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Summary
Off-policy policy evaluation (OPE), an essential component of reinforcement learning, has

long suffered from stationary state distribution mismatch, undermining both stability and ac-
curacy of OPE estimates. While existing methods correct distribution shifts by estimating den-
sity ratios, they often rely on expensive optimization or backward Bellman-based updates and
struggle to outperform simpler baselines. We introduce AVG-DICE, a computationally sim-
ple Monte Carlo estimator for the density ratio that averages discounted importance sampling
ratios, providing an unbiased and consistent correction. AVG-DICE extends naturally to non-
linear function approximation using regression, which we roughly tune and test on OPE tasks
based on Mujoco Gym environments and compare with state-of-the-art density-ratio estimators
using their reported hyperparameters. In our experiments, AVG-DICE is at least as accurate
as state-of-the-art estimators and sometimes offers orders-of-magnitude improvements. How-
ever, a sensitivity analysis shows that best-performing hyperparameters may vary substantially
across different discount factors, so a re-tuning is suggested.

Contribution(s)
1. We reformulate the state distribution ratio between the discounted stationary distribution of

the target policy and the undiscounted stationary distribution of the behaviour policy as a
new consistent estimator, leveraging a dataset collected under the behaviour policy.

2. We show that this consistent estimator corrects state distribution shifts in off-policy data,
and reweighting each data point with our estimator provides an unbiased estimate for any
function.

3. We introduce AVG-DICE, an algorithm that estimates density ratios via regression.

4. We prove the convergence of our update rules under linear function approximation.

5. We evaluate AVG-DICE against prior algorithms and demonstrate that it achieves either
dominant or comparable performance across all baselines.
Context: Our algorithm is sensitive to changes in the discount factor, and we recommend
re-tuning it for each discount setting to ensure optimal performance.
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Abstract

Off-policy policy evaluation (OPE), an essential component of reinforcement learning,1
has long suffered from stationary state distribution mismatch, undermining both stabil-2
ity and accuracy of OPE estimates. While existing methods correct distribution shifts3
by estimating density ratios, they often rely on expensive optimization or backward4
Bellman-based updates and struggle to outperform simpler baselines. We introduce5
AVG-DICE, a computationally simple Monte Carlo estimator for the density ratio that6
averages discounted importance sampling ratios, providing an unbiased and consistent7
correction. AVG-DICE extends naturally to nonlinear function approximation using8
regression, which we roughly tune and test on OPE tasks based on Mujoco Gym envi-9
ronments and compare with state-of-the-art density-ratio estimators using their reported10
hyperparameters. In our experiments, AVG-DICE is at least as accurate as state-of-the-11
art estimators and sometimes offers orders-of-magnitude improvements. However, a12
sensitivity analysis shows that best-performing hyperparameters may vary substantially13
across different discount factors, so a re-tuning is suggested.14

1 Introduction15

Off-policy evaluation (OPE) aims to estimate the expected cumulative return of a target policy using16
data collected from a different behaviour policy. Assessing a policy with pre-collected data before17
deployment is crucial, as executing an unqualified policy can lead to undesirable consequences18
(Levine et al. 2020), including life-threatening risks in applications such as surgical robotics and self-19
driving vehicles. A straightforward approach is to directly average the observed rewards. However,20
distribution shift introduces bias into value estimation, and even temporal difference methods cannot21
provide an unbiased evaluation of the target policy under such shifts (Sutton et al. 2016).22

A common approach to addressing distribution shift is importance sampling (IS) (Precup et al. 2001),23
which reweights samples based on the ratio between two distributions to provide an unbiased estima-24
tion. However, when correcting cumulative returns along a trajectory, IS requires multiplying these25
ratios over multiple steps, leading to high variance — a problem known as the curse of the horizon.26
To mitigate this, researchers have explored marginalized IS ratios for stationary state distributions27
(Liu et al. 2018). Current estimators leverage the recursive property of stationary distributions to28
formulate optimization tasks. This recursion results in a backward Bellman-based update, where29
the value at the next step depends on the current step’s value (Hallak & Mannor 2017). However,30
the expectation in the backward Bellman recursion cannot be unbiasedly evaluated without double31
sampling. Moreover, off-policy Bellman updates with function approximation, known as the deadly32
triad (Baird 1995), are prone to instability and typically lack convergence guarantees.33

Several studies have proposed novel optimization frameworks, such as primal-dual optimization34
(Nachum et al. 2019) or multistage optimization (Uehara et al. 2020), to avoid directly minimizing35
the backward Bellman error. The optimal solutions corresponding to their novel losses equal to the36
desired state density ratio, proven in the tabular case (Liu et al. 2019). However, these methods37
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introduce additional complexity to the estimation process. This raises an important question: Can38
we revisit Monte Carlo methods to develop a new estimator that is both theoretically sound and39
computationally simpler? Previously, a state distribution corrector based on the Monte Carlo ex-40
pansion of the stationary distribution was developed to account for the missing discount factor in41
stationary state distributions for policy gradient algorithms (Che et al. 2023). However, the idea was42
not explored in the off-policy setting.43

In this paper, we propose a novel estimator for the stationary state distribution ratio, called the av-44
erage state distribution correction estimation (AVG-DICE). It leverages the Monte Carlo expansion45
rather than the recursive property used in prior approaches. Our approach computes the average of46
all discounted importance sampling ratio products corresponding to a given state in the dataset. We47
prove that this method provides a consistent estimation of the density ratio between the discounted48
target and the undiscounted behaviour stationary state distributions. Also, it gives an unbiased esti-49
mation of any function.50

Furthermore, our estimator can be learned via a least squares regression task, offering a simple and51
effective approach to approximating the state distribution ratio. In the case of linear function approx-52
imation, we establish its asymptotic convergence to the same fixed point as minimizing the mean53
squared error with the exact density ratio, under standard assumptions used in temporal difference54
(TD) convergence analysis (Yu 2015).55

To evaluate our estimator, we conduct experiments on several discrete classic control tasks and con-56
tinuous MuJoCo tasks (Todorov et al. 2012), using a pre-collected fixed off-policy dataset with batch57
updates. Our estimator achieves dominant performance on most tasks when appropriately tuned for58
the required discount factor and remains competitive on others. Additionally, it demonstrates the59
fastest convergence to a stable value, making it practical for integration into other algorithms. How-60
ever, our algorithm is sensitive to changes in the discount factor, and we recommend re-tuning it for61
each discount setting to ensure optimal performance.62

2 Background63

Notation We let ∆(X ) denote the set of probability distributions over a finite set X . Let R denote64
the set of real numbers, N be the set of non-negative integers, N+ be the set of positive integers, and65
1 be the indicator function.66

Markov Decision Process We consider finite Markov decision process (MDP) (Sutton & Barto67
2018) defined by a tuple M = ⟨S ∪ {ς},A, r, P, ν, γ⟩, where S is a finite state space, ς is a termi-68
nation state, A is the action space, r : S × A → R is the reward function, P : S × A → ∆(S) is69
the transition matrix, ν ∈ ∆(S) is the distribution of the initial state, and γ ∈ (0, 1) is the discount70
factor. At each step j, the agent applies an action Aj sampling from a policy π : S → ∆(A) at71
state Sj . Then, the agent receives a reward Rj and transits to the next state S′

j . Our paper focuses72

on episodic tasks, where a trajectory, denoted by τ = {Sj , Aj , Rj , S
′
j}

T−1
j=0 , ends at the termination73

state ς at step T . We define the random variable T ∈ N+ as the length of the trajectory.74

The agent’s goal is to evaluate a policy π by estimating the expected discounted cumulative returns.75
The expected discounted cumulative return, denoted by J(π), is defined as76

J(π) = (1− γ)Eπ

 ∞∑
j=0

γjr(Sj , Aj)

 ,

where we use Eπ to denote the expectation under the distribution induced by π and the environment.77
Notice that after reaching the termination state, the probability of any state showing up is zero, that78
is, Pπ(Sj = s) = 0 ,∀s ∈ S, if T ≤ j and rewards also equal zero.79
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The Q-value represents the expected cumulative rewards starting from a state-action pair (s, a) fol-80
lowing a policy π, defined as81

qπ(s, a) = Eπ

 ∞∑
j=0

γjr(Sj , Aj)

∣∣∣∣S0 = s,A0 = a

 . (1)

Off-Policy Evaluation We consider evaluating a target policy π using a dataset D that consists of82

K trajectories as {τi}Ki=1 =
{{

Si
j , A

i
j , R

i
j , (S

′
j)

i)
}T i−1

j=0

}K

i=1
. When trajectories are collected under83

a behaviour policy, denoted by µ, differing from the target policy, we call the learning off-policy.84

To correct this distribution shift, the importance sampling (IS) ratio ρ(a|s) = π(a|s)
µ(a|s) is often used to85

obtain unbiased estimators. The IS-ratio product, denoted by ρ0:j−1 =
∏j−1

k=0 ρ(Ak|Sk), adjusts the86
distribution of an entire trajectory, {S0, A0, · · · , Sj}, from the behaviour policy to the target one.87
Notice the product is initialized at one, denoted as ρ0:−1 = 1, with some abuse of notations.88

This dataset can also be expressed in terms of individual transitions as D =89
{(St, At, Rt, S

′
t, timet, ρprod,t)}n−1

t=0 where n is the dataset size, t is the index for each transi-90
tion, timet represents the step of st in its trajectory and ρprod,t for the corresponding IS products91
ρ0:timet−1 until st. To further simplify notation, let Is indicate the set of step t such that St = s.92

Off-policy TD estimates Q-values by q̂θ and takes a semi-gradient of the empirical temporal differ-93
ence errors, which equals94

minL(θ;D) =
1

n

n−1∑
t=0

(Rt + γq̂θ (S
′
t, A

′
t)− q̂θ(St, At))

2
, (2)

where the next action used for the bootstrapping target is sampled from the target policy, that is,95
A′

t ∼ π(·|S′
t) . TD evaluates the target policy by expected value estimation of initial state-action96

pairs, that is, (1− γ)ES0∼ν,A0∼π(·|S0) [q̂θ(S0, A0)]. However, the dataset’s state distribution shift is97
not corrected from the behaviour policy to the target policy, leading to bias in the estimation.98

Irreducible Markov Chain The Markov decision process under a policy π forms a Markov chain,99
denoted by ⟨S ∪ {ς}, Pπ⟩, where Pπ(s

′|s) =
∑

a∈A π(a|s)P (s′|s, a) for any s, s′ ∈ S . A Markov100
chain is said to be irreducible, if for any two states, s and s′, the probability of transiting between101
these two states is positive at some time step, that is, Pπ(Sj = s′ for some j > 0|S0 = s) > 0 and102
Pπ(Sj = s for some j > 0|S0 = s′) > 0.103

The recurrence time of a state s, denoted by τ+s (s), is defined as the time elapsed to revisit a state104
s, that is, τ+s (s) = min{j > 0 : Sj = s, S0 = s}. A positive recurrent state has a finite expected105
recurrence time, that is, Eπ[τ

+
s (s)] < ∞. Note that no assumptions are made in the background106

section; the terms irreducibility and positive recurrence are presented solely for later use.107

Stationary State Distribution The discounted stationary state distribution, denoted by dπ,γ , is108
defined as the distribution satisfying the following equation for all states s′ ∈ S:109 ∑

s∈S
dπ,γ(s)[γPπ(s

′|s) + (1− γ)ν(s′)] = dπ,γ(s
′). (3)

A common analytical form of the discounted stationary distribution can be written as110

dπ,γ(s) = (1− γ)

∞∑
j=0

γjPπ(Sj = s). (4)

Given the form of the discounted stationary distribution, the expected discounted cumulative return,111
J(π), can also be written as112

J(π) =
∑
s∈S

dπ,γ(s)rπ(s), (5)

where rπ(s) = EA∼π(·|s)[r(s,A)].113
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The undiscounted stationary distribution, denoted by dπ is defined as the distribution satisfying114 ∑
s∈S dπ(s)Pπ(s

′|s) = dπ(s
′). This distribution is also regarded as the limiting distribution of115

state-action visitation at each step. However, in episodic tasks, the step count does not approach116
infinity. To define a limit distribution in this setting, the trajectory is considered to restart from the117
initial state distribution upon termination. Note that this restart does not occur in practice and is118
introduced purely for definitional purposes.119

Repeating the transition n steps can give K terminated trajectory and one incomplete trajectory,120

denoted by
{{(

Si
j , A

i
j , R

i
j , (S

′
j)

i
)}T i−1

j=0

}K

i=1
∪
{(

SK+1
j , AK+1

j , RK+1
j , (S′

j)
K+1

)}n−∑K
k=1 Tk

j=0
. We121

relabel the transition by t as {(St, At, Rt, S
′
t)}

n−1
t=0 . The undiscounted stationary distribution has122

multiple analytical forms stated in Sutton and Barto (2018) and Grimmett and Stirzaker (2020,123
Theorem 6.4.3), summarized in a lemma from (Che et al. 2023).124

Lemma 2.1 (Forms of Undiscounted Stationary Distribution). Under the irreducibility of the125
Markov chain and positive recurrences of all states under all policies π, we have the following:126

dπ(s) = lim
n→∞

1

n

n−1∑
t=0

Pπ(St = s) =
1

Eπ[τ
+
s (s)]

. (6)

3 Related Works127

TD with linear function approximation converges when data is sampled as trajectories under the128
target policy (Tsitsiklis & Van Roy 1996), but linear TD with off-policy state distribution is not129
guaranteed to converge (Che et al. 2024). This issue is called the deadly triad. Meanwhile, the130
policy estimation is biased under the state distribution shift.131

The data distribution can be corrected by importance sampling (Precup 2000, Precup et al. 2001).132
However, these approaches suffer from high variance when correcting the distributions of trajectories133
with products of IS ratios. Later papers work on estimating state distribution ratios to avoid the ratio134
product (Hallak & Mannor 2017, Yang et al. 2020, Fujimoto et al. 2021).135

The state distribution ratio can be estimated based on the backward recursion for the stationary136
distribution shown in Equation 3. A backward Bellman recursion for the density ratio w(s) can then137
be built for all state s′, and the temporal difference error for the density ratio estimator, denoted by138
TD(s′), is defined as139

TD(s′) := E(S,A,S′)∼dµ

[
−w(S′) + γw(S)

π(A|S)
µ(A|S)

|S′ = s′
]
+ (1− γ)ρ(s′).

This temporal error equals zero, if w(s) = dπ,γ(s)
dµ(s)

provided that non-zero target policy π(a|s) > 0140
implying the behaviour policy being non-zero µ(a|s) > 0 for all state-action pairs (Nachum et al.141
2019). COP-TD (Hallak & Mannor 2017, Gelada & Bellemare 2019) minimizes the above temporal142
difference (TD) error. However, a backward TD estimate cannot be unbiasedly computed from143
a dataset without double sampling unless the behaviour policy is concentrated on a single state.144
Meanwhile, the algorithm lacks a convergence guarantee.145

Several other works (Liu et al. 2018- 2019, Uehara et al. 2020) design novel loss functions based146
on the recursive properties of the state distribution instead of directly minimizing the TD error.147
These losses reach zero if and only if the solution is the density ratio, providing new multi-stage148
optimization objectives for ratio approximation. On the other hand, DualDice (Nachum et al. 2019)149
introduces a primal-dual optimization framework by reformulating the problem with the Fenchel150
conjugate. GenDice (Zhang et al. 2020a) estimates the density ratio w(s) and minimizes the f-151
divergence between the estimated and true stationary distributions dµ(s)w(s) and dπ,γ(s), showing152
greater stability than DualDice for high discount factors but lacking convex-concavity. However,153
these multi-stage or primal-dual optimization techniques lack the convergence guarantee, and the154
training is less stable with multiple variables.155
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GradientDice (Zhang et al. 2020b) replaces f-divergence in GenDice with a weighted L2-norm, en-156
suring convex-concave and convergence properties under linear function approximation. BestDice157
(Yang et al. 2020) unifies these multi-stage and primal-dual methods into a general objective, iden-158
tifying optimal regularization choices in their BestDice algorithm. However, the learning stability159
still needs improvement.160

Successor Representation Distribution Correction Estimation (SR-DICE) (Fujimoto et al. 2021)161
builds on successor features and derives a loss equivalent to minimizing the mean squared error162
to the density ratio under linear function approximation. It achieves lower policy evaluation errors163
than other density estimators but still underperforms deep off-policy TD. Meanwhile, state-action164
representation features and successor features require pre-training, introducing additional approxi-165
mation errors and increasing computation.166

4 Distribution Corrector167

We derive a novel expression for the state density ratio, leading to a consistent estimator. This168
estimator computes the average of discounted IS-ratio products for each state using an off-policy169
dataset. Our algorithm, AVG-DICE, is named for its averaging approach in approximating this170
estimator. As the dataset size approaches infinity, our estimator converges to the true density ratio.171
Meanwhile, it corrects the distribution shift from the dataset’s sampling distribution to the target172
policy’s discounted stationary distribution, consequently providing an unbiased estimate for any173
function by reweighting each state by our estimator.174

Recall that a dataset consists of K trajectories and is presented as D =175
{(St, At, Rt, S

′
t, timet, ρprod,t)}n−1

t=0 , where timet represents the step of St in its trajectory176
and ρprod,t for the corresponding IS products until St. Is indicates the set of label t such that St = s.177

We first assume the following necessary condition for applying marginalized importance sampling.178

Assumption 4.1. If dπ,γ > 0, then dµ > 0.179

This assumption is made for all distribution correction estimators (Yu 2015, Zhang et al. 2020b),180
requiring the off-policy distribution to cover the target distribution.181

Also, for episodic tasks, it is normal to consider the trajectory length to have a finite expectation.182

Assumption 4.2.
Eµ[T ] < ∞.

183
Now we are ready to present the novel formulation of the density ratio.184

Proposition 4.3. [Consistency] Given185

• a finite Markov decision process,186

• a dataset D collected under a behaviour policy µ, and187

• a target policy π188

such that Assumption 4.1 and 4.2 are satisfied, then for state s with

dπ,γ(s) > 0,

we have the density ratio equal189

dπ,γ(s)

dµ(s)
= lim

n→∞

n

K
(1− γ)Et∼Is [γ

timetρprod,t], (7)

where n is the number of transitions, and K denotes the number of trajectories.190

We derive a consistent estimator based on the above proposition, defined as191

cD(s) =
n

K
(1− γ)Et∼Is [γ

timetρprod,t]. (8)
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The expectation is taken over step where state s appears and can be expressed as192

Et∼Is [γ
timetρprod,t] =

∑n−1
t=0 γtimetρprod,t1[St = s]∑n−1

t=0 1[St = s]
, (9)

where 1[St = s] equals to one if s appears at step t. The denominator counts the number of193
times state s occurs in the dataset, while the numerator sums the corresponding discounted IS-ratio194
products. Thus, the expectation in our estimator effectively averages all discounted IS products195
associated with state s.196

Our main theorem shows that reweighting each data by our estimator gives an unbiased estimator197
for any function.198

Theorem 4.4 (Unbiasedness). Given199

• a finite Markov decision process,200

• a dataset D collected under a behaviour policy µ, and201

• a target policy π202

such that Assumption 4.1 and 4.2 are satisfied, reweighting data by our average correction gives203
unbiased estimation for any function f : S → R, that is,204

ED [ES∼D [cD(S)f(S)]] = ES∼dπ,γ
[f(S)], (10)

where ED means expectation over trajectories sampled under the behaviour policy, and ES∼D rep-205
resenting sampling states uniformly from the dataset.206

This theorem holds because our estimator equals the ratio of an unbiased and consistent estimation207
of the discounted target distribution, denoted as d̂π,γ(s) = 1

K

∑K
i=1

∑
j≥0 γ

jρi0:j−11[S
i
j = s] to208

the sampling distribution from the dataset, denoted as d̂(s) =
∑n−1

t=0 1[St = s]

n
. Therefore, as long209

as we can calculate our estimator, the distribution shift can be solved.210

5 AVG-DICE Algorithm211

In this section, we work on how to evaluate our derived estimator cD(s). Our estimator averages the212
corresponding discounted IS-ratio products for a state s. However, in high-dimensional state spaces,213
direct averaging by state counting is infeasible. Thus, we propose to approximate the expectation of214
discounted IS-ratio products via regression.215

We first introduce our regression losses and propose the AVG-DICE algorithm. Then, we show216
that with linear function approximation, incrementally updating our loss results in a convergent217
algorithm. The fixed point of this update corresponds to minimizing the mean squared error (MSE)218
to the true density ratio with regularization.219

5.1 Loss220

We learn our estimator as a ratio model by minimizing the least squares error. Solving least squares221
regression with Markovian data is well studied but generally requires more samples compared to222
i.i.d. learning tasks (Nagaraj et al. 2020). In our setup, the ratio model takes states as inputs and223
is trained by minimizing the mean squared error between its output fθ(st) and its corresponding224
regression target γtimetρprod,t. In this case, the ratio is estimated by n

K (1 − γ)fθ(s). The expected225
discounted cumulative return can be estimated by226

Ĵ(π) =
1

n

n−1∑
t=0

n

K
(1− γ)fθ(St)Rt. (11)
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In the regression with a fixed dataset, a parameter regularization is usually added to avoid overfitting.227

Our algorithm also uses λ1∥θ∥2
2

2 to regularize, where λ1 is the regularization parameter.228

Meanwhile, same as GradientDice, the learnt ratio should ensure that
∑

s dµ(s)
n
K (1 − γ)fθ(s) ≈229 ∑

s dµ(s)
dπ,γ(s)

dµ(s)
= 1. So our algorithm further regularizes by the loss λ2

2 (
∑

s dµ(s)
n
K (1−γ)fθ(s)−230

1)2, called the distribution regularization. An expectation in a square loss cannot be estimated231
unbiasedly using samples. Thus, this regularization term is re-written by the Fenchel conjugate as232

λ2(max
η∈R

Es∼dµ
[η

n

K
(1− γ)fθ(s)− η]− η2

2
). (12)

The loss given a dataset D is written as233

min
θ

L(θ;D) := ESt∼D

[
1

2
(fθ(St)− γtime

t ρprod,t)
2

]
+

λ1∥θ∥22
2

+ λ2

(
max
η∈R

ESt∼D[η
n

K
(1− γ)fθ(St)− η]− η2

2

)
. (13)

5.2 Convergence Analysis234

This section focuses on the linear function approximation with fθ(s) = ϕ(s)⊤θ, where ϕ(s) ∈ Rd235
is a given state feature and θ ∈ Rd is the parameter. We denote Φ ∈ R|S|×d as the feature matrix,236
where each row corresponds to the feature vector of a particular state s.237

At each step t, the agent takes an action according to the behaviour policy at state st. If the tra-238
jectory terminates, the agent restarts according to the initial distribution. The algorithm updates the239
parameters θ and η in our distribution regularization at each step with the newly collected transi-240
tion following our loss shown in Equation 13. The regression target, denoted by yt = γtime

t ρprod,t,241
equals to the discounted IS-ratio products computing using the state’s current trajectory, where timet242
represents the step of the state in its current trajectory and ρprod,t = ρ0:timet−1.243

Instead of using a running scalar of t
K in the loss, we evaluate an average trajectory length H at the244

beginning and keep it fixed. This fixed multiplier simplifies the proof. We hypothesize that using the245
original one t

K converges as well but with high probability instead of almost surely, since t
K may246

not be bounded for all t ∈ N. However, both two scalars are estimating the average trajectory length247
Eµ[T ] and are close.248

The update rule is249

ηt+1 = ηt + αtλ2(H(1− γ)ϕ(st)
⊤θt − 1− ηt). (14)

θt+1 = θt − αt(ϕ(st)(ϕ(st)
⊤θt − yt) + λ2ηtH(1− γ)ϕ(st) + λ1θt), (15)

where αt is the learning rate. We combine the system of equations into

dt+1 = dt + αt(Gt+1dt + gt+1),

where dt+1 =

[
θt+1

ηt+1

]
denotes the concatenation of parameters, and update matrices are

Gt+1 =

[
−ϕ(st)ϕ(st)

⊤ − λ1I −λ2H(1− γ)ϕ(st)
λ2H(1− γ)ϕ(st) −λ2

]
and gt+1 =

[
ϕ(st)yt
−λ2

]
.

Assumption 5.1. 1. Φ has linearly independent columns.250

2. Each feature vector ϕ(s) has its L2-norm bounded by L.251

3. The behaviour policy µ induces an irreducible Markov chain on S and moreover, for all (s, a) ∈252
S ×A, µ(a|s) > 0 if π(a|s) > 0.253

4. The stepsize sequence {αt} is deterministic and eventaully nonincreasing, and satisfies αt ∈254
(0, 1],

∑
t αt = ∞, and

∑
t α

2
t < ∞.255
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Figure 1: This figure presents the mean square error of estimating the objective J(π) in the log scale
for each task. Our method, as the red line, shows dominant behaviour on most tasks and comparable
behaviour on Hopper and CartPole.

These four assumptions are also assumed for ETD convergence analysis and are common for ana-256
lyzing the asymptotic behaviours of linear update rules.257

Define two matrices

G =

[
−Φ⊤DµΦ− λ1I −λ2H(1− γ)Φ⊤dµ
λ2H(1− γ)d⊤µΦ −λ2

]
, and g =

[ 1
(1−γ)Eµ[T ]Φ

⊤Dµy

−λ2

]
,

258
where y ∈ RS denotes the density ratio dπ,γ(s)

dµ(s)
.259

Incremental updates under our losses give convergence with linear function approximation. The260
proof follows the convergence analysis of ETD and is presented in Appendix B. Intuitively, our261
correction gives a consistent estimator with variance controlled by the discount factor, and thus, the262
convergence follows.263

Theorem 5.2. Based on Assumption 4.2 and 5.1, we have264

dt → −G−1g a.s. (16)

which gives the same fixed point for minimizing the mean square error to the true density ratio,265

which is ESt∼D

[
1
2

(
fθmse(St)− 1

(1−γ)Eµ[T ]
dπ,γ(St)
dµ(St)

)2]
with the same regularizations.266

6 Experiments267

We perform OPE on classic control and MuJoCo (Todorov et al. 2012) tasks to evaluate our method268
and compare it with other distribution correctors, including COP-TD, BestDice, and SR-DICE. Ad-269
ditionally, we include two simple baselines: the average reward, which represents the objective270
under the behaviour policy, and off-policy TD. In these OPE tasks, the target policy is trained using271
PPO (Schulman et al. 2017), which can achieve high-performing policies; for example, the agent for272
CartPole receives above 410 return, close to the optimal return of 500. For discrete actions, the be-273
haviour policy is a combination of the target policy and the uniform random policy. For continuous274
actions, the behaviour policy is obtained by increasing the variance of the Gaussian target policy.275

The hyperparameters are tuned using a dataset with 4000 transitions coming from trajectories each276
of length 100. The discount factor is fixed at 0.95, which is a common choice. The random pol-277
icy weights 0.3 in the behaviour policy for discrete-action tasks, and the variance is doubled for278
continuous-action tasks. We selected the combination of hyperparameters that yields the lowest ob-279
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jective estimation error, averaged across all tasks. The results are averaged among 10 seeds, and the280
variance is tiny due to similar rewards received per step for each run.281

Our results in Figure 1 show that most of the existing methods underperform compared to off-policy282
TD, confirming prior work (Fujimoto et al. 2021). Only SR-DICE, in the orange line, can give283
comparable behaviour. Our method, as the red line, shows dominant behaviour on most tasks and284
comparable behaviour on Hopper and CartPole. More surprisingly, it gives the fastest convergence285
to a stable low error. Also, in Figure 1, our method is tuned specifically to the trajectory length, the286
randomness of the behaviour policy, the size of the dataset, and the discount factor, which gives a287
small advantage to our algorithm. Thus, in the next step, we test out the robustness against more288
settings, as illustrated in Figure 2. This figure presents the results of the Walker task, while results289
for other tasks are provided in Appendix C.290

The top-left subfigure of Figure 2 examines robustness against different discount factors. Our algo-291
rithm proves less robust to changes in the discount factor and loses its leading performance, yielding292
worse results than TD and SR-DICE. Because altering the discount factor significantly changes the293
regression targets for the entire dataset, it is reasonable that our method would require re-tuning for294
each discount factor to achieve optimal performance.295

When the discount factor is fixed at 0.95, our method generally maintains a dominant or at least com-296
parable performance relative to other baselines, except in Acrobot and Hopper. In Acrobot, it still297
outperforms other density-ratio estimators in most settings and is on par with TD; in Hopper, both298
our method and SR-DICE perform similarly to TD. Also, an ablation study without the distribution299
regularization is given in Appendix C.300
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Figure 2: We evaluate the robustness of our method under varying dataset sizes, trajectory lengths,
behaviour policies, and discount factors. This figure presents the results of the Walker task. Our
algorithm is less robust only to changes in the discount factor and excessively long trajectory length.

7 Conclusion301

We introduced AVG-DICE, a novel regression-based estimator for the stationary state density ra-302
tio. Our key contributions include deriving an alternative form of the state density ratio, proposing303
a novel distribution corrector and designing the learning algorithm for our distribution corrector.304
Furthermore, we showed that incremental updates converge under linear function approximation,305
demonstrating that the resulting fixed point coincides with the minimum MSE solution to the true306
ratio up to regularization. Empirical results on discrete and continuous tasks confirmed that AVG-307
DICE provides stable and accurate off-policy evaluation. Looking forward, integrating this density308
ratio correction into policy gradient algorithms could address distribution mismatches more effec-309
tively than current conservative policy updates.310
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Appendix A: Derivation of Our Distribution Corrector375

Proof of the Consistency Theorem376

We fist present a theorem used for the proof.377

Theorem 7.1 (Theorem 1.0.2 Ergodic theorem, Norris (1998)). Let M be an irreducible and posi-378
tive recurrent Markov decision process for all policies. Then, for each state s,379

P

(∑T−1
t=0 1[St = s]

T
→ 1

E[τ+s (s)]
as T → ∞

)
= 1.

Next, we present our main theorem and show that our correction term equals the distribution ratio,380
dπ,γ(s)
dµ(s)

and thus, this term successfully corrects the state distribution shift.381

Theorem 7.2 (Consistency). Given382

• a finite Markov decision process,383

• a dataset D collected under a behaviour policy µ, and384

• a target policy π385

such that Assumption 4.1 is satisfied, then for state s with

dπ,γ(s) > 0,

we have the density ratio equal386

dπ,γ(s)

dµ(s)
= lim

n→∞

n

K
(1− γ)Et∼Is [γ

timetρprod,t]. (17)

Proof. Reformulate the RHS.387

When sampling t ∼ Is uniformly, the probability equals
1[St = s]∑n

k=1 1[Sk = s]
. Furthermore,388

n

K
(1− γ)Et∼Is [γ

timetρprod,t] =
n

K
(1− γ)

n∑
t=1

1[St = s]γtimetρprod,t∑n
k=1 1[Sk = s]

(18)

= (1− γ)
n∑n−1

t=0 1[St = s]

1

K

K∑
i=1

∑
j≥0

1[Si
j = s]γjρi0:j−1. (19)

Note that n is the number of transitions, and K is the number of trajectories.389

Define two functions:390

gn(s) =
n∑n−1

t=0 1[St = s]
. (20)

fn(s) = (1− γ)
1

K

K∑
i=1

∑
j≥0

1[Sj = s]γjρ0:j−1. (21)

Note that391
n

K
(1− γ)Et∼Is [γ

timetρprod,t] = gn(s)fn(s). (22)

Prove the irreducibility. When studying states with non-negative discounted stationary distribution392
values under the target policy π, they can form an irreducible set with restarts.393
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dπ,γ(s) > 0 implies that dµ(s) > 0. Thus,

Pµ(Sj = s, for some j > 0 and j < T ) > 0.

Meanwhile, we have Pµ(Sj = ς , for some j > 0|S0 = s) > 0 for episodic tasks. Thus, with394
restarts, given any two states s and s′ with positive stationary distribution values,395

Pµ(Sj = s′|S0 = s)

> Pµ(Sj = ς , for some j > 0|S0 = s)Pµ(Sj = s′, for some j > 0 and j < T )

> 0.

Prove the positive recurrence. Note that a finite and irreducible Markov chain is positive recurrent.396

Prove the infinite number of trajectories. By Assumption 4.2, the termination state is positive397
recurrent and is visited infinitely many times as the step n goes to zero. Thus, there are infinitely398
many trajectories.399

Compute the almost sure limit of two functions. The function gn(s) is proven to converge to400
g(s) = Eµ[τ

+
s (s)] by the ergodic theorem.401

Apparently, limn→∞ fn(s) = limK→∞(1 − γ) 1
K

∑K
i=1

∑
j≥0 1[Sj = s]γjρ0:j−1. By the central402

limit theorem, we have403

lim
n→∞

fn(s) = Eµ

(1− γ)
∑
j≥0

1[Sj = s]γjρ0:j−1

 = dπ,γ(s). (23)

Thus,404

L.H.S = lim
n→∞

gn(s)fn(s) (24)

= g(s)f(s) (25)

= Eµ[τ
+
s (s)]dπ,γ(s) (26)

=
dπ,γ(s)

dµ(s)
. (27)

The last line follows Lemma 2.1, and the proof is completed.405

Proof of the Unbiasedness406

Theorem 7.3 (Unbiasedness). Given407

• a finite Markov decision process,408

• a dataset D collected under a behaviour policy µ, and409

• a target policy π410

such that Assumption 4.1 is satisfied, reweighting data by our average correction gives unbiased411
estimation for any function f : S → R, that is,412

ED [ES∼D [cD(S)f(S)]] = ES∼dπ,γ
[f(S)], (28)

where ED means expectation over trajectories sampled under the behaviour policy, and ES∼D rep-413
resenting sampling states uniformly from the dataset.414

Proof. Denote the sampling distribution from the dataset as d̂(s) =
∑n−1

t=0 1[St=s]
n .415

As proven in Corollary 4.3 in Equation 22,416

cD(S) =
1

d̂(s)
(1− γ)

1

K

K∑
i=1

∑
j≥0

1[Si
j = s]γjρi0:j−1. (29)

Thus, ES∼D [cD(S)f(S)] =
∑

s∈S f(s)(1− γ) 1
K

∑K
i=1

∑
j≥0 1[S

i
j = s]γjρi0:j−1.417
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After taking expectation over all K trajectories, we have418

ED

∑
s∈S

f(s)(1− γ)
1

K

K∑
i=1

∑
j≥0

1[Si
j = s]γjρi0:j−1

 (30)

=
∑
s∈S

f(s)(1− γ)
∑
j≥0

γjPπ(Sj = s) (31)

=
∑
s∈S

f(s)dπ,γ(s). (32)

419

Appendix B: Asymptotic Convergence420

We first introduce and prove the necessary lemmas. The proof of the convergence theorem is given421
in the second subsection.422

Proof of the Required Lemma423

Denote the number of trajectories until step t by K(t). Recall our update rule is dt+1 = dt +424

αt(Gt+1dt + gt+1) where dt+1 =

[
θt+1

ηt+1

]
, Gt+1 =

[
−ϕ(st)ϕ(st)

⊤ − λ1I −λ2H(1− γ)ϕ(st)
λ2H(1− γ)ϕ(st) −λ2

]
,425

and gt+1 =

[
ϕ(st)yt
−λ2

]
.426

Lemma 7.4. Define two matrices G =

[
−Φ⊤DµΦ− λ1I −λ2H(1− γ)Φ⊤dµ
λ2H(1− γ)d⊤µΦ −λ2

]
and g =427 [ 1

(1−γ)Eµ[T ]Φ
⊤Dµy

−λ2

]
.428

When Assumption 4.2 and 5.1 are satisfied, we have429

1. 1
t+1

∑t+1
k=0 Gk → G a.s. , and 1

t+1

∑t+1
k=0 gk → g a.s. and in L1, as t → ∞.430

2. The real parts of all eigenvalues of G are strictly negative.431

Proof. Let’s prove the first point about almost sure convergence. We will prove the convergence432
of each sub-matrix separately.433

Note that the ergodic theorem gives that the convergence of the top-left sub-matrix of Gt as434

1

t+ 1

t+1∑
k=0

−ϕ(sk)ϕ(sk)
⊤ − λ1I

t→∞−−−→
∑
s∈S

−dµ(s)ϕ(s)ϕ(s)
⊤ − λ1I

= −Φ⊤DµΦ− λ1I.

Similar convergence can be gained for the term λ2H(1− γ)ϕ(st) by the ergodic theorem as well.435

Combining these two results, we gain the almost sure convergence of Gt.436
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Now we analyze the term ytϕ(st) =
∑

s ϕ(s)
∑

i∈Is(t)
yi where Is(t) denotes the showing up steps437

for a state a until step t. It can be further expressed as438

1

t+ 1

t∑
k=0

ytϕ(st)

=
∑
s

K(t)

t+ 1
ϕ(s)

1

1− γ
(1− γ)

1

K(t)

∑
i∈Is(t)

yi

→ 1

1− γ

∑
s

dπ,γ(s)ϕ(s)
1

Eµ[T ]

=
1

(1− γ)Eµ[T ]

∑
s

dµ(s)
dπ,γ(s)

dµ(s)
ϕ(s).

Note that the third line uses the convergence of K(t)
t+1 to 1

Eµ[T ] . K(t) goes to infinity as t → ∞ since439
the recurrence time for the termination state has a finite expectation by Assumption 4.2. Similarly,440
the ergodic theorem implies the almost sure convergence of t+1

K(t) to Eµ[T ].441

Furthermore, by central limit theorem, (1 − γ) 1
K(t)

∑
i∈Is(t)

yi converges to dπ,γ(s). Since the442
limits of these two terms ar bounded, the limit of the product converges to the product of limits.443

For the L1-convergence, we analyze the expectation of ytϕ(st). Define TK(t) as the termination step444
of K(t)-th trajectory.445

1

t+ 1

t+1∑
k=0

Eµ[ytϕ(st)] (33)

=
1

t+ 1

t+1∑
k=0

γtPπ(St = s)ϕ(s) (34)

=
∑
s

K(t)

t+ 1
ϕ(s)

1

1− γ
(1− γ)

1

K(t)
[K(t)

∑
j≥0

γjPπ(Sj = s) +

t−TK(t)∑
j=0

γjPπ(Sj = s)] (35)

→ 1

(1− γ)Eµ[T ]

∑
s

dµ(s)
dπ,γ(s)

dµ(s)
ϕ(s). (36)

Note that 1
K(t)

∑t−TK(t)

j=0 γjPπ(Sj = s) → 0 as K(t) → ∞ and t → ∞.446

Let’s prove the second point about eigenvalues.447

Let ϑ ∈ C, ϑ ̸= 0 be a nonzero eigenvalue of G with normalized eigenvector x, that is x∗x = 1,448
where x∗ is the complex conjugate of x. Hence, x∗Gx = ϑ, x ̸= 0. Let x⊤ = (x⊤

1 , x2), where449
x1 ∈ Cd and x2 ∈ C. We can verify that450

ϑ = −x∗
1(Φ

⊤DµΦ+ λ1I)x1 + λ2x
∗
2H(1− γ)d⊤µΦx1 − λ2x

∗
1H(1− γ)dµΦ

⊤x2 − λ2x
∗
2x2. (37)

Since d⊤µΦ is real, λ2x
∗
1H(1 − γ)dµΦ

⊤x2 = (λ2x
∗
2H(1 − γ)d⊤µΦx1)

∗. It yields that the real part451
of their difference equals zero. Therefore, we have the real part of ϑ, denoted by R(ϑ), equals452

R(ϑ) = −x∗
1(Φ

⊤DµΦ+ λ1I)x1 − λ2x
∗
2x2. (38)

By the first point in Assumption 5.1, we have −x∗
1(Φ

⊤DµΦ+λ1I)x1 ≥ 0, where the equality holds453
iff x1 = 0. At least one of {x1, x2} is nonzero. Consequently, we have R(ϑ) < 0.454

Proof of the Convergence455

Theorem 7.5. Based on Assumption 4.2 and 5.1, and Lemma 7.4, we have456

dt → −G−1g a.s. (39)
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which is the same fixed point for minimizing the following mean square error loss in Equation 40.457

The loss given a dataset D to the true density ratio is written as458

min
θmse

L(θmse;D) := Est∼D

[(
fθmse(st)−

1

(1− γ)Eµ[T ]

dπ,γ(st)

dµ(st)

)2
]
+

λ1∥θmse∥22
2

+ λ2

(
maxη∈REst∼D[η

n

K
(1− γ)fθmse(st)− η]− η2

2

)
. (40)

Proof. First, we can verify some properties on our labels. Based on these properties and L1-459
convergence of 1

t+1

∑t
k=0 gk, we conclude that our label (yt, ϕ(st)yt) gives a unique invariant460

probability and is ergodic.461

The proof is the same as the corresponding proofs of (Yu, 2012, Theorem 3.2 and Prop. 3.2) for the462
case of off-policy LSTD.463

1. For any initial value of ρ0:−1, supt≥0 E[|(yt, ϕ(st)yt)∥] < ∞.464

2. Let (yt, ϕ(st)yt) and (ŷt, ϕ(st)ŷt) be defined by the same recursion and the same random465
variables, but with different initial conditions ρ0:−1 ̸= ρ̂0:−1. Then, yt − ŷt → 0 a.s. and466
ϕ(st)yt − ϕ(st)ŷt → 0 a.s..467

3. Zt = (St, At, yt, ϕ(st)yt) is a weak Feller Markov chain and bounded in probability.468

The proof follows ETD, since yt = γtimetρprod,t is a term in the ETD traces. For the second term,469
the difference between traces with different initializations for our correction and ETD is the same,470
so their proof also works here. The proof for the third claim follows the ETD paper.471

Three conditions are required to use Theorem 6.1.1 in Kushner and Yin (2003) and follow the ETD472
proof (Theorem 4.1). Define ξt = (yt, St, At, St+1) and h(d, ξt) = Gtd+ gt.473

1.

1

t+ 1

t∑
k=0

Gk → G and
1

t+ 1

t∑
k=0

gk → g almost surely. (41)

2. There exist nonnegative measurable functions g1(d), g2(ξ) such that ∥h(d, ξ)∥ ≤474
g1(d)g2(ξ) such that g1(d) is bounded on each bounded set,

∑
t≥0 E[g2(ξ)] < ∞, and475

1
t+1

∑t
k=0 (g2(ξk)− E[g2(ξk)]) → 0 almost surely.476

3. There exist nonnegative measurable functions g3(d), g4(ξ) such that for each d and d′, ∥h(d, ξ)−477
h(d′, ξ)∥ ≤ g3(d−d′)g4(ξ) such that g3(d) is bounded on each bounded set, g3(d) → 0 as d → 0,478 ∑

t≥0 E[g4(ξ)] < ∞, and 1
t+1

∑t
k=0 (g4(ξk)− E[g4(ξk)]) → 0 almost surely.479

In our proof, the function h(d, ξ) equals480

h(d, ξ) =

[
−ϕ(s)ϕ(s)⊤ − λ1I −λ2H(1− γ)ϕ(st)
λ2H(1− γ)ϕ(st) −λ2

]
d+

[
ϕ(s)y
−λ2

]
. (42)

Then, for the second and third points, we first bound the norm of the matrix as followings.481

∥
[
−ϕ(s)ϕ(s)⊤ − λ1I −λ2H(1− γ)ϕ(st)
λ2H(1− γ)ϕ(st) −λ2

]
(43)

≤ ∥
[
−ϕ(s)ϕ(s)⊤ − λ1I 0

0 0

]
∥+ ∥

[
0 −λ2H(1− γ)ϕ(st)

λ2H(1− γ)ϕ(st) −λ2

]
∥ (44)

≤ ∥−ϕ(s)ϕ(s)⊤ − λ1I∥+
√
(2∥λ2H(1− γ)ϕ(st)∥2)∥+λ2 (45)

≤ L2 + λ1 +
√
2λ2H(1− γ)L+ λ2. (46)
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∥h(d, ξ)∥ ≤ ∥
[
−ϕ(s)ϕ(s)⊤ − λ1I −λ2H(1− γ)ϕ(st)
λ2H(1− γ)ϕ(st) −λ2

]
∥∥d∥+ ∥

[
ϕ(s)y
−λ2

]
∥ (47)

≤ (L2 + λ1 +
√
2λ2H(1− γ)L+ λ2)∥d∥+ (∥ϕ(s)y∥λ2) (48)

≤ (L2 + λ1 +
√
2λ2H(1− γ)L+ λ2 + Ly)(∥d∥+ 1). (49)

Thus, g1(d) = (∥d∥+ 1) and g2(ξ) = L2 + λ1 +
√
2λ2H(1− γ)L+ λ2 + Ly.482

We can bound the function norm using the matrix norm bound in Equation 46.483

∥h(d, ξ)− h(d′, ξ)∥ ≤ ∥
[
−ϕ(s)ϕ(s)⊤ − λ1I −λ2H(1− γ)ϕ(st)
λ2H(1− γ)ϕ(st) −λ2

]
∥∥d− d′∥ (50)

≤ (L2 + λ1 +
√
2λ2H(1− γ)L+ λ2)∥d− d′∥. (51)

Thus, g3(d) = ∥d∥ and g4(ξ) = L2 + λ1 +
√
2λ2H(1− γ)L+ λ2 is a constant.484

To show the fixed point is the same as minimizing the MSE to the true density ratio, we need to485
repeat the convergence proof for the new loss. But the only change is in the regression target and all486
other steps follow.487

Appendix C: Experimental Materials488

The hyperparameters of COP-TD are tuned the same as our method in the setting of dataset size489
4000, trajectory length 100, discount factor 0.95 and randomness coefficient 0.3 for discrete-action490
tasks and 2.0 for continuous-action tasks. Only one combination of the hyperparameters is used for491
all tasks.492

For our algorithms, we test out the combination from parameter regularization coefficient λ1 ∈493
[0, 0.001, 0.01, 0.1], distribution regularization parameter λ2 ∈ [0.5, 2, 10, 20], and learning rate494
α ∈ [0.00005, 0.0001, 0.0005, 0.001, 0.005].495

The neural network is set to be a two-hidden-layer neural network with hidden units 256, which is496
the setting used by SR-DICE. The batch size is set the same as SR-DICE, equaling 512.497

The final choice of hyperparameters is shown in Table 1.498

Parameter Regularizer λ1 0.001
Distribution Regularizer λ2 0.5

Learning Rate 0.0005
Activation ReLU

Table 1

Ablation Study499

When training without the distribution regularization, the hyperparameters are also tuned with the500
regularization coefficient fixed, λ2 = 0. Notice that the training step is much fewer than Figure 1.501
The results are plotted on a validation set. Without the distribution regularization, the ratio model is502
not learning except on CartPole.503

Robustness504

The top-left subfigure of Figure 2 examines robustness against different discount factors. The main505
message is that our algorithm proves less robust to changes in the discount factor and would require506
re-tuning for each discount factor to achieve optimal performance. Our algorithm is robust to other507
changes except for a trajectory length that is too long. Results for other tasks are presented in Figure508
4 and 5 and the conclusion holds for all tasks.509
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Figure 3: This figure presents the mean square error of estimating the objective J(π) in the log scale
for each task. We present our method with and without the distribution regularization.

Turning to the bottom-right subfigure of Figure 2, performance degrades when the trajectory length510
is set to 200. A similar phenomenon is observed in Hopper and HalfCheetah. We propose two511
hypotheses for this drop. First, our method may struggle with very long trajectories, suggesting512
that users might benefit from truncating trajectories since longer horizons lead to heavily discounted513
and, thus, tiny labels. Second, the total dataset size is fixed at 4, 000, so increasing the length514
of each trajectory decreases the number of available trajectories. The approximation error decays515
sublinearly with the number of trajectories; thus, fewer trajectories can hinder performance.516
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Figure 4: This figure shows the robustness results on discrete-action tasks.
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Figure 5: This figure shows the robustness results on continuous-action tasks.
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