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Abstract

Humans, animals, and machines can store and retrieve long-term memories of
individual items, while at the same time consolidating and learning general rep-
resentations of categories that discard the individual examples from which the
representations were constructed. Classical neural networks model only one or
the other of these two regimes. In this work, we propose a biologically motivated
model that can not only consolidate representations of common items but also
memorize exceptional ones. Critically, we consider the unsupervised learning
regime where exceptional items are not labeled as such a priori, so the signal to
either memorize or consolidate items must be generated by the network itself. We
propose a number of metrics for this control signal and compare them for two
different algorithms inspired by traditional imbalanced data learning approaches –
loss reweighting and importance sampling. Overall, our model serves not only as a
framework for concurrent memorization and consolidation processes in biologi-
cal systems, but also as a simple illustration of related phenomena in large-scale
machine learning models, as well as a potential method for debiasing artificial
intelligence algorithms.

1 Introduction

In human and animal experience, long-term memories of individual items can coexist with gener-
alized representations of categories. Individual items are, by definition, stored verbatim through
memorization, such that the specific details of the item can be recovered when needed. In other cases,
it can be advantageous to blend multiple examples from a category to create a flexible representation,
with the specifics of the individual examples being forgotten after consolidation. These processes are
two essential but often opposing aspects of flexibly representing knowledge about the environment.

Classical models typically operate in only one of these modes. For example, Hopfield networks
[1] can memorize and retrieve a predetermined set of datapoints, whereas deep networks [2] learn
a compact representation of a large dataset for classification, regression, or generation. In this
work, we describe a model and learning paradigm that can flexibly perform both of these processes
simultaneously, memorizing examples of rare items and learning consolidated representations of
common ones.
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2 Dataset

To operationalize this scenario, we consider the problem of storing a dataset consisting of R "reg-
ular" items from a commonly occurring class, of which the learner sees many examples; and E
"exceptions," which comprise a few examples from an uncommon class:

D = R∪ E = {x1, . . . , xR} ∪ {xR+1, . . . , xR+E}, with R ≫ E (1)

As in the classical autoassociative memory task, the goal of the network is to simply store the dataset
such that individual items can then be retrieved from partial cues, i.e. perturbed versions of the
original items. Unlike the classical task, however, the dataset size is much larger than the memory
capacity of the network, so to successfully encode the dataset it is necessary to perform some sort of
compression (consolidation). Since the goal is to simply store the data as reliably as possible, we do
not consider generalization performance on a held-out dataset, although we note that consolidation of
stored data may indeed have advantages for generalization.

In this case, there is no binary notion of whether an item was stored. We instead evaluate performance
by considering the mean-squared error between stored items (the network’s fixed points) and the
datapoints in D. We consider the average errors on the regular and exceptional items separately and
weight them equally:
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1

2
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1
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∗
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ℓ(xi, g
∗
i )

)
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where g∗i is the retrieved item corresponding to datapoint xi, and ℓ(y, z) = ||y − z||22 for vectors y, z.

This models the scenario in which, although the exceptions are rare, it is just as important to store
them as the common category. Critically, the data are not labeled as such, and the learner does
not know in advance which items belong to the regular class or the exceptions. These must be
inferred online over the course of learning. This furthermore allows the possibility of treating unusual
examples of regular items as exceptions and storing them verbatim, which can play a role analogous
to data pruning [3] or label memorization in learning long-tailed data distributions [4].

3 Associative memory network model

We consider a framework inspired by the complementary learning systems theory [5], [6] in which a
fast learner (e.g. the hippocampus) rapidly accumulates data, which it then "replays" [7] to a slow
learner (e.g. the cortex) for consolidation and long-term storage. We do not explicitly model the fast
learner; we simply assume that there exists a mechanism for storing a dataset in a buffer from which
minibatches can be assembled for replay to the slow learner. Such a buffer might be implemented
biologically by a fast memory system such as the Hopfield network with Hebbian learning rules
and forgetting [1], [8], or a key-value memory network with three-factor learning rules and rapid
overwriting [9].

To model the slow learner, we consider a case of Dense Associative Memory, also known as the
modern Hopfield network (MHN) [10]–[12], consisting of a visible layer with activity given by the
vector v and a hidden layer h. The dynamics of this network are given by [11]:

τh
dh

dt
= −h+Wg(v)

τv
dv

dt
= −v +W⊤f(h)

(3)

Extending the set of models described in [11], we introduce a new model in which the visible
layer activity is restricted to lie on a unit sphere and the hidden layer has an attention mechanism,
represented by the transfer functions g(v) = v

||v|| and f(h) = softmax(βh). Biologically these
might be implemented by divisive normalization [13], lateral inhibition [14], or intermediate neurons
[15]. The weight matrix W ≜ [ξ1, . . . ξM ]⊤ is normalized such that ||ξµ|| = 1, ensuring that the
softmax inverse-temperature parameter β has a well-defined scale.

To run the network, we generate a perturbed input x̃i, corresponding to an item xi from the dataset
with a random 50% of the pixels set to zero. This is used as the initial state of the network g(t = 0).
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The unperturbed pixels are clamped to their initial values, and the rest evolve according to Eq. 3,
discretized with τv = 1, dt = 0.05. Assuming the dynamics of the hidden layer are much faster than
those of the visible layer (adiabatic limit [16]) we set τh = 0, so that h = Wg(v) for all t. We run
the network until it reaches a fixed point, so g(T + dt) = g(T ) ≜ g∗, which is the network output.

4 Learning with unlabeled imbalanced data
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Figure 1: Comparison of ground-truth
reweighted/resampled (solid) and un-
weighted/uniformly sampled (dashed) training.
Both loss reweighting and importance sampling
significantly improve memorization of exceptions
without impairing performance on regular items.

As the main contribution of this work, we propose a
biologically motivated implementation of two meth-
ods for learning imbalanced data – loss reweighting
and importance sampling [17]. Critically, unlike tradi-
tional supervised machine learning approaches where
class labels (and therefore relative frequencies) are
known a priori, we consider autoassociative recall,
an unsupervised learning setting where the class la-
bels are not known, and the loss weights or sampling
probabilities must be inferred online during learning.

Prior work has considered models that can memo-
rize large numbers of patterns [18], those that learn
consolidated representations by gradient descent [10],
[19], or intermediate ones that can trade off informa-
tion per pattern and number of patterns stored [20].
In contrast, we propose a training paradigm in which
an associative memory model can exhibit behavior
at both extremes of this continuum simultaneously –
memorizing individual exceptional items while con-
solidating those from a commonly occurring class.

We train the network with stochastic gradient descent
[21]. Although it may be possible to use a biologi-
cally plausible variant of backpropagation [22], [23]
or biologically-inspired local plasticity rules [24], we
compute gradients using the standard backpropagation through time (BPTT) algorithm. On the kth

iteration, we draw a batch Bk ⊂ D from the dataset, generate a perturbed input x̃b (see previous
section), compute the corresponding output g∗b for every item xb ∈ Bk, and update the parameters
in proportion to the gradient of the loss ∇L with respect to the network parameters. In a standard
learning scenario, batches would be drawn uniformly without replacement so that every datapoint
is seen exactly once per epoch, and the loss L would be the arithmetic mean of individual losses
ℓ(xb, g

∗
b ). In the case of imbalanced data, a common technique is to sample the batches with replace-

ment according to a probability distribution inversely proportional to the relative frequency of the
classes,

p(xi ∈ Bk) = α̂i (4)

or to compute a weighted loss for the batch, where the weights α̂b are taken inversely proportional to
the relative frequency of the classes,

L =

|Bk|∑
b=1

α̂b ℓ(xb, g
∗
b ) (5)

In many situations for both biological and artificial agents, however, the class labels are not known a
priori and relative class frequencies cannot be used for importance sampling or loss weighting. One
of the contributions of our work is identifying signals that can be extracted directly from the network
(rather than given class labels) and used to automatically reweight the losses or sample the training
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data. We consider the following candidates for the unnormalized exception signals (see Section A.1):

si =



I[xi ∈ E ] ground truth (control condition/evaluation metric)
ℓ(xi, g

∗
i ) loss per item

−T (negative) time to converge to fixed point
−H(fi) (negative) entropy of hidden layer
max(fi) max of hidden layer
||fi|| norm of hidden layer

(6)

These are re-computed for each training iteration, and vary over the course of training. To meaning-
fully compare the scores, we normalize them to the range [0, 1] using the cumulative min/max of si
seen so far during training:

αi =
si −min(si′)

max(si′)−min(si′)
(7)

To ensure they sum to 1, the final loss weights or sampling probabilities are then given by

α̂i =
exp(γαi)∑|D|

i′=1 exp(γαi′)
(8)

where the inverse-temperature parameter γ controls the relative magnitude of the weights. Note,
γ = 0 reduces to an unweighted loss/uniform sampling. Furthermore, si = I[xi ∈ E ] with γ = ln R

E
corresponds to the standard methods with known labels, reweighting or sampling proportional to the
relative frequency of the classes. This is equivalent to the evaluation loss in Eq. 2.

5 Results
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Figure 2: Evaluation loss after 150 epochs of
training, split between loss on regulars (blue) and
exceptions (red), trained with loss reweighting
(LR, dark) or importance sampling (IS, light) us-
ing exception signals si (Eq. 6). Numbers at
the bottom of each bar indicate the optimal γ
(Eq. 8) for each of n = 3 runs, optimized by
sweeping over γ ∈ {0, 1, 3, 5, 7.58, 10, 12, 15}
(γ = ln R

E
≈ 7.58 for this dataset). Black lines in-

dicate baseline performance with γ = 0 (uniform
weighting/sampling). Error bars and dashed lines
indicate ± 1 standard deviation across n = 3 runs.

As an example to demonstrate proof-of-principle,
we use the MNIST dataset, where the "regular" sub-
set consists of R = 6000 examples of zeroes, and
the "exception" subset consists of E = 3 exam-
ples of ones. We use a network with 784 visible
units (the dimensionality of MNIST images) and 100
hidden units. The hidden layer softmax(·) inverse-
temperature parameter is fixed to β = 5, determined
empirically to give the overall best performance for
the network of this size.

Training the network naively with uniform weight-
ing/sampling leads to successfully learning the regu-
lar items, but failing to store the exceptions (Figure 1,
dashed curves). Although the loss on exceptions de-
creases, this is incidental due to overlapping pixels
in MNIST 1’s and 0’s: visually inspecting the stored
representations (rows of weight matrix, Section A.2)
ξµ in the trained network, all resemble 0’s and none
resemble a 1. On the other hand, a network trained
with ground truth knowledge of whether an item is
an exception – either upweighting or resampling ex-
ceptions – successfully learns both types of items,
notably learning exceptions without degrading per-
formance on regulars (Figure 1, solid curves).

As our key result, to demonstrate the performance of
reweighting/resampling using our proposed metrics,
we plot the evaluation loss (Eq. 2) at the end of train-
ing (Figure 2) for each exception signal (Eq. 6). Although, as expected, using ground truth (GT)
information about whether an item is regular or exceptional has the lowest evaluation loss (Eq. 2), all
of the metrics proposed in Eq. 6 show significant improvement over the naive unweighted scenario
(black line). A potential issue with these metrics is the variability in learning exceptions (red error

4



bars) compared to learning regular items (blue error bars), especially convergence time (-T). Finally,
counter-intuitively, we note that even when training with ground-truth signal, the optimal γ is not
equal to ln R

E ≈ 7.58 (the effective weighting in the evaluation loss).

6 Discussion

Beyond proposing a biological framework for methods to concurrently memorize individual examples
of rare categories and learn consolidated representations of common ones, our model has potential
applications to artificial intelligence. Large language models have been shown to output memorized
sequences from their training corpus, raising significant privacy concerns [25]. Our network can be
used as a simplified tractable model of this phenomenon to study this problem, particularly given
its similarities to the attention mechanism of Transformers [19], enabling identification, updating,
or removal of memorized items. From the perspective of fairness in AI [26], our work suggests a
potential technique to help mitigate some of the common problems arising from underrepresented
classes, automatically balancing training on biased data by downweighting overrepresented classes
and enhancing rare ones.
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A Appendix

A.1 Candidate signal selection

To establish candidate metrics to use as exception signals, we consider various quantities as the
network is trained using ground-truth loss weighting. Several metrics can differentiate the regular
items from exceptions when the network is trained with ground truth weighting (Figure A1, top),
suggesting that it may be possible to use them to bootstrap the exception signal without prior
knowledge of which items are exceptions. Note that some of the signals (entropy, convergence time)
have the opposite sign from the ground truth signal, so we use their negation as the signal si. Indeed,
if we train the network using (negative) entropy as the exception signal, the regulars and exceptions
are again differentiated, as shown in Figure A1 (bottom).

Figure A1: Signals extracted from the network can differentiate regular items from exceptions, and used to
bootstrap learning for concurrent memorization and consolidation. Top: candidate signals for automatic loss
weighting or importance sampling, measured as the network is trained using ground truth knowledge of whether
each item is an exception. Bottom: the same signals, measured as the network is trained using negative entropy
si = −H(f) as the exception signal.
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A.2 Example trained weights

Naive Loss reweighting

Naive Importance sampling

Figure A2: Final trained weights {ξµ}, (µ = 1, . . . , 100), corresponding to Figure 1, reshaped to match the
dimensions of the MNIST digits used for training (28× 28).
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