Under review as a conference paper at ICLR 2023

IMITATION LEARNING VIA DIFFERENTIABLE PHYSICS

Anonymous authors
Paper under double-blind review

ABSTRACT

Existing imitation learning (IL) methods such as inverse reinforcement learning
(IRL) usually have a double-loop training process, alternating between learning a
reward function and a policy and tend to suffer long training time and high vari-
ance. In this work, we identify the benefits of differentiable physics simulators and
propose a new IL method, i.e., Imitation Learning via Differentiable Physics (ILD),
which gets rid of the double-loop design and achieves significant improvements in
final performance, convergence speed, and stability. The proposed ILD incorporates
the differentiable physics simulator as a physics prior into its computational graph
for policy learning. It unrolls the dynamics by sampling actions from a parame-
terized policy, simply minimizing the distance between the expert trajectory and
the agent trajectory, and back-propagating the gradient into the policy via temporal
physics operators. With the physics prior, ILD policies can not only be transferable
to unseen environment specifications but also yield higher final performance on
a variety of tasks. In addition, ILD naturally forms a single-loop structure, which
significantly improves the stability and training speed. To simplify the complex
optimization landscape induced by temporal physics operations, ILD dynamically
selects the learning objectives for each state during optimization. In our exper-
iments, we show that ILD outperforms state-of-the-art methods in a variety of
continuous control tasks with Brax, requiring only one expert demonstration. In
addition, ILD can be applied to challenging deformable object manipulation tasks
and can be generalized to unseen configurations.

1 INTRODUCTION

In a variety of applications ranging from games to real-world robotic tasks (Ho & Ermonl 2016} Fu
et al.| 2018; [Zeng et al.| |2020), imitation learning (IL) is popularly applied. However, collecting
high-quality expert data is expensive, and existing IL methods tend to suffer long training time,
unstable training process, high variance of learned IL policies, and suboptimal final performance.

Classical behavioral cloning (BC) methods learn policies directly from labeled data, but often suffer
the covariate shift problem. This problem can be tackled in DAGGER (Ross et al.,|2011) by interacting
with the environment and querying experts online, which however requires significant human effort to
label the actions. Other IL methods mainly include inverse reinforcement learning (IRL), adversarial
imitation learning (AIL), and combinations of them. IRL learns a reward function to match expert
demonstrations (Ziebart et al.l 2008} |Dadashi et al., [2021; [Hoshino et al.l [2022)), and AIL learns
a discriminator to identify whether the action comes from an expert demonstration (Ho & Ermon)
2016; |[Kostrikov et al.,|2019). However, both IRL and AIL learn an additional intermediate signal,
which introduces three main limitations: 1) the intermediate signal learning leads to a double-loop
training process, which means long training time and complex implementation; 2) the learning signal
is a noisy and frequently updated moving target, and as a result, the policy learning tends to have a
high variance; 3) the intermediate signal, e.g., the reward function in IRL, inevitably loses the rich
information embedded in the trajectories, e.g., environment dynamics.

In this work, we propose a new approach to IL, named Imitation Learning via Differentiable
Physics (ILD), which recovers expert behavior by exploiting the Differentiable Physics Simulator
(DPS) (Freeman et al.,|2021;|Hu et al.; 2019)). Different from standard environments, DPS implements
low-level physics operations with a differentiable function and allows the gradients to flow through
the dynamics. ILD takes advantage of DPSs by considering the environment dynamics as a physics
prior and incorporating it into its computational graph during back-propagation of the policy, such

Under review as a conference paper at ICLR 2023

Table 1: Useful Properties among IL Methods

Property / Method Family IRL AIL ILD (ours)
Layers of training loop Double-loop Double-loop Single-loop
Source of the learning signal Reward function Discriminator Differentiable dynamics
Transferability in changing dynamics Depends No Yes

that the learned policy fully captures both the expert demonstration and the environment specifications.
To achieve this, ILD simply minimizes the state-wise distance of a rollout trajectory generated by a
parameterized policy to the expert demonstration, which also gives a single-loop design and avoids
learning intermediate signals. Nevertheless, the gradients of physics operators are highly non-convex,
which often introduces a complex optimization landscape, and consequently, a naive implementation
is often stuck in local minimum (Freeman et al.,[2021). To alleviate this issue, we introduce a simple
yet effective Chamfer-a distance for trajectory matching. For each state in the rollout trajectory,
instead of exactly matching the corresponding expert state, we dynamically select the easiest local
goal as the optimization target and gradually proceed to the harder ones as training progresses.
Chamfer-a distance naturally forms a curriculum learning setup, simplifies the optimization task, and
eventually gives better final performance.

A short comparison of some useful properties of the IL methods can be found in Table[T} In contrast
to the IRL and AIL methods, ILD does not introduce new intermediate signals and therefore requires
no switching between policy learning and intermediate signal learning. In terms of the learning
paradigm, IRL learns a reward function, AIL learns a discriminator, and ILD uses the differentiable
dynamics which makes the learned policy aware of the environment dynamics and transferable to
unseen environment configurations.

Empirically, we validate ILD on a set of MuJoCo-like continuous control tasks from Brax (Freeman
et al., |2021) and a challenging cloth manipulation task. We show that ILD achieves significant
improvements over the state-of-the-art IRL and AIL methods in terms of convergence time, training
stability, and final performance. Given a fixed one-hour training time, ILD achieves 36% higher
performance based on the normalized score over all the tasks and baselines.

2 RELATED WORKS

Imitation Learning. Classical imitation learning methods directly imitate the expert demonstrations
via Behaviour Cloning (Pomerleau, |[1991; |Ross & Bagnell, |2010). However, they often suffer
covariant shift problems due to insufficient expert training data. The modern approach GAIL (Ho
& Ermon, 2016) uses the idea of generative adversarial networks to learn a discriminator that
distinguishes between learner trajectories and expert trajectories. The agent explores the environment
and learns to mimic the expert’s trajectory. SAM (Sasaki et al., 2018)) and DAC (Kostrikov et al.}
2019) continue the idea of GAIL and address the sample efficiency problem. OPOLO (Zhu et al.,
2020) also proposes a sample efficient learning from the observation (LfO) approach that allows for
non-policy-based optimization.

Inverse Reinforcement Learning (IRL). IRL is a type of imitation learning that learns policies by
recovering reward functions to match the trajectories demonstrated by experts (Argall et al.,|2009).
Early IRL methods such as MaxEntIRL (Boularias et al., 2011} [Ziebart et al., 2008) minimize the
KL divergence between the learner trajectory distribution and the expert trajectory distribution in the
maximum entropy RL framework. However, those IRL methods often involve a double-loop learning
process in which the outer loop learns the reward function and the inner loop solves the forward RL
learning problem. AIRL (Fu et al.| [2018)) builds on the adversarial learning idea of GAIL by learning
a reward function for reinforcement learning. Moreover, OPIRL (Hoshino et al., 2022) learns an
off-policy reward function and solves the sample inefficiency problem. Recently, PWIL (Dadashi
et al.,[2021) proposes to learn the reward function by measuring the Wasserstein distance between the
learner and the expert, achieving state-of-the-art results.

Differentiable Dynamics for Policy Learning. The differentiability of dynamics models has been
explored to improve the stability and sample efficiency of policy learning. A commonly used paradigm
is to learn a parameterized generative dynamics model by reconstructing the trajectory observations

Under review as a conference paper at ICLR 2023

@WQW@

Expert Trajecory

Learner Trajecory

— Forward

— Backward

(a) MDP Computation Graph (b) ILD Computation Graph

Figure 1: Computational graph of MDP and ILD. A typical Markov decision process (MDP) includes a
reward function to evaluate the performance of a policy and provide learning signals to the learner agent. In
our approach, we eschew the reward function and use differentiable dynamics to dynamically match expert
states and make gradients flow back into the action. This design provides two main benefits: 1) we move away
from the double-loop design in IRL and AIL, avoiding the process of alternating between learning rewards and
learning policies; 2) the analytic gradient from the dynamics provides richer information than a single reward
number, which guides the improvement of actions in local regions, bringing less variance in training and better
performance.

and train a policy by “imagined” trajectories with the learned generative model (Hafner et al.| 2020;
Ma et al.| [2020; Hafner et al.l [2021; |Clavera et al., [2020). However, built upon a learned model,
they suffer temporal accumulative model error and long training time by switching over two loops
for model learning and policy learning (Yu et al., | 2020). Recent advances in differentiable physics
have shown their potential for policy learning by back-propagating the gradients through the physics
operators (Hu et al.,|2019; Lin et al.| 2022; [Huang et al.,|2021; Freeman et al., 2021)). Different from
a learned model, differentiable physics provides a ground-truth understanding of the environment
dynamics and naturally guarantees a good generalization. Nevertheless, the back-propagation through
long temporal non-convex physics operators introduces a complex optimization landscape for policy
learning, and as a result, a learned policy tends to be stuck at local minimums (Freeman et al., 2021).

In contrast to existing methods, ILD avoids learning intermediate signals by computing the analytical
learning gradient directly from the expert demonstration through differentiable physics. The analytical
gradients carry rich information about both the expert intentions, i.e., the reward, and the specifications
of the environment dynamics. Meanwhile, ILD dynamically selects local optimization goals for each
state in the rollout trajectory, which gives a simpler optimization landscape for policy learning.

3 IMITATION LEARNING VIA DIFFERENTIABLE PHYSICS

We propose Imitation Learning via Differentiable Physics (ILD), which learns from expert demon-
strations via differentiable physics without any additional intermediate signals, e.g., reward functions
in IRL. We assume that the underlying transition function of the task is built on a set of physics rules
so that the cumulative compound error is small compared to a dynamics model learned from data.
Take a point-mass system as an example:

f

Tpp1 =Ty + At - vy ’UtJrl:'Ut‘f'At'E

where the force f is the action input to the system, v, is the speed and z; is the position of the point
with mass m. The new position x4 ; can be computed analytically based on the physics properties
such as the mass m. More importantly, such a system is differentiable and can carry the gradient from
the output state x; 11 directly to the input force f. The same idea generalizes to more complex physics
systems such as dynamics of deformable objects like cloth and liquid. For simplicity, we abuse
the notation of physics and dynamics in this work. The gist of ILD is to consider the differentiable
dynamics as a physics prior and incorporate it into the computational graph for policy learning. With
differentiable dynamics, future states in the trajectory can exert influence on early actions. In this
way, ILD can leverage the rich information from future states and learn a policy that is aware of the
environment specifications. However, having a rich set of information does not necessarily lead to
an optimal policy due to the complex optimization landscape through BPTT (Freeman et al., 2021).
Therefore, we further decompose the optimization problem into many small and simple sub-steps by
selecting suitable local learning such that each local goal can be effectively learned via differentiable
dynamics.

Under review as a conference paper at ICLR 2023

4 Expert Trajecory Expert Trajecory EXPE"t Trajecory
.‘ .
i :) A LAY
H\\\\Leamer Trajecory M\‘\\Leamer Trajecory H\‘\-\‘\ Learner Trajecory
(a) L2 Loss (b) Deviation Loss (c) Coverage Loss

Figure 2: Illustration of different loss functions. Both green dots and blue dots are the states in their trajectories.
The L2 loss has a one-to-one matching, but the learning goal can be extremely difficult when later states deviate
too much from the expert trajectory. The deviation loss only matches the closest state in the expert trajectory to
reduce the difficulty of the learning goals, constraining the exploration space to be close to the expert trajectory.
The coverage loss pulls the nearest states in the learner trajectory to be close to every state in the expert trajectory.

3.1 DIFFERENTIABLE PHYSICS AS COMPUTATIONAL GRAPHS

The computation graph of our method can be found in figure[] In a detailed view, our method ILD
first rolls out the dynamics with the learner agent 7y to interact with the environment to collect state
trajectories. At each step ¢ the learner policy 7y (a;|s;) outputs the means and variances for all the
action dimensions to sample actions, and the reparameterization trick (Kingma & Welling} 2014) is
used to allow the gradient to flow through the sampling process. By iteratively unrolling the dynamics
with the learner policy my, we observe a trajectory 7y in the form of a list of states sg.zy and a list
of actions ag. . Treating the environment dynamics as a function 7'(s¢41]s¢, at), we can view the
trajectory unrolling process as a temporal computation graph, s1.z = G(sg, ao.z), where sg and
ag.g are the inputs and s1.y denotes the outputs. Therefore, we can compute gradients regarding the
action inputs. Since actions a; are conditioned on the policy parameters 6, the entire computation
graph G can be reduced to s1.i5 = G(sg, 0) that outputs a list of states s1. and a list of actions ag. .
Most importantly, by the virtue of differentiable dynamics, the entire computation graph G crossing
multiple steps is fully differentiable.

In contrast to BC that minimizes the action distance D,(a ~ my||a* ~ Teyp) between the learner
and the expert, we are minimizing the state distance D (s ~ Ty||g ~ Texp) between the learner agent
trajectory and the expert trajectory by differentiating through the temporal computation graph G. Such
a design choice enables ILD with self-supervision in the unseen environment and hence addresses the
covariant shift issue. To minimize the distance between the learner agent trajectories and the expert
demonstrations, the first option is to apply a direct L2 loss between them, and back-propagate the
gradient through the differentiable dynamics:

T
arg main Z Z(gt - St)2

s~Tg t=0

Based on the L2 loss objective function, each state g, in expert demonstrations can be considered as a
local learning goal at the time step ¢ for the leaner agent to achieve. However, the objective function
above suffers an issue of enforcing exact match between the state s; in leaner policy trajectories and
the state g;. The corresponding learning goal g; for each s; may be impractical to achieve as the s;
and g, can be far away at the beginning of the training state. However, such impractical goals exceed
the capability that the differentiable dynamics can offer and hence often result in local optima.

3.2 IMITATION LEARNING VIA DIFFERENTIABLE PHYSICS

Considering the impractical learning goals in the L2 objective, we develop a new approach called
Imitation Learning via Differentiable Physics (ILD). ILD considers the states in the imitation learning
task as a set of unordered points and matches them to the expert demonstration. We introduce
Chamfer-« loss for trajectory matching with the expert. Instead of selecting those faraway correct but
impractical goals, ILD dynamically selects the nearest local goals to the demonstrated states, which
gives a simpler optimization landscape. Specifically, Chamfer-« loss can be separated into two parts,
deviation loss and coverage loss.

Under review as a conference paper at ICLR 2023

Algorithm 1 Imitation Learning via Differentiable Physics

Require: I Optimization Iteration

Ensure: The best estimated policy

: Collect J = 1 expert demonstrations.

. Initialize the stochastic policy as my.

: Pretraining 7y using Behaviour Cloning.

: for optimization iterationi =1---7 do
Evaluate and optimize policy

AW N =

5: Roll out trajectories 7y
6: Compute loss function L:
L= 3 min g~ slE +ars 3 min flg 5,3
‘Texp| 94 E€Texp S€To |TG| Pp=p 9T
7: Update the policy 7y with analytical gradient /¢ L.

end for
9: Return the policy my.

o0

Deviation loss. The Equation (T)) shows the deviation loss function Lg for selecting the suitable goals.
For each state s € 7y, we treat it as a local optimization problem and set the learning goal to the
nearest state g € Texp. The intention is to select the easier goals for the agent to follow. Concretely,
this helps to constrain the gradient scale such that we can obtain a more stable optimization process
during the BPTT with physics operators. The summation term measures the deviation loss between
the learner policy roll-outs and expert demonstration. The intuition is that the learned policy should
produce states similar to those from the expert policy and not deviate too much. We present the
deviation loss as follows:

1 .
Lqi= — E min ||g — 5|3 1)
Xp

However, deviation loss alone may cause the “state collapse” issue. For example, it is possible that all
st € Ty are close to a small subset of 7.y, with low deviation cost. As a result, deviation loss provides
no coverage to the expert trajectory and is hence sub-optimal. Therefore, the ultimate goal is to learn
g that covers all the states of a trajectory ey, and at the same time stays close to the expert states.

Coverage loss. To ensure all states in the expert trajectory are covered by the learner policy, we
introduce an extra coverage loss in Eqn. [2}

1

B ‘Texpl

Ly > min g — s[l3. ©)

gt ETexp

Intuitively, the coverage loss guarantees that each state in the expert trajectory be close to the
rollout trajectory generated by the learner policy. This naturally alleviates the ““state collapse” issue
introduced by the deviation loss. Combining the deviation loss and coverage loss, we introduce
Chamfer-« loss function for ILD:

Lewfo = La+ oLy = Tl
exp

S minlg sl +o 3 min lg- sl G)
gy "< 7ol iz, o€
Although derived from different objectives, Eqn. [3|resembles the Chamfer distance for measuring the
distance between two sets, which is widely used in computer vision (Butt & Maragos|, |1998; Ma et al.}
20105 |(Chen et al., [2021)). Thus, we name our loss as Chamfer-«, which balances the ratio between
deviation and coverage loss with a hyper-parameter «.. In our experiments, we observe that having
a lower « can shape the learned policy to imitate the expert at a global level and hence has a faster
convergence. However, there is a trade-off between the convergence speed and final performance
as the larger deviation factor converges slower but the final performance can be better. A visual
illustration of Chamfer-« loss is shown in figure

We summarize our method in Algorithm [T} We first collect J = 1 episode expert demonstration
and use the standard supervised behavior cloning to bootstrap the policy learning using the expert
demonstration. Next, we roll out the dynamics with a large batch of learner policy trajectories in

Under review as a conference paper at ICLR 2023

hopper humanoid reacher

600 o ——— 200 -25 R
200 U -50 o~
600
-75
-100

400 -125
0 300 -150

150 500

N NN A
/'/’ 50 200 -175
-200 -200
) 3 3 2 00 05 10 15 20 6 2 4 6 8 10 0.00 0.25 050 0.75 1.00 1.25 1.50
walker2d swimmer inverted_pendulum acrobot
225 T —————— 13 : 200
—_— N ;
200 : 13 175
175 : i o 150
122 I e Y N 130 : S12s
100 0 Wt A7 gl 128 ! < 100 DAC
o 126 ! s — PWIL
o '
0 > 124 ; 50 —— ours
25 _3 122 i 0.00 0.25 0.50 0.75 1.00 1.25 1.50

0.0 0.2 0.4 06 0.8 1.0 1.2 1.4 00 05 1.0 15 20 25 3.0 0.0 0.5 1.0 1.5 2.0 Hours

Figure 3: Relative wall time performance. We evaluate ILD on the Brax MuJoCo (Freeman et al [2021)
tasks and only one expert demonstration is provided to all the IL. methods. The results show that our method
generally outperforms the SOTA methods, with a much faster convergence speed, a more stable learning process,
and smaller variance. The differentiable dynamics gives a single-loop training process and avoids the noisy
intermediate signal. In addition, in difficult tasks such as ant, walker2d and humanoid, ILD outperforms the
other baselines by a large margin given limited training time, because the differentiable physics helps to reserve
more information embedded in the trajectories. Given an hour of training time (indicated by the vertical dashed
line), we achieve 36% higher performance on average over all the tasks and baselines.

parallel to speed up the training. With the objective function (3) defined above, we compute the loss
and update the policy parameters 6.

4 EXPERIMENT

We evaluate our method on Brax (Freeman et al.l [2021) environments, providing a variety of dif-
ferentiable MuJoCo-like continuous control tasks. In addition, we have developed a new robotic
deformable object manipulation task, which requires hanging a piece of cloth on a stand, to demon-
strate the generality of our approach to changing environment dynamics.

We compare our approach with two state-of-the-art IL methods, PWIL (Dadashi et al., 2021} from
inverse reinforcement learning (IRL) and DAC (Kostrikov et al.,[2019) from adversarial imitation
learning (AIL). We follow their official published implementation and change the evaluation tasks to
differentiable environments. For a fair comparison, we change their subsampling rate to use a single
expert episode for training.

In our experiments, we aim to answer the following questions: 1) Can our method ILD recover
expert behavior? 2) How fast does ILD converge? 3) Is ILD generalizable to complex deformable
object manipulation tasks with changing dynamics? 4) What are the core parameters that influence
performance?

4.1 BRAX CONTINUOUS CONTROL TASKS

We evaluate our approach on the 8 Brax continuous control MuJoCo-like tasks: Ant, Hopper,
Humanoid, Reacher, Walker2d, Swimmer, Inverted Pendulum, and Acrobot. For each task, we train a
PPO (Schulman et al.| 2017) agent to act as an expert. The episode length for all tasks is 128, and
we collect only one expert episode for each task, which is used to train the IL agent. Each number
reported in the result table is evaluated with 3 different seeds.

Results and Discussions. The overall performance is presented in Table[2]and the detailed training
curves are given in figure [3] We observe that ILD outperforms the SOTA methods on 6 out of
8 tasks, and achieves comparable performance on the remaining 2 tasks. Also, with only one
expert demonstration, ILD generally recovers the expert behavior and mostly achieves comparable
performance. Specifically, we notice that the performance gain of ILD increases as the complexity
of the task increases. For example, ILD achieves comparable performance with the baselines on

Under review as a conference paper at ICLR 2023

Table 2: Brax MuJoCo Task Results
Ant Hopper Humanoid Reacher Walker2d Swimmer Inverted pendulum Acrobot

DAC 393.57 220.54 256.63 -21.52 93.19 4.52 128.00 185.26
PWIL -1.98 205.72 722.41 -47.19 205.78 1.98 128.00 157.03
ILD(ours) 594.88 243.93 736.87 -22.86 214.17 4.54 128.00 202.74
Expert 624.34 292.83 933.24 -22.49 289.14 4.29 128.00 200.80

g

(a) Initial State (b) Goal State

Figure 4: Deformable cloth manipulation. The task is to control two grippers (dark color) to hang the piece of
cloth on the pole. Image (a) shows the initial state and image (b) shows the target state. This task is challenging
because the dynamics are complex and the observation space is huge, with 1,736 dimensions.

the relatively easy task of Inverted Pendulum but outperforms the baselines on Ant environment.
In addition, figure [3] shows that ILD has much lower variance and a more stable training curve
compared with the SOTA methods. We believe both of the above advantages come from the benefits
of differentiable physics. By back-propagating the gradients from states directly to the policy, ILD
avoids the dynamic target introduced by the intermediate signals and stabilizes the training process;
by considering the physics prior for policy learning, ILD obtains a policy that generalizes better to
complex dynamics.

Moreover, although AIL and IRL methods benefit from the sample efficiency of the small number
of interactions with the environment, they often suffer long training time due to the double-loop
structure. Such a double-loop structure involves additional computations and slows down the training
process. In contrast, ILD has a single-loop design and allows the policy to be optimized directly with
the differentiable dynamics. In figure[3] we observe that ILD converges significantly faster than both
DAC and PWIL with a much smoother and stable training curve.

4.2 ROBOT CLOTH MANIPULATION

In this section, we test whether our approach can be generalized to a more complex robotic deformable
object manipulation task, where a piece of cloth is to be hung on a pole. A visualization of this
task can be found in figure] The main challenge of this deformable object manipulation task is
the changing dynamics, where the testing dynamics are different from the demonstrating dynamics.
Specifically, we add additional bias and noise to the input actions of the test environment, making the
dynamics of the test environment different from the dynamics demonstrated by experts. As a result,
we obtain an environment with noisy dynamics and fixed goals. In addition, the high-dimensional
state space of deformable objects makes it hard to extract useful features for policy learning. To
collect demonstrations, we use a handcrafted policy as the expert policy. Similarly, only one trajectory
is used as the demonstration. Implementation details can be found in Appendix.

Results and Discussions. The results of the cloth manipulation can be found in figure[5] The results
show that our method can learn a stable policy in changing dynamics under complex observation
conditions. We outperform the other two baselines, completing the task with a success rate of
1. Specifically, ILD achieves fairly stable performance with low variance even if the environment
dynamics are constantly changing. The success of ILD comes from the physics prior implicitly
encoded in the learner policy, which learns a distribution of the environment specifications and can

Under review as a conference paper at ICLR 2023

Table 3: Brax MuJoCo Ablation Results

Loss Trunc Length Deviation Factor
Chamfer-« L2 1 10 30 100 0 0.2 1 5
ant 583.77 51407 110.07 583.77 -1550 -1629 560.95 583.77 594.88 552.25
hopper 242.27 173.39 5345 24227 217.87 14495 23996 24227 24393 248.76
humanoid 715.14 54294 331.27 715.14 788.84 355.09 70496 715.14 736.87 710.12
reacher -23.18 -22.02 -31.72 -23.18 -2324 -21.99 -7536 -23.18 -22.86 -22.95

recover the expert behavior even with unseen configurations. The other two baselines fail in the
task, even though we have tried hard to tune the parameters such as reducing their learning rate. It is
probably because they have learned a dynamics-coupled reward function or discriminator. When the
dynamics change, the reward function/discriminator they have learned cannot be transferred, thus
causing the failure. In contrast, our approach is not coupled with specific dynamics and thus has
better generalization.

With the recent advances and growing interests

10 reng.cen in differentiable robot simulators, such as Plas-
ticineLab (Huang et all [2021), DiSECt (Hei+
08 den et al.,|2021)), and Scalable Diff (Qiao et al.}
2020), we believe our method could be a good
06 DAC starting point for exploiting the differentiability
g — PWIL of physics simulators to boost the development
® 04 —— ours of robot learning algorithms.
° 4.3 ABLATION STUDY
0.0

" o " e " e In this section, we discuss the core hyperpa-

Hours rameters and algorithm choices that may influ-

ence performance. The results can be found

Figure 5: Deformable cloth manipulation Results. The in Table [3] The reported values in Table [2] are
task of manipulating the cloth has a very sparse reward: trained using the Chamfer-o loss with a trunca-

if the cloth is on the pole at the last step, the reward is 1; tion length of 10, batch size of 360, and devia-
otherwise, all steps are 0. Therefore, the average reward {jon factor of 0.2.

can be interpreted as the task success rate. Compared to

the expert demonstration environment, additional noise ~ Loss Function. We first compare the loss func-
is added to the test environment, so the dynamics of the tions. We replace the original Chamfer-« loss
test environment change. Despite the dynamic change, with a simple step-wise L2 loss to compute the
our method ILD converges quickly and adapts to the djstance between the expert trajectory and the
new environment, while thq other two baselines cannot 1 j116ut trajectory. The results show that the per-
be transferred in the dynamic change. formance of L2 loss is significantly lower com-
pared to our method. This is because L2 loss simply performs a step-wise matching and ignores the
actual distance between the states. As a result, this often introduces goals that are faraway from the
current states and increases the optimization difficulty, especially through the BPTT over complex
physics operators. Thus, it leads to suboptimal behaviors, which is a consistent observation with
Freeman et al. (Freeman et al.| [2021)). In contrast, the proposed Chamfer-a distance selects the
local goal that matches each state, thus reducing the complexity of learning and giving a smoother
optimization landscape.

Truncation Length. We test with different gradient truncation lengths. As shown in the ablation
results table, we find that short truncation lengths such as 1 usually lead to poor performance because
in this case, the policy is trained by one-step signal and ignores the multi-step dynamics of the
environment. However, large truncation lengths tend to lead to gradient explosion and in the end
hinder the stability of the learning process. Nevertheless, when developing the cloth simulation
environment, we observe that if with step-wise gradient normalization, the gradient explosion issue
can be significantly alleviated and the performance of ILD can be generally improved. Empirically, a
truncation length of 10 is a safe choice and often brings good performance.

Deviation Factor. We evaluate the influence of different deviation factors, which balance the
deviation loss and coverage loss. We observe that the best performance is achieved with a deviation
factor 1. However, we also observe that the smaller the factor is, the faster the global convergence

Under review as a conference paper at ICLR 2023

Table 4: Assumptions of Different Methods
Training Phase Testing Phase
RL IRL Planning ILD (ours) RL IRL Planning ILD (ours)

Dynamics Model
Expert Demo
Reward Function
Ground Truth State
Observation

AX A%\
WX XN\
A NSENN
WX X X X
WX X X X
X NIxN
N> X X X

will be, which introduces the trade-off between the final performance and the convergence speed.
In our reported values, we use a deviation factor of 1, but the deviation factor 0.2 produces a
comparable performance with a faster convergence speed, which could be considered for time
sensitive applications. More details are available in the appendix.

4.4 ADDITIONAL DISCUSSIONS

We classify and compare different assumptions of different methods, including RL, IRL, planning,
and ILD in Table[d] In contrast to RL, ILD and IRL do not require reward engineering, which is
challenging and critical in many robotics and control tasks. In contrast to planning methods, ILD and
RL methods are end-to-end policies that can handle image inputs during the testing phase, while
typical planning methods have great difficulties in planning over image observations.

We then discuss the limitations of our method in the following aspects. First, there is a reduced the
applicability of our method due to the assumption of differentiable dynamics. Many games, such
as Atari games and board games, are not differentiable and thus cannot be applied. However, many
valuable robotic tasks are indeed differentiable, because the underlying physics laws are differentiable.
Trends in differentiable physics engines have emerged, such as PlasticineLab (Huang et al.| [2021) for
robotic deformable object manipulation, DiSECt (Heiden et al., | 2021)) for robotic knife cutting, and
Scalable Diff (Qiao et al.|[2020). If we can apply our approach to the above fields, we have taken a
step towards the ultimate intelligent robot, despite the fact that more differentiable simulations will
emerge in the future.

Finally, the domain mismatch between the simulation and the real world poses a real challenge.
This challenge is precisely related to the sim-to-real problem, i.e., policies learned in simulations
that are transferred to the real world. Since the sim-to-real problem is not our focus, we can apply
existing methods to facilitate sim-to-real transfer, including: 1) Domain randomization (Akkaya
et al.,|2019; Tobin et al., [2018}; |Chebotar et al., |2019). For example, OpenAl (Akkaya et al.,2019)
learns a policy in simulation only, but solves a Rubik’s cube with real robot hands. The key idea is
domain randomization, which randomizes textures, masses, object sizes, etc.. 2) Domain adaptation.
It (James et al., 2019; |Carlson et al., [2019) converts real-world observations into a similar form
for policy trained in simulations. 3) System identification. Fast model identification (Zhu et al.|
2017) and Tunenet (Allevato et al.,|2020) identify environmental parameters and build more realistic
dynamics models. In addition, differentiable dynamics has great potential to better estimate the
simulator parameters using analytical gradients. We leave the sim-to-real problem using differentiable
dynamics for future study.

5 CONCLUSION

In this work, we identify the benefits of differentiable dynamics and propose to use differentiable
dynamics to learn IL agents. The core advantage of our approach is to move away from the traditional
double-loop learning design and avoid the noisy intermediate learning signal. The differentiable
dynamics provides us with a new type of IL algorithm and brings better performance and remarkably
lower variance of the learned IL agent. The use of Chamfer-a distance enables dynamic selection of
local targets, significantly reducing the learning difficulty and giving better performance. In future
work, we will further address the sample efficiency issue by using small batches and short rollout
trajectories. At the same time, we should target more challenging tasks, such as manipulation tasks
of various robotic deformable objects. We conclude that our IL learning method has only a single
learning loop, but outperforms other IL baselines. In addition, we demonstrate that our approach has
great potential for more challenging but valuable robotic deformable manipulation tasks.

Under review as a conference paper at ICLR 2023

ETHICS STATEMENT

ILD is a general imitation learning method that requires differentiable dynamics. Working together
with the sim2real methods, it may be effective for real robots. Caution should be taken when the
method is deployed on real robots to prevent misuse of the proposed method. In summary, we have
read the Code of Ethics and ensured that our work conforms to it.

REPRODUCIBILITY STATEMENT

We have tested the stability and reliability of our approach with multiple seeds on a variety of different
tasks. Our code is included in the supplemental files. We will release the code upon publication.

REFERENCES

Ilge Akkaya, Marcin Andrychowicz, Maciek Chociej, Mateusz Litwin, Bob McGrew, Arthur Petron,
Alex Paino, Matthias Plappert, Glenn Powell, Raphael Ribas, et al. Solving rubik’s cube with a
robot hand. arXiv preprint arXiv:1910.07113, 2019.

Adam Allevato, Elaine Schaertl Short, Mitch Pryor, and Andrea Thomaz. Tunenet: One-shot residual
tuning for system identification and sim-to-real robot task transfer. In Conference on Robot
Learning, pp. 445-455. PMLR, 2020.

Brenna D Argall, Sonia Chernova, Manuela Veloso, and Brett Browning. A survey of robot learning
from demonstration. Robotics and autonomous systems, 57(5):469-483, 2009.

Abdeslam Boularias, Jens Kober, and Jan Peters. Relative entropy inverse reinforcement learning. In
AISTATS, 2011.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and
Qiao Zhang. JAX: composable transformations of Python+NumPy programs, 2018. URL
http://github.com/google/jaxk

M Akmal Butt and Petros Maragos. Optimum design of Chamfer distance transforms. [EEE
Transactions on Image Processing, 7(10):1477-1484, 1998.

Alexandra Carlson, Katherine A Skinner, Ram Vasudevan, and Matthew Johnson-Roberson. Sensor
transfer: Learning optimal sensor effect image augmentation for sim-to-real domain adaptation.
IEEE Robotics and Automation Letters, 4(3):2431-2438, 2019.

Yevgen Chebotar, Ankur Handa, Viktor Makoviychuk, Miles Macklin, Jan Issac, Nathan Ratliff, and
Dieter Fox. Closing the sim-to-real loop: Adapting simulation randomization with real world
experience. In 2019 International Conference on Robotics and Automation (ICRA), pp. 8973-8979.
IEEE, 2019.

Siwei Chen, Xiao Ma, Yunfan Lu, and David Hsu. Ab Initio Particle-based Object Manipulation. In
Proceedings of Robotics: Science and Systems, Virtual, July 2021. doi: 10.15607/RSS.2021.XVII.
071.

Ignasi Clavera, Violet Fu, and Pieter Abbeel. Model-augmented actor-critic: Backpropagating
through paths. ICLR, 2020.

Robert Dadashi, Léonard Hussenot, Matthieu Geist, and Olivier Pietquin. Primal Wasserstein
imitation learning. /ICLR, 2021.

C Daniel Freeman, Erik Frey, Anton Raichuk, Sertan Girgin, Igor Mordatch, and Olivier Bachem.
Brax — a differentiable physics engine for large scale rigid body simulation. NeurIPS Datasets and
Benchmakrs, 2021.

Justin Fu, Katie Luo, and Sergey Levine. Learning robust rewards with adversarial inverse reinforce-
ment learning. /ICLR, 2018.

10

http://github.com/google/jax

Under review as a conference paper at ICLR 2023

Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to control: Learning
behaviors by latent imagination. /CLR, 2020.

Danijar Hafner, Timothy Lillicrap, Mohammad Norouzi, and Jimmy Ba. Mastering atari with discrete
world models. ICLR, 2021.

Jonathan Heek, Anselm Levskaya, Avital Oliver, Marvin Ritter, Bertrand Rondepierre, Andreas
Steiner, and Marc van Zee. Flax: A neural network library and ecosystem for JAX, 2020. URL
http://github.com/google/flaxl

Eric Heiden, Miles Macklin, Yashraj Narang, Dieter Fox, Animesh Garg, and Fabio Ramos. Disect:
A differentiable simulation engine for autonomous robotic cutting. RSS, 2021.

Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. NeurIPS, 2016.

Hana Hoshino, Kei Ota, Asako Kanezaki, and Rio Yokota. OPIRL: Sample efficient off-policy
inverse reinforcement learning via distribution matching. /CRA, 2022.

Yuanming Hu, Tzu-Mao Li, Luke Anderson, Jonathan Ragan-Kelley, and Frédo Durand. Taichi: a
language for high-performance computation on spatially sparse data structures. ACM Transactions
on Graphics (TOG), 38(6):201, 2019.

Zhiao Huang, Yuanming Hu, Tao Du, Siyuan Zhou, Hao Su, Joshua B Tenenbaum, and Chuang Gan.
Plasticinelab: A soft-body manipulation benchmark with differentiable physics. /CLR, 2021.

Stephen James, Paul Wohlhart, Mrinal Kalakrishnan, Dmitry Kalashnikov, Alex Irpan, Julian Ibarz,
Sergey Levine, Raia Hadsell, and Konstantinos Bousmalis. Sim-to-real via sim-to-sim: Data-
efficient robotic grasping via randomized-to-canonical adaptation networks. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12627-12637, 2019.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. ICLR, 2014.

Ilya Kostrikov, Kumar Krishna Agrawal, Debidatta Dwibedi, Sergey Levine, and Jonathan Tompson.
Discriminator-actor-critic: Addressing sample inefficiency and reward bias in adversarial imitation
learning. ICLR, 2019.

Xingyu Lin, Zhiao Huang, Yunzhu Li, Joshua B Tenenbaum, David Held, and Chuang Gan. Diffskill:
Skill abstraction from differentiable physics for deformable object manipulations with tools. ICLR,
2022.

Tianyang Ma, Xingwei Yang, and Longin Jan Latecki. Boosting Chamfer matching by learning
chamfer distance normalization. In ECCV, 2010.

Xiao Ma, Siwei Chen, David Hsu, and Wee Sun Lee. Contrastive variational model-based reinforce-
ment learning for complex observations. In Proceedings of the 4th Conference on Robot Learning,
2020.

Dean A Pomerleau. Efficient training of artificial neural networks for autonomous navigation. Neural
computation, 3(1):88-97, 1991.

Yi-Ling Qiao, Junbang Liang, Vladlen Koltun, and Ming C. Lin. Scalable differentiable physics for
learning and control. In ICML, 2020.

Arthur George Richards. Robust constrained model predictive control. PhD thesis, Massachusetts
Institute of Technology, 2005.

Stéphane Ross and Drew Bagnell. Efficient reductions for imitation learning. In AISTATS, 2010.

Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation learning and structured
prediction to no-regret online learning. In AISTATS, 2011.

Fumihiro Sasaki, Tetsuya Yohira, and Atsuo Kawaguchi. Sample efficient imitation learning for
continuous control. In ICLR, 2018.

11

http://github.com/google/flax

Under review as a conference paper at ICLR 2023

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347,2017.

Josh Tobin, Lukas Biewald, Rocky Duan, Marcin Andrychowicz, Ankur Handa, Vikash Kumar, Bob
McGrew, Alex Ray, Jonas Schneider, Peter Welinder, et al. Domain randomization and generative
models for robotic grasping. In 2018 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pp. 3482-3489. IEEE, 2018.

Jie Xu, Viktor Makoviychuk, Yashraj Narang, Fabio Ramos, Wojciech Matusik, Animesh Garg, and
Miles Macklin. Accelerated policy learning with parallel differentiable simulation. In International
Conference on Learning Representations, 2021.

Tianhe Yu, Garrett Thomas, Lantao Yu, Stefano Ermon, James Y Zou, Sergey Levine, Chelsea Finn,
and Tengyu Ma. MOPO: Model-based offline policy optimization. NeurIPS, 2020.

Andy Zeng, Pete Florence, Jonathan Tompson, Stefan Welker, Jonathan Chien, Maria Attarian, Travis
Armstrong, Ivan Krasin, Dan Duong, Vikas Sindhwani, et al. Transporter networks: Rearranging
the visual world for robotic manipulation. CoRL, 2020.

Shaojun Zhu, Andrew Kimmel, Kostas E Bekris, and Abdeslam Boularias. Fast model identification
via physics engines for data-efficient policy search. arXiv preprint arXiv:1710.08893, 2017.

Zhuangdi Zhu, Kaixiang Lin, Bo Dai, and Jiayu Zhou. Off-policy imitation learning from observations.
NeurlPS, 2020.

Brian D Ziebart, Andrew L Maas, J] Andrew Bagnell, Anind K Dey, et al. Maximum entropy inverse
reinforcement learning. In AAAI, 2008.

APPENDIX

A EXPERIMENTS
A.1 DEVIATION FACTOR

ant humanoid hopper reacher

600
500
400
300
200
100

250 0

200 -50

df 0.0
— df 02
—— df 1.0
— df 5.0

150

Reward
5
8

100 -150

50 -200

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
0.0 0.5 1.0 15 2.0 Hours

Figure 6: The training curves with different deviation factors. Setting the deviation factor to 0 or 5 will make
the training unstable. However, ILD is less sensitive to moderate deviation values such as 0.2 to 1.

In figure[6] we show more details about the deviation factor. In general, if we do not force the learner
state to be close to the expert state, i.e., set the deviation factor to 0, then the training process is
unstable and tends to be suboptimal. On the other hand, if we focus too much on local state matching
and set the deviation factor to 5, the learner policy tends to be conservative and unstable. Between
these two, ILD is robust to deviation factors from 0.2 to 1 and does not vary much. In addition to this,
if we compare 0.2 with 1.0, the smaller deviation factor learns slightly faster than the larger value,
however, as a trade-off, its final performance is lower.

A.2 ABLATION STUDY

In Table[5] we show the results of ablation studies for eight Brax tasks, and a variant ILD-no-BC. The
variant ILD-no-BC is our method that does not use expert actions for supervised learning to initialize
the neural network. It shows that our proposed method does not rely on BC. without BC, ILD still
achieves comparable performance in most tasks. The only problem is that the ILD without BC is

12

Under review as a conference paper at ICLR 2023

Table 5: Brax MuJoCo Ablation Results

Loss Trunc Length Deviation Factor
ILD-no-BC Chamfer-o L2 1 10 30 100 0 0.2 1 5

ant 594.66 583.77 514.07 110.07 583.77 -15.50 -16.29 560.95 583.77 594.88 552.25
hopper 253.33 242.27 173.39 53.45 242.27 217.87 144.95 239.96 242.27 243.93 248.76
humanoid 657.66 715.14 542.94 331.27 715.14 788.84 355.09 704.96 715.14 736.87 710.12
reacher -20.66 -23.18 -22.02 -31.72 -23.18 -23.24 -21.99 -75.36 -23.18 -22.86 -22.95
walker2d 213.26 209.00 240.33 72.13 209.00 203.53 61.77 214.00 209.00 215.90 214.43

swimmer 4.50 4.57 4.56 3.70 4.57 4.53 4.56 4.53 4.57 4.51 4.53
inverted_pendulum 128.00 128.00 128.00 128.00 128.00 128.00 128.00 128.00 128.00 128.00 128.00
acrobot 70 201.60 194.67 201.67 201.60 202.07 202.06 201.67 201.6 202.06 202.27

less stable than the BC version on Acrobot. However, we believe that this does not affect the final
conclusion. The ablation results of the other four tasks agree with the conclusion that the gradient
truncation length cannot be too small or too long and Chamfer-alpha performs better than L2 loss in
an overview.

A.3 REINFORCEMENT LEARNING AND PLANNING BASELINE

Table 6: Brax MuJoCo RL and Planning Results

Ant Hopper Humanoid Reacher Walker2d Swimmer Inverted pendulum Acrobot
SHAC -325.93 25.50 208.86 -17.23 88.73 4.60 128.00 160.23
CEM-MPC -281.45 274.32 569.28 -139.19 276.08 10.60 128.00 154.71
ILD (ours) 594.88 243.93 736.87 -22.86 214.17 4.54 128.00 202.74
Expert 62434 292.83 933.24 -22.49 289.14 4.29 128.00 200.80

We added another additional reinforcement learning baseline, SHAC (Xu et al.,|2021)) that exploits
differentiable dynamics and planning baseline CEM-MPC (Richards}, 2005). We implemented SHAC
in JAX following the official implementation of PyTorch. Shown in Table[6] ILD achieved better
results than SHAC on 6 out of 8 tasks for the same number of environmental interactions. We
observed that SHAC is sensitive to hyperparameters and that hyperparameters have to be adjusted
on a case-by-case basis. Given the time constraints, we used the same set of hyperparameters in all
experiments. However, SHAC is a pure reinforcement learning algorithm, which requires an ground
truth reward function, whereas the imitation learning method ILD does not. The baseline CEM-MPC
accesses to the dynamics model and ground truth state during the test time, while ILD only uses
observations. In the other tasks which only have image observations as input, planning-based methods
have difficulties running. Therefore, we used the newly added results as a reference only and not as
comparable baselines.

A.4 MULTIPLE EXPERT DEMONSTRATIONS

Table 7: Brax MuJoCo ILD with Multiple Demonstration Results

Ant Hopper Humanoid Reacher Walker2d Swimmer Inverted pend Acrobot

ILD-16 641.36+£6.09 283.96+1.17 838.83+ 26.87 -20.9140.68 382.73+31.95 5.0740.02 128.004-0.00 202.7340.05
ILD-topl 633.80+£9.21 294.10+1.12 912.93+40.98 -29.3640.07 419.83+14.15 5.11+0.01 128.004-0.00 202.7340.05

Expert 661.85+6.59 309.19+13.48 962.37£17.55 -5.99+1.45 421.4548.00 5.18+0.09 128.0040.00 202.64£0.19

To take advantage of more expert demonstration data, we add additional experiments comparing
the ILD trained with 16 demonstrations to the ILD trained with the best of the 16 trajectories. Our
results show that the ILD with only one trajectory actually outperforms the version with multiple
trajectories. This is because ILD can successfully exploit expert information and therefore have high
sample efficiency. In addition, the expert arguments contain uncertainties. Suboptimal trajectories
actually hinder the overall performance. In conclusion, given its high sample efficiency, it is sufficient
for ILD to use only one high-quality expert demonstration.

13

Under review as a conference paper at ICLR 2023

A.5 ILD IMPLEMENTATION DETAILS ON BRAX

In contrast to the IRL and AIL methods, our method ILD has only one policy network consisting of
three MLP layers with Swish activation. The number of their hidden neurons is 512, 256, and the
corresponding action dimension of the task, respectively. We clip the gradients with a maximum
gradient norm value of 0.3 to regularize the learning process. To speed up the convergence, we use a
batch size of 360 on an NVIDIA A100 graphics card. The deviation factor o and gradient truncation
length are set to 1 and 10, respectively. We train our policy network with an Adam optimizer with a
learning rate of 0.001 for 5,000 updates. The entire script is written by Flax (Heek et al.,2020) and
JAX (Bradbury et al.|[2018)). For a fair comparison, all methods use the same amount of computational
resource.

B CLOTH MANIPULATION

B.1 CLOTH SIMULATION DETAILS

Our cloth simulator is written in Jax and developed on top of the Taichi (Hu et al., [2019) implementa-
tion. As shown in figure[d] a piece of cloth is lying on the ground and the goal is to put this cloth on a
pole by controlling two black grippers. The state of the cloth consists of 288 key points in the shape
of (288, 6), where the 6 dimensions are position and velocity. The underlying physics engine is built
on Hooke’s law, as shown below:

fi =Y —k(llzi = w2 — lij)(x: — x5)
i

'Ut+1:'Ut+At'i
m

Tep1 = Ty + At - v

where f; is the force at the ¢y, point, j refers to the jy, neighbor, x; is the position of the iy, point,
and [;; is the rest distance. In general, the longer the stretching distance, the higher the resistance
force. By averaging the forces of all neighbors, we can calculate the next state of the point. In more
detail, we set At to 2e-3 and repeat the above update equation 50 times for each robot action input.
Thus, the dynamics of the deformable object is accumulated through time and the computational
graph is long. To alleviate the gradient explosion and gradient vanishing problems, we normalize the
gradients at each step of the backpropagation process.

B.2 ILD IMPLEMENTATION DETAILS

. We develop a cloth dynamics engine in JAX following the implementation of Taichi (Hu et al.,
2019). The observation space for this task has 1,736 dimensions and consists of 288 key nodes on the
cloth and 2 gripper states. The action space consists of 6 dimensions that control the speed of the
two grasps. We assume that the two grippers have grabbed the two corners of the cloth. To facilitate
the evaluation, we define a reward function that is 1 if the cloth is on the pole at the last step and 0
otherwise. This reward function also indicates the success rate of the training agent. The episode
length for this task is 80 and a single expert demonstration is provided for all methods. We use the
same implementation as the Brax environment with 3 MLP layers. In the complex task setting, we
reduce the batch size from 360 to 50 due to hardware memory limitations. The learning rate is set to
le~* and the rest is the same.

14

	Introduction
	Related Works
	Imitation Learning via Differentiable Physics
	Differentiable Physics as Computational Graphs
	Imitation Learning via Differentiable Physics

	Experiment
	Brax Continuous Control Tasks
	Robot Cloth Manipulation
	Ablation Study
	Additional Discussions

	Conclusion
	Experiments
	Deviation Factor
	Ablation Study
	Reinforcement Learning and Planning Baseline
	Multiple Expert Demonstrations
	ILD Implementation Details on Brax

	Cloth Manipulation
	Cloth Simulation Details
	ILD Implementation Details

