
Open Access

© The Author(s) 2025. Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 Inter-
national License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you 
give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified 
the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The 
images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a 
credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by 
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of 
this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

METHODOLOGY

Hirst et al. Genome Biology          (2025) 26:224  
https://doi.org/10.1186/s13059-025-03675-7

Genome Biology

MOTL: enhancing multi‑omics matrix 
factorization with transfer learning
David P. Hirst1*, Morgane Térézol1, Laura Cantini2, Paul Villoutreix1, Matthieu Vignes3 and Anaïs Baudot1,4,5* 

Abstract 

Joint matrix factorization is popular for extracting lower dimensional representations 
of multi-omics data but loses effectiveness with limited samples. Addressing this limita-
tion, we introduce MOTL (Multi-Omics Transfer Learning), a framework that enhances 
MOFA (Multi-Omics Factor Analysis) by inferring latent factors for small multi-omics 
target datasets with respect to those inferred from a large heterogeneous learning 
dataset. We evaluate MOTL by designing simulated and real data protocols and dem-
onstrate that MOTL improves the factorization of limited-sample multi-omics datasets 
when compared to factorization without transfer learning. When applied to actual 
glioblastoma samples, MOTL enhances delineation of cancer status and subtype.

Keywords:  Matrix factorization, Dimensionality reduction, Multi-omics, Data 
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Background
Omics data have transformed the study of biology and medicine by enabling high-
throughput measurements of the activity and abundance of biological molecules and 
processes [1–3]. In recent years, the fields of biology and medicine have been revolu-
tionized by the increased availability of multi-omics datasets [1, 4, 5]. A multi-omics 
dataset is comprised of multiple data matrices, each containing a different type of omics 
data (e.g., mRNA transcript counts, genomic mutations, DNA methylation prevalence). 
The integrative analysis of multi-omics data can provide a better understanding of a bio-
logical system than that obtained from the analysis of a single omics data matrix, as the 
complementary information contained in different omics enables a more comprehensive 
overview of the underlying biological system [6–11]. Additionally, using multiple omics 
can reveal insights into relationships between the different biological layers they rep-
resent [4, 5, 12]. Combining omics is also expected to reduce the impact of noise [6, 9, 
12]. However, multi-omics data poses further analysis challenges beyond those encoun-
tered in single omics data analysis. These challenges include increased dimensionality, 
the presence of multiple data types, diverse sources of technological noise, and diverse 
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ranges of variability. In this context, there has been an increased need for methods able 
to carry out integrative analysis of multiple omics.

The development of multi-omics analysis tools is an active area of research and a large 
variety of strategies have been proposed. These strategies encompass broad and overlap-
ping categories, including Bayesian methods, network-based approaches, or dimensional-
ity reduction techniques [4, 9], alongside more recent deep learning strategies [10, 11, 13]. 
A category of multi-omics analysis tools that is widely used is dimensionality reduction 
with matrix factorization. Matrix factorization infers a lower dimensional representation 
of the observed data, in which a sufficiently informative proportion of the original signal 
is retained [14]. It has proven to be computationally efficient, but also interpretable, and 
effective for the analysis of large datasets [6, 7, 9, 12, 15].

Most classical matrix factorization approaches were designed for the analysis of a 
single data matrix. Applying matrix factorization to a single omics matrix produces a 
score matrix and a weight matrix, both of which contain values for latent factors that are 
potentially associated with different sources of underlying biological signal. The values 
in the weight matrix ideally represent signal across the assayed biological features, and 
the values in the score matrix represent the signal across the samples. For a multi-omics 
dataset, one of the strategies is to jointly factorize multiple omics data matrices. Various 
methods are now available for this purpose [9]. Multi-omics joint matrix factorization 
methods typically produce a weight matrix for each omics, and either a shared score 
matrix or a combination of shared and omics specific score matrices. Many multi-omics 
matrix factorization methods are extensions of classical methods. For example, intNMF 
[16] extends non-negative matrix factorization to the multi-omics setting, and allows the 
user to determine the relative contribution of each omics to the extraction of joint sig-
nal. JIVE [17] extends principal component analysis to model both joint and omics spe-
cific signal. moCluster [18] extends canonical correlation analysis to produce a shared 
score matrix based on score matrices produced for each of two or more omics. MOFA 
[19], which is an extension of Factor Analysis, uses a Bayesian framework to account 
for the presence of multiple data types and to distinguish between joint and omics spe-
cific signal. Overall, the factors inferred by multi-omics matrix factorization can be used 
for clustering samples to reveal disease sub-types, for identifying molecular profiles 
and biomarkers associated with diseases, as well as for prediction of outcomes such as 
drug response and survival [6, 7, 9, 20, 21]. A challenge for matrix factorization is that it 
requires a large amount of observed data to produce a meaningful representation. How-
ever, there are cases where omics are measured from only a small number of samples, 
due to the rareness or cost of obtaining the data, and so there is a need for methods 
which help mitigate this challenge [14, 21, 22].

For a dataset generated from a small number of samples, transfer learning is a poten-
tial solution to the limited effectiveness of matrix factorization. Transfer learning is 
a machine learning approach in which information extracted from a large learning 
domain is used to improve the performance of a task applied to a smaller target domain 
[20–23]. It is assumed that the two domains share an overlapping latent space, allow-
ing knowledge from the learning domain to be transferred to the application of the task 
to the target domain. Transfer learning has been successfully used in various machine 
learning applications, including image classification, text sentiment classification and 
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recommendation systems [21, 22, 24, 25]. In a transfer learning approach to omics 
matrix factorization, information inferred from the prior factorization of a learning 
dataset, comprised of a large number of samples from a heterogeneous set of biological 
conditions, is incorporated into the factorization of a small target dataset [21, 26]. It is 
assumed that if the latent factors inferred from the learning dataset represent common 
underlying biological processes, they should help improve the factorization of the target 
dataset [23].

The usefulness of transfer learning approaches to matrix factorization, for omics data 
analysis, has been demonstrated in contexts in which both the target and learning data-
sets were comprised of single matrices of omics data. In these cases, transfer learning 
was used to infer a score matrix for the target dataset by projecting it onto a weight 
matrix inferred from a learning dataset. In one study, Stein-O’brien et al. [23] factorized 
a mouse single cell RNA-seq learning dataset with the Bayesian non-negative matrix 
factorization algorithm CoGAPS [27]. Then, they used the transfer learning tool pro-
jectR [28] to infer a score matrix for a human time course bulk RNA-seq dataset. The 
resulting factors were associated with known spatiotemporal differences across the sam-
ples. In another example, Davis-Marcisak et al. [29] factorized a mouse single cell RNA-
seq learning dataset with CoGAPS, and then used projectR to infer a score matrix for 
bulk RNA-seq data from human cancer samples. They observed an association between 
a particular projectR factor and outcomes in metastatic melanoma. Taroni et  al. [20] 
developed MultiPLIER, a transfer learning framework, which they demonstrated by 
firstly applying the non-negative matrix factorization algorithm PLIER [30] to a subset of 
Recount2 to infer a weight matrix. Recount2 is a compendium of RNA-seq data obtained 
from 70,000+ human samples taken across more than 2000 studies [31]. Taroni et  al. 
[20] then used a blood cell compendium of microarray gene expression data as the target 
dataset, for which they inferred a score matrix with MultiPLIER, as well as factorizing 
the target dataset directly with PLIER. For counts of a cell type of interest, MultiPLIER 
inferred a more highly correlated factor than was inferred by direct factorization of the 
target dataset. They also used microarray gene expression data for 79 samples from a 
rare disease group called antineutrophil cytoplasmic autoantibody associated vasculi-
tis (AAV) as a target dataset. There are no AAV samples in the Recount2 compendium, 
yet the MultiPLIER factors were positively correlated with their best match from factors 
inferred by direct factorization of the target dataset.

It has thus been demonstrated that the application of matrix factorization to a large, 
heterogeneous learning dataset can yield factors containing transferable information, 
that are biologically relevant to target datasets from different organisms, diseases, cell 
types and omics platforms. However, existing transfer learning approaches to matrix 
factorization have been designed for, and demonstrated on, datasets comprised of sin-
gle omics data only. To the best of our knowledge, transfer learning approaches to joint 
multi-omics matrix factorization are currently lacking.

We here introduce MOTL (Multi-Omics Transfer Learning), a novel Bayesian trans-
fer learning algorithm for multi-omics matrix factorization. MOTL is based on MOFA, 
a popular tool for integrative multi-omics analysis [19]. We first present the statisti-
cal framework and implementation of MOTL. Next, we propose two protocols, that 
we designed based on simulated and real multi-omics datasets, for evaluating the 
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performance of transfer learning approaches. We used these protocols to evaluate 
MOTL, and observed that, for a target multi-omics dataset comprised of a small number 
of samples, our transfer learning approach to matrix factorization is more effective than 
matrix factorization without transfer learning. Lastly, we showcase a practical use case of 
MOTL on a limited glioblastoma sample set, revealing an enhanced delineation of cancer 
status and subtype thanks to transfer learning.

Results
MOTL: a new transfer learning framework for multi‑omics matrix factorization

We propose MOTL, a transfer learning approach to multi-omics matrix factorization. 
MOTL is based on MOFA [19], which uses variational Bayesian inference [32]. Consider 
a multi-omics target dataset, T  , consisting of omics matrices, T (m) , m = 1, ...,M . Each 
T (m) = t

(m)

nd ∈ R
Nt×Dm contains data for Nt samples (rows) and Dm features (columns), 

where t(m)

nd  is the value for the nth sample and the dth feature from the mth matrix (see 
the Methods “Mathematical Notation” section for a summary of the mathematical nota-
tion used in this document). The features depend on which molecules were assayed to 
generate a given omics matrix; for example the features for mRNA counts are genes, 
while those for DNA methylation are CpG sites.

We wish to jointly factorize T (m) into a matrix of sample scores, Z = [znk ] ∈ R
Nt×K  , 

and an omics specific matrix of feature weights, W (m) =
[

w
(m)

kd

]

∈ R
K×Dm . The resulting lower 

dimensional representation is based on K factors, which ideally represent underlying 
biological signals associated with some biological condition(s) of interest. znk is the score 
for the nth sample and the kth factor, while w(m)

kd  is the weight for the kth factor and the 
dth feature from the mth matrix. The kth column vector of Z , denoted by z:k , contains 
scores for factor k, while the nth row vector, zn: , contains scores for sample n. The kth 
row vector of W (m) , denoted by w(m)

k:  , contains weights for factor k, for the mth matrix, 
while the dth column vector, w(m)

:d  , contains weights for feature d from the mth matrix.
We are concerned with the situation in which Nt is small, exacerbating the curse of 

dimensionality, and therefore, we expect to improve the factorization of T  by employing 
a transfer learning approach (see Fig. 1). We do this transfer learning by incorporating 
values that have already been inferred from the prior factorization of a learning dataset, 
L , and we assume that the Bayesian matrix factorization algorithm MOFA [19] was used 
for factorizing L.

The learning dataset consists of omics matrices L(m) , m = 1, ...,M . Each 
L(m) =

[

l
(m)

nd

]

∈ R
Nl×Dm contains data for the same Dm features as T (m) , but for a differ-

ent set of Nl > Nt samples. We hypothesize that if L is comprised of samples from a het-
erogeneous set of biological conditions, then the factorization of L will yield information 
that is relevant for the factorization of T .

MOTL is based on the variational Bayesian inference methodology used by MOFA 
(the Methods “The MOFA model” section). We have modified the MOFA algorithm to 
enable us to supplement the factorization of T  by incorporating values already inferred 
from the prior factorization of L . For MOTL, we assume that each observed t(m)

nd  is a 
random variable, with a likelihood that is conditional on vectors zn: and w(m)

:d  . We model 
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continuous, counts and binary data with the same likelihoods and link functions that 
MOFA uses. For observed continuous data, we thus assume a Gaussian likelihood, into 
which we include a feature-wise precision parameter, τ (m)

d  , for each feature d from matrix 
m. For observed binary data, we assume a Bernoulli likelihood, and for observed counts 
data we assume a Poisson likelihood. In contrast to MOFA, MOTL does not center the 
input data during factorization fitting, as we want to incorporate an intercept that is 
compatible with the factorization of L . We therefore replace zn:w(m)

:d  with a(m)

d + zn:w
(m)

:d  
in the likelihood, where a(m)

d  is the feature-wise intercept for feature d, from matrix m. 
We infer a(m)

d  values based on the MOFA factorization of L (the Methods “Application 
of MOTL to simulated, TCGA and glioblastoma multi-omics datasets” section). MOTL 
accepts missing t(m)

nd  values; therefore it is not necessary to remove features with missing 
values, or perform imputation, before using MOTL.

In order to carry out a transfer learning approach to matrix factorization, MOTL uses 
the matrix of feature weights, W (m) , vector of feature-wise intercepts, 
a(m) =

[

a
(m)

d

]

∈ R
Dm , and vector of feature-wise precision parameter values, 

τ (m) =
[

τ
(m)

d

]

∈ R
Dm , inferred for each L(m) with a prior MOFA factorization of L . 

Instead of modeling these as random variables, we treat them as constants. We aim to 
obtain point estimates of znk values, for which, we assume the same joint prior distribu-
tion as MOFA does,

MOTL obtains point estimates of znk values by approximating the joint posterior dis-
tribution p(Z|T ) with a variational distribution:

MOTL infers q(Z) iteratively. At each iteration, the value of each parameter is 
updated while all other parameter values are held fixed. MOTL optimizes the joint 

(1)p(Z) =

Nt
∏

n=1

K
∏

k=1

Normal(znk |0, 1)

(2)q(Z) =

Nt
∏

n=1

K
∏

k=1

q(znk) =

Nt
∏

n=1

K
∏

k=1

Normal(znk |µnk , σnk)

Fig. 1  Overview of MOTL, our transfer learning approach to joint multi-omics matrix factorization based 
on variational Bayesian inference. a A multi-omics learning dataset, L , consisting of M omics matrices, 
L
(m) , m = 1, ...,M , is factorized with MOFA to infer a matrix of feature weights, W (m) , vector of feature-wise 

intercepts, a(m) , and a vector of feature-wise precision parameter values, τ (m) , for each L(m) . b The feature 
weight, intercept, and precision parameter values, inferred from the factorization of L , are incorporated into 
the factorization of a multi-omics target dataset, T  , for which MOTL infers a matrix of sample scores, Z , with 
variational inference
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variational distribution by iterating until convergence. For each znk , the expected 
value, Eq[znk ] = µnk , is used as the point estimate throughout and after model fitting. 
MOTL uses the same update equations for the parameters of q(znk) as MOFA, but 
with the inclusion of intercepts:

where τ (m)

nd  is the precision for the nth sample and dth feature from the mth matrix, 
and t̂(m)

nd  denotes a (possibly) transformed observed data point (the  Methods “The 
MOFA model”  section). For observed data with a Gaussian assumed likelihood, a fea-
ture-wise precision, τ (m)

d  , is used instead of τ (m)

nd  , and there is no transformation, mean-
ing t̂(m)

nd = t
(m)

nd  . For observed data with a non-Gaussian assumed likelihood, MOTL 
transforms the data to yield Gaussian pseudo-data values, which it does not center. 
The transformation to Gaussian pseudo-data allows updates of q(Z) to be based on the 
assumption of Gaussian observed data. When MOFA transforms observed data with a 
Bernoulli assumed likelihood, it derives and uses a precision parameter, τ (m)

nd  , for each 
sample and feature. For observed data with a Poisson assumed likelihood, it derives and 
uses a feature-wise precision, τ (m)

d  . Thus for Bernoulli observed data, MOTL initializes 
τ
(m)

nd  values with τ (m)

d  values, which are averages of the τ (m)

nd  values returned by the factori-
zation of L , and these are subsequently updated at each iteration of the algorithm. For 
Poisson observed data, MOTL uses the τ (m)

d  values obtained from the prior factorization 
of L , and holds them fixed.

To monitor convergence we calculate the evidence lower bound (ELBO), which can 
be used to evaluate how well a variational distribution approximates a posterior dis-
tribution of interest. We calculate the ELBO with respect to Z:

For T (m) with a non-Gaussian assumed likelihood, we use the same lower bound for 
log p

(

t
(m)

nd |Z
)

 as MOFA does. Maximizing this lower bound, coupled with the use of 

t̂
(m)

nd  values, allows updates of q(Z) based on the assumption of Gaussian observed data 
[33, 34]. We calculate the ELBO at regular intervals, and the number of iterations 
between each calculation is a user defined parameter. We check for convergence 
based on the absolute change in the ELBO (from the previous check) as a percentage 
of the initial ELBO. The algorithm is deemed to have converged when a specified 
number of changes in the ELBO are consecutively below a threshold. Both the thresh-
old, and the required number of consecutive changes falling below this threshold, are 
user defined parameters.

We allow factors to be dropped during training, based on the fraction of variance 
explained:

(3)σ 2
nk =

(

M
∑

m=1

Dm
∑

d=1

τ
(m)

nd

(

w
(m)

kd

)2
+ 1

)−1

(4)µnk = σ 2
nk

M
�

m=1

Dm
�

d=1

τ
(m)

nd w
(m)

kd



t̂
(m)

nd − a
(m)

d −
�

j �=k

znjw
(m)

jd





(5)ELBO(Z) = Eq[log p(T |Z)]+ Eq[log p(Z)]− Eq[log q(Z)]
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We drop the factor with the lowest R2
mk that does not have any R2

mk above the thresh-
old. We assess factors in this way after each round of updates. After convergence the 
algorithm returns Z and W (m) matrices for the factors that have not been dropped.

MOTL is available as an open source R implementation [35].

Evaluation protocol using simulated multi‑omics data

We first designed and implemented a transfer learning evaluation protocol based 
on simulated multi-omics datasets, which we generated from groundtruth factors 
(the Methods “Multi-omics data simulated with groundtruth factors” section). In each 
simulation instance, we generated a multi-omics dataset, Y  , which we subsequently split 
into a target dataset, T  , and a learning dataset, L . Y  consisted of matrices of counts, 
continuous, and binary data. We generated each matrix, Y (m) , from a statistical distri-
bution conditional on random matrices Z and W (m) , which each contained values for 
K groundtruth factors. The kth column vector of Z contained sample scores for the 
kth groundtruth factor. The kth row vector of W (m) contained feature weights for that 
same factor. We varied the number of groundtruth factors across configurations, using 
K ∈ {20, 30} . We generated Z based on the group membership of samples. In each 
instance, we created two groups of five samples for the target dataset. The learning data-
set samples belonged to either 20 or 40 differently sized groups of randomly selected 
sizes. For each groundtruth factor and group, the sample scores were generated using 
a mean parameter value that was common to all samples in the group. We induced het-
erogeneity by allowing the means to vary across groups and factors, randomly selecting 
each group mean, for a given groundtruth factor, from a pool of three possible values. 
We split each Y (m) into T (m) and L(m) , based on the sample groups used to generate Z . 
In each instance T  contained data for 10 samples, while the expected number of samples 
for L was ∈ {400, 1000}.

For each simulation instance, we factorized L with MOFA (the Methods “Application 
of MOFA to simulated, TCGA and glioblastoma multi-omics datasets”  section). We 
then factorized T  with our transfer learning method MOTL (the Methods “Application 
of MOTL to simulated, TCGA and glioblastoma multi-omics datasets” section), incor-
porating output from the factorization of L . To benchmark the performance of MOTL, 
we also performed direct MOFA factorizations (i.e., factorization without transfer 
learning) of T  datasets. We evaluated both the MOTL and direct MOFA factorization 
of each T  , and compared the overall performance of each approach. We evaluated fac-
torizations of each T  by calculating an F1 score (the Methods “Evaluation methods” sec-
tion), to measure how well the factorization allowed us to uncover differentially active 
groundtruth factors underlying T  . The kth groundtruth factor was differentially active 
for T  if the mean parameter values used to simulate the sample scores, for that factor, 
differed between the two groups of target dataset samples. Factorization with MOTL 
led to higher F1 scores than direct MOFA factorization, indicating that the MOTL 

(6)R2
mk = 1−

Nt
∑

n=1

Dm
∑

d=1

(

t̂
(m)

nd − a
(m)

d − znkw
(m)

kd

)2

Nt
∑

n=1

Dm
∑

d=1

(

t̂
(m)

nd − a
(m)

d

)2
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factorizations were more effective in uncovering differentially active latent signal from T  
datasets (Fig. 2a). This was observed across all simulation configurations, and the over-
all uplift in mean F1 score for MOTL, when compared to direct MOFA factorization, 
was 0.21 (p-value < 0.01 , the Methods “Evaluation methods” section). We thus observed 
that transfer learning with MOTL was more effective in uncovering differentially active 
latent signal, when compared to direct MOFA factorization (without transfer learning) 
of T  . Of note, MOTL was also more effective than direct factorization with the alter-
native multi-omics matrix factorization approaches intNMF and moCluster (Additional 
file 1: Fig. S1).

We next wanted to evaluate the robustness of MOTL when there is a decline in the 
overlap between the latent spaces of L and T  (the  Methods “Application of MOTL to 
simulated, TCGA and glioblastoma multi-omics datasets”  section). We forced this 
decline in overlap by permuting feature vectors in the W (m) matrices inferred from L 
datasets, based on a range of permutation proportions between 0 and 1. For each simula-
tion instance, and permutation proportion, p, we created new W (m) matrices by permut-
ing the values in (p× 100)% of the feature vectors in the W (m) matrices inferred from L . 
We then factorized T  with MOTL, using the permuted W (m) matrices, and calculated 
the F1 score. We observed that MOTL outperformed direct MOFA factorization even 
when there were large declines in the overlap between the latent spaces of L and T  , and 
that the performance of MOTL tended to drop below that of direct MOFA factorization 
when the values in 80% or more of the feature vectors were permuted (Fig. 2b).

Evaluation protocol using TCGA multi‑omics data

We next designed, and implemented, a second transfer learning evaluation protocol, 
based on TCGA multi-omics data (the  Methods “TCGA multi-omics data acquisi-
tion and pre-processing” section). We used four types of omics data: log2 transformed 
mRNA counts, log2 transformed miRNA counts, DNA methylation M-values, and sim-
ple nucleotide variation (SNV) binary data, which we obtained for 32 different cancer 
types. We created target datasets using data from three cancer types; acute myeloid 
leukemia (LAML), pancreatic adenocarcinoma (PAAD) and skin cutaneous melanoma 
(SKCM). We created these target datasets by firstly creating four reference datasets. 
Each reference dataset, R , contained multi-omics data for all samples from either two, or 
all three of the cancer types. We then randomly split every R into non-overlapping target 
datasets which each contained only five samples per cancer type (Fig. 3a). We merged 
data from the remaining 29 cancer types into a learning dataset, L , which contained 
multi-omics data for 7217 samples.

We factorized L with MOFA (the Methods “Application of MOFA to simulated, TCGA 
and glioblastoma multi-omics datasets” section), based on which we used MOTL to fac-
torize each T (the Methods “Application of MOTL to simulated, TCGA and glioblastoma 
multi-omics datasets” section). To benchmark the performance of MOTL, we also per-
formed direct MOFA factorizations (without transfer learning) of T  datasets. In order 
to evaluate the factorizations of T  datasets, we factorized R datasets with MOFA and 
treated the resulting score, Z , and weight, W (m) , matrices as groundtruth factor matri-
ces (the  Methods “Evaluation methods”  section). We were interested in how well the 
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Fig. 2  Evaluation of factorizations of small simulated multi-omics target datasets. a The boxplots represent 
the F1 scores obtained for factorizations with and without MOTL transfer learning, for different simulation 
configuration settings. Simulation configurations varied in the number of groups of samples used for 
the learning dataset (Learning Groups), the number of groundtruth factors (K), or the standard deviation 
used to simulate znk values (sd). F1 scores take a value between 0 and 1, and higher values indicate 
better factorizations. Each boxplot is based on 30 F1 scores. The hinges of the boxes are the 25th and 
75th percentiles, the middle lines are medians, the diamonds are the mean values, and the whiskers are 
either extreme values or extend 1.5 times the inter-quartile range from the hinge. b The line plots represent 
the average F1 score obtained from MOTL factorizations, for different simulation configuration settings, 
after permuting the values in proportions of the feature vectors in the W (m) matrices obtained from prior 
factorization of L . The dashed line is the average F1 score obtained with direct MOFA factorization for the 
simulation configuration
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factorizations of T  datasets uncovered the groundtruth, and we used F-measure values 
and F1 scores to evaluate this.

We calculated F-measure values to assess the correlation between factors inferred 
from each T  , and the groundtruth factors obtained from the factorization of the corre-
sponding R dataset (the Methods “Evaluation methods” section). We calculated F-meas-
ure values for weight matrices (FM_W), as well as for score matrices (FM_Z). The overall 
mean FM_W for MOTL was slightly lower (0.03 reduction, p-value < 0.01 ) than for 
direct MOFA factorizations of T  datasets (Fig. 3b, column 1), which is the result of lower 
average relevance counterbalancing higher average recovery. We concluded from this 
that groundtruth W (m) factors were more easily uncovered with those transferred from 

Fig. 3  Evaluations using TCGA multi-omics data. a We created TCGA target, T  , datasets from two or 
three cancer types: For each combination of cancer types, we created a reference, R , dataset containing 
multi-omics data for all samples from the selected cancer types. We then randomly split R into 
non-overlapping T  datasets, containing multi-omics data for five samples per cancer type. We did this for 
subsets of the set of cancer types {LAML, PAAD, SKCM}. In total we created, and split, four reference datasets, 
each of which contained multi-omics data for all samples from either two (LAML and PAAD, LAML and 
SKCM, PAAD and SKCM), or three (LAML, PAAD, and SKCM) cancer types. For datasets containing PAAD and 
SKCM samples only, we included mRNA, miRNA, DNA methylation, and SNV data. We did not include SNV 
data in datasets containing LAML samples, due to the sparsity of SNV data. b Comparison of factorization 
approaches applied to TCGA multi-omics datasets. Violin plots of F-measure values for weight matrix factors 
(FM_W), F-measure values for score matrix factors (FM_Z), and F1 scores (F1). For each evaluation score, higher 
values indicate better factorizations. Scores are plotted by factorization method and by the cancer types 
characterizing the target dataset samples. c Frequency with which differentially active groundtruth TCGA 
factors were true positives. A differentially active groundtruth factor was a true positive if it was predicted 
as being differentially active based on a factorization of a target dataset. Each bar represents the proportion 
of target datasets, for which the factorization led to the differentially active groundtruth factor being a 
true positive. Proportions are plotted by factorization method, and by the cancer types characterizing the 
reference and target dataset samples
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L than with direct MOFA factorization. However, despite factor trimming during MOTL 
factorization, some remaining transferred factors were less associated with groundtruth 
factors than those obtained with direct MOFA factorization. It is of note that the dif-
ference in average FM_W is attributable to the datasets containing LAML and PAAD 
samples only. If we exclude these, there is no difference in FM_W (p-value 0.59). The 
overall mean FM_Z for MOTL was 0.20 higher (p-value < 0.01 , the Methods “Evalua-
tion methods” section) than for direct MOFA factorizations (Fig. 3b, column 2). We thus 
observed that the Z factors obtained with MOTL, from T  datasets, were more correlated 
with groundtruth factors, overall, than those obtained with direct MOFA factorization.

We also calculated F1 scores to measure how well the factorizations of T  datasets 
uncovered differentially active groundtruth factors (the  Methods “Evaluation meth-
ods”  section). For each T  dataset, the groundtruth factors were the factors obtained 
from factorization of the corresponding R dataset. We considered the kth groundtruth 
factor to be differentially active if the distribution of scores in the kth column vector, 
of groundtruth Z , differed between the cancer types. We can simultaneously evaluate 
the Z and W (m) factors, and assess the overall quality of factorizations, by checking for 
an uplift in F1 scores (Fig. 3b, column 3). MOTL (0.34 uplift, p-value < 0.01 ) yielded 
higher F1 scores than direct MOFA factorization, meaning it was more effective in 
uncovering latent activity that varied across cancer types. Similarly to the evaluation 
using simulated data, MOTL was also more effective than direct factorization with 
the alternative multi-omics matrix factorization approaches intNMF and moCluster 
(Additional file 1: Fig. S2).

We next examined differentially active groundtruth factors, with an initial focus on the 
frequency with which these factors were true positives (Fig. 3c). For each factorization 
of a T  dataset, a differentially active groundtruth factor was a true positive if it was pre-
dicted as being differentially active based on the factorization of T  . The unique count of 
true positives was a component of each F1 score value (the Methods “Evaluation meth-
ods” section). We further performed a gene set enrichment analysis to identify the path-
ways and processes associated with differentially active groundtruth factors that were 
true positives (the Methods “Evaluation methods” section, Additional file 2: Table S1), 
and that explained at least 1% of the mRNA variance in R (Additional file 3: Table S2).

The factorization of the R dataset containing all LAML and PAAD samples yielded 
six groundtruth factors, of which two were differentially active; Factor 1 and Factor 3. 
Both of these factors were true positives for 100% of MOTL factorizations of T  datasets 
containing subsets of five LAML and PAAD samples (Fig. 3c). In contrast, only one of 
these factors was a true positive for direct MOFA factorizations, and for just over half 
of the same T  datasets (Fig. 3c). Factor 1 is significantly associated with developmental 
processes, cell communication and immunity signaling. Factor 3 displays similar enrich-
ments, with an additional specific enrichment related to the regulation of gene expres-
sion in beta cells (Additional file 2: Table S1).

The factorization of the R dataset containing all LAML and SKCM samples yielded 
12 groundtruth factors, of which five were differentially active. Four out these five fac-
tors were true positives for MOTL factorizations for more than 80% of the T  datasets; 
one factor was a true positive for just under half of the T  datasets. Importantly, only 
two of these five groundtruth factors were true positives for direct MOFA factorizations, 
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and only for a small proportion of the T  datasets. Four out of these five differentially 
active groundtruth factors, that were true positives, explained at least 1% of the mRNA 
variance in R : Factor 1, Factor 3, Factor 8, and Factor 9. We performed gene set enrich-
ment analysis on these four factors. Factor 1 is significantly associated with extracellular 
organization, developmental processes, cell communication signaling, and Fc Receptor 
mediated immune processes (Additional file 2: Table S1). Factor 3 is significantly associ-
ated with hematopoeitic cell lineage, Pi3K/AKT and G protein-coupled signaling, and 
chemokine, interleukin, interferon signaling. Both Factors 1 and 3 are associated with 
keratinization and formation of the cornified envelope. Factors 8 and 9 do not present 
significant pathway enrichments beyond keratinization and processes already associated 
with the first two factors.

The factorization of the R dataset containing all PAAD and SKCM samples yielded 17 
groundtruth factors, of which eight were differentially active. Seven of these eight factors 
were true positives for MOTL factorizations, six with high frequency (i.e., identified for 
more than 80% of the T  target datasets). Only one differentially active groundtruth fac-
tor is frequently a true positive for direct MOFA factorization of the T  target datasets. 
Factor 2 is related to B cell receptor signaling and Fc Receptor mediated immune pro-
cesses, drug metabolism by cytochrome p450 and other metabolism-related processes. 
This Factor 2 is rarely uncovered by direct MOFA factorization. Contrarily, Factor 4 is 
a true positive for MOTL for 100% of the target datasets and for direct MOFA factori-
zations for more than 75% of the target datasets. This factor is associated with devel-
opmental processes and cytokine-cytokine receptor interactions. Factor 7 is associated 
with keratinization and formation of the cornified envelope, Factor 9 with cell adhesion 
and migration, and Factor 10 with cytokine and chemokine signaling.

The factorization of the R dataset containing all LAML, PAAD and SKCM samples 
yielded 13 groundtruth factors, of which seven were differentially active. All seven of 
these differentially active groundtruth factors were true positives for MOTL factoriza-
tion with high frequency, compared to one factor for direct MOFA factorization. These 
groundtruth factors, differentially active between all three cancer types, are associated 
with the same cellular processes and pathways identified when comparing the cancer 
types pairwise (Additional file 2: Table S1).

Overall, the factors that were differentially active when comparing two or the three 
cancer types reflect the different embryonic origins of the cancerous tissues, and high-
light the importance of immunity and microenviroment in cancer pathophysiology and 
response to treatments. In conclusion, matrix factorization with transfer learning using 
MOTL better uncovers differentially active groundtruth factors from target datasets 
containing only a small number of samples.

Application of MOTL to glioblastoma

Glioblastoma is a rare, heterogeneous, and aggressive cancer type. Multi-omics datasets 
offer an important opportunity to better characterize glioblastoma subtypes, identify 
biomarkers, and propose novel therapeutic options [36]. However, large collections of 
glioblastoma tissue samples are difficult to obtain due to the relative scarcity of the dis-
ease and the challenges involved in acquiring samples via invasive biopsies.
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In [36], the authors conducted a multi-omics profiling (mRNA expression, DNA meth-
ylation) for four normal brain samples and nine patient-derived glioblastoma stem cell 
(pd-GBSC) cultures. The nine cancer samples had been previously classified into three 
subtypes thanks to transcriptome-based signatures: classical (CL), proneural (PN), and 
mesenchymal (MS). Given the small number of samples, the authors devised a strategy 
based on analyzing this dataset in parallel with datasets gathered from the literature. We 
illustrate here how MOTL could help in analyzing such a dataset comprised of a limited 
number of samples.

We first applied a direct MOFA factorization (the Methods “Application of MOFA to 
simulated, TCGA and glioblastoma multi-omics datasets”  section) to a target dataset 
comprised of the four normal and nine pd-GBSC samples (the Methods “Glioblastoma 
target dataset acquisition and pre-processing” section), revealing eight factors. Heatmap 
clustering of the samples, based on these factors, does not demonstrate clear grouping 
with respect to either cancer status or subtype (Fig. 4a). Next, we applied MOTL to the 
same target dataset (the Methods “Application of MOTL to simulated, TCGA and glio-
blastoma multi-omics datasets” section). In this case, we first created a TCGA learning 
dataset containing mRNA expression, miRNA expression, DNA methylation, and SNV 
data for samples from all 32 cancer types (the Methods “TCGA multi-omics data acqui-
sition and pre-processing”  section). It is noteworthy that this learning dataset did not 

Fig. 4  Heatmaps of factorizations and gene set enrichment analysis of glioblastoma data: The heatmaps 
are based on factorizations and subsequent gene set enrichment analysis of the target dataset comprised 
of multi-omics data (mRNA expression, DNA methylation) for all normal and patient-derived glioblastoma 
stem cell (pd-GBSC) samples. The multi-omics data was obtained from Santamarina-Ojeda et al. [36], who 
also provided subtypes for the cancer samples, previously defined from transcriptomic signatures: CN 
(classical), PN (proneural), MS (mesenchymal). a Heatmap of the score matrix, Z , inferred with Direct MOFA 
factorization of the target dataset. The rows are the factors, the columns are the samples, and the cells are the 
row-wise centered and scaled factor values. The rows and columns were ordered with hierarchical clustering 
(complete-linkage). b Heatmap of Z matrix inferred with MOTL factorization of the target dataset. c Reactome 
enrichment results for direct MOFA and MOTL factors. We performed gene set enrichment analysis on the 
direct MOFA and the 11 MOTL factors that were differentially active between normal and cancer samples, 
and that explained at least 1% of mRNA variance. This yielded a set of Reactome processes and pathways 
significantly associated with either one direct MOFA factor or one or more of 10 different MOTL factors. The 
Reactome processes and pathways were filtered, clustered, and plotted with orsum. The colors represent the 
quartiles of enrichment significance for each factor (darker means more significant)
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contain data for glioblastoma, as there were no TCGA glioblastoma samples fulfilling 
our selection criteria (i.e., with complete 4-layer multi-omics profiles). We factorized this 
learning dataset with MOFA (the Methods “Application of MOFA to simulated, TCGA 
and glioblastoma multi-omics datasets” section), based on which we applied MOTL to 
the target dataset. MOTL transfer learning factorization revealed 25 factors. In this case, 
the heatmap clustering of the MOTL factors separates cancer and normal samples and 
also displays subgroups partially matching subtypes previously defined based on tran-
scriptome signatures (Fig. 4b).

Further statistical tests revealed that only one of the eight factors identified by direct 
MOFA factorization was differentially active between normal and cancer samples, 
whereas 19 of the 25 factors obtained by MOTL transfer learning factorization were 
differentially active (the  Methods “Evaluation methods”  section). Gene set enrich-
ment analysis using Reactome, GO:CC, GO:BP and KEGG (the  Methods “Evaluation 
methods” section), focusing on differentially active factors that explained at least 1% of 
mRNA variance, revealed 715 processes and pathways associated with the direct MOFA 
factor, and 1061 processes and pathways associated with 11 MOTL factors (Additional 
file  4: Table  S3). The overlap between the two sets of associated processes and path-
ways was 318, which is statistically significant (hypergeometric test, one-sided p-value 
< 0.01 ). We filtered and integrated these enrichment results (Fig. 4c; Additional file 1: 
Fig. S3–S5) using orsum [37] (the Methods “Evaluation methods” section). This analy-
sis revealed that MOTL factors capture a broader spectrum of biological pathways than 
the direct MOFA approach, including for instance immune/inflammatory processes and 
lipid metabolism pathways.

We also applied both direct MOFA, and MOTL factorizations, to target datasets com-
prised of normal samples and samples from just a single cancer subtype. In all cases, the 
direct MOFA factorization yielded only one differentially active factor, whereas MOTL 
yielded 11 (CL vs normal), 16 (MS vs normal), and 12 (PN vs normal) differentially active 
factors. Focusing on the subset of differentially active factors that explained at least 1% 
of mRNA variance, we performed gene set enrichment analyses. We identified processes 
and pathways that were associated with only a single cancer subtype, such as fatty acid 
metabolism enrichment for the MS subtype and clathrin-mediated endocytosis for the 
PN subtype (Additional file 5: Table S4).

Discussion
We presented MOTL, which factorizes a multi-omics target dataset by incorporating 
latent factor values already inferred from the factorization of a multi-omics learning 
dataset. In the application of MOTL, we are concerned with the situation in which we 
analyze a target dataset comprised of a limited number of samples. In our evaluations, 
the target datasets never contained data for more than 15 samples, as our primary con-
cern was with target datasets considered too small for useful factor analysis. It would be 
insightful to extend the evaluations by using a larger range of sizes for target datasets, in 
order to identify a crossover point at which transfer learning no longer enhances matrix 
factorization.

An assumption underlying our application of transfer learning is that there is an 
overlapping latent space stemming from shared biological signal. With target datasets 
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containing few samples, the learning dataset is likely to represent a set of biological con-
ditions that neither is entirely specific to, nor fully overlaps with the set of biological 
conditions represented by the target dataset. In our evaluation based on simulated data, 
we observed that MOTL performed well even when there were large declines in the 
overlap between the latent spaces underlying the target and learning datasets, except for 
the more extreme situation where there was an almost total absence of overlap. It would 
be relevant to perform a similar analysis using real data, investigating how similar the 
learning and target datasets need to be in order for informative shared factors to exist. 
For instance, it would be beneficial to use a measure of similarity, between a given learn-
ing and target dataset, which would predict the effectiveness of using a transfer learning 
approach to apply matrix factorization to the target dataset. The similarity between the 
learning and target datasets could potentially be data driven, based on measures such 
as optimal transport [38] or maximum mean discrepancy [39]. Alternatively, a relevant 
ontology [40, 41] could be used to assess the overall similarity between the biological 
conditions characterizing the learning and target datasets. It could also be interesting 
to quantify how heterogeneous (i.e., representing a large diversity of tissues, diseases, 
experimental conditions...) a learning dataset needs to be, in order to yield factors which 
can be relevant for a given target dataset.

To evaluate MOTL, we designed two evaluation protocols, based on simulated and real 
data. Importantly, these protocols can be reused to evaluate other transfer learning strat-
egies for multi-omics data integration. For the evaluation protocol based on real data, 
we used TCGA, a public repository of multi-omics data with a large number of samples, 
representing various cancer and tissue types. We selected three different cancer types as 
references, from which to build target datasets. We did not include samples from these 
cancer types in the learning dataset. In this setting, it was unknown, prior to evalua-
tion, whether there were latent factors common to the learning and target datasets. Yet, 
MOTL was effective in uncovering differentially active latent factors, demonstrating that 
latent factors can be shared across different cancer types. We applied MOTL to a glio-
blastoma use-case as a proof-of-concept, but we envisage MOTL as being a helpful tool 
in the study of rare diseases in general. Therefore a future extension of our work would 
be to evaluate the application of MOTL to target datasets with non-cancer rare disease 
samples, using factors inferred from the TCGA learning dataset. We foresee the results 
of such an evaluation being accompanied by measures of how similar the target datasets 
are to the TCGA learning dataset, allowing for guidance on when MOTL is a suitable 
tool for the analysis of other rare disease datasets.

With MOTL, we have designed a transfer learning framework that is compatible with 
a prior learning dataset factorization, as carried out with the MOFA Bayesian approach 
[19]. The appeal of a Bayesian framework is the flexibility with regard to the incor-
poration of prior information, and variational inference serves as a fast alternative to 
sampling methods. In the future, MOTL could be extended to allow information to be 
incorporated at other levels of the assumed hierarchy of latent variables. For example, 
instead of fixing the feature weight values, they could be treated as random variables by 
MOTL, with priors informed by the factorization of the learning dataset.

In addition to MOFA, there are numerous methods available for multi-omics matrix 
factorization [16, 17, 42, 43]. A future extension of our work could be a transfer learning 
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framework matched to different multi-omics matrix factorization methods. Similarly, we 
foresee value in extending an existing transfer learning method that has been designed 
for single omics data [20, 28], so it can be applied in the multi-omics context. The evalu-
ation of such a method, based on the factorization of a learning dataset with a variety of 
matrix factorization methods, would be informative.

A limitation with MOTL is that we are restricted to a factorization based on features 
that were retained for factorization of the learning dataset. A consequence is that some 
features which are highly variable in the target dataset may not contribute to the MOTL 
factorization. Therefore a future extension could be to add flexibility into the MOTL 
workflow, so that all features that are highly variable in the target dataset contribute 
to the factorization, even if they were not retained for the factorization of the learning 
dataset. Adding flexibility in this way may enhance the weight matrices that are used 
by MOTL. In the evaluation based on TCGA data, we observed that factors from the 
groundtruth weight matrices were more easily uncovered using those transferred from 
the learning dataset than by using those from direct MOFA factorization. However, the 
transferred factors were slightly less correlated with the factors from the groundtruth 
weight matrices than the direct MOFA factors were. Despite this, MOTL factorizations 
were more effective than direct MOFA factorizations in uncovering differentially active 
groundtruth latent factors. We attribute this superior performance to the fact that the 
factors in the score matrices inferred by MOTL showed higher correlations with factors 
from the groundtruth score matrices than the direct MOFA factors. We thus expect that 
incorporating greater flexibility in the MOTL workflow to retain all of the features that 
are highly variable in the target dataset would further enhance the weight matrices and 
produce even more informative factors.

Recently, deep learning, generative, and foundation models have been tested for multi-
omics data integration [10, 11, 13]. We however did not identify benchmarks comparing 
linear methods based on MF with deep learning methods in the context of bulk multi-
omics data integration, in particular for small target datasets. It will be interesting to see 
the developments in this context with more multi-omics data becoming available.

Conclusions
We presented MOTL, an approach for multi-omics matrix factorization with transfer 
learning, which infers latent factor values for a multi-omics target dataset comprised of 
a small number of samples. MOTL factorizes the target dataset by incorporating latent 
factor values already inferred from the factorization of a learning dataset. We designed 
two protocols, based on simulated and real multi-omics datasets, for evaluating the per-
formance of multi-omics matrix factorization with transfer learning. We implemented 
these protocols to evaluate MOTL, and observed that MOTL was more effective in 
uncovering differentially active groundtruth latent factors than direct matrix factoriza-
tion without transfer learning. This result is observed from comparison to direct factori-
zation with MOFA as well as with moCluster and intNMF.

Finally, the application of MOTL to a glioblastoma dataset, comprised of a small num-
ber of samples, revealed an enhanced delineation of cancer status and subtype thanks to 
transfer learning. We thus demonstrated, in the case of a multi-omics dataset comprised of 
a small number of samples, that MOTL can enhance the discovery of biological processes 
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and pathways associated with a biological condition of interest. MOTL is accessible as an 
open source R implementation, as are the evaluation protocols we used in this study.

Methods
Mathematical notation

 

•	 We denote matrices and datasets with bold capital letters: Y
•	 If Y  denotes a matrix, we introduce it as Y = [ynd] ∈ R

N×D for which:

•	 there are N rows and D columns
•	 ynd denotes the value in the nth row and the dth column
•	 yn: denotes the nth row vector, and y:d denotes the dth column vector

•	 If Y  denotes a dataset comprised of multiple matrices, we specify this, and denote each 
of the matrices as Y (m) =

[

y
(m)

nd

]

∈ R
N×Dm

•	 We denote parameters for statistical distributions as non-bold, lower case letters. If the 
parameter is for a random variable stored in a matrix, we add indices. For example, τ (m)

nd  
is a parameter for a random variable in the nth row and dth column of the mth matrix 
of some dataset. If τ (m)

d  is a parameter for the same matrix, then it is used for all values 
in the dth column.

The MOFA model

Consider a multi-omics dataset Y  consisting of omics matrices Y (m) , m = 1, ...,M . Each 
Y (m) =

[

y
(m)

nd

]

∈ R
N×Dm contains data for N samples (rows) and Dm features (columns), 

where y(m)

nd  is the value for the nth sample and the dth feature from the mth matrix. MOFA 
[44], assumes the existence of latent factors, and jointly factorizes each Y (m) into a shared 
matrix of sample scores Z = [znk ] ∈ R

N×K , and an omics specific matrix of feature weights 
W (m) =

[

w
(m)

kd

]

∈ R
K×Dm . The kth column of Z contains scores for the kth factor, and the 

kth row of W (m) contains corresponding weights for that factor.
MOFA assumes that each observed y(m)

nd  is a random variable, characterized by a proba-
bility distribution conditional on a set of latent random variables β . It is assumed that the 

joint likelihood p(Y |β) is equal to 
M
∏

m=1

N
∏

n=1

Dm
∏

d=1

p(y
(m)

nd | β) , and the choice of probability 

distribution depends on the type of observed data. A Gaussian likelihood is assumed for 
observed continuous data:

where zn: is the vector of scores for the nth sample, w(m)

:d  is the vector of weights the 
dth feature from the mth matrix, and τ (m)

d  is the precision for that feature. A Ber-
noulli likelihood is assumed for observed binary data and the logistic link function 
π(x) = (1+ e−x)−1 is used:

(7)p(y
(m)

nd | β) = Normal
(

y
(m)

nd | zn:w
(m)

:d , 1/τ
(m)

d

)
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A Poisson likelihood is assumed for observed counts data and the link function 
�(x) = log(1+ ex) is used:

The assumed joint prior distribution, p(β) , is comprised of independ-
ent priors: znk ∼ Normal(0, 1) , w

(m)

kd = ŵ
(m)

kd s
(m)

kd  , ŵ
(m)

kd ∼ Normal(0, 1/α
(m)

k ) , 
α
(m)

k ∼ Gamma(1e−14, 1e−14) , s
(m)

kd ∼ Bernoulli(θ
(m)

k ) , θ
(m)

k ∼ Beta(1, 1) , 
τ
(m)

d ∼ Gamma(1e−14, 1e−14).
MOFA uses mean-field variational inference [32, 45, 46] to approximate the joint pos-

terior distribution, p(β|Y ) , with a joint variational distribution factorized over J disjoint 
groups of variables:

MOFA infers q(β) iteratively until convergence. At each iteration, each q(β j) is 
updated as

where Eq−j denotes an expectation with respect to the joint variational distribution, after 
removing q(β j) . The dataset Ŷ  is derived by transformation of Y  . Observed data with a 
Gaussian assumed likelihood are transformed with feature-wise centering, which avoids 
the need to estimate intercepts. Observed data with a non-Gaussian assumed likelihood 
are transformed to derive Gaussian pseudo-data. The derivation of Gaussian pseudo-
data occurs at each iteration, and is based on a new parameter, ζ (m)

nd  , which is derived for 
each sample n and feature d from matrix m. For observed data with a Bernoulli assumed 
likelihood, a precision parameter, τ (m)

nd  , is introduced for each sample and feature as part 
of the transformation:

(8)p(y
(m)

nd | β) = Bernoulli
(

y
(m)

nd | π
(

zn:w
(m)

:d

))

(9)p(y
(m)

nd | β) = Poisson
(

y
(m)

nd | �
(

zn:w
(m)

:d

))

(10)

q(β) =

J
∏

j=1

q(β j)

=

N
∏

n=1

K
∏

k=1

q(znk)

M
∏

m=1

K
∏

k=1

q(α
(m)

k ) q(θ
(m)

k )

M
∏

m=1

Dm
∏

d=1

q(τ
(m)

d )

M
∏

m=1

Dm
∏

d=1

K
∏

k=1

q(ŵ
(m)

kd , s
(m)

kd )

(11)q(β j) ∝ exp{Eq−j [log p(β , Ŷ )]}

(12)ŷ
(m)

nd =
2y

(m)

nd − 1

2τ
(m)

nd

(13)τ
(m)

nd = 2�
(

ζ
(m)

nd

)

(14)
(

ζ
(m)

nd

)2
= Eq

[

(

zn:w
(m)

:d

)2
]



Page 19 of 29Hirst et al. Genome Biology          (2025) 26:224 	

For observed data with a Poisson assumed likelihood, a precision parameter, τ (m)

d  , is 
introduced for each feature as part of the transformation:

where y(m)

:d  is the vector of observed values for the dth feature from the mth matrix. For 
both Bernoulli and Poisson observed data, the ŷ(m)

nd  values are centered at each itera-
tion, and ζ (m)

nd  values are derived using the factorization fit from the preceding iteration. 
MOFA monitors convergence with the evidence lower bound (ELBO), which is used to 
evaluate how well the variational distribution approximates the posterior distribution. 
The ELBO is calculated as:

For Y (m) with non-Gaussian assumed likelihood, MOFA uses a lower bound for each 
log p

(

y
(m)

nd |β
)

 . Maximizing this lower bound, coupled with the use of ŷ(m)

nd  values, allows 

updates of q(β) based on the assumption of Gaussian observed data [33, 34]. MOFA 
assesses convergence at regular intervals, based on the percentage change in ELBO after. 
MOFA allows factors to be dropped during training, based on the fraction of variance 
explained for each matrix. After each iteration, MOFA identifies factors that do not 
explain a fraction of variance, for any omics matrix, over a threshold. MOFA then drops 
one of the identified factors.

Multi‑omics data simulated with groundtruth factors

We simulated multi-omics datasets, from groundtruth factors, with various configura-
tions. For each simulation configuration, we generated 30 instances of a multi-omics 
dataset, Y  , consisting of matrices, Y (m),m = 1, 2, 3 . We split each Y  into a target dataset, 
T  , and a learning dataset, L . Each Y (m) =

[

y
(m)

nd

]

∈ R
N×Dm contained data for 

N = Nt + Nl samples (rows) and Dm = 2000 features (columns), where y(m)

nd  is the value 
for the nth sample and the dth feature from the mth matrix. Nt is the number of samples 
subsequently belonging to T  , and Nl is the number of samples belonging to L . We gener-
ated each Y (m) from a different statistical distribution, conditional on a random matrix 
of sample scores, Z = [znk ] ∈ R

N×K  , and a random matrix of feature weights, 
W (m) =

[

w
(m)

kd

]

∈ R
K×Dm . The kth column vector of Z contained sample scores for the 

kth groundtruth factor. The kth row vector of W (m) contained feature weights for that 
same factor. We varied the number of groundtruth factors across configurations, using 
K ∈ {20, 30}.

(15)ŷ
(m)

nd = ζ
(m)

nd −
π

(

ζ
(m)

nd

)(

1− y
(m)

nd /�

(

ζ
(m)

nd

))

τ
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(18)ELBO(β) = Eq[log p(Y |β)]+ Eq[log p(β)]− Eq[log q(β)]
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We generated Z based on each sample being a member of a group. In each instance 
we created two groups of five samples belonging to T  , meaning Nt was always equal to 
10 samples. We allowed Nl to vary across instances, with samples belonging to L being 
in differently sized groups of randomly selected sizes. We used either 20 learning groups 
of size ∈ {10, 20, 30} , or 40 groups of size ∈ {10, 25, 40} . For the nth sample and kth 
groundtruth factor, we generated the score as znk ∼ Normal(µg(n)k , σz) , where µg(n)k is 
the mean parameter for groundtruth factor k, for the group that sample n belonged to, 
g(n). In each instance we selected µg(n)k randomly for each group and groundtruth fac-
tor, with probabilities Pr(3) = 1/8 , Pr(5) = 3/4 , Pr(7) = 1/8 . The kth groundtruth fac-
tor was differentially active for T  if µg(n)k differed between the two target dataset groups. 
For all instances of a given simulation configuration, the same standard deviation param-
eter, σz , was shared by all groups and groundtruth factors. We varied the latent noise-to-
signal ratio across our simulation configurations by using σz ∈ {0.5, 1.0}.

For the kth groundtruth factor, and the dth feature from the mth matrix, we gener-
ated the weight as w(m)

kd = ŵ
(m)

kd s
(m)

kd  . As such, each w(m)

kd  was the product of a continu-
ous random variable, ŵ(m)

kd ∼ Normal(µ(m), σ
(m)

k ) , and a binary random variable, 
s
(m)

kd ∼ Bernoulli(θ
(m)

k ) . We specified µ(m) , the mean parameter for the mth matrix, 
with µ(1) = 5 ; µ(2) = 0 ; µ(3) = 0 . We generated, σ (m)

k  , the standard deviation param-
eter for the kth groundtruth factor and the mth matrix, with σ (1)

k ∼ Uniform(0.5, 1.5) ; 
σ
(2)
k ∼ Uniform(0.5, 1.5) ; σ (3)

k ∼ Uniform(0.1, 0.2) . We generated the sparsity for the kth 
groundtruth factor and the mth matrix, 1− θ

(m)

k  , with θ(m)

k ∼ Uniform(0.15, 0.25).
We generated the values in each Y (m) as:

where zn: is the vector of scores for the nth sample, w(m)

:d  is the vector of weights the dth 
feature from the mth matrix, and σd is the standard deviation for the dth feature.

We split each Y (m) into T (m) =
[

t
(m)

nd

]

∈ R
Nt×Dm , which contained values for the target 

group samples, and L(m) =
[

l
(m)

nd

]

∈ R
Nl×Dm , which contained values for the learning 

group samples.
Before direct factorization with MOFA we pre-processed simulated T  and L datasets 

by removing features with 0 variance across samples. Before factorization with trans-
fer learning with MOTL, we pre-processed simulated T  datasets by removing features 
that had 0 variance across samples or that had been removed from the corresponding L 
datasets.

TCGA multi‑omics data acquisition and pre‑processing

We used the R packages TCGAbiolinks (v.2.25.3) and SummarizedExperiment (v.1.28.0) 
to download and save TCGA mRNA expression, miRNA expression, DNA methylation, 
and simple nucleotide variation (SNV) data [47–49]. The mRNA and miRNA expression 
data consisted of raw counts. The DNA methylation data consisted of CpG site β-values, 

(19)
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which had been derived from HM450 array intensities with R package SeSAMe (v.1.16.0) 
[50]. The SNV data consisted of masked somatic mutation files.

We created four reference datasets, using data from three cancer types; acute mye-
loid leukemia (LAML), pancreatic adenocarcinoma (PAAD) and skin cutaneous mela-
noma (SKCM). Each reference dataset, R , contained multi-omics data for all samples 
from either two, or all three of the cancer types. We did not include SNV data in R 
datasets containing LAML samples, due to the sparsity of SNV data for LAML. We 
only used samples that had data for all omics of interest, and only included one sam-
ple per study participant. We thus had multi-omics data for 134 LAML samples, 157 
PAAD samples, and 435 SKCM samples. We then randomly split each R into non-
overlapping target datasets. Each resulting target dataset, T  , contained multi-omics 
data for five samples per cancer type.

For the evaluation protocol based on TCGA multi-omics data, we merged data from 
the remaining 29 cancer types into a learning dataset, L . For this L , we only used 
samples that had data for all four omics, and only included one sample per study par-
ticipant. This L contained multi-omics data (mRNA, miRNA, DNA methylation, and 
SNV) for 7217 samples.

For the application of MOTL to the pd-GBSC target datasets, we created a new 
learning dataset by merging data from all 32 cancer types. This new learning dataset 
contained multi-omics data (mRNA, miRNA, DNA methylation, and SNV) for 7866 
samples.

Before direct factorization with MOFA, we pre-processed R , T  , and L datasets in 
the same way. For mRNA data, we removed genes that map to the Y chromosome. 
For both mRNA and miRNA, we removed genes if they had a count of zero in ≥ 90% 
of samples, or had zero variance across samples. We normalized mRNA and miRNA 
counts with the DESeq2  (v.1.38.0) R package [51], and log2(x + 1) transformed the 
normalized counts. For DNA methylation data, we removed CpG sites that map to 
the X or Y chromosome, were masked during SeSAMe quality control, had missing 
values in ≥ 20% of samples, or had zero variance across samples. We converted DNA 
methylation β-values to M-values [52]. We included SNV records whose variant clas-
sification was either Frame_Shift_Del, Frame_Shift_Ins, In_Frame_Del, In_Frame_Ins, 
Missense_Mutation, Nonsense_Mutation, Nonstop_Mutation, Splice_Site, or Transla-
tion_Start_Site. We then created binary SNV matrices aggregated by gene and sam-
ple. We removed genes from SNV matrices if the mutation rate across samples was 
≤ 1% . We filtered all omics to include only the 5000 most variable features. We did 
not perform any batch effect correction on L datasets in order to preserve biologi-
cal signal [53]. We checked each R for batch effects with visualizations of UMAP co-
ordinates [54]. We used the R package uwot (v.0.1.14) to derive UMAP coordinates 
from MOFA factorizations, and we did not observe the need to correct R datasets for 
batch effects.

Before factorization with transfer learning with MOTL, we pre-processed T  data-
sets by removing all omics features that had zero variance across samples, or that had 
been removed from L during pre-processing. We used DESeq2  to normalize mRNA 
and miRNA counts with the geometric means from L , and then log2(x + 1) trans-
formed the normalized counts. We converted DNA methylation β-values to M-values, 
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and converted SNV data to binary matrices after filtering on variant classification, as 
described previously.

Glioblastoma target dataset acquisition and pre‑processing

We created four pd-GBSC target datasets, based on multi-omics profiling conducted by 
Santamarina-Ojeda et  al. [36] for four normal brain samples and nine patient-derived 
glioblastoma stem cell (pd-GBSC) cultures. The nine cancer samples had been previ-
ously classified into three subtypes thanks to transcriptome-based signatures: classical 
(CL), proneural (PN), and mesenchymal (MS). Each pd-GBSC target dataset contained 
mRNA expression and DNA methylation data for the four normal brain cortex samples, 
as well as either all nine cancer samples or just the samples from a subtype.

For factorization with transfer learning with MOTL, the pd-GBSC target datasets ini-
tially consisted of mRNA expression raw counts and DNA methylation β-values. Before 
factorization with MOTL, we pre-processed a pd-GBSC target dataset by removing all 
omics features that had zero variance across samples, or that had been removed from L 
during pre-processing. We used DESeq2 to normalize mRNA counts with the geometric 
means from L , and then log2(x + 1) transformed the normalized counts. We converted 
DNA methylation β-values to M-values.

For direct MOFA factorization, without transfer learning, the pd-GBSC target datasets 
initially consisted of the same mRNA expression data, but already normalized and trans-
formed by Santamarina-Ojeda et al. [36], and DNA methylation β-values. Before direct 
MOFA factorization, we pre-processed mRNA data by removing genes that map to the 
Y chromosome, if they had a count of zero in ≥ 90% of samples, or had zero variance 
across samples. We pre-processed DNA methylation data by removing CpG sites that 
had missing values in ≥ 20% of samples, or had zero variance across samples. We con-
verted DNA methylation β-values to M-values. We filtered both omics to include only 
the 5000 most variable features.

Application of MOFA to simulated, TCGA, and glioblastoma multi‑omics datasets

We factorized simulated target, T  , and learning, L , datasets with the MOFA Python 
implementation mofapy2 (v.0.6.4). The number of factors we used for each MOFA 
factorization was equal to the lesser of the number of samples and the number of 
groundtruth factors that were differentially active when simulating the dataset. The kth 
groundtruth factor was differentially active for a dataset if the mean parameter, µg(n)k , 
for the sample scores for that factor, was not the same for all groups of samples in the 
dataset. We specified observed data likelihoods corresponding to those used for sim-
ulating Y (m) matrices. We set the maximum number of iterations to 10,000 to ensure 
convergence. For the remaining settings, we used the mofapy2 defaults, meaning that all 
datasets were feature-wise centered during factorization fitting.

We factorized pre-processed TCGA reference, R , target, T  , and learning, L , datasets 
with the MOFA Python implementation mofapy2 (v.0.7.0). We specified Gaussian as the 
observed data likelihood for mRNA, miRNA, and DNA methylation data, and specified 
Bernoulli as the likelihood for SNV data. For the L datasets, we started the factorization 
with 100 factors and allowed factors to be dropped based on the fraction of variance 
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explained, for which we set the threshold to 0.001. We set the threshold so low in order 
to retain factors that explained little of the variance in L , yet could be potentially relevant 
for transfer learning. For R datasets, we also started with 100 factors. For T  datasets, we 
started with the maximum number of factors allowed by MOFA, which was either 10 
factors (two cancer types) or 15 factors (three cancer types). For R and T  datasets, we 
dropped factors based on a threshold of 0.01, in order to only retain relevant factors. 
For all TCGA datasets, we set the maximum number of iterations to 10,000, to ensure 
convergence, and the frequency of convergence checking to five, to ensure that the algo-
rithm had stopped dropping factors before converging.

When saving the factorizations of simulated and TCGA L datasets, we set the expecta-
tions argument to all. We did this to ensure that the point estimate for each precision 
parameter was saved in addition to those that are saved by default.

We factorized the pre-processed pd-GBSC target datasets with the MOFA Python 
implementation mofapy2 (v.0.7.0). We specified Gaussian as the observed data likelihood 
for the mRNA and the DNA methylation data. We started with the maximum allowable 
number of factors and dropped factors based on a threshold of 0.01.

Application of MOTL to simulated, TCGA, and glioblastoma multi‑omics datasets

We applied MOTL to simulated, TCGA and pd-GBSC multi-omics target datasets. For 
each target dataset, we used point estimates of feature weight and precision values saved 
from the MOFA factorization of the corresponding learning, L , dataset. For observed 
data with a Gaussian or Poisson assumed likelihood, the transferred value of the preci-
sion for each feature, τ (m)

d  , was held fixed throughout iterations of MOTL updates. For 
observed data with a Bernoulli assumed likelihood, we initialized the value of the preci-
sion for each sample and feature, τ (m)

nd  , with a feature-wise average, τ (m)

d  , of the τ (m)

nd  val-
ues from the factorization of L . The precisions for Bernoulli observed data were then 
iteratively updated by MOTL. We estimated intercepts using likelihoods assumed for L , 
combined with outputs from the MOFA factorization of L . For Gaussian observed data 

we calculated the intercept for the dth feature, from the mth matrix, as a(m)

d = 1
Nl

Nl
∑

n=1

l
(m)

nd  , 

where l(m)

nd  denotes an uncentered learning dataset value after pre-processing. For Pois-
son and Bernoulli observed data we obtained maximum likelihood estimates of a(m)

d  val-
ues, for which we used the mle function from the R package stats4 (v.4.2.0). For Poisson 
observed data we initialized each estimate with a(m)

d = log
(

−1+ exp
(

1
Nl

∑Nl
n=1 l

(m)

nd

))

 

and for Bernoulli observed data we initialized it with 

a
(m)

d = log

(
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1
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1− 1
Nl

∑Nl
n=1 l

(m)

nd

)−1
)

.

To evaluate robustness, we also applied MOTL to each simulated target dataset after 
permuting the values in feature vectors of the weight matrices inferred from L . We used 
a range of proportions for each simulation instance, with the proportions of feature 
weight vectors permuted in each instance being:

.

{0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}
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When checking the ELBO for convergence, we used 0.0005% as the threshold, which 
is the default for MOFA. The algorithm was stopped when the absolute change in ELBO 
was under this threshold for two consecutive checks, and we set the maximum number 
of iterations to 10,000 to be consistent with our application of MOFA. For TCGA and 
pd-GBSC target datasets, and for simulated target datasets factorized after permuting 
feature weight values, we allowed factors to be dropped based on a threshold of 0.01 for 
the fraction of variance explained. We checked the ELBO after every five iterations, to 
ensure that the algorithm had stopped dropping factors before converging.

Evaluation methods

Groundtruth factors: For each simulated T  (the  Methods “Multi-omics data simu-
lated with groundtruth factors” section), the groundtruth factor values were contained 
in the corresponding simulated Z and W (m) matrices. The sample scores for the kth 
groundtruth factor were contained in z:k , the kth column vector of simulated Z . The 
feature weights for the mth matrix, for that same groundtruth factor, were contained 
in w(m)

k:  , the kth row vector of simulated W (m) . For each TCGA T  (the Methods “TCGA 
multi-omics data acquisition and pre-processing” section), the groundtruth factors were 
based on the R dataset which we had split to create T  . We factorized each R with MOFA, 
and treated the inferred z:k and w(m)

k:  vectors as groundtruth factors for each T  that had 
been created by splitting R.

Differentially active groundtruth factors: For each simulated and TCGA T  , 
groundtruth factor k was differentially active if the group means for groundtruth z:k differed 
between the target dataset groups. For each simulated T  , this was the group mean, µg(n)k , 
used to simulate groundtruth z:k . For each TCGA T  , the factorization of corresponding 
R provided groundtruth z:k and w(m)

k:  factor vectors. We performed either the Wilcoxian 
rank sum test (two cancer types), or the Kruskal-Wallis test (three cancer types), on each 
groundtruth z:k to determine if there was a statistically significant difference between the 
cancer types. We classed a groundtruth factor as differentially active if its BH-adjusted 
p-value was below 0.05.

Post-processing: We post-processed inferred and groundtruth W (m) matrices before 
evaluation. We scaled each feature vector, w(m)

:d  , by its Frobenius norm. We then centered 
each factor vector, w(m)

k:  , of scaled values separately for each m. We then concatenated w(m)

k:  
vectors to produce a single vector, wk: , of centered and scaled feature weights for each fac-
tor k.

Best hits: For each factorization of each simulated and TCGA T  , we identified the best 
hits between the factor vectors inferred with the factorization of T  , and the groundtruth 
factor vectors. For two sets of vectors {v1, ..., vKv } and {x1, ..., xKx } , we define the best hit for 
vector vkv as

where cor(v, x) is the Pearson correlation coefficient between vectors v and x . We define 
the best hit for vector xkx as

(20)BestHit
(

vkv
)

= arg max
xkx

cor
(

vkv , xkx
)
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For each simulated T  , we identified best hits between inferred and groundtruth wk: vec-
tors. For each TCGA T  , we identified best hits between inferred and groundtruth wk: vec-
tors, as well as between inferred and groundtruth z:k vectors. We used shared features 
when calculating correlations for wk: vectors, and we used shared samples for z:k vectors. 
We calculated p-values for the correlations, and only considered correlations with a p-value 
< 0.05 (two-sided alternative hypothesis) when identifying best hits.
F-measure values: For each factorization of each TCGA T  , we calculated an F-measure 

value to assess the overall correlation between factor vectors inferred with the factorization 
of T  , and groundtruth factor vectors. We based this on the F-measure presented by Saelens 
et al. [55], which we adapted in order to assess correlations. For a given set of inferred factor 
vectors, {v1, ..., vKv } , and a set of groundtruth factor vectors, {x1, ..., xKx } , we calculated the 
F-measure as

where

and

Here, cor(v, x) is the Pearson correlation coefficient between vectors v and x . We 
calculated F-measure values for sets of inferred and groundtruth wk: vectors, as well 
as for z:k vectors.
F1 scores: We calculated F1 scores to evaluate the factorizations of simulated and 

TCGA T  datasets:

Actual Positives were the groundtruth factors of T  , that were differentially active.
Predicted Positives were the groundtruth factors that were predicted as being dif-

ferentially active, based on the factorization of T  . We firstly performed either the 
Wilcoxian rank sum test (two groups), or the Kruskal-Wallis test (three groups), on 
each z:k vector inferred with the factorization of T  , and classed factors with a p-value 
< 0.05 as differentially active. For inferred factors classed as differentially active, we 
identified the best hits for their corresponding inferred wk: vectors. We selected these 
best hits from the set of groundtruth wk: vectors for T  . If groundtruth wk: was selected 
as a best hit for a differentially active inferred factor, then groundtruth factor k was 
predicted as being differentially active.

(21)BestHit
(

xkx
)

= arg max
vkv

cor
(

xkx , vkv
)

(22)FM = 2/((1/Relevance)+ (1/Recovery))

(23)Relevance =
1

Kv

Kv
∑

kv=1

cor
(

vkv , BestHit
(

vkv
))

(24)Recovery =
1

Kx

Kx
∑

kx=1

cor
(

xKx , BestHit
(

xKx

))

(25)
F1 = (2× Precision× Recall) / (Precision+ Recall)

Precision = True Positives / Predicted Positives

Recall = True Positives / Actual Positives
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True Positives were the differentially active groundtruth factors that were predicted 
as being differentially active, based on the factorization of T .

Statistical testing of differences between factorization methods: We calcu-
lated the differences in evaluation measures between factorization methods, and 
tested the statistical significance of these differences. To do this, we fit general-
ized least squares regressions with the R package nlme (v.3.1.157) [56]. We fit a sin-
gle regression to model the F1 scores for simulated data. For TCGA data, we fit a 
separate regression for each evaluation measure. For each regression, we modeled 
yi = β0 + diβd + f iβ f + ǫi . The vector di = (di1, ..., diT ) indicates the simulation con-
figuration, or cancer type, that yi relates to, and vector f i =

(

fi1, ..., fiM
)

 indicates the 
factorization method. Vectors βd = (βd1, ...,βdT )

⊤ and β f =
(

βf 1, ...,βfM
)⊤ are esti-

mated fixed effects and ǫi is the residual. We incorporated correlations between resid-
uals from the same target dataset using the compound symmetry structure method. 
We calculated contrasts for the factorization method effects in β f  using the R pack-
age emmeans (v.1.8.7) [57], and used Tukey-adjusted p-values for assessing statistical 
significance.

Differentially active factors from glioblastoma target datasets: We identified dif-
ferentially active factors from the MOTL factorization of each pd-GBSC target data-
set, as well as from the direct MOFA factorization (without transfer learning), of each 
pd-GBSCs target dataset. We performed the Wilcoxian Rank Sum test on each z:k 
vector inferred with the factorization of a pd-GBSC target dataset. We classed factors 
with a BH-adjusted p-value < 0.05 as differentially active between the normal samples 
and the cancer samples.

Gene set enrichment analysis: We used R package fgsea (v.1.24.0) [58] to perform 
gene set enrichment analysis on differentially active groundtruth factors that were 
true positives for factorizations of TCGA T  datasets. For each differentially active 
groundtruth TCGA factor k, we analyzed vector w(m)

k  if the fraction of mRNA vari-
ance explained by k was > 0.01 , and where m corresponded to the mRNA matrix. We 
tested KEGG, Reactome, GO:BP, and GO:CC gene sets that have a size of between 
15 and 500 genes, obtained using the R package msigdbr (v.7.5.1). We used an BH-
adjusted p-value cutoff of 0.01 for selecting enriched gene sets. We also performed 
gene set enrichment analysis on differentially active factors from the pd-GBSC tar-
get datasets, and used the same criteria as outlined above for differentially active 
groundtruth TCGA factors. We filtered, clustered, and plotted enrichment analysis 
results with the Python package orsum (v.1.8.0) [37]. We ran orsum with maxRepSize 
= 2000; maxTermSize = 3000; minTermSize = 15; numberOfTermsToPlot = 30.

Processing time

We used a Dell computer with 20 cores at 3GHz, and 64 GB of RAM, to perform fac-
torizations. To pre-process and factorize the L used in the TCGA evaluation protocol, 
it took 26,405 seconds (over seven hours). Hence, we have made the factorization of a 
large TCGA L dataset publicly available for transfer learning. It took an average of 37 
seconds to pre-process a T  dataset, comprised of four omics, and factorize it directly 
with MOFA. The average time increased to 134 seconds for MOTL.
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