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Abstract

To advance the evaluation of multimodal math001
reasoning in large multimodal models (LMMs),002
this paper introduces a novel benchmark, MM-003
MATH. MM-MATH consists of 5,929 open-004
ended middle school math problems with vi-005
sual contexts, with fine-grained classification006
across difficulty, grade level, and knowledge007
points. Unlike existing benchmarks relying008
on binary answer comparison, MM-MATH in-009
corporates both outcome and process evalua-010
tions. Process evaluation employs LMM-as-a-011
judge to automatically analyze solution steps,012
identifying and categorizing errors into spe-013
cific error types. Extensive evaluation of ten014
models on MM-MATH reveals significant chal-015
lenges for existing LMMs, highlighting their016
limited utilization of visual information and017
struggles with higher-difficulty problems. The018
best-performing model achieves only 31% ac-019
curacy on MM-MATH, compared to 82% for020
humans. This highlights the challenging nature021
of our benchmark for existing models and the022
significant gap between the multimodal reason-023
ing capabilities of current models and humans.024
Our process evaluation reveals that diagram025
misinterpretation is the most common error, ac-026
counting for more than half of the total error027
cases, underscoring the need for improved im-028
age comprehension in multimodal reasoning.029

1 Introduction030

Due to their exceptional performance in handling031

complex text and images, large multimodal mod-032

els (LMMs) such as GPT-4V (OpenAI, 2023) and033

Claude-3 (Anthropic, 2024) have garnered signif-034

icant interest in both industry and academia. Pre-035

vious studies suggest that they still underperform036

on multimodal math reasoning tasks (Chen et al.,037

2021; Lu et al., 2023; Zhang et al., 2024), as such038

tasks require understanding multimodal informa-039

tion and interleaving reasoning within this informa-040

tion (Lightman et al., 2023). To further advance041

LMM’s mathematical capabilities, we believe the 042

following two issues urgently need addressing: (1) 043

What are the specific reasons that lead to the 044

model’s mistakes, such as misunderstanding the 045

diagram or errors in reasoning? (2) How does 046

the model perform across different categories 047

of multimodal math problems, and which spe- 048

cific types of problems does the model excel at or 049

struggle with? 050

In this paper, we introduce MM-MATH bench- 051

mark to provide a more fine-grained and reliable 052

assessment of LMMs’ multimodal math capabil- 053

ity. MM-MATH comprises a total of 5,793 open- 054

ended multimodal math problems from middle 055

school. We show an overview of the design of 056

MM-MATH in Figure 1. To address the aforemen- 057

tioned issue (1), MM-MATH combines traditional 058

outcome evaluation (comparing the model’s answer 059

to groundtruth and reaching binary result) with 060

process evaluation. Process evaluation involves 061

using LMM-as-a-judge (Zheng et al., 2023) to au- 062

tomatically identify errors in the model’s output 063

process and categorize the causes of these errors. 064

Concretely, we employ GPT-4V (OpenAI, 2023) 065

to compare the step-by-step solution generated by 066

the model with our annotated groundtruth solution, 067

and identify the first error in the model’s process 068

to determine the main reason that leads to a wrong 069

answer. We categorize the causes of LMM’s errors 070

into four types, including diagram misinterpreta- 071

tion, reasoning error, calculation error, and textual 072

condition misunderstanding. 073

In response to issue (2), MM-MATH includes 074

fine-grained classification, where the problems 075

are classified along three dimensions: difficulty, 076

grade level, and knowledge points, to evaluate the 077

breadth, depth, and specific knowledge for math 078

reasoning capabilities of LMMs. For difficulty, we 079

classify problems into three levels—easy, medium, 080

and hard—based on the accuracy of human stu- 081

dents on the problems. For grade level, we include 082

1



Q: BC = 1/2 AB, D is the midpoint of AC, 
and DC = 3cm. What is the length of AB?

Process: Since D is… Furthermore,
since BC=1/2 AB, ∴BC=1/3AC=1/3×
6=2cm, … =\boxed{4cm}.
Answer: 4cm

Question

…, we see that BC = 1/2 AB. Since D is the midpoint 
of AC, we can deduce that AB = 2AD, …, we have AB 
= 2AD = 2×3cm = \boxed{6cm}.

LMM

MM-MATH
Easy

Medium
Hard

Grade I
II
III

Knowledge
classification

Answer

Outcome evaluation

: 6cm≠4cm

Process evaluation

GPT-4V - Deduction on 
AB=2AD is wrong

Reasoning error

Evaluation

Figure 1: An overview of the MM-MATH benchmark design. The problems are classified along their difficulty,
grade level, and knowledge point. We include both outcome evaluation and process evaluation to identify and
attribute the error in model’s reasoning process.

problems in middle school, encompassing all rel-083

evant visual math problems taught in each grade.084

For knowledge points, each problem is classified085

according to a predefined three-level knowledge086

taxonomy by experienced teachers. These com-087

prehensive annotations in the MM-MATH dataset088

result in clear difficulty distinction, extensive data089

coverage, and systematic knowledge organization.090

We conduct an extensive evaluation of both open-091

source and closed-source LMMs on MM-MATH.092

Outcome evaluation reveals that our benchmark093

poses significant challenges for existing LMMs.094

For example, the latest Sota model, GPT-4o (Ope-095

nAI, 2024), achieves an accuracy of only 31%,096

compared to an 82% accuracy of human students.097

Moreover, all models perform poorly on hard-level098

problems, with none exceeding 11% accuracy, and099

some models even fail to solve any problems cor-100

rectly. We further find that current LMMs’ mul-101

timodal reasoning remains primarily text-based,102

lacking effective utilization of graphical informa-103

tion. This is evidenced by the minimal accuracy104

difference—only 2-3 percentage points—between105

when the model is given only textual input and106

when it is provided with both text and images. Our107

process evaluations show that diagram misinter-108

pretation accounts for more than 50% of the total109

errors for current LMMs, suggesting the most crit-110

ical direction for improvement is enhancing their111

abilities to recognize and interpret math diagrams.112

2 MM-MATH113

2.1 Overview of MM-MATH114

Design Principle. Multimodal mathematical rea-115

soning tasks demand an understanding of both the 116

problem’s text and the associated diagram, requir- 117

ing math reasoning to produce a step-by-step so- 118

lution that leads to the final answer. We adopt an 119

open-ended format for two reasons: 1) Other for- 120

mats, such as multiple choice, make it easier for the 121

model to guess the correct answer by chance (Wang 122

et al., 2024b). 2) Open-ended format better facili- 123

tates step-by-step solution process to help identify 124

the error in the model’s response. We adhere to 125

the following principles when constructing MM- 126

MATH: 127

• Comprehensive coverage: We aim to cover as 128

many types and difficulty levels of problems as 129

possible. Consequently, we collect all math prob- 130

lems that contain visual content from exams and 131

textbooks used in secondary schools. 132

• Computation problems only: While math prob- 133

lems may include proofs, computations, and 134

drawings, we exclusively select computation- 135

type problems for our dataset. 136

• Uniform data format: Each problem in the 137

dataset includes a question statement, an image, 138

a human-annotated step-by-step solution process, 139

and multi-dimensional metadata annotations. 140

• Multi-dimensional metadata annotations: For 141

each problem, we also provide its grade level, dif- 142

ficulty, and knowledge point tagging from human 143

educational taxonomy as its metadata. 144

Dataset Overview. MM-MATH is the first multi- 145

modal math benchmark to include process evalua- 146

tion and fine-grained classification, as highlighted 147
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Table 1: Comparison of our MM-MATH benchmark with existing multimodal benchmarks. For the ‘size’ column,
we only include the number of multimodal math problems in each benchmark.

Benchmark Size Question Type Grade Fine-grained Classification Process Evaluation

UniGeo (Chen et al., 2022) 4,998 choice middle school ✓
GeoQA (Chen et al., 2021) 5,010 choice middle school
GeoQA+ (Cao and Xiao, 2022) 2,518 choice middle school
Geometry3K (Lu et al., 2021) 3,002 choice middle school
OlympiadBench (He et al., 2024) 3,102 open-ended Olympiad-level ✓
MathVista (Lu et al., 2023) 6,141 choice & open-ended -
MathVerse (Zhang et al., 2024) 2,612 choice & open-ended - ✓

MM-MATH 5,929 open-ended middle school ✓ ✓

Table 2: Key statistics of MM-MATH.

Statistic Number

Total Problems 5,929

Difficulty
*Easy 378
*Medium 4,488
*Hard 1,063

Grade
*Grade Seven 682
*Grade Eight 2,590
*Grade Nine 2,657

Average Question Length 488
Average Answer Length 275
Max Question Length 2,391
Max Answer Length 2,781

in the comparison of existing multimodal bench-148

marks in Table 1. Detailed statistics for MM-149

MATH are provided in Table 2, and the distribution150

of knowledge points is illustrated in the pie chart151

in Figure 2.152

2.2 Dataset Construction Pipeline153

Data collection. The problems in MM-MATH154

dataset are sourced from the 21st Century Edu-155

cation Network, which is one of the largest on-156

line question banks for primary and secondary157

schools in China. It provides a comprehensive158

collection of challenging, curriculum-aligned, and159

exam-relevant questions designed to assess student160

learning capabilities. We restrict the problems from161

the 2021-2022 academic year, manually filtering162

for computational math problems with visual con-163

text.164

Format transformation. Most of the problems165

from the original database are in MathML format.166

However, considering the widespread use of La-167

TeX in existing mathematical datasets, we devise168
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Figure 2: Knowledge point distribution of MM-MATH.
Properties of Shapes refers to the characteristics of dif-
ferent shapes, Shape transformation investigates the
deformation and movements of shapes, and Function
refers to the mutual reasoning between algebraic expres-
sions and graphs.

a systematic approach to convert MathML into 169

standard LaTeX format for easier integration with 170

other datasets. Specifically, we utilize MathCon- 171

verter1 to transform MathML representations of 172

mathematical formulas into LaTeX. For instance, 173
1
2 in MathML is converted to \frac{1}{2} in La- 174

TeX. Additionally, we establish string conversion 175

rules to change symbol elements into LaTeX for- 176

mat. For example, we convert “\text{△}” to “\tri- 177

angle”. To address the use of non-standard punc- 178

tuation in Chinese strings, such as full-width plus 179

signs, we leverage GPT-4 (Achiam et al., 2023) 180

for conversion, with manual verification of the fi- 181

nal output. This systematic process ensures the 182

accuracy of numerical values in LaTeX while main- 183

taining readability and standardization in the out- 184

put. During GPT-4 processing, we also encapsulate 185

the final answers within \boxed{}, a technique in- 186

1https://github.com/hexinnovation/MathConverter.
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spired by the construction approach of the MATH187

dataset (Hendrycks et al., 2021), which facilitates188

comparison with groundtruth answers for outcome189

evaluation.190

Our collected data contains four distinct ques-191

tion types: multiple-choice, fill-in-the-blank, open-192

ended, and composite questions. We convert them193

into uniform open-ended questions in the follow-194

ing manners. For multiple-choice and fill-in-the-195

blank questions, we rephrase them into open-ended196

forms and extract their explanations as step-by-step197

derivations. For composite questions with a com-198

mon textual problem and multiple sub-questions,199

we treat each statement as the premise for sub-200

questions, integrating the conclusions of preceding201

sub-questions into the subsequent ones. More de-202

tails for the transformation process are presented203

in Appendix B.204

Additionally, since the original data is in Chi-205

nese, catering to Chinese students, we translate the206

dataset into English using GPT-4. To ensure accu-207

racy, we manually verify the translations. This ef-208

fort aims for a fairer comparison of LMMs trained209

in different languages.210

Fine-grained classification. We categorize our211

dataset across several dimensions, including dif-212

ficulty, grade level, and knowledge point. Prob-213

lems are classified by difficulty—simple, medium,214

and hard—based on the average accuracy achieved215

by students. Simple problems have a scoring rate216

above 85%, medium between 70% and 85%, and217

hard below 70%. From Table 2, it can be seen218

that the number of problems of each difficulty level219

follows a Gaussian distribution.220

Next, we organize questions by educational221

grade: seven, eight, and nine grade, representing222

the three years of junior middle school in China.223

Since higher-grade knowledge generally requires224

an understanding of lower-grade knowledge as a225

prerequisite, this classification allows us to better226

study whether the LMMs exhibit a similar depen-227

dency on prior knowledge when solving problems.228

Additionally, each problem is tagged with spe-229

cific knowledge points, identified based on insights230

from teachers. This enables targeted retrieval, ap-231

plication, and analysis of the model’s knowledge232

gaps in specific areas. In Figure 2, we present the233

knowledge point taxonomy and the proportion of234

data in each category.235

3 Evaluation 236

3.1 Evaluation Protocols 237

Recent advancements in LMMs have enabled the 238

generation of textual responses for mathematical 239

problem-solving (Chen et al., 2024; Liu et al., 240

2024b; Hong et al., 2023; Qi et al., 2024), a process 241

that imitates human reasoning in mathematics. This 242

capability introduces new evaluation criteria focus- 243

ing on the generative nature of LMMs, especially 244

concerning the intermediate solving steps. Accord- 245

ingly, we propose a systematic method for assess- 246

ing the performance of LMMs in the MM-MATH 247

datasets in Figure 1, divided into three phases: (1) 248

LMM generates formatted solutions to math prob- 249

lems, (2) Compare the generated solution against 250

the groundtruth solution, and (3) Score the result 251

to evaluate model performance and identify pro- 252

cess errors. Specifically, we input the textual prob- 253

lem and associated images, prompting the model 254

to generate solutions with answers encapsulated 255

in \boxed{}. Our prompt details are provided in 256

Appendix C. During the outcome comparison, we 257

extract the final results from \boxed{}. For process 258

comparison, we use GPT-4V (OpenAI, 2023) to au- 259

tomatically perform a comparative analysis of the 260

model-generated solutions against the groundtruth 261

solutions. 262

3.2 Evaluation Strategy 263

Existing large model math benchmarks (He et al., 264

2024; Wang et al., 2024a; Liu et al., 2024c) pre- 265

dominantly use binary comparison to assess the 266

problem-solving capabilities of LLMs or LMMs, 267

focusing on the final answer as the primary indi- 268

cator of the model’s capability. However, the ac- 269

curacy of an answer typically relies on a correct 270

intermediate reasoning process, with accurate rea- 271

soning steps leading to correct answers, and in- 272

correct reasoning leading to erroneous solutions. 273

By analyzing the model’s solution process, we can 274

identify the causes of errors and provide a more 275

accurate assessment. Thus, our evaluation incorpo- 276

rates two methods: outcome evaluation and process 277

evaluation, designed to assess both the final answer 278

and the model’s reasoning process. 279

Outcome Evaluation. Our evaluation requires 280

that answers generated by LMMs be encapsu- 281

lated within \boxed{}, enabling direct compari- 282

son. We judge final answers according to their 283

category: (1) For numerical answers, we accept the 284

model’s answers as long as the numerical gap to 285
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Question: … and CB is extended 
to point F such that BF = BC. …
what is the length of AC?
Answer: 5

Response: 
First, since CD is the median, point D is the midpoint of 
AB. so AD=AB.
Moreover, we know BF = !

"
BC, we have CF = 2BC = 8.

…
Next, we observe that BCFE is a parallelogram, …, thus 
AC = 12 = 3. Therefore, the final answer is 3.

II. Reasoning Error
- Should be AD=DB

IV. Textual condition 
misunderstanding
- Should be BF=BC

I. Diagram 
misinterpretation
- Not a parallelogram

III. Calculation error
- AC = 12 = 2 3

Process evaluation

Figure 3: Example for four different types of errors in multimodal math reasoning.

the groundtruth answer falls within a permissible286

error margin, e.g., 1.414 is acceptable for an an-287

swer of
√
2 as their difference is less than 0.01. (2)288

For expression-type answers such as y = ax + b,289

we utilize the SymPy package to simplify expres-290

sions. We then compare the model’s simplified291

output with the groundtruth expression for exact292

matching. (3) For interval-type answers like (a, b)293

or a < x < b, we standardize them into the format294

(a, b) and verify the equality of boundary values.295

Additionally, we address special cases where mod-296

els append extra signs to final results (e.g., cm)297

or generate exponential values like 22024, by re-298

moving the extra sign and transforming the values299

for proper comparison. We manually verified 500300

evaluation results using our outcome evaluation301

pipeline and found only 13 errors.302

Process Evaluation. The problem-solving pro-303

cess of the multimodal model involves multiple304

factors, including a deep understanding of the prob-305

lem conditions, extracting information from dia-306

grams, and utilizing the models’ knowledge to de-307

rive results. Consequently, our process evaluation308

takes the original textual question, associated im-309

age, and the groundtruth solution, and uses GPT-4V310

to compare the content generated by LMMs, with311

the prompt shown in Appendix C. The solutions312

generated by LMMs may contain numerous errors.313

In our prompt design, we aim to identify the first314

error in the model’s generated process compared315

to groundtruth, since it is often the initial error316

that leads to further mistakes, resulting in incorrect317

outcomes. We use this first error to classify the318

cause of error in our process evaluation. Through319

deeper examination, we find that the first identified320

error may sometimes not be the main error of the321

models’ solution, which we will analyze further in322

Appendix D. We classify the errors into four types,323

exemplified in Figure 3.324

I. Diagram misinterpretation: This refers to the 325

LMM’s inability to accurately understand the ele- 326

ments and their attributes in diagrams, such as the 327

shapes, geometries, and their spatial relationships. 328

II. Reasoning error: This occurs when the model 329

lacks or incorrectly applies logical reasoning 330

knowledge. For instance, in the case of Figure 3, 331

the model incorrectly reasons that AD = AB from 332

D is the midpoint of AB, while AD = DB should 333

be the correct deduction. 334

III. Calculation error: This error arises from the 335

computational step during problem-solving and in- 336

cludes mistakes caused by miscalculations in equa- 337

tions and functions. 338

IV. Textual condition misunderstanding: This type 339

of error involves a model misinterpreting the given 340

conditions of a textual problem. For example, in 341

Figure 3, the problem states that BF = BC, but 342

the model mistakenly interprets this condition as 343

BF = 1
2BC during the solution process. 344

4 Experiments 345

4.1 Experimental Setup 346

To comprehensively investigate the challenges of 347

MM-MATH and the mathematical proficiency of 348

models, we structure our experiments around two 349

setups: (1) Text-Only Reasoning and (2) Multi- 350

modal Reasoning. For the first setting, we eval- 351

uate LMMs, including Gemini-Pro-V (Gemini, 352

2023), Claude-3-Opus (Anthropic, 2024), GPT- 353

42 (Achiam et al., 2023), GPT-4V (OpenAI, 2023), 354

and GPT-4o (OpenAI, 2024) by providing only 355

the textual contexts (i.e., questions) as inputs. For 356

the second setting, we feed the entire multimodal 357

contexts (i.e., questions and images) as inputs and 358

evaluate both closed-source LMMs including GPT- 359

4V, GPT-4o, Claude-3-Opus, Qwen-VL-Max (Bai 360

2We use the gpt-4-0125-preview version for GPT-4.
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Table 3: The outcome performance of both closed-source and open-source large models on MM-MATH in
comparison with the human-level baseline. The evaluation involves three dimensions: difficulty, grade levels, and
knowledge points, each comprised of three fine-grained classes. The results are presented as percentages of accuracy.

Model Easy Medium Hard Seven Eight Nine Trans Shape Func Average

Baseline

Human 90.7 81.9 47.6 85.6 73.7 77.9 81.1 83.2 77.5 80.4

Large Multimodal Models (w/o Image)

Gemini-Pro-V 10.1 5.7 1.8 10.0 5.3 6.7 6.6 5.7 6.4 6.2
Claude-3-Opus 31.7 17.3 7.2 32.5 14.9 2.2 20.8 18.5 12.9 19.2
GPT-4 37.0 20.3 7.2 38.7 17.1 26.2 23.3 21.4 18.1 22.5
GPT-4V 35.2 18.1 7.2 31.2 17.2 22.3 18.4 21.4 13.3 20.4
GPT-4o 41.4 23.9 3.6 35.0 23.9 30.5 22.8 29.7 19.4 27.6

Large Multimodal Models (w/ Image)

DeepSeek-VL-7B-Chat 17.4 4.7 1.4 7.5 6.6 3.9 3.4 6.0 3.5 5.4
Yi-34B-Chat 12.9 5.0 1.5 21.3 5.6 3.5 5.0 7.6 3.8 6.5
LLaVA-V1.6-34B 8.8 5.4 1.8 12.6 6.5 4.2 4.0 6.5 3.8 5.8
InternVL-4B-Chat-1.5 18.5 10.7 1.8 12.5 11.1 11.9 11.4 12.3 5.5 11.6
Qwen-VL-Max 14.5 11.2 3.6 16.2 1.1 11.3 11.0 12.5 10.5 11.4
Gemini-Pro-V 19.3 8.2 0.0 1.5 7.4 11.5 10.4 10.6 7.1 9.7
Claude-3-Opus 29.5 19.3 3.6 32.5 16.4 23.0 20.6 21.7 16.9 20.3
GPT-4V 37.8 21.2 1.8 28.7 17.9 28.0 22.2 24.7 19.5 23.1
GPT-4o 45.8 30.0 10.9 40.0 26.0 36.0 30.7 33.7 26.2 31.8

et al., 2023) and open-source LMMs for DeepSeek-361

VL-7B-Chat (Lu et al., 2024), Yi-34B-Chat (Young362

et al., 2024), InternVL-4B-Chat-V1.5 (Chen et al.,363

2024), and LLaVA-V1.6-34B (Liu et al., 2024a).364

All selected models are capable of generating re-365

sponses in the expected format, thus ensuring the366

validity of the evaluation.367

4.2 Outcome Evaluation Results368

We first analyze the performance of all models on369

the final outcomes of MM-MATH in comparison to370

a human-level baseline (the average performance371

of middle-school examinees from the online plat-372

form). The experimental results are shown in Ta-373

ble 3. Here are our main findings from the results.374

MM-MATH presents substantial challenges for375

current LMMs From the evaluation results, we376

find that the most representative closed-source377

model to date, GPT-4o, performed the best across378

the board, achieving an average accuracy of 31.8%,379

which significantly outperformed the best open-380

source model, InternVL-4B-Chat-1.5, with an av-381

erage accuracy of 11.6%. However, compared to382

the human-level baseline of 80.4%, this best perfor-383

mance of the LMM still remains substantial room384

for improvement by 48.6%.385

LMMs gain limited benefits from visual contexts386

Another notable observation is that LMMs with the387

text-only setups (i.e., only questions as inputs) ex-388

hibit only slight degradation in performance com- 389

pared to the multimodal setups (i.e., questions and 390

images as inputs). For example, there are differ- 391

ences of 4.2%, 2.7%, and 0.8% for the models 392

GPT-4o, GPT-4v, and Claude-3-Opus, respectively. 393

This result suggests that current LMMs primarily 394

rely on linguistic knowledge to solve mathematical 395

problems, and their utilization of visual contexts 396

is limited. Detailed case studies are provided in 397

Appendix E. 398

Conclusion from discriminative evaluation di- 399

mensions and capability distribution In the 400

difficulty dimension of MM-MATH, we can see 401

the discriminative stepwise degradations in models 402

performance on progressively challenging subsets 403

(e.g., the 10.9%, 30.0%, and 45.8% accuracy scores 404

on Easy, Medium and Hard subsets for GPT-4o). 405

This result indicates that the proposed evaluation di- 406

mensions exhibit a significant differentiation across 407

three difficulty levels, making it more beneficial for 408

exploring the capability shortcomings of models. 409

In addition, the three types of knowledge points 410

also provide us with opportunities to understand the 411

capabilities of models from different fine-grained 412

perspectives. 413

Regarding the evaluation results on different 414

grade levels, one notable finding is that the accu- 415

racy distribution of most models across the three 416

grade levels is similar to the distribution of human 417
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Figure 4: Proportion of four types of errors in various LMMs, with
diagram misinterpretation errors and reasoning errors constituting
the majority.
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Figure 6: Number of the last two errors in
evaluated LMMs.

behaviors. For example, the models GPT-4o, GPT-418

4V, and Claude-3-Opus all showed the best perfor-419

mance on the Seventh-grade subset (with 40.0%,420

28.7%, and 32.5% accuracy scores), followed by421

the ninth-grade subset (with 36.0%, 28.0% and422

23.0% accuracy scores), and were the least accurate423

on the seventh-grade subset (with 26.0%, 17.9%424

and 16.4% accuracy scores, respectively). This re-425

sult suggests that the learning curve of LMMs in426

solving mathematical problems is similar to that427

of humans but falls short of reaching the human428

cognitive level.429

4.3 Process Evaluation Results430

Benefiting from the comprehensive annotation, we431

further evaluate the models performance on the so-432

lution process to thoroughly investigate the causes433

of errors and pinpoint the weaknesses of LMMs.434

Considering the variability in natural language ex-435

pressions, we employ GPT-4V to compare the so-436

lutions generated by LMMs with the groundtruth437

solutions, and identify the first error in the solutions438

to analyze the causes of errors. We empirically find439

that this method can effectively align the solutions440

from LMMs with the groundtruth, enabling an un-441

biased validation of the errors. Though effective, 442

we find that there is still room for improvement in 443

this measurement, with approximately 9% of er- 444

rors not being correctly identified (see the detailed 445

analysis in Appendix F). 446

Figure 4 illustrates the proportion of different 447

error types in both open-source and closed-source 448

LMMs. Figure 5 and 6 further show the number of 449

errors for each error type. Our main findings are 450

detailed below. 451

Weak comprehension of elements in images is 452

a major cause It is evident that errors related 453

to the recognition of image elements or their at- 454

tributes constitute the highest proportion, exceed- 455

ing half of the total errors. This indicates that ex- 456

isting LMMs cannot yet sufficiently incorporate 457

image information into their reasoning processes, 458

limiting their efficacy in multimodal reasoning. 459

Intriguingly, among closed-source LMMs—GPT- 460

4o, GPT-4V, Claude-3-Opus, Gemini-Pro-V, and 461

Qwen-VL-Max—the proportion of errors in im- 462

age recognition are highly consistent, around 57%. 463

This might imply that the visual encoder modules 464

used by these models have common issues and can- 465
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not handle certain types of images. Additionally,466

the much lower proportion of diagram misinterpre-467

tation errors in InternVL-4B-Chat-1.5 (39.7%) ex-468

plains why a 4B small model has even better overall469

performance than Gemini-Pro-V (57.4%) or Qwen-470

VL-Max (56.6%). Therefore, the key to enhancing471

the LMM’s multimodal math problem-solving abil-472

ity lies in understanding the visual context, and this473

step does not necessitate a large model size. Exam-474

ples of reasoning errors involving image elements475

and attributes are provided in Appendix H.476

Multimodal models exhibit poor use of theorems477

during reasoning We find that reasoning errors478

in large language models (LLMs) are often due to479

the incorrect application of theorems, accounting480

for about 40% of overall errors. Misuse or omis-481

sion of theorems misleads these LMMs, leading to482

errors (e.g., GPT-4V misuses the cosine rule, re-483

sulting in no solution, as detailed in Appendix G).484

Unlike image understanding, we find that a larger485

model size effectively helps reduce reasoning er-486

rors in the model. For instance, while InternVL-487

4B-Chat-1.5 exhibits fewer image understanding488

errors even with smaller model size, it still encoun-489

ters more reasoning errors (636) compared to larger490

models such as Gemini-Pro-V (480) and Qwen-VL-491

Max (468).492

Calculation is not a primary issue but reflects493

a capability gap In the process evaluation of494

LMMs, calculation errors constitute a relatively495

lower proportion. However, the error in some mod-496

els (e.g., GPT-4o, 51 errors) is significantly higher497

compared to others (e.g., GPT-4V, 29 errors). This498

indicates that while calculation is not the primary499

problem, equipping them with more powerful nu-500

merical computation capabilities can further boost501

the models’ problem-solving success rates.502

Models have an effective understanding of the503

textual problem As shown in Figure 4, among504

all nine models from both open-source and closed-505

source, the proportion of errors due to misunder-506

standing of the textual conditions is extremely507

small (less than 2% of the total errors). This sug-508

gests that the text-based capabilities of LMMs are509

not the bottleneck in solving multimodal mathe-510

matical problems. Instead, we should focus more511

on fine-grained recognition and reasoning of visual512

content to enhance the capabilities of LMMs.513

5 Related Work 514

Using large models to solve mathematical prob- 515

lems has recently become a research hotspot. 516

GSM8k (Cobbe et al., 2021) has widely been used 517

to evaluate the mathematical abilities of various 518

LLMs (Touvron et al., 2023; Anil et al., 2023; Gao 519

et al., 2023b). However, its problems are relatively 520

simple, and many models can achieve an accuracy 521

rate of 90% or higher. Recently, more challenging 522

mathematical benchmarks (Hendrycks et al., 2021; 523

Liu et al., 2024c; He et al., 2024) have emerged 524

to further advance mathematical reasoning in lan- 525

guage models, but these are typically text-only 526

based reasoning. 527

Multimodal mathematical benchmarks trace 528

back to the study of geometry problems (Seo et al., 529

2015; Chen et al., 2022), where geometric ele- 530

ments are described through a specialized pars- 531

ing language (Seo et al., 2015; Zhang et al., 2022; 532

Hao et al., 2022) or text described language (Gao 533

et al., 2023a). Recent rapid developments in 534

LMMs (Alayrac et al., 2022; Wang et al., 2023; 535

Liu et al., 2024b; Qi et al., 2024) have led to numer- 536

ous multimodal math benchmarks (Lu et al., 2023; 537

Yue et al., 2024; Ying et al., 2024) to assess their 538

capabilities. However, these benchmarks primarily 539

composed of multiple-choice questions, evaluating 540

model performance based on outcome examina- 541

tion. Given the dual nature of multimodal models— 542

integrating both images and text—such simplistic 543

evaluations are inadequate. Although some bench- 544

marks, like MathVerse (Zhang et al., 2024), have 545

begun to focus on the problem-solving process, 546

they still rely on a binary evaluation approach. In 547

comparison, our MM-MATH benchmark is con- 548

structed with step-by-step solution which enables 549

both outcome and process evaluations of LMMs. 550

6 Conclusion 551

This paper introduces MM-MATH, a challenging 552

benchmark for evaluating multimodal math rea- 553

soning in LMMs. Our findings reveal while cur- 554

rent LMMs demonstrate some reasoning ability, 555

they heavily rely on textual information and strug- 556

gle to utilize visual cues. This is evidenced by 557

the minimal accuracy difference between text-only 558

and multimodal settings, and the prevalence of dia- 559

gram misinterpretation errors. MM-MATH’s fine- 560

grained classification highlights the need for mod- 561

els that can handle varying problem difficulties and 562

leverage knowledge across different grade levels. 563
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7 Limitations564

We limit our benchmark’s mathematical knowledge565

to the middle school level, representing only a por-566

tion of K-12 education. In the future, we plan to567

expand the scope of MM-MATH to include high568

school and college-level multimodal mathematics.569

Our evaluation results highlight the current defi-570

ciencies of LMMs in solving mathematical prob-571

lems. While improvements to LMMs have not yet572

been made to address these shortcomings, our next573

step involves targeted training to enhance the mod-574

els’ problem-solving capabilities. We believe our575

dataset will significantly aid this process, as they576

contain detailed solutions paired with each prob-577

lem.578
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A Data Source for Human Performance 767

The 21st Century Education Network provides academic proficiency reports that analyze students’ knowl- 768

edge mastery after each exam. We compile the end-of-term exam scores for each problem. 769

B Open-Ended Transformation 770

Our initial collection of MM-MATH problems includes four types: multiple-choice, fill-in-the-blank, 771

open-ended, and composite questions. For multiple-choice and fill-in-the-blank questions, which include 772

an answer and a step-by-step solution, we modifies the final part of the questions into descriptive language, 773

removing single choice or fill-in-the-blank answers, and using the step-by-step solution as the answer 774

described in Figure 7. For composite questions, we treat the main textual problem as the common stem for 775

sub-questions and used the conclusion of one sub-question as the textual problem for the next described 776

in Figure 8.

Choice Question
or

Fill-in-the-Blank:
As shown in the figure, given that the diameter of circle 	⊙
𝑂		is 4 and ∠𝐴𝐶𝐵 = 45∘, the length of AB is ()?

Option: A. 2, B. 2 2, C. 2 3, D. "
#

Explanation: Solution: Connect OA and OB, as shown in the figure, ∵
∠AOB = 2∠ACB = 2×45∘= 90∘, ∴△AOB is an isosceles right 
triangle, ∴AB = 2OA = 2 2. Therefore, AB = 2 2.

Hence the answer is B or 2 2

As shown in the figure, given that the diameter of circle 	⊙
𝑂		is 4 and ∠𝐴𝐶𝐵 = 45∘. What is the length of AB?

Open-EndAnswer: Solution: Connect OA and OB, as shown in the figure, ∵
∠AOB = 2∠ACB = 2×45∘= 90∘, ∴△AOB is an isosceles right 
triangle, ∴AB = 2OA = 2 2. Therefore, AB = 2 2 .

Figure 7: An example of converting multiple-choice and fill-in-the-blank questions to open-ended format. The final
part of the textual problem “()” is rewritten in descriptive language, and the main content of the explanation is used
as the answer.

777

C Prompt Design 778

Table 4 details the construction of the two types of prompts. For process evaluation prompts, our 779

repeated experiments highlighted several key points: 1) Use the term “incorrect” for textual condition 780

misunderstanding to help GPT-4V classify the errors accurately. 2) Use the term “misinterpretation” for 781

diagram misinterpretation errors to identify recognition mistakes during comparisons. 3) For reasoning 782

errors, it is important to include specific examples. 783

For prompts that instruct the model to generate answers, we ensure the model produces a final answer 784

enclosed in \boxed{}. 785

D First Error Identified 786

The first error identified by GPT-4V, when comparing the problem-solving process generated by LMMs to 787

the ground truth, may not necessarily be the initial error in the problem-solving process. As shown in 788

Figure 9, the first error determined by GPT-4V is △ABD ∼ △CBE rather than intial error 789

AC

BC
=

AD

DE
. 790
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Table 4: This table presents the prompts used for process evaluation and answer generation by various LMMs in the
MM-MATH benchmark.

Phase Input Prompt

Process
Evaluation
(GPT-4V)

Model’s response
Question
Diagram
Groundtruth Answer

Based on the given question stem, the diagram, and the correct
answer, compare the model’s response to identify the first error
in model’s response. Then determine which of the following
categories the error belongs to, or if there is no error, classify it
as category five:
1. Misinterpretation of diagram elements or properties: For
example, incorrect coordinate recognition, identifying parallel
lines as intersecting lines, or inventing or misusing elements or
properties not present in the diagram (e.g., identifying a shape
as a square when it is not).
2. Incorrect application of math theorems: For instance,
wrongly applying a specific theorem, such as using the
Pythagorean theorem on a non-right triangle, or omitting neces-
sary theorems, such as failing to apply the similarity theorem to
obviously similar triangles.
3. Calculation errors: Such as mistakes in addition, subtraction,
multiplication, division, or square root calculations.
4. Incorrect use of given question stems: For example, if the
stem states AB=1/2CD but the model generates AB=CD, indi-
cating a failure to use the condition correctly.
5. Other: No errors.
Provide a detailed analysis, including the first mistake, the
reason for the classification, and the correct approach to solving
the problem. If there are no errors, only provide the analysis.
The output format should be:
–First error:
–Error category:
–Detailed analysis:

Answer
Generation
(LMMs)

Question
Diagram

Solve the following mathematics problem, write out the solution
process according to the question, and use the same LaTeX
format as the question in the solution process. Please display
the final answer in the format \boxed{}.
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Composite Textual
Question

As shown in the figure, in  △ ABC	, ∠ACB = 90∘, and  CD is 
the altitude to side  AB. Fold side  AC  in half, and the fold line 
is  EF . Connect  CE .  CD  bisects  ∠BCE.

Connect DF, prove that AF = DF.

Explanation 2:
Solution: ∵ EF  is the axis of symmetry of AC, ∴FA = FC , EA = 
EC, ∴ ∠ECA = ∠A . ∵CD is the altitude to side AB, ∴ ∠CDE = 
∠CDB = 90∘. ∵CD bisects ∠BCE, ∴ ∠DCE = 	∠DCB . Also, 	
∵ 	CD = CD, ∴△CDE	≅△CDB (ASA). ∴ ∠CED = ∠CBD. 
∵ ∠CED = ∠A + ∠ECA, and ∠ECA = ∠𝐴. ∴ ∠CBD = 2∠A. 
∵ ∠ACB = 90∘, ∴ ∠A + ∠B = 90∘, ∴3∠A = 90∘, ∴ ∠A = 30∘.

Open-EndAnswer: ∵ EF  is the axis of symmetry of AC, ∴FA = FC , EA = EC, ∴
∠ECA = ∠A . ∵CD is the altitude to side AB, ∴ ∠CDE = 
∠CDB = 90∘. ∵CD bisects ∠BCE, ∴ ∠DCE = 	∠DCB . Also, 	
∵ 	CD = CD, ∴△CDE	≅△CDB (ASA). ∴ ∠CED = ∠CBD. 
∵ ∠CED = ∠A + ∠ECA, and ∠ECA = ∠𝐴. ∴ ∠CBD = 2∠A. 
∵ ∠ACB = 90∘, ∴ ∠A + ∠B = 90∘, ∴3∠A = 90∘, ∴ ∠A = 30∘

Question 2:

Question 1:

Find the measure of  ∠A.

Composite Question
As shown in the figure, in  △ ABC	, ∠ACB = 90∘, and  CD is the 
altitude to side  AB. Fold side  AC  in half, and the fold line is  
EF . Connect  CE .  CD  bisects  ∠BCE. Connect DF,  AF = DF.
Find the measure of  ∠A.

Figure 8: An example of converting composite question to open-ended format. Since Question 1 is a proof,
we exclude it. We treat the main stem as the stem of Question 2, and incorporate the conclusion of Question 1
(highlighted in red) as a new condition into the stem of Question 2.

E Text Reason First 791

Figure 10 and Figure 11 illustrate examples of multimodal reasoning. Regardless of whether all problem 792

conditions are provided, multimodal models tend to rely solely on textual analytical methods, neglecting 793

the information in the images. This approach increases the complexity of problem-solving and leads to a 794

higher likelihood of errors. 795

F Case of Prompt Effectiveness 796

Figure 12 illustrates the effectiveness of our designed prompt. Although there is no textual description of 797

DOB in the groundtruth problem-solving process, GPT-4V successfully identified and categorized the 798

error. The error was classified as a mathematical theory error by GPT-4V because the solution did not 799

apply the similarity theorem for reasoning. 800

G Misapplication of Theorems 801

Figure 13 illustrates a case where GPT-4V incorrectly applied the cosine theorem during problem-solving. 802

In this case, the sides used in the cosine theorem do not form a triangle in the image. Despite this, the 803

model forcibly applied the theorem, leading to calculation errors. This improper use of the theorem on 804

incorrect image elements further resulted in erroneous problem-solving steps. 805

H Element Recognition Error in Image 806

We present two cases where GPT-4V exhibited errors in image element recognition during problem- 807

solving. In Figure 14, the image contains only parallel lines; however, GPT-4V incorrectly identified a 808

triangle. In Figure 15, AFD is a straight line, but GPT-4V mistakenly perceived it as a triangle. These 809

cases demonstrate GPT-4V’s deficiencies in accurate image element recognition, leading to erroneous 810

reasoning. 811
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Question: As shown in the figure, in△ABC and △ADE, 
∠ACB=∠AED=90∘, ∠ABC=∠ADE. Connect BD and 
CE. If AC:BC=3:4, what is the ratio BD:CE?

Solution: Since ∠ACB=90∘ and AC:BC=3:4, we have 𝐴𝐵
𝐴𝐶
= 5

3
. ∵ ∠ACB=∠AED

=90∘ and ∠ABC=∠ADE, it follows that △ABC ∼△ADE, thus 𝐴𝐵
𝐴𝐷

= 𝐴𝐶
𝐴𝐸

and ∠DA

E=∠BAC. Therefore,∠DAB=∠EAC, and △DAB∼△EAC, hence 𝐵𝐷
𝐶𝐸
= 𝐴𝐵

𝐴𝐶
= 5

3
.

GPT-4V Answer: From the problem statement, we know △ ABC	 ∼△
ADE	because they are both right triangles and share a common acute angle.
According to the properties of similar triangles, we have
[AC
BC
= AD

DE
] … Therefore, △ ABD	 ∼△ CBE. Thus, we have [BD

CE
= AB

BC
] …

Therefore, [BD
CE
= 5

4
]So the final answer is 5

4
.

First error: "Therefore, △ 𝐴𝐵𝐷	 ∼△CBE".
Error category: 1. Misinterpretation of diagram elements or properties.
Detailed analysis: The model made a mistake in determining the similarity of 
△ABD and △CBE. In reality, △ABD and △CBE are not similar. …

First Error

Figure 9: An example of first error detecting by GPT-4V

Question: As shown in the figure, the graph of the linear 
function y! = x + b intersects with the graph of the 
linear function y" = kx + 4 at point P(1, 3). What is the 
solution set for the inequality x + b ≤ kx + 4	with 
respect to x?

Solution: According to the graph, when x	 ≤ 1, x	 + 	b	 ≤ kx	 + 	4, that is, the 
solution set for the inequality x	 + 	b	 ≤ kx	 + 	4 with respect to x is x	 ≤ 	1 .

GPT-4V Answer:First, based on the lines y1 = x + b and y2 = kx + 4
intersecting at point P(1, 3), we can derive two equations to determine the 
values of b and k. For y1 = x + b , substituting the coordinates of point P(1, 3), 
we get: 3 = 1 + b Thus, we can solve for b: b = 2 For y2 = kx + 4, similarly 
substituting the coordinates of point P(1, 3), we get: 3 = k + 4 Solving for k: k 
= -1 Now we know the equations of the lines are y1 = x + 2 and y2 = −x + 4. 
Given the inequality x	 + 	b	 ≤ kx	 + 	4	from the problem, substituting b = 2 
and k = -1 gives: x	 + 	2	 ≤ −x	 + 	4 Next, solve this inequality: 2x	 ≤ 2	, x	 ≤
1, So the solution set is x less than or equal to 1. The final answer is x ≤ 1 .

Figure 10: A case where LMMs reasoning relies solely on textual analysis, resulting in increased complexity.
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Question: As shown in the figure, the linear function y = 
-x - 2 intersects with the graph of y = kx + b at point 
P 2, n .What is the solution set for the inequality kx + b 
<-x-2 with respect to x?

Solution: From the graph, it is observed that when x < 2, the graph of the line y 
= kx + b is below the graph of the line y =-x -2. Therefore, the solution set for 
the inequality kx+b <-x-2 with respect to x is x < 2 .

GPT-4VAnswer: According to the problem, point P(2, n) lies on both lines y 
= -x - 2 and y = kx + b, so we can substitute the coordinates of point P into 
these two equations to get two equalities. First, substituting into the first 
equation gives: [n = − 2 − 2 = −4]which is the value of n. Next, 
substituting x = 2 and n = -4 into the second equation gives: [−4	 = 	k	 ⋅ 2	 +
	b	, −4	 = 	2k	 + 	b	, b	 = 	−4	 − 	2k]	… Therefore, the final answer is 
dependent  on  the  value  of k .

Figure 11: A case where LMMs reasoning ignores image information, relying only on text and leading to errors.

Question: As shown in the figure, the diagonals AC and 
BD of rhombus ABCD intersect at point O. Given that AC 
= 8 and BD = 6, and point E is the midpoint of BC, what 
is the length of OE?

Solution: ∵quadrilateral ABCD is a rhombus,∴OC=OA= 1
2
AC=4,OB=OD=

1
2
BD = 3,∠BOC = 90∘.∴AB= OA2 + OB2 =5.∵point E is midpoint of AB,

and O is the midpoint of AC,∴OE is the median of △ABC,∴OE= 1
2
AB= 5

2
.

GPT-4V Answer: …, We also know that since all sides of the rhombus are 
equal, AB = BC = CD = DA. Because OE is the median of the rhombus‘s 
diagonal BD, it bisects triangle DOB, making △BOE ∼△DOE. Now, … , we 
have %&

'%
= '&

(%
.Thus, OE = '&×'%

(%
= *.,×-

-
= 2.5. Therefore, the final answer is 

2.5 .

First error: Because OE is the median of the rhombus's diagonal BD, it bisects 
triangle DOB, making △BOE ∼△DOE.
Error category: 2. Incorrect application of math theorems
Detailed analysis: The model incorrectly assumes that OE is the median of 
diagonal BD and incorrectly applies the properties of similar triangles. ...

Figure 12: A case demonstrating the effectiveness of our prompt. GPT-4V successfully identified the reasoning
error DOB, which was not present in the solution.
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Question: As shown in the figure, 	△ABC and 	△ADE are 
both equilateral triangles, point D is on side BC, DE 
intersects AC at point F, and if AB=6, AD=5, and CD=4, 
what is the length of EF?

Solution: ∵△ ABC and △ ADE	are both equilateral triangles,∴ ∠B = ∠C =
∠ADE = 60∘, DE = AD = 5, ∵ ∠ADC = ∠ADE + ∠CDE = ∠B + ∠BAD, ∴
∠CDE = ∠BAD, ∴△ ABD ∼△ DCF, ∴ "#

$%
= "$

$&
, ∴ '

(
= )

$&
, ∴ DF = *+

,
, ∴ EF =

DE − DF = )
,
.

GPT-4V Answer: … we have BC = 6. Given that CD = 4, we find BD = BC 
- CD = 6 - 4 = 2. Next, applying the cosine rule to find the measure of ∠BCD:
BC- = BD- + CD- − 2×BD×CD× cos∠BCD	, Substituting  BC = 6,  BD = 2, 
and CD = 4 into the formula to solve for cos∠BCD, …, However, we 
obtained a result of cos∠BCD greater than 1, which is impossible since the 
cosine value must be within the range [-1, 1]. This indicates that there might be 
an error in the problem's information.

First error: BC2 = BD2 + CD2 − 2×BD×CD× cos∠BCD
Error category: 2. Incorrect application of math theorems
Detailed analysis: The model incorrectly applied the cosine rule in the solution 
process. The problem clearly states that $\triangle ABC$ and $\triangle ADE$ 
are equilateral triangles, …

Figure 13: A reasoning error case: misuse of the cosine rule

Question: As shown in the figure, given AB ∥ 𝐶𝐷	 ∥EF 
and BD: DF = 2: 5, what is the value of !"

!#
?

GPT-4VAnswer: According to the figure, segments AB ∥CD ∥EF and BD:DF 
= 2:5. Since 𝐴𝐵	 ∥ 𝐶𝐷, by the properties of similar triangles, we know that 
triangles ABD and ACD are isosceles, thus AD = BD. Similarly, since CD ∥EF, 
triangles CDE and EDF are isosceles, so ED = DF. ,…

Figure 14: A case of diagram misinterpretation : parallel lines misidentified as a triangle.

Question: As shown in the figure, quadrilateral ABCD is 
a rectangle, point E is on the extension of BA, AE = AD, 
and EC intersects AD and BD at points F and G, 
respectively. If AF = AB, what is the value of 𝐴𝐷 ∶ 𝐴𝐵?

GPT-4VAnswer: First, since ABCD is a rectangle, 𝐴𝐵	 ⊥ 𝐴𝐷, and AB = CD 
and AD = BC. According to the problem, AE = AD, so △ 𝐴𝐸𝐷	is an isosceles 
right triangle, thus ∠𝐴𝐸𝐷 = 45∘.Additionally, since AF = AB = CD,△ 𝐴𝐹𝐷 and 
△ 𝐵𝐶𝐷	are congruent, 𝑠𝑜∠𝐴𝐷𝐹 = ∠𝐵𝐷𝐶 = 90∘.Therefore, …

Figure 15: A case of diagram misinterpretation: a straight line misidentified as a triangle.
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