI) in Table 14.

Across five independent runs, the 8B policy models trained with P-GenRM achieve 95% confidence
intervals whose lower bounds are 3.303 and 3.334, both of which exceed the upper bounds of the
70B models (3.174 and 3.228), showing no interval overlap. This confirms that the performance
advantage is robust and statistically significant. We also provide full per-run results in Table 15.

A.15 LIMITATIONS

Despite strong empirical performance, there exist two current limitations of the method: (1). It
requires generating an evaluation chain to obtain reliable personalized scores, which may be less
efficient than reward models that directly produce scalar values when considering inference speed
alone; (2). It relies on three historical preference selections to construct reasonable preference anal-
ysis, which implies a moderate amount of data collection in practical scenarios.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table 14: Comparisons of policy models’ performance over 5 independent runs

Policy Model Mean SE 95% CI
Llama3.1-8B-Instruct 2.954 0.0074 [2.939 , 2.969]
Qwen2.5-7B-Instruct 2.970 0.0089 [2.952 , 2.988]
Llama3.1-70B-Instruct 3.156 0.0093 [3.138 , 3.174]
Qwen2.5-72B-Instruct 3.214 0.0089 [3.192 , 3.228]
Llama3.1-8B-Instruct-DPO 3.316 0.0068 [3.303 , 3.329]
Llama3.1-8B-Instruct-GRPO 3.354 0.0102 [3.334 , 3.374]

Table 15: Full per-run results of policy models’ performances over 5 independent runs

Policy Model GPT-4o Claude-sonnet-4 Gemini-2.5-pro
1 | 2 | 3 | 4 | 5 1 | 2 | 3 | 4 | 5 1 | 2 | 3 | 4 | 5

Llama3.1-8B-Instruct 3.15 |3.17 |3.10 |3.19 |3.18 2.90 |2.94 |2.88 |2.86 |2.95 2.80 |2.78 |2.83 |2.76 |2.82
Qwen2.5-7B-Instruct 3.16 |3.23 |3.18 |3.20 |3.24 2.92 |2.94 |2.89 |2.90 |2.96 2.77 |2.80 |2.75 |2.79 |2.73
Llama3.1-70B-Instruct 3.33 |3.37 |3.33 |3.31 |3.37 3.05 |3.08 |3.05 |3.00 |3.13 3.08 |3.06 |3.04 |3.09 |3.04
Qwen2.5-72B-Instruct 3.42 |3.47 |3.44 |3.44 |3.41 3.14 |3.14 |3.14 |3.16 |3.12 3.17 |2.97 |3.04 |2.98 |3.05
Llama3.1-8B-Instruct-DPO 3.49 |3.44 |3.46 |3.44 |3.40 3.15 |3.13 |3.20 |3.18 |3.21 3.28 |3.33 |3.31 |3.40 |3.31
Llama3.1-8B-Instruct-GRPO 3.47 |3.51 |3.51 |3.50 |3.57 3.22 |3.31 |3.23 |3.28 |3.24 3.39 |3.36 |3.27 |3.21 |3.27

B DATASETS AND BASELINES

B.1 DATASET

Chatbot Arena. We use the Chatbot Arena subset in PersonalRewardBench Ryan et al. (2025)
as the evaluation set for this part of our study, which includes data from 131 users. Chatbot
Arena Zheng et al. (2023) is an interactive platform where users engage in open-ended conversa-
tions with two anonymous LLMs and provide pairwise preference judgments based on the quality
of their responses. It collects in-the-wild prompts and user feedback, making it a valuable source for
evaluating models under realistic and diverse conversational settings.

PRISM. We use the PRISM evaluation set from PersonalRewardBench Ryan et al. (2025), which
contains data from 720 users. PRISM Kirk et al. (2024) maps detailed survey responses of diverse
participants onto their live, multi-turn conversations with various LLMs, with a particular emphasis
on values and controversial topics. In each turn, users rate multiple candidate completions on a
cardinal 1–100 scale and provide fine-grained feedback on attributes such as factuality, creativity,
and value alignment. These N -way preferences are converted into pairwise comparisons for reward
model training, and pairs with less than a 10% quality difference are removed. By combining stated
preferences from surveys with observed contextual preferences in conversation, PRISM enables
research on personalized and cross-cultural alignment beyond simple binary A/B judgments. In
PersonalRewardBench, all

(
N
2

)
comparisons from each PRISM turn are extracted to form a pairwise

dataset.

LaMP-QA. We also adopt the LaMP-QA benchmark Salemi & Zamani (2025) for evaluating per-
sonal reward ability. LaMP-QA is built from dataset collected from the StackExchange CQA plat-
form. LaMP-QA focuses on tailoring responses to the specific information needs expressed by the
user, leveraging both their current question and historical questions as a user profile. Each question
is accompanied by a detailed narrative outlining personalized requirements, from which key eval-
uation aspects are extracted using LLMs and quality-checked by human annotators. These aspects
remain hidden during generation and are used exclusively for evaluation, enabling fine-grained,
aspect-based assessment rather than binary or ordinal judgment. The dataset covers three major cat-
egories—Arts & Entertainment, Lifestyle & Personal Development, and Society & Culture—with
over 45 subcategories.Owing to its two advantages First, it provides personalized rubric aspects for
each user where responses can be scored on how well they align with these concrete preferences.
Second, it offers long-form historical queries, allowing us to extract only a limited subset to evaluate
the generalization of different models.
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Algorithm 1 History-aware Attentive Refinement

1: Input: Initial prototypes A = {a1, . . . , aK}; cluster means {µj}; user u, turn t: current query
qt, pair (y+

t , y−
t ), and history H

(u)
t =

{
(qτ , y

+
τ , y−

τ )
∣∣ τ ∈ Random(t − 1,h)

}(u); parameters
(λq, λs, λcent, λtr, ρ); weights (W,Wq,Ws); learning rate η.

2: Output: Updated prototypes A.
3: for each prototype aj ∈ A do
4: pj ← aj ▷ keep previous prototype state
5: for τ = 1 to h do
6: oτ ← σ

(
W · concat(qτ , y+

τ − y−
τ )

)
▷ encode each history feedback triple into oτ

7: end for

8: ατ ← softmaxτ

(
o⊤τ qt√

d
+ ρ

o⊤τ aj√
d

)
▷ assign prototype-augmented attention weights to historical

records
9: vH ←

∑h
τ=1 ατ oτ ▷ aggregate attentive historical context

10: zt ← aj + λqWq qt + λsWs vH ▷ form the prototype-informed prior
11: ∆t ← z⊤t y+

t − z⊤t y−
t ▷ discriminative score difference (preference for y+

t over y−
t )

12: Lpair ← − log σ(∆t) ▷ pairwise loss to maximize the preference
13: L ← Lpair + λcent∥aj − µj∥22 + λtr∥aj − pj∥22 ▷ keep prototype near its cluster center and

ensure smooth evolution
14: aj ← aj − η∇ajL ▷ the loss backpropagates to update the prototype aj

15: end for
16: Reassign sample embeddings to the nearest prototype
17: return A

B.2 EXISTING PERSONALIZED REWARD MODELS

GPO Zhao et al. (2023) Group Preference Optimization aims to adapt LLM outputs to different
group preferences despite having very limited data per group. It adds a separate Transformer-based
preference module to the base model, encodes the prompt–response pair, and trains the module in a
meta-learning framework for few-shot, in-context preference prediction. This enables group-specific
alignment at inference time without fine-tuning, using the module as a reward or ranking function.

VPL Poddar et al. (2024). Variational Preference Learning addresses the limitation of standard
RLHF that assumes a single utility function for all users. It treats preference modeling as a latent-
variable problem, with a hidden variable z representing user context, estimated via variational infer-
ence from few pairwise annotations. A reward model r(s, z) and latent-conditioned policy capture
multi-modal preferences, with stability improved via reward scaling and active query selection to
quickly refine z at test time, achieving personalization without identity or demographic data.

PAL Chen et al. (2024). The Pluralistic Alignment Framework models diverse and heterogeneous
user values by representing each user as a mixture of “prototypical preference points” in a trans-
formed representation space. It jointly learns the mapping function and prototypes from comparison
data, and infers mixture weights for each user. This allows fast personalization with minimal data,
while matching the performance of much larger reward models.

SynthesizeMe Ryan et al. (2025). SynthesizeMe tackles data scarcity and the difficulty of inferring
latent preferences from pairwise comparisons. Without identity data or fixed preference axes, it uses
LLMs to infer possible explanations for user choices, synthesize a persona capturing these prefer-
ences, and select the most informative past examples to form interpretable personalized prompts.
These prompts improve reward models or LLM-as-a-judge systems in matching user-specific pref-
erences without fine-tuning.
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C PROMPTS

Explicit Preference Synthesis

# ROLE
You are a preference analysis expert. Based on the user’s previous inputs and historical choices, you need
to infer what explicit preference criteria they may have.

# Examples from user’s preference history
[The Start of User’s preference history]
{few shots}
[The End of User’s preference history]

# Output Instructions
Your output must be a set of concise descriptions, listing point by point the possible preference criteria that
the user may have.

Figure 9: Prompt of Explicit Preference Synthesis.
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Persona-guided Scoring Induction

# ROLE
You are a meticulous user preference analysis expert. Below I will provide you with this user’s desired response style requirements, and
the user preference history examples, each detailing the user’s choice attributes and the score of chosen or rejected response

# PRIMARY GOAL
Your task is to deeply understand a user’s inherent preferences from their stated requirements and historical choices. Based on this
understanding, you will first construct a personalized scoring model for this user in current scenario. Finally, you will apply this model to
score a new set of responses and determine which is better.

# INPUTS

1. User’s Desired Stated Response Style:
[The Start of Desired stated response style requirements]
{desired style}
[The End of Desired stated response style requirements]

2. User Preference History Examples:
Each example details the user’s choice attributes and the score of chosen or rejected responses. A higher score on an attribute signifies
greater importance.
[The Start of User’s preference history]
{few shots with choice attributes scores}
[The End of User’s preference history]

# OUTPUT INSTRUCTIONS

Your output must consist of two parts, in this exact order:

PART 1: User Preference Model Analysis (Chain-of-Thought)

Before the JSON output, provide a detailed analysis outlining the personalized scoring model you have derived for this user.
Follow these steps:
1. Persona & Core Preference Synthesis: First analyze the user’s ‘Desired Stated Response Style‘ and ‘Preference History Examples‘.
Deduce the user’s likely persona, communication style, and core preferences. All theses derivations should apply to the current scenario.
State only highly confident conclusions.
2. Scoring Model Derivation: Based on the examples (history preference paris, choice attributes and scores), explain the logic of your
personalized scoring model. What characteristics get positive marks? What gets negative marks? How do you weigh different attributes?
This section explains the ”rules” you will use for scoring.

PART 2: Final Scoring and JSON Output

After your analysis, output ”JSON START”, followed immediately by the JSON object, and then ”JSON END”. Do not add
any text after ”JSON END”.

# JSON OUTPUT SPECIFICATION

The JSON object must contain exactly two keys: ”rationale” and ”better response”.

1. ‘rationale‘ (string):
A step-by-step application of your scoring model to the current responses. The content of this string must follow this structure:
* A. Evaluation Criteria: List the evaluation principles you derived in Part 1. For each principle, state its percentage weight as determined
by your assessment of current responses. The sum of all weights must be 100* B. Scoring Breakdown: For each response (Response 1,
Response 2, etc.):
* Evaluate it against each principle, assigning a score from 1 (Poor) to 10 (Excellent).
* Show the calculation for the final weighted score.
* Example: ‘Response 1 Final Score = (Score Principle1 * Weight1) + (Score Principle2 * Weight2) + ...‘

2. ‘better response‘ (object): A key-value object containing the final calculated scores for each response.
* Keys must be the response identifiers (e.g., ‘response 1‘, ‘response 2‘).
* Values must be the final numerical scores.

Example JSON Output Format:
’{{”rationale”: ”your rationale adhering to the aforementioned instructions”, ”better response”: {{”response x”: ”score x”, ”re-
sponse y”: ”score y”}}}}’

# Input Data
[The Start of User Input]\n {user input}\n [The End of User Input]\n
[The Start of Response 1]\n {response 1}\n [The End of Response 1]\n
[The Start of Response 2]\n {response 2}\n [The End of Response 2]

Figure 10: Prompt of Persona-guided Scoring Induction.
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Criteria-based Scoring Enhancement

# ROLE
You are a meticulous user preference analysis expert.

# CONTEXT
You will be given a user’s preference history, which consists of pairs of chosen and rejected responses from past interactions.

# Examples from user’s preference history
[The Start of User’s preference history]
{few shots}
[The End of User’s preference history]

# GOAL
Your primary goal is to build and apply a personalized scoring model for this user. Finally you will apply this model to score a new set of
responses and determine which is better.

To achieve this, you will infer the user’s plausible preference criteria:
1. Infer the user’s desired response style from their historical choices.
2. Derive a set of weighted scoring criteria based on this profile.
Then, you will
3. Apply this model to evaluate a new set of responses.
4. Provide a detailed, step-by-step rationale for your evaluation, culminating in a final JSON output.

# OUTPUT STRUCTURE
Your output must strictly consist of two parts, in this exact order:

PART 1: Chain-of-Thought Analysis

This section is your ”scratchpad” where you build the user model. It must precede the JSON output.

1. User Preference Synthesis:
* Based on the ‘User’s Preference History‘, analyze the chosen vs. rejected examples.
* Synthesize a coherent persona of the user’s preferences in this scenario. Besides, describe their preferred Style (e.g., formal, casual,
empathetic), Content Structure (e.g., prefers lists, detailed explanations, concise answers), and any other discernible Core Values (e.g.,
values accuracy, creativity, safety).
* State only highly confident conclusions drawn directly from the evidence.

2. Personalized Scoring Model Derivation:
* Based on the ‘User Preference Synthesis‘, define the key evaluation criteria for this user. These are the ”rules” you will use for scoring.
* For each criterion, briefly explain why it’s important to this user.

PART 2: Final Scoring and JSON Output

Immediately after your analysis, output ‘JSON START‘, followed by a single valid JSON object, and then ‘JSON END‘. Do
not add any text before ‘JSON START‘ or after ‘JSON END‘.

# JSON SPECIFICATION

The JSON object must contain exactly two keys: ”rationale” and ”scores”.

1. ‘rationale‘ (string): A step-by-step application of your scoring model to the new responses. The content of this string must
follow this exact structure:
* A. Evaluation Criteria & Weights: List the evaluation criteria derived in Part 1. Assign a percentage weight to each, reflecting its
importance for *this specific evaluation*. The sum of all weights must be [Total Weight]* B. Scoring Breakdown: For each response
(e.g., Response X, Response Y):
* Evaluate it against each criterion, assigning a score from from 1 (Poor) to 10 (Excellent).
* Provide a brief justification for each score.
* Show the calculation for the final weighted score.
* Example: ‘Response 1 Final Score = (Score Principle1 * Weight1) + (Score Principle2 * Weight2) + ...‘

2. ‘better response‘ (object): A key-value object containing the final calculated scores for each response.
* Keys must be the response identifiers (e.g., ‘response 1‘, ‘response 2‘).
* Values must be the final numerical scores.

Example JSON Output Format:
’{{”rationale”: ”your rationale adhering to the aforementioned instructions”, ”better response”: {{”response x”: ”score x”, ”re-
sponse y”: ”score y”}}}}’

# Input Data
[The Start of User Input]\n {user input}\n [The End of User Input]\n
[The Start of Response 1]\n {response 1}\n [The End of Response 1]\n
[The Start of Response 2]\n {response 2}\n [The End of Response 2]

Figure 11: Prompt of Criteria-based Scoring Enhancement.
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LLM-as-a-Judge + System String

# ROLE
You are a meticulous user preference analysis expert. Below I will provide you with this user’s desired
stated response style requirements, and this user’s preferred responses from their input history.

# Primary Goal
Your primary goal is to understand this user’s inherent preferences from the desired stated response style
requirements,interaction history and use that understanding to judge responses to the user’s current input.

# User’s Desired stated response style requirements
[The Start of Desired stated response style requirements]
{desired style}
[The End of Desired stated response style requirements]

# Examples from user’s preference history
[The Start of User’s preference history]
{few shots}
[The End of User’s preference history]

# INSTRUCTIONS
Follow these steps precisely:

1. Analysis : First, perform your detailed analysis.
a. Analyze User Persona & Preferences: Based on the history, deduce the user’s likely persona, communi-
cation style, demographic information, and core preferences. Retain only the conjectures of which you are
highly confident.
b. Evaluate new Responses against User Persona & Preferences: For each user’s input and its corresponding
responses, evaluate how well it aligns with the user’s persona & preferences you inferred from the history
above.
c. Final Decision: State which response you believe is better and briefly summarize the single most
important reason.

2. Final Output (JSON) : After completing your analysis and decision, generate a single, valid
JSON object as your final answer. The JSON should be the only thing you output.

# JSON OUTPUT SPECIFICATION
- The JSON object must have exactly two keys: ”rationale” and ”better response”.
- ”rationale”: A concise string that explain the user’s preference and the advantages of the better response.
- ”better response”: An integer, which must be ‘1‘ if Response 1 is better, or ‘2‘ if Response 2 is better.

Example Output Format:
{{”rationale”: “your explanation”, ”better response”: x}}

# Input Data
[The Start of User Input]\n {user input}\n [The End of User Input]\n
[The Start of Response 1]\n {response 1}\n [The End of Response 1]\n
[The Start of Response 2]\n {response 2}\n [The End of Response 2]

Figure 12: Prompt of LLM-as-a-Judge + Output Style Requirements.
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LLM-as-a-Judge + Self-Description

# ROLE
You are a meticulous user preference analysis expert. Below I will provide you with this user’s self
description and this user’s preferred responses from their input history.

# Primary Goal
Your primary goal is to understand this user’s inherent preferences from the self description, interaction
history and use that understanding to judge responses to the user’s current input.

# User’s self description
[The Start of User’s self description]
{self description}
[The End of User’s self description]

# Examples from user’s preference history
[The Start of User’s preference history]
{few shots}
[The End of User’s preference history]

# INSTRUCTIONS
Follow these steps precisely:

1. Analysis : First, perform your detailed analysis.
a. Analyze User Persona & Preferences: Based on the history, deduce the user’s likely persona, communi-
cation style, demographic information, and core preferences. Retain only the conjectures of which you are
highly confident.
b. Evaluate new Responses against User Persona & Preferences: For each user’s input and its corresponding
responses, evaluate how well it aligns with the user’s persona & preferences you inferred from the history
above.
c. Final Decision: State which response you believe is better and briefly summarize the single most
important reason.

2. Final Output (JSON) : After completing your analysis and decision, generate a single, valid
JSON object as your final answer. The JSON should be the only thing you output.

# JSON OUTPUT SPECIFICATION
- The JSON object must have exactly two keys: ”rationale” and ”better response”.
- ”rationale”: A concise string that explain the user’s preference and the advantages of the better response.
- ”better response”: An integer, which must be ‘1‘ if Response 1 is better, or ‘2‘ if Response 2 is better.

Example Output Format:
{{”rationale”: “your explanation”, ”better response”: x}}

# Input Data
[The Start of User Input]\n {user input}\n [The End of User Input]\n
[The Start of Response 1]\n {response 1}\n [The End of Response 1]\n
[The Start of Response 2]\n {response 2}\n [The End of Response 2]

Figure 13: Prompt of LLM-as-a-Judge + Self-Description.
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LLM-as-a-Judge + Basic Demographic Information

# ROLE
You are a meticulous user preference analysis expert. Below I will provide you with this user’s basic
demographics and this user’s preferred responses from their input history.

# Primary Goal
Your primary goal is to understand this user’s inherent preferences from the basic demographics, interaction
history and use that understanding to judge responses to the user’s current input.

# User’s basic demographics
[The Start of User’s basic demographics]
{basic demographics}
[The End of User’s basic demographics]

# Examples from user’s preference history
[The Start of User’s preference history]
{few shots}
[The End of User’s preference history]

# INSTRUCTIONS
Follow these steps precisely:

1. Analysis : First, perform your detailed analysis.
a. Analyze User Persona & Preferences: Based on the history, deduce the user’s likely persona, communi-
cation style, demographic information, and core preferences. Retain only the conjectures of which you are
highly confident.
b. Evaluate new Responses against User Persona & Preferences: For each user’s input and its corresponding
responses, evaluate how well it aligns with the user’s persona & preferences you inferred from the history
above.
c. Final Decision: State which response you believe is better and briefly summarize the single most
important reason.

2. Final Output (JSON) : After completing your analysis and decision, generate a single, valid
JSON object as your final answer. The JSON should be the only thing you output.

# JSON OUTPUT SPECIFICATION
- The JSON object must have exactly two keys: ”rationale” and ”better response”.
- ”rationale”: A concise string that explain the user’s preference and the advantages of the better response.
- ”better response”: An integer, which must be ‘1‘ if Response 1 is better, or ‘2‘ if Response 2 is better.

Example Output Format:
{{”rationale”: “your explanation”, ”better response”: x}}

# Input Data
[The Start of User Input]\n {user input}\n [The End of User Input]\n
[The Start of Response 1]\n {response 1}\n [The End of Response 1]\n
[The Start of Response 2]\n {response 2}\n [The End of Response 2]

Figure 14: Prompt of LLM-as-a-Judge + Basic Demographic Information.
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LLM-as-a-judge +Choice Attributes

# ROLE
You are a meticulous user preference analysis expert. Below I will provide you with examples of this
user’s preferred responses from their input history, each followed by the user’s choice attributes in this
conversation, which indicate the rationale for the user’s preference for one response over others. A higher
score signifies that the corresponding attribute is of greater importance.

# Primary Goal
Your primary goal is to understand this user’s inherent preferences from each conversation history together
with its corresponding choice attribuets and use that understanding to judge responses to the user’s current
input.

# Examples from user’s preference history and corresponding choice attribuets
[The Start of User’s preference history and corresponding choice attribuets]
{few shots with choice attributes}
[The End of User’s preference history and corresponding choice attribuets]

# INSTRUCTIONS
Follow these steps precisely:

1. Analysis : First, perform your detailed analysis.
a. Analyze User Persona & Preferences: Based on the history, deduce the user’s likely persona, communi-
cation style, demographic information, and core preferences. Retain only the conjectures of which you are
highly confident.
b. Evaluate new Responses against User Persona & Preferences: For each user’s input and its corresponding
responses, evaluate how well it aligns with the user’s persona & preferences you inferred from the history
above.
c. Final Decision: State which response you believe is better and briefly summarize the single most
important reason.

2. Final Output (JSON) : After completing your analysis and decision, generate a single, valid
JSON object as your final answer. The JSON should be the only thing you output.

# JSON OUTPUT SPECIFICATION
- The JSON object must have exactly two keys: ”rationale” and ”better response”.
- ”rationale”: A concise string that explain the user’s preference and the advantages of the better response.
- ”better response”: An integer, which must be ‘1‘ if Response 1 is better, or ‘2‘ if Response 2 is better.

Example Output Format:
{{”rationale”: “your explanation”, ”better response”: x}}

# Input Data
[The Start of User Input]
{user input}
[The End of User Input]

[The Start of Response 1]
{response 1}
[The End of Response 1]

[The Start of Response 2]
{response 2}
[The End of Response 2]

Figure 15: Prompt of LLM-as-a-judge +Choice Attributes.

29


	Introduction
	Related Works
	Problem Formulation
	Methodology
	Multi-stage Training Framework
	Test-time User-based Scaling 
	Offline prototype initialization and optimization
	Test-time dual-granularity scaling


	Experiments
	Datasets and Experimental settings
	Personalized Alignment Performance on PersonalRewardBench
	Analysis of Prototype 
	Performances on Lamp-QA with Sparse Feedback
	P-GenRM for policy model's training 

	Conclusion
	Appendix
	The use of Large Language Models
	Preliminary Experiments on Effectiveness of User Persona
	Example of a single user’s differing preferences across various scenarios.
	The impact of variations in  and 
	User Preference Modeling
	Performance across different prototypes
	Example of a single user’s differing preferences across various scenarios.
	Evaluation framework used in Lamp-Qa dataset
	Visualization of User-Prototype Distribution
	Comparisons of inference time
	History-aware Attentive Refinement Algorithm
	Number of samples required for generating reasonable user preference 
	P-GenRM's performance under different numbers of prototypes
	P-GenRM for policy model's training
	Limitations

	Datasets and Baselines
	Dataset
	Existing Personalized Reward Models

	Prompts

