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Abstract

We propose a Query-Specific Siamese Simi-
larity Metric (QS3M) for query-specific clus-
tering of text documents. It uses fine-tuned
BERT embeddings and trains a non-linear pro-
jection into a query-specific similarity space.
We build on the idea of Siamese networks but
include a third component, a representation of
the query. The empirical evaluation for clus-
tering employs two TREC datasets with two
different clustering benchmarks each. When
used to obtain query-relevant clusters, QS3M
achieves a 12% performance improvement
over a recently published BERT-based ref-
erence method and significantly outperforms
other unsupervised baselines.

1 Introduction

Users with conscious information needs (Tay-
lor, 2015) tend to ask vague and under-specified
queries, reflecting that the user does not know
enough about a topic to phrase a concrete ques-
tion. To answer such vague information needs,
retrieval systems aim to cover as many relevant
subtopics about the query as possible and provide
the user with a comprehensive overview about the
topic (Drosou and Pitoura, 2010). Explicit cluster-
ing is used as a separate post-processing step, to
organize the retrieved results in topical groups such
as for taxonomic browsing.! We however envision
subtopic clustering to be a central component of
a “retrieve-and-generate” system. Upon submis-
sion of a query, such system seamlessly retrieves
relevant passages from the web and arranges them
according to the subtopic clusters to generate a co-
herent, maximally relevant article for presentation
to the user. In this work, we focus on the central
step in this envisioned system: subtopic clustering.

Task Statement. Given a query ¢ and a relevant
set of passages’ P, which could be retrieved by a
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While online education helps to
avoid the spread, many students
are struggling to pay attention
outside the class room.
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intense loneliness due  to
quarantines and social distancing.

Figure 1: Different queries require different cluster-
ings: for query QI1, “Covid19 Mental Struggles”, the
subtopics “Lack of Focus” and “Loneliness” are more
relevant than clusters about “Issues” vs. “Measures”—
and vice versa for query Q2. Cluster names are for il-
lustration only.

search system, our goal is to cluster passages in P,
into query-relevant subtopics.

A canonical approach to text clustering is to rep-
resent passages as vectors which govern a clus-
tering algorithm through a similarity metric (e.g.
TFIDF with cosine similarity) (Huang, 2008). Re-
cently, neural embeddings and trained similarity
functions obtain better performance (Xu et al.,
2015; Reimers and Gurevych, 2019). However,
an issue of such clustering approaches is that the
similarity score between the two passages does
not incorporate the query. We hypothesize that
more relevant subtopic clusters can be found with
a query-specific similarity metric. Even if the same
set of passages are relevant for two queries, these
would require different ways of clustering as illus-
trated in Figure 1. To address this, we design a
query-specific text similarity metric, which when
used with a clustering algorithm, will lead to query-
specific clusters of retrieved passages.

Contribution. We develop a trainable query-
specific similarity metric for text passages. The
similarity metric is optimized to predict similarity
scores that agree with the ground truth of passage
clusters in the training data.



2 Related Work

Previous work on text clustering (Gomaa and
Fahmy, 2013; Bilenko et al., 2004; Metzler et al.,
2007; Banea et al., 2012, inter alia) focuses on un-
supervised lexical similarity metrics and their com-
binations. For semi-supervised clustering, Basu
et al. (2002) have found pairwise binary constraints
also known as “must link” and “cannot link” to
be particularly effective. Query-specific clustering
can be addressed as a separate step after retrieval,
such as the extraction and co-occurrence analysis
of keyphrases. Leung et al. (2008) uses information
from the user’s profile. Raiber and Kurland (2013)
uses canopy clustering for re-rankings. Bernardini
et al. (2009) uses keyphrases to identify clusters.
Detailed study of search result clustering are avail-
able in the works of Carpineto et al. (2012) and
Drosou and Pitoura (2010).

Clustering algorithms depend on a meaningful
representation of text. Most lexical similarity met-
rics employ term-based vector representation of
text such as TFIDF. Probabilistic topic models such
as latent Dirichlet allocation (Blei et al., 2003)
use the topic distribution to represent documents.
With the advent of Transformer-based neural net-
works (Vaswani et al., 2017; Devlin et al., 2018),
text embeddings have given rise to strong linguistic
models. Zhang et al. (2019) study how to utilize
the information captured at various layers of trans-
former networks for representing text. Reimers and
Gurevych (2019) show how to fine-tune BERT for
sentence clustering. This is an example of a trained
similarity metric in which the query influences the
candidate set but not the metric itself.

Research on query-specific clustering suggests
that query information helps clustering. Recent
Transformer-based embedding models have been
demonstrated to capture high-quality topical infor-
mation, but it is yet to be studied how to incorporate
the query in such trainable embedding vector space
that benefits query-specific clustering.

3 Approach

We focus on training a query-specific similarity
metric between semantic representations of text
passages, which is used in a distance-based clus-
tering algorithm. Our rationale is that an ideal
query-specific similarity metric should identify the
query-relevant subtopics and ignore other spuri-
ous topical dimensions. For example in Figure
1, it should emit high similarity scores between
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Figure 2: Model architectures. a ® b denotes element-
wise multiplication (hadamard product).

passages discussing aspetcs of “Lack of Focus” in
context of the query “Covid19 Mental Struggles”.
In this work, we assume that both query and pas-
sages are represented as vectors generated by a
pre-trained embedding model.?

Our similarity metric is designed to fit in the
following clustering pipeline:

Step 1: A model is trained to predict the query-
specific similarity between a pair of passages p1, p2
given a query ¢. Step 2: Given a query set () and
retrieved passage sets P, for each query ¢ € @,
we apply the model to predict similarity scores
between all passages in P,. Step 3: Given a set of
query-specific similarities between passages in P,
we generate k, clusters of passages for each query
q with average-link agglomerative clustering.

The result of this pipeline are subtopic clusters
that coincide with query-specific subtopics. Since
it is an open question how to set the true number of
cluster k,, we omit this question in this work and
assume that the number of clusters k, is provided
during evaluation.

Our central contribution in this work is the neural
model used in Step 1 for query-specific similarity
metric for passages, detailed in the following.

Query-Specific Siamese Similarity Metric
(QS3M). Our goal is to, given a query ¢ and a
set of retrieved passages P,, model the similarity
metric ¢, where ¢4(p;, p;) denotes the similarity
score between a pair of passages p;, p; from P,.
In the Query-Specific Siamese Similarity Met-
ric (QS3M), we assume that the metric ¢ should
model the complex interdependence between query
and passages. This is captured by a siamese neural
network with a third component for the query, in-
spired by the model proposed by Zeghidour et al.

3We use Sentence-BERT embedding vectors of size 768.



COVID 19 Mental Struggles
1. Lack of Focus

1.1. Office workers
—
1.2. Students

Benchmark
(Hierarchical)

Different
cluster

Benchmark
(Flat)

> Same cluster
> Same cluster

", Different

Same cluster <

Different
cluster X

Same cluster <

~ cluster

> Same cluster

Figure 3: A train/test benchmark for query-specific
clustering can be derived from source articles with sec-
tioned outlines.

(2016). We implement ¢ using the neural architec-
ture presented in Figure 2a. The fully-connected
neural layer NN1 projects the query vector ¢ and
the pair of passage vectors p1, ps into a different
latent vector space that is more suitable for the
query-specific similarity. To model the similar-
ity, we observe how the pair of passages interact
with the query as well as with each other in this
transformed vector space. To formulate this three-
way interaction, we concatenate three difference
vectors, py — ¢, ph — ¢',p} — pl, along with the
projected passage vectors p/, p, and obtain the vec-
tor z. Encapsulating these different interactions in
a single vector allows subsequent neural layers to
directly learn the complex relations between pas-
sage pairs in context of a query. A second neural
layer NN2 operates as a binary classifier and from
the vector z as input, predicts whether the pair of
passages p1, p2 should share the same cluster or
not. The neural layer NN2 is optimized for mean
squared error loss.

Query-Specific Scaling metric (QSS). One
may argue that we merely need to apply certain
reweighting of passage representations to arrive
at a query-specific similarity. The Query-Specific
Scaling metric (QSS) is based on this assumption
and models the similarity metric ¢ through learning
a scaling vector ¢’ that reweights passage vectors
as depicted in Figure 2b.

Generating training data. To train and evaluate
the similarity metric, we derive a benchmark where
for given queries, pairs of passages are labeled with
“same cluster” or “different cluster”. Such a bench-
mark is derived from a corpus of articles where
each article is relevant for a search query and each
section of the article describes one subtopic as de-
scribed in Figure 3. The hierarchical benchmark

considers sub-hierarchy of each section of the arti-
cle as separate topics whereas the flar benchmark
only considers the top-level sections. Because the
predominant number of pairs labeled as “different
cluster” can negatively impact the training result,
we balance the training dataset by sampling neg-
ative pairs. In order to reduce ambiguity for the
hierarchical clustering benchmarks, we omit pairs
from our training data when one passage in the pair
is the parent and the other passage is in its child
cluster. In this work, we derive a benchmark from
Wikipedia articles, but our methods can be applied
to other benchmarks as well.

4 Evaluation

We use the publicly available TREC Com-
plex Answer Retrieval* (CAR) (Dietz et al.,
2017) dataset version 2.0 of CAR year 1 for
training and evaluation. We choose Sentence-
BERT (Reimers and Gurevych, 2019) to gener-
ate the embedding vectors for query represen-
tations and passages. Sentence-BERT is pre-
trained using training data obtained from 1.6 mil-
lion queries in train.v2.0° with maximum
input sequence length of 512. We also exper-
iment with raw BERT embeddings without the
pre-training step but observe that this degrades
performance. The remaining queries from the
train.v2.0 are used to construct the training
dataset for our models in flar benchmark style as
described in Section 3. For evaluation, we use
benchmarkYltest (referred to as CAR-A, 125
queries) and benchmarkYltrain (CAR-B, 115
queries) from the CAR dataset. On average there
are 7 true clusters per query for flat and 16 for
hierarchical benchmarks.

Query representations. We explore the follow-
ing options for representing the query.

* Title (T): Embedding of the article title.

* Description (D): Embedding of the introduc-
tory passage of the article (omitted from the
passage set Py).

» Passages (P): The average of embeddings of
all passages in the set P,.

Depending on which query representation we
chose during training, we obtain three variations
each of QS3M and QSS (e.g. QS3M with title
query representations QS3M-T).

*http://trec-car.cs.unh.edu/
SWe refer to filenames used in the CAR data set.



Table 1: Clustering performance in macro averaged Ad-
justed RAND index and paired t-test (« = 0.05) with
respect to SBERT-euc which is marked with %. Signifi-
cantly higher A or lower ¥ methods according to paired
t-test. Baseline methods are at the bottom.

Flat Hierarchical
Methods CAR-A CAR-B CAR-A CAR-B
QS3M-P 0.300A 0.307 0.237A 0.276 A
QS3M-D 0.298A 0.323A 0.233 0.274A
QS3M-T 0.2894A 0.306 0.217 0.246
QSS-P 0.249v 0.295 0.219 0.226
QSS-D 0.263 0.304 0.221 0.255
QSS-T 0.269 0.296 0.225 0.239
QS3M-no-q 0.284 A 0.297 0.218 0.241
SBERT-euc 0.263% 0.295% 0.214% 0.239%
SBERT-cos 0.258 0.287 0.216 0.236
TFIDF-cos 0.071v 0.068v 0.109v 0.120v
Topic Model = 0V 0.009v = 0v ~0v
a ()
E E 04 Queries where QS3M helps Queries where
= g 02 |||"”“"""HIIIIIIIIII|||||||||||| SBERT euc helps
23 0 (2) ""””||||IIIII||||

Figure 4: Helps-Hurts analysis: QS3M-P (top/green)
vs. SBERT-euc (bottom/red) on CAR-A flat.

Baselines. We compare our methods to the fol-
lowing baselines:

* SBERT-euc: Euclidean distance of Sentence-
BERT embedded passage vectors without any
query-specific training.

* SBERT-cos: Same as SBERT-euc, but using
the cosine similarity.

e TFIDF-cos: Cosine similarity between
TFIDF vectors of passages.

* Topic model: Jensen-Shannon divergence be-
tween the topic distribution of two passages,
estimated using LDA topic model with 200
topics (Blei et al., 2003). The topic model is
trained on our training set.

Experimental results. We evaluate to which ex-
tent the query-specific similarity metric give rise to
better clustering results on both flat and hierarchi-
cal clustering benchmarks of CAR-A and CAR-B
datasets. We report the clustering results in Table
1 in terms of the macro-averaged Adjusted RAND
index as a measure of clustering quality.®

It is evident from Table 1 that our approach of
incorporating query information into the similarity
metric leads to better clustering performance. For

®Dataset and code will be released upon acceptance.

both CAR-A and CAR-B, QS3M achieves statisti-
cally significant improvements with respect to both
clustering benchmarks. In particular, QS3M-P is
the best performing method, achieving on average
12% relative improvement over the best perform-
ing baseline method, SBERT-euc. Also, QS3M
without any query representation (QS3M-no-q) is
worse than any other QS3M variant suggesting that
to achieve a consistent improvement it is instru-
mental to train a query-specific similarity metric.
In contrast, the simpler QSS model performs only
on par with SBERT-euc.

We observe that query representations, descrip-
tion (D) and passages (P), achieve better results
than title (T). We believe this is because the query
titles only contain a few keywords which are not
enough to capture useful context information.

We observe a large variance of clustering scores
across queries. Hence, we perform a helps-hurts
analysis on CAR-A flat presented in Figure 4 to
compare the clustering performance of QS3M-P
with the SBERT-euc baseline on a per-query basis.
We find that for two-thirds of 125 CAR-A queries,
QS3M-P obtains a better adjusted RAND index.

We note that the hierarchical benchmark has
more true clusters than the flar benchmark. Further-
more, many hierarchical true clusters have only
three or fewer passages. These attributes make the
hierarchical dataset much more challenging to clus-
ter. In spite of that we see similar improvements
achieved by QS3M over SBERT baselines.

5 Conclusion

Our work is motivated by the hypothesis that
subtopic clustering is influenced by the current
query context and consequently a query-specific
similarity metric is better suited for subtopic clus-
tering. We propose Query-Specific Siamese Sim-
ilarity Metric (QS3M) that provides empirical ev-
idence in support of our hypothesis. Empirical
evaluations demonstrate that subtopic clustering
results can be improved by 12% with our proposed
method over Sentence-BERT, a strong BERT-based
method that does not take the query into account.
We also find that long and descriptive query repre-
sentations are more suitable in terms of clustering
performance. While we envision QS3M to extract
subtopics for automatic article generation, it can
be applied to any context-specific text clustering
task, such as domain-specific taxonomy extraction
or search result diversification.
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