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Abstract

We propose a Query-Specific Siamese Simi-001
larity Metric (QS3M) for query-specific clus-002
tering of text documents. It uses fine-tuned003
BERT embeddings and trains a non-linear pro-004
jection into a query-specific similarity space.005
We build on the idea of Siamese networks but006
include a third component, a representation of007
the query. The empirical evaluation for clus-008
tering employs two TREC datasets with two009
different clustering benchmarks each. When010
used to obtain query-relevant clusters, QS3M011
achieves a 12% performance improvement012
over a recently published BERT-based ref-013
erence method and significantly outperforms014
other unsupervised baselines.015

1 Introduction016

Users with conscious information needs (Tay-017

lor, 2015) tend to ask vague and under-specified018

queries, reflecting that the user does not know019

enough about a topic to phrase a concrete ques-020

tion. To answer such vague information needs,021

retrieval systems aim to cover as many relevant022

subtopics about the query as possible and provide023

the user with a comprehensive overview about the024

topic (Drosou and Pitoura, 2010). Explicit cluster-025

ing is used as a separate post-processing step, to026

organize the retrieved results in topical groups such027

as for taxonomic browsing.1 We however envision028

subtopic clustering to be a central component of029

a “retrieve-and-generate” system. Upon submis-030

sion of a query, such system seamlessly retrieves031

relevant passages from the web and arranges them032

according to the subtopic clusters to generate a co-033

herent, maximally relevant article for presentation034

to the user. In this work, we focus on the central035

step in this envisioned system: subtopic clustering.036

Task Statement. Given a query q and a relevant037

set of passages2 Pq which could be retrieved by a038

1https://www.yippy.com/
2The method can also be used with sentences, documents.

Figure 1: Different queries require different cluster-
ings: for query Q1, “Covid19 Mental Struggles”, the
subtopics “Lack of Focus” and “Loneliness” are more
relevant than clusters about “Issues” vs. “Measures”—
and vice versa for query Q2. Cluster names are for il-
lustration only.

search system, our goal is to cluster passages in Pq 039

into query-relevant subtopics. 040

A canonical approach to text clustering is to rep- 041

resent passages as vectors which govern a clus- 042

tering algorithm through a similarity metric (e.g. 043

TFIDF with cosine similarity) (Huang, 2008). Re- 044

cently, neural embeddings and trained similarity 045

functions obtain better performance (Xu et al., 046

2015; Reimers and Gurevych, 2019). However, 047

an issue of such clustering approaches is that the 048

similarity score between the two passages does 049

not incorporate the query. We hypothesize that 050

more relevant subtopic clusters can be found with 051

a query-specific similarity metric. Even if the same 052

set of passages are relevant for two queries, these 053

would require different ways of clustering as illus- 054

trated in Figure 1. To address this, we design a 055

query-specific text similarity metric, which when 056

used with a clustering algorithm, will lead to query- 057

specific clusters of retrieved passages. 058

Contribution. We develop a trainable query- 059

specific similarity metric for text passages. The 060

similarity metric is optimized to predict similarity 061

scores that agree with the ground truth of passage 062

clusters in the training data. 063

1



2 Related Work064

Previous work on text clustering (Gomaa and065

Fahmy, 2013; Bilenko et al., 2004; Metzler et al.,066

2007; Banea et al., 2012, inter alia) focuses on un-067

supervised lexical similarity metrics and their com-068

binations. For semi-supervised clustering, Basu069

et al. (2002) have found pairwise binary constraints070

also known as “must link” and “cannot link” to071

be particularly effective. Query-specific clustering072

can be addressed as a separate step after retrieval,073

such as the extraction and co-occurrence analysis074

of keyphrases. Leung et al. (2008) uses information075

from the user’s profile. Raiber and Kurland (2013)076

uses canopy clustering for re-rankings. Bernardini077

et al. (2009) uses keyphrases to identify clusters.078

Detailed study of search result clustering are avail-079

able in the works of Carpineto et al. (2012) and080

Drosou and Pitoura (2010).081

Clustering algorithms depend on a meaningful082

representation of text. Most lexical similarity met-083

rics employ term-based vector representation of084

text such as TFIDF. Probabilistic topic models such085

as latent Dirichlet allocation (Blei et al., 2003)086

use the topic distribution to represent documents.087

With the advent of Transformer-based neural net-088

works (Vaswani et al., 2017; Devlin et al., 2018),089

text embeddings have given rise to strong linguistic090

models. Zhang et al. (2019) study how to utilize091

the information captured at various layers of trans-092

former networks for representing text. Reimers and093

Gurevych (2019) show how to fine-tune BERT for094

sentence clustering. This is an example of a trained095

similarity metric in which the query influences the096

candidate set but not the metric itself.097

Research on query-specific clustering suggests098

that query information helps clustering. Recent099

Transformer-based embedding models have been100

demonstrated to capture high-quality topical infor-101

mation, but it is yet to be studied how to incorporate102

the query in such trainable embedding vector space103

that benefits query-specific clustering.104

3 Approach105

We focus on training a query-specific similarity106

metric between semantic representations of text107

passages, which is used in a distance-based clus-108

tering algorithm. Our rationale is that an ideal109

query-specific similarity metric should identify the110

query-relevant subtopics and ignore other spuri-111

ous topical dimensions. For example in Figure112

1, it should emit high similarity scores between113

(a) QS3M Architecture. (b) QSS Architecture.

Figure 2: Model architectures. a � b denotes element-
wise multiplication (hadamard product).

passages discussing aspetcs of “Lack of Focus” in 114

context of the query “Covid19 Mental Struggles”. 115

In this work, we assume that both query and pas- 116

sages are represented as vectors generated by a 117

pre-trained embedding model.3 118

Our similarity metric is designed to fit in the 119

following clustering pipeline: 120

Step 1: A model is trained to predict the query- 121

specific similarity between a pair of passages p1, p2 122

given a query q. Step 2: Given a query set Q and 123

retrieved passage sets Pq for each query q ∈ Q, 124

we apply the model to predict similarity scores 125

between all passages in Pq. Step 3: Given a set of 126

query-specific similarities between passages in Pq, 127

we generate kq clusters of passages for each query 128

q with average-link agglomerative clustering. 129

The result of this pipeline are subtopic clusters 130

that coincide with query-specific subtopics. Since 131

it is an open question how to set the true number of 132

cluster kq, we omit this question in this work and 133

assume that the number of clusters kq is provided 134

during evaluation. 135

Our central contribution in this work is the neural 136

model used in Step 1 for query-specific similarity 137

metric for passages, detailed in the following. 138

Query-Specific Siamese Similarity Metric 139

(QS3M). Our goal is to, given a query q and a 140

set of retrieved passages Pq, model the similarity 141

metric φ, where φq(pi, pj) denotes the similarity 142

score between a pair of passages pi, pj from Pq. 143

In the Query-Specific Siamese Similarity Met- 144

ric (QS3M), we assume that the metric φ should 145

model the complex interdependence between query 146

and passages. This is captured by a siamese neural 147

network with a third component for the query, in- 148

spired by the model proposed by Zeghidour et al. 149

3We use Sentence-BERT embedding vectors of size 768.
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Figure 3: A train/test benchmark for query-specific
clustering can be derived from source articles with sec-
tioned outlines.

(2016). We implement φ using the neural architec-150

ture presented in Figure 2a. The fully-connected151

neural layer NN1 projects the query vector q and152

the pair of passage vectors p1, p2 into a different153

latent vector space that is more suitable for the154

query-specific similarity. To model the similar-155

ity, we observe how the pair of passages interact156

with the query as well as with each other in this157

transformed vector space. To formulate this three-158

way interaction, we concatenate three difference159

vectors, p′1 − q′, p′2 − q′, p′1 − p′2 along with the160

projected passage vectors p′1, p
′
2 and obtain the vec-161

tor z. Encapsulating these different interactions in162

a single vector allows subsequent neural layers to163

directly learn the complex relations between pas-164

sage pairs in context of a query. A second neural165

layer NN2 operates as a binary classifier and from166

the vector z as input, predicts whether the pair of167

passages p1, p2 should share the same cluster or168

not. The neural layer NN2 is optimized for mean169

squared error loss.170

Query-Specific Scaling metric (QSS). One171

may argue that we merely need to apply certain172

reweighting of passage representations to arrive173

at a query-specific similarity. The Query-Specific174

Scaling metric (QSS) is based on this assumption175

and models the similarity metric φ through learning176

a scaling vector q′ that reweights passage vectors177

as depicted in Figure 2b.178

Generating training data. To train and evaluate179

the similarity metric, we derive a benchmark where180

for given queries, pairs of passages are labeled with181

“same cluster” or “different cluster”. Such a bench-182

mark is derived from a corpus of articles where183

each article is relevant for a search query and each184

section of the article describes one subtopic as de-185

scribed in Figure 3. The hierarchical benchmark186

considers sub-hierarchy of each section of the arti- 187

cle as separate topics whereas the flat benchmark 188

only considers the top-level sections. Because the 189

predominant number of pairs labeled as “different 190

cluster” can negatively impact the training result, 191

we balance the training dataset by sampling neg- 192

ative pairs. In order to reduce ambiguity for the 193

hierarchical clustering benchmarks, we omit pairs 194

from our training data when one passage in the pair 195

is the parent and the other passage is in its child 196

cluster. In this work, we derive a benchmark from 197

Wikipedia articles, but our methods can be applied 198

to other benchmarks as well. 199

4 Evaluation 200

We use the publicly available TREC Com- 201

plex Answer Retrieval4 (CAR) (Dietz et al., 202

2017) dataset version 2.0 of CAR year 1 for 203

training and evaluation. We choose Sentence- 204

BERT (Reimers and Gurevych, 2019) to gener- 205

ate the embedding vectors for query represen- 206

tations and passages. Sentence-BERT is pre- 207

trained using training data obtained from 1.6 mil- 208

lion queries in train.v2.05 with maximum 209

input sequence length of 512. We also exper- 210

iment with raw BERT embeddings without the 211

pre-training step but observe that this degrades 212

performance. The remaining queries from the 213

train.v2.0 are used to construct the training 214

dataset for our models in flat benchmark style as 215

described in Section 3. For evaluation, we use 216

benchmarkY1test (referred to as CAR-A, 125 217

queries) and benchmarkY1train (CAR-B, 115 218

queries) from the CAR dataset. On average there 219

are 7 true clusters per query for flat and 16 for 220

hierarchical benchmarks. 221

Query representations. We explore the follow- 222

ing options for representing the query. 223

• Title (T): Embedding of the article title. 224

• Description (D): Embedding of the introduc- 225

tory passage of the article (omitted from the 226

passage set Pq). 227

• Passages (P): The average of embeddings of 228

all passages in the set Pq. 229

Depending on which query representation we 230

chose during training, we obtain three variations 231

each of QS3M and QSS (e.g. QS3M with title 232

query representations QS3M-T). 233

4http://trec-car.cs.unh.edu/
5We refer to filenames used in the CAR data set.
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Table 1: Clustering performance in macro averaged Ad-
justed RAND index and paired t-test (α = 0.05) with
respect to SBERT-euc which is marked with ?. Signifi-
cantly higher N or lower H methods according to paired
t-test. Baseline methods are at the bottom.

Flat Hierarchical

Methods CAR-A CAR-B CAR-A CAR-B

QS3M-P 0.300N 0.307 0.237N 0.276N
QS3M-D 0.298N 0.323N 0.233 0.274N
QS3M-T 0.289N 0.306 0.217 0.246
QSS-P 0.249H 0.295 0.219 0.226
QSS-D 0.263 0.304 0.221 0.255
QSS-T 0.269 0.296 0.225 0.239
QS3M-no-q 0.284N 0.297 0.218 0.241

SBERT-euc 0.263? 0.295? 0.214? 0.239?
SBERT-cos 0.258 0.287 0.216 0.236
TFIDF-cos 0.071H 0.068H 0.109H 0.120H
Topic Model ≈ 0H 0.009H ≈ 0H ≈ 0H

Figure 4: Helps-Hurts analysis: QS3M-P (top/green)
vs. SBERT-euc (bottom/red) on CAR-A flat.

Baselines. We compare our methods to the fol-234

lowing baselines:235

• SBERT-euc: Euclidean distance of Sentence-236

BERT embedded passage vectors without any237

query-specific training.238

• SBERT-cos: Same as SBERT-euc, but using239

the cosine similarity.240

• TFIDF-cos: Cosine similarity between241

TFIDF vectors of passages.242

• Topic model: Jensen-Shannon divergence be-243

tween the topic distribution of two passages,244

estimated using LDA topic model with 200245

topics (Blei et al., 2003). The topic model is246

trained on our training set.247

Experimental results. We evaluate to which ex-248

tent the query-specific similarity metric give rise to249

better clustering results on both flat and hierarchi-250

cal clustering benchmarks of CAR-A and CAR-B251

datasets. We report the clustering results in Table252

1 in terms of the macro-averaged Adjusted RAND253

index as a measure of clustering quality.6254

It is evident from Table 1 that our approach of255

incorporating query information into the similarity256

metric leads to better clustering performance. For257

6Dataset and code will be released upon acceptance.

both CAR-A and CAR-B, QS3M achieves statisti- 258

cally significant improvements with respect to both 259

clustering benchmarks. In particular, QS3M-P is 260

the best performing method, achieving on average 261

12% relative improvement over the best perform- 262

ing baseline method, SBERT-euc. Also, QS3M 263

without any query representation (QS3M-no-q) is 264

worse than any other QS3M variant suggesting that 265

to achieve a consistent improvement it is instru- 266

mental to train a query-specific similarity metric. 267

In contrast, the simpler QSS model performs only 268

on par with SBERT-euc. 269

We observe that query representations, descrip- 270

tion (D) and passages (P), achieve better results 271

than title (T). We believe this is because the query 272

titles only contain a few keywords which are not 273

enough to capture useful context information. 274

We observe a large variance of clustering scores 275

across queries. Hence, we perform a helps-hurts 276

analysis on CAR-A flat presented in Figure 4 to 277

compare the clustering performance of QS3M-P 278

with the SBERT-euc baseline on a per-query basis. 279

We find that for two-thirds of 125 CAR-A queries, 280

QS3M-P obtains a better adjusted RAND index. 281

We note that the hierarchical benchmark has 282

more true clusters than the flat benchmark. Further- 283

more, many hierarchical true clusters have only 284

three or fewer passages. These attributes make the 285

hierarchical dataset much more challenging to clus- 286

ter. In spite of that we see similar improvements 287

achieved by QS3M over SBERT baselines. 288

5 Conclusion 289

Our work is motivated by the hypothesis that 290

subtopic clustering is influenced by the current 291

query context and consequently a query-specific 292

similarity metric is better suited for subtopic clus- 293

tering. We propose Query-Specific Siamese Sim- 294

ilarity Metric (QS3M) that provides empirical ev- 295

idence in support of our hypothesis. Empirical 296

evaluations demonstrate that subtopic clustering 297

results can be improved by 12% with our proposed 298

method over Sentence-BERT, a strong BERT-based 299

method that does not take the query into account. 300

We also find that long and descriptive query repre- 301

sentations are more suitable in terms of clustering 302

performance. While we envision QS3M to extract 303

subtopics for automatic article generation, it can 304

be applied to any context-specific text clustering 305

task, such as domain-specific taxonomy extraction 306

or search result diversification. 307
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