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Abstract

Training large AI models such as LLMs and DLRMs costs massive GPUs and
computing time. The high training cost has become only affordable to big tech
companies, meanwhile also causing increasing concerns about the environmen-
tal impact. This paper presents CoMERA, a Computing- and Memory-Efficient
training method via Rank-Adaptive tensor optimization. CoMERA achieves rank-
adaptive tensor-compressed (pre)-training via a multi-objective optimization for-
mulation and improves the training to provide both a high compression ratio and
excellent accuracy in the training process. Our optimized numerical computation
(e.g., optimized tensorized embedding and tensor-network contractions) and GPU
implementation eliminate part of the run-time overhead in the tensorized training on
GPU. This leads to, for the first time, 2− 3× speedup per training epoch compared
with standard training. CoMERA also outperforms the recent GaLore in terms of
both memory and computing efficiency. Specifically, CoMERA is 2× faster per
training epoch and 9× more memory-efficient than GaLore on a tested six-encoder
transformer with single-batch training. Our method also shows ∼ 2× speedup than
standard pre-training on a BERT-like code-generation LLM while achieving 4.23×
compression ratio in pre-training. With further HPC optimization, CoMERA may
reduce the pre-training cost of many other LLMs. An implementation of CoMERA
is available at https://github.com/ziyangjoy/CoMERA.

1 Introduction

Deep neural networks have gained success in solving numerous engineering problems. These
approaches usually use a huge number of variables to parametrize a network, and require massive
hardware resources to train the model. For instance, the Deep Learning Recommendation Model
(DLRM) released by Meta (which is smaller than the practical product) [32] has 4.2 billion parameters;
GPT-3 [4] has 175 billion parameters. OpenAI shows that the computing power required for key AI
tasks has doubled every 3.4 months [1] since 2012. Training a large language model like ChatGPT
and LLaMA from scratch often takes several weeks or months on thousands of GPUs [3, 2].

∗The majority of this work was done when the first author was a postdoc at UC Santa Barbara.
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(a) Training time per epoch. (b) Peak memory consumption.

Figure 1: Training time and total memory cost of CoMERA, GaLore [41] and LTE [20] on a six-
encoder transformer with varying batch sizes. The experiment is done on Nvidia RTX 3090 GPU.

Large AI models often have much redundancy. Therefore, numerous methods have been developed
to reduce the cost of AI inference [5, 25, 7, 13, 16, 31, 30, 17]). However, training large AI models
(especially from scratch) remains an extremely challenging task. Low-precision training [19, 27, 12,
36] has been popular in on-device setting, but its memory reduction is quite limited. Furthermore, it is
hard to utilize ultra low-precision training on GPU since current GPUs only support limited precision
formats for truly quantized training. Chen [6] employed the idea of robust matrix factorization to
reduce the training cost. Similar low-rank matrix approximation techniques have been applied to
train large AI models including large language models [41, 20]. Among them, GaLore [41] can train
the 7B LLaMA model on an RTX 4090 GPU using a single-batch and layer-wise setting. However,
this setting can lead to extremely long training time, which is infeasible in practical settings.

Compared with matrix compression, low-rank tensor compression has achieved much higher com-
pression ratios on various neural networks [11, 22, 25, 29, 33, 37, 40, 43]. This idea has been studied
in structure search for compact representations [43], post-training compression [11], fixed-rank
training [5, 33, 24], zeroth-order training [42] and parameter-efficient fine tuning [39]. The recent
work [14, 15] provides a rank-adaptive tensor-compressed training from a Bayesian perspective.
However, to achieve a reduction in both memory and training time (especially on transformers), two
open problems need to be addressed. Firstly, a more robust rank-adaptive tensor-compressed training
model is desired, since the method in [14, 15] relies on a heuristic fixed-rank warm-up training.
Secondly, while modern GPUs are well-optimized for large-size matrix computations, they are un-
friendly for low-rank tensor-compressed training. Specifically, most operations in tensor-compressed
training are small-size tensor contractions, which can cause significant runtime overhead on GPUs
even though the theoretical computing FLOPS is very low. As a result, as far as we know no papers
have reported real training speedup on GPU. This issue was also observed in [18]. SVDinsTN [43]
controls tensor ranks to search for a compact tensor structure of a given tensor. HEAT [11] uses
tensor decompositions for post-training model compression of trained models. Detailed comparisons
with these works are shown in Appendix A.1.
Paper Contributions. In this work, we propose CoMERA, a tensor-compressed training method
that can achieve, for the first time, simultaneous reduction of both memory and runtime on GPU. Our
specific contributions are summarized as follows.
• Multi-Objective Optimization for Rank-Adaptive Tensor-Compressed Training. We propose a

multi-objective optimization formulation to balance the compression ratio and model accuracy and
to customize the model for a specific resource requirement. One by-product of this method is the
partial capability of automatic architecture search: some layers are identified as unnecessary and
can be completely removed by rank-adaptive training.

• Performance Optimization of Tensor-Compressed Training. While tensor-compressed training
greatly reduces the memory cost and computing FLOPS, it often slows down the practical training
on GPU. We propose three approaches to achieve real training speedup: 1⃝ optimizing the lookup
process of tensorized embedding tables, 2⃝ optimizing the tensor-network contractions in both
forward and backward propagation, 3⃝ eliminating the GPU backend overhead via CUDA Graph.

• Experimental Results. We evaluate our method on the end-to-end training of a transformer with six
encoders and the deep learning recommendation system model (DLRM). On these two benchmarks,
our method achieves 80× and 99× compression ratios respectively, while maintaining the testing
accuracy of standard uncompressed training. CoMERA also achieves 2− 3× speedup per training
epoch compared with standard training methods on the transformer model. In a preliminary study
of LLM pre-training, CoMERA shows 1.9× to 2.3× speedup in different pre-training stages on
CodeBERT [21], while achieving 4.23× overall model reduction in the pre-training process.
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Figure 2: (a) Tensors. (b) Tensor contractions.

Figure 1 compares our CoMERA with GaLore [41] and the recent LoRA-based training method
LTE [20] on the six-encoder transformer. When data and back-end memory cost are considered,
CoMERA’s memory consumption is 9× less than GaLore in the single-batch training as adopted
in [41], and it uses the least memory under all batch sizes. Our method is 2− 3× faster than GaLore
and LTE in each training epoch, although CoMERA has not yet been fully optimized on GPU.

While this work focuses on reducing the memory and computing cost of training, it can also reduce
the communication cost by orders of magnitude: only low-rank tensorized model parameters and
gradients need to be communicated in a distributed setting. The CoMERA framework can also be
implemented on resource-constraint edge devices to achieve energy-efficient on-device learning.

2 Background
The tensor [26, 28] A ∈ Rn1×n2×···×nd is indexed as A = (ai1···id)1≤ij≤nj

and is said
to have order d and dimension n1, . . . , nd. The Frobenius norm of tensor A is defined as
∥A∥ :=

√∑n1,...,nd

i1,...,id
a2i1···id . In tensor networks, the order-d tensor A is represented as a node with

d edges. Some tensor network representations are illustrated in Fig. 2 (a).
Tensor Contraction. Let A ∈ Rn1×n2×···×nd and B ∈ Rl1×l2×···×lm be two tensors with ns = lt.
The tensor contraction product C = A×s,t B has dimension Πi ̸=sni ×Πj ̸=tlj and the entries are

c(ip)p ̸=s,(jp)p̸=t
=

ns∑
is=jt=1

ai1···is···imbj1···jt···jk . (1)

This definition can be naturally generalized to multiple pairs. Figure 2(b) illustrates some tensor
contractions. For general operations among multiple tensors, we use PyTorch einsum in the following

B = einsum(S1, . . . , Sm ⇒ T, [A1, . . . ,Am]), (2)

where each Si is a string of characters that specifies the dimension of Ai. The output tensor B is
obtained by summing over all other dimensions that are not in T . In the following, we show a few
commonly used einsum operations. The Tensor-Train decomposition as in (3) is

A = einsum(n1r1, . . . , rd−1nd ⇒ n1n2 · · ·nd, [G1,G2 . . . ,Gd]).

For the batched matrices A ∈ Rb×m×k,B ∈ Rb×k×n, the batched matrix multiplication is

C = AB = einsum(bmk, bkn ⇒ bmn, [A,B]), where C[i, :, :] = A[i, :, :]B[i, :, :].

Tensor Decomposition. In this paper, we will mainly use tensor-train (TT) [35] and tensor-train
matrix (TTM) [34] decomposition for compressed neural network training. TT [35] represents the
tensor A ∈ Rn1×n2×···×nd as a set of small-size cores G1, . . . ,Gd such that Gi ∈ Rri−1×ni×ri and

A = G1 ×3,1 G2 ×3,1 · · · ×3,1 Gd. (3)

The tuple (r0, r1, . . . , rd) is the TT rank of the TT decomposition (3) and must satisfy r0 = rd = 1.
TTM considers an order-2d tensor B of dimension m1 × n2 × · · · ×md × nd, and represents B as

B = F1 ×4,1 F2 ×4,1 · · · ×4,1 Fd, (4)

where Fi ∈ Rri−1×mi×ni×ri for i = 1, . . . , d and r0 = rd = 1. Figure 3 shows the tensor-network
representations of TT and TTM decomposition.

In tensor-compressed neural networks, large weight matrices are reshaped to high-order tensors and
compressed into small tensor cores in TT or TTM format. The weights of linear layers are often
compressed into the TT format due to its efficiency in tensor-vector multiplications. The TTM format
is more suitable for embedding tables whose dimension is highly unbalanced.
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Figure 3: Tensor networks for (a) tensor-train and (b) tensor-train-matrix decompositions.

3 The CoMERA Training Framework
The size of the tensor-compressed neural networks can be adjusted by modifying the tensor ranks.
However, it also brings in an important problem: how can we determine the tensor ranks automatically
for a given resource limit? We propose a multi-objective optimization to address this issue.

3.1 Multi-Objective Training Model
A Modified TT Representation. We consider the tensor-compressed training for a generic neural
network. Suppose that the neural network is parameterized as f(x|{Gi

1, . . . ,Gi
di
}Pi=1), where {Gi

j ∈
Rrij−1×ni

j×rij}di
j=1 compress the original weight Wi. Let {xk, yk}Nk=1 be training data and L be the

loss function. The training is to minimize the following objective function

min
{Gi

1,...,Gi
di

}P
i=1

L :=

N∑
k=1

L(yk, f(xk|{Gi
1, . . . ,Gi

di
}Pi=1)). (5)

We modify the TT compression and control the ranks of Gi
1, . . . ,Gi

di
by a set of diagonal matrices

{Di
j ∈ Rrij×rij}d−1

j=1 . Specifically, let Wi be the reshape of Wi, and the compression of Wi is

Wi = Gi
1 ×3,1 D

i
1 ×2,1 Gi

2 ×3,1 · · · ×3,1 D
i
di−1 ×2,1 Gi

di
. (6)

Now the tensor cores for Wi have Si = ni
1∥Di

1∥0 + ni
di
∥Di

di−1∥0 +
∑di−1

j=2 ni
j∥Di

j−1∥0∥Di
j∥0

variables. For simplicity, we denote G := {Gi
1, . . . ,Gi

di
}Pi=1 and D := {Di

1, . . . ,D
i
di−1}Pi=1.

Multi-Objective Optimization. We intend to minimize both the loss and compressed network
size, which can be formulated as a multi-objective optimization minG,D {L(G,D), S(D)} , where
S(D) :=

∑P
i=1 Si(D). In most cases, we cannot find a point that minimizes the loss and model size

simultaneously. Therefore, we look for a Pareto point (G∗,D∗), meaning that there exist no G and
D such that L(G,D) ≤ L(G∗,D∗), S(D) ≤ S(D∗), and at least one of inequalities is strict.

3.2 Training Methods
We convert a multi-objective optimization to a single-objective one via scalarization. We use different
scalarization methods at the early and late stage of training. The late stage is optional, and it can
further compress the model to enable efficient deployment on resource-constraint platforms.
Early Stage. At the early stage of CoMERA, aggressively pruning ranks dramatically hurts the
convergence. Hence, we start the training with the following linear scalarization formulation [8]

min
G,D

L(G,D) + γS(D). (7)

It is still hard to solve (7) since S(D) uses ∥ · ∥0 which is nonsmooth. Therefore, we replace ∥ · ∥0 by
the ℓ1 norm ∥ · ∥1 and get the convex relaxation

Ŝ(D) :=

P∑
i=1

 P∑
i=1

ni
1∥Di

1∥1 + ni
di
∥Di

di−1∥1 +
di−1∑
j=2

ni
j∥Di

j−1∥1∥Di
j∥1

 . (8)

We note that Ŝ(D) can be arbitrarily close to 0 while keeping L(G,D) unchangeable, since the
corresponding slices of TT factors can be scaled accordingly. Therefore, a direct relaxation of the
scalarization (11) does not have a minimizer. To address this issue, we add an ℓ2 regularization
∥G∥2 :=

∑P
i=1

∑di

j=1 ∥Gi
j∥2 to the relaxation and get the formulation

min
G,D

L(G,D) + γŜ(D) + β∥G∥2. (9)

The optimizer of Problem (9) is a Pareto point for a constrained problem, shown in the following.
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Proposition 3.1. For all γ > 0, β > 0, there exists some constant C > 0 such that the solution to
the problem (9) is a Pareto point of the following multi-objective optimization problem

min
G,D

(L(G,D), Ŝ(D)) subject to ∥G∥2 ≤ C. (10)

Proof. See Appendix A.2 for the complete proof.
Late Stage (Optional). The early-stage training can provide us with a Pareto point, but we cannot
control where the Pareto point is. In the late stage of CoMERA, we may continue training the model
towards a preferred loss L0 and a preferred model size S0 for deployment requirements. This can be
achieved by the achievement scalarization [8] that leads to a Pareto point close to (L0, S0):

min
G,D

max {w1(L(G,D)− L0), w2(S(D)− S0)}+ ρ(L(G,D) + S(D)). (11)

Here w1, w2 > 0 scale the objectives into proper ranges, and ρ > 0 is a small constant. After relaxing
S(D) to Ŝ(D) and adding the regularization term, we get the following problem

min
G,D

max {w1(L(G,D)− L0), w2(S(D)− S0)}+ ρ(L(G,D) + Ŝ(D)) + β∥G∥2, (12)

where β > 0 is a positive constant. Note that the S(D) inside max is not relaxed now for accurate
comparisons. When w1(L(G,D)− L0) ≥ w2(S(D)− S0), we consider the following problem

min
G,D

w1(L(G,D)− L0) + ρ(L(G,D) + Ŝ(D)) + β∥G∥2. (13)

We run a step of a gradient-based algorithm on this problem. When w1(L(G,D)−L0) < w2(S(D)−
S0), we relax the S(D) again and get the following problem

min
G,D

w2(Ŝ(D)− S0) + ρ(L(G,D) + Ŝ(D)) + β∥G∥2, (14)

and run a step of a gradient-based algorithm on this problem. The Algorithm 1 is summarized
in Appendix A.3. The late stage optimization can be independently applied to a trained tensor-
compressed model for further model size reductions.

4 Performance Optimization of CoMERA
While CoMERA can greatly reduce training variables and memory cost, the low-rank and small-size
tensor operations in CoMERA are not efficiently supported by GPU. This often slows the training
process. This section presents three methods to achieve real training speedup on GPU.

4.1 Performance Optimization of TTM Embedding Tables.

Figure 4: Optimized TTM embedding lookup.

Embedding tables are widely used to transfer dis-
crete features into continuous hidden space. The row
size of embedding tables is usually much larger than
the column size, making TTM compression more
suitable than the TT format. In the following, we use
an order-4 TTM embedding table to illustrate how to
accelerate the lookup process.

We consider an embedding table T ∈ Rm×n. A look-
up operation selects the submatrix T[I, :] ∈ Rb×n

for the index set I = {ik}bk=1. This operation is fast
and inexpensive. However, the full embedding table
itself is extremely memory-consuming. Suppose that
m = m1m2m3m4, n = n1n2n3n4, then we reshape T into tensor T ∈ Rm1×n1×···×m4×n4 and
represent it in TTM format

T = G1 ×4,1 G2 ×4,1 G3 ×4,1 G4. (15)
The compressed embedding table does not have the matrix T explicitly. We convert each row index
ik ∈ I to a tensor index vector (zk1 , z

k
2 , z

k
3 , z

k
4 ) and denote Zt = {zkt }bk=1, then T[I, :] can be

computed by contracting the tensors {Gt[:,Zt, :, :]}4t=1 where each has size rt−1 × b× ni × nt. The
Gt[:,Zt, :, :] stores many duplicated values especially when the set I is large. Therefore, directly
computing the tensor contractions can cause much computing and memory overhead.
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(a) Speed-up (b) Memory reduction

Figure 5: Performance of optimized TTM embedding table lookup. The labels uncompressed, pro-
posed approach, optimized order, unique indices, without optimization represent standard embedding
with sparse gradients, the new method in 4.1, the method that only uses the unique order, the method
that only uses the unique indices, and the method without optimization, respectively.

We optimize the tensor contraction by eliminating the redundant computation at two levels. Row-
index level. We construct the index set Iu = {ik}b̂k=1 containing all unique indices in I. We
can easily obtain T[I, :] from T[Iu, :]. Tensor-index level. The reduced index set Iu leads to b̂
associated tensor index vectors (zk1 , z

k
2 , z

k
3 , z

k
4 ), but at most m1m2 pairs of (zk1 , z

k
2 ) and m3m4 pairs

of (zk3 , z
k
4 ) are unique. For instance, (2,3,1,3) and (2,3,2,4) are common in (2,3), so we only compute

(2,3) entry once. Therefore, we can consider all unique pairs (zk1 , z
k
2 ) and (zk3 , z

k
4 ) and compute

A1 =einsum(r0m1n1r1, r1m2n2r2 ⇒ (m1m2)(n1n2)r2, [G1,G2]), (16)
A2 =einsum(r2m3n3r3, r3m4n4r4 ⇒ r2(m3m4)(n3n4), [G3,G4]). (17)

For each ik ∈ Iu, let (jk1 , j
k
2 ) be the coordinate of ik for size (m1m2,m3m4). We denote J1 =

{jk1 }b̂k=1 and J2 = {jk2 }b̂k=1, then compute the unique rows of T as

T[Iu, :] = einsum(b̂(n1n2)r2, r2b̂(n3n4) ⇒ b̂(n1n2n3n4), [A1[J1, :, :],A1[:,J2, :]]). (18)

Figure 4 summarizes the whole process of TTM embedding table look-up. This approach can be
easily applied to higher-order embedding tables by first grouping some small tensor cores to obtain
intermediate tensors and then utilizing them to compute unique row vectors.

Performance. We demonstrate the optimized TTM embedding tables on a single RTX 3090 GPU.
We consider an embedding table of TTM shape [[80, 50, 54, 50], [4, 4, 4, 2]] and rank 32, extracted
from a practical DLRM model. As shown in Figure 5, our proposed method achieves about 4− 5×
speed-up and 2−3× memory saving than the standard TTM embedding without any optimization. The
uncompressed embedding with sparse gradients is faster than our approach since our TTM embedding
table requires extra computation, but it uses much more memory than the TTM embedding table.

4.2 Contraction Path Optimization for TT-Vector Multiplications

Next, we optimize the forward- and back- propagation of linear layers in the TT format. We consider
the linear layer Y = XW, where Y ∈ Rb×N2 ,W ∈ RN1×N2 ,X ∈ Rb×N1 . The W is compressed
into the Tensor-Train format: W = [[G1, . . . ,G2d]] ∈ Rn1×···×n2d ,where Gi ∈ Rri−1×ni×ri and
N1 = n1 · · ·nd, N2 = nd+1 · · ·n2d. The forward-propagation in the einsum form is

Y = XW = einsum(bn1 . . . nd, S1, . . . , S2d ⇒ bnd+1 . . . n2d, [X ,G1, . . . ,G2d]) (19)

where X ∈ Rb×n1×···×nd is the reshaping of X and Si denotes ri−1niri. Suppose that the gradient
to Y is gY, then the gradients to Gi and X can be computed as follows:

gGi = einsum
(
bn1 . . . nd, bnd+1 . . . n2d, S1, . . . , Si−1, Si+1, . . . , S2d ⇒ Si,

[X ,gY ,G1, . . . ,Gi−1,Gi+1, . . . ,G2d]), (20)

gX = einsum
(
bnd+1 . . . n2d, S1, . . . , S2d ⇒ bn1 . . . nd, [gY ,G1, . . . ,G2d]). (21)

In total, 2d+ 2 contraction sequences are needed for the TT-format forward- and back- propagation.
To reduce the computational costs, it is critical to find an optimal or near-optimal contraction path.
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Large batch case. We denote Ai := G1 × · · · × Gi,A−i = Gd−i+1 × · · · × Gd,Bi := Gd+1 ×
· · · × Gd+i,B−i = G2d−i+1 × · · · × G2d, which are all computed sequentially. In practice, we only
need to compute Ad,A−d,Bd,B−d and store the intermediate results. The forward-propagation
(19) is then computed in the following way

T1 = einsum(bn1 . . . nd, n1 . . . ndrd ⇒ brd, [X ,Ad]) (22)
Y = einsum(brd, rdnd+1 . . . n2d ⇒ bn1 . . . nd, [T1,Bd]). (23)

In backward propagation, the gradients are computed in the following way:
• The gradient gX is computed as

U1 = einsum(bnd+1 . . . n2d, rdnd+1 . . . n2d ⇒ brd, [gY ,Bd]) (24)
gX = einsum(brd, n1 . . . ndrd ⇒ bn1 . . . nd, [U1,Ad]). (25)

• The gradients gGi for i ≥ d+ 1 can be computed as
T2 = einsum(brd, bnd+1 . . . n2d ⇒ rdnd+1 . . . n2d, [T1,gY ]) (26)
gGi

= einsum(rdnd+1 . . . n2d, rdnd+1 . . . ni−1ri−1, rini+1 . . . n2d ⇒ (27)
ri−1niri, [T2,Bi−1−d,B−(2d−i)]).

• Similarly, the gradients gGi
for i ≤ d can be computed as

U2 = einsum(brd, bn1 . . . nd ⇒ rdn1 . . . nd, [U1,X ]) (28)
gGi = einsum(rdn1 . . . nd, n1 . . . ni−1ri−1, rini+1 . . . ndrd ⇒ (29)

ri−1niri, [U2,Ai,A−(d−i)]).

The contraction paths of forward- and back- propagation are summarized in Appendix A.5.
Analysis. The proposed empirical path is near-optimal for large batch sizes. The following result
analyzes the contraction path for forward-propagation.
Proposition 4.1. Suppose that the TT ranks satisfy 1 = r0 < r1 ≤ · · · ≤ rd ≥ rd−1 > · · · ≥ r2d = 1
and the batch size b is large enough. There exist groups {Si}ki=1 where Si = {Gji+1, . . . ,Gji+1

}
containing consecutive tensor cores for 0 = j1 < · · · < jk < jk+1 = 2d. Then, the contraction path
with the least number of flops for the forward-propagation (19) first contracts the tensor cores in
each Si to obtain Vi with dimension rji × nji+1 × · · · × nji+1 × rji+1 and then contract the input
tensor X with tensors {Vi}ki=1 in the sequential order.

Proof. See Appendix A.4 for the complete proof.
Proposition 4.1 implies that the optimal path first contracts some consecutive tensor cores and then
contracts obtained tensors with the input tensor sequentially. The groups {Si}ki=1 depend on the
dimensions, ranks, and batch size. The proposed contraction path satisfies the property shown in
Proposition 4.1 and has flops roughly b(n1 · · ·nd + nd+1 · · ·n2d)rd. The optimal contraction path
has flops about bn1 · · ·ndc1+bnd+1 · · ·n2dc2, where c1, c2 are some constants. Hence, the proposed
is near-optimal and has a comparable complexity to the optimal path. Suppose the optimal path is
different from the proposed empirical path. Then the optimal path will likely involve a few more
large intermediate tensors, which pose more memory costs during training and inference especially
for static computational graphs. The empirical path is a good choice to balance time and memory
consumption. Similar arguments can be applied to the contractions for back-propagation.

When the batch size is small, the optimal path may have much fewer flops. However, the execution
time is almost the same as the proposed path since all the operations are too small. Hence, we can
use the proposed path for most batch sizes. See Appendix A.6 for more analysis.

4.3 GPU Performance Optimization via CUDA Graph

While CoMERA consumes much less computing FLOPS than standard uncompressed training, it
can be slower on GPU if not implemented carefully. Therefore, it is crucial to optimize the GPU
performance to achieve real speedup. Modern GPUs are highly optimized for large-size matrix
multiplications. However, the small-size tensor contractions in CoMERA are not yet optimized on
GPU and require many small-size GPU kernels, causing significant runtime overhead. During the
training, Cuda Graph launches and executes the whole computing graph rather than launching a large
number of kernels sequentially. This can eliminate lots of back-end overhead and lead to significant
training speedup. It is more suitable for CoMERA since tensor-compressed training has much more
small kernels than uncompressed training. This is just an initial step of GPU optimization. We expect
that a more dedicated GPU optimization can achieve a more significant training speedup.
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Table 1: Result of Transformer on MNLI of batch size 128.
validation total size (MB) compressed size (MB)

uncompressed training 62.2% 256 (1×) 253 (1×)
CoMERA (early stage) 63.3% 5.9 (43×) 3.4 (74×)

CoMERA (late stage), target ratio: 0.8 62.2% 4.9 (52×) 2.4 (105×)
CoMERA (late stage), target ratio: 0.5 62.1% 3.9 (65×) 1.4 (181×)
CoMERA (late stage), target ratio: 0.2 61.5% 3.2 (80×) 0.7 (361×)

Table 2: The change of ranks of layers in the fifth encoder block.
before training early-stage rank late-stage rank

Q-layer in attention (12, 30, 30, 30, 12) (12, 30, 30, 30, 12) (0, 0, 0, 0, 0)
K-layer in attention (12, 30, 30, 30, 12) (12, 30, 30, 30, 12) (0, 0, 0, 0, 0)
V-layer in attention (12, 30, 30, 30, 12) (12, 30, 30, 30, 12) (9, 11, 11, 7, 9)

FC-layer in attention (12, 30, 30, 30, 12) (12, 30, 29, 30, 12) (9, 8, 10, 8, 8)
#1 linear-layer in Feed-Forward (12, 30, 30, 30, 16) (0, 0, 0, 0, 0) (0, 0, 0, 0, 0)
#2 linear-layer in Feed-Forward (16, 30, 30, 30, 12) (0, 0, 0, 0, 0) (0, 0, 0, 0, 0)

5 Training Results
In this section, we test the performance of CoMERA on a few benchmarks, including a domain-
specific LLM. Our experiments are run on a Nvidia RTX 3090 GPU with 24GB RAM.
5.1 A Medium-Size Transformer with Six Encoders

Figure 6: Behavior of early-stage CoMERA train-
ing on the MNLI dataset.

We first consider a six-encoder transformer. The
embedding tables and all linear layers are repre-
sented as tensor cores in the training process as
detailed in Appendix A.7. We train this model
on the MNLI dataset [38] with the maximum
sequence length 128 and compare the accuracy,
resulting model size, and training time of CoM-
ERA with the standard uncompressed training.
CoMERA Accuracy and Compression Perfor-
mance. Table 1 summarizes the training results.
The early-stage training of CoMERA achieves
74× compression ratio on all tensorized layers,
and the validation accuracy is even higher than the uncompressed training. Figure 6 shows the
validation accuracy of CoMERA. In the late stage of CoMERA, we set different target compression
ratios for more aggressive rank pruning. The target compression ratios are for the tensorized layers
rather than for the whole model. The late-stage training can reach the desired compression ratio with
very little accuracy drop. The smallest model has a compression ratio of 80× for the whole model
due to a 361× compression on the tensorized layers with slightly worse accuracy.

Figure 7: Training time per epoch for the six-
encoder transformer model on the MNLI dataset.

Architecture Search Capability of CoMERA.
A major challenge in training is architecture
search: shall we keep certain layers of a model?
Interestingly, CoMERA has some capability of
automatic architecture search. Specifically, the
ranks of some layers become zero in the training,
and thus the whole layer can be removed. For the
target compression ratio 0.2, the whole second
last encoder and some linear layers in other en-
coders are completely removed after late-stage
rank-adaptive training. The change of ranks of
layers in the 5th encoder is shown in Table 2.
Training Time. As shown in Figure 7, CoMERA with CUDAGraph achieves around 3× speed-up
than uncompressed training. CoMERA without CUDAGraph can take much longer time in small
batch-size setting due to the launching overhead of too many small kernels. The uncompressed
training with CUDAGraph takes longer time than the one without CUDAGraph. This is because
CUDAGraph requires all batches to have the same sequence length, and the consequent computing
overhead is more than the time reduction of CUDAGraph. In contrary, CoMERA has much fewer
computing FLOPS and the computing part accounts for a much smaller portion of the overall
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(a) Training time per epoch. (b) Memory cost.

Figure 9: Performance of optimized CoMERA on training DLRM.

runtime. Empirically CoMERA is 2− 3× faster in the whole training than uncompressed training for
transformers on a single GPU, but we do not have theoretical guarantees about the number of epochs
although they are similar in our experiments. Appendix A.8 provides more details about the run-time
comparison on this benchmark, showing that CoMERA is still faster than standard training even if
the compression ratio is close to 1.

5.2 A DLRM Model with 4-GB Model Size
We further test CoMERA on DLRM [32] released by Meta on Criteo Ad Kaggle dataset [23]. We
compress the ten largest embedding tables into the TTM format as in Section 4.1. All fully connected
layers with sizes > 128 are compressed into TT format. The model is trained for two epochs.

Figure 8: NCE loss curve of DLRM on the
validation dataset.

Effect of Optimized TTM Embedding. The training
time per epoch and peak memory cost are shown in
Figure 9. Our optimized TTM lookup speeds up the
training process by around 2× and remarkably reduces
the memory cost by 4− 5×.
Overall Performance of CoMERA. Table 3 shows
the testing accuracy, testing loss (measured as normal-
ized CE), memory costs, and model sizes of CoMERA
and uncompressed training. CoMERA achieves similar
accuracy as the uncompressed training, while CoMERA
compresses the whole model by 99× and saves 7× peak
memory cost (with consideration of the data and backend overhead) in the training process. The
reduction of model size and memory cost mainly comes from the compact TTM tensor representation
of large embedding tables. Standard uncompressed training is faster than CoMERA since DLRM is
an embedding-intensive model, and the computation in the embedding table is look-up rather than
matrix multiplications. However, CoMERA uses much less memory, saving 6.9X, 4.8X, and 3.1X
memory for batch sizes 10000, 2000, and 4000, respectively. Furthermore, CoMERA has a similar
convergence curve and needs fewer iterations than standard training for DLRM, as shown in Figure 8.

5.3 Comparison with GaLore and LTE

Table 3: Training results on the DLRM model with a
batch size 10, 000.

uncompressed CoMERA
accuracy 78.68% 78.76%

normalized CE 0.793 0.792
model size (GB) 4.081 0.041 (99×)

peak memory (GB) 18.275 2.612 (7×)

We compare our method with two recent
low-rank compressed training frameworks:
GaLore [41] and LTE [20]. GaLore [41] re-
duces the memory cost by performing SVD
compression on the gradient, and LTE rep-
resents the weights as the sum of parallel
low-rank matrix factorizations. We evaluate
their memory costs and training times per
epoch on the six-encoder transformer model under different batch sizes. We do not compare the
total training time because the training epochs of various methods are highly case-dependent. The
CoMERA and GaLore achieve almost the same validation accuracy, 64%, on the MNLI dataset.
However, the LTE approach does not converge on the task using its default setting.
Training Time Per Epoch. We use rank 128 for the low-rank gradients in GoLore, and rank 32 and
head number 16 for the low-rank adapters in LTE. For a fair comparison, all methods are executed
with CUDA graph to reduce the overhead of launching CUDA kernels. The runtimes per training
epochs are reported in Figure 1(a). For the LTE, we only report the results for batch sizes 32, 64, 128
since it requires the batch size to be a multiple of the head number. Overall, our CoMERA is about
2× faster than GaLore and 3× faster than LTE for all batch sizes, because the forward and backward
propagation using low-rank tensor-network contractions dramatically reduce the computing FLOPS.
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Figure 10: Pre-training loss curves of CodeBERT and CoMERA.

Memory Cost. Figure 1 (b) shows the memory cost of all three training methods. In the single-
batch setting as used in [41], our CoMERA method is 9× more memory-efficient than Galore on the
tested case (with consideration of data and back-end cost). As the batch size increases, the memory
overhead caused by data and activation functions becomes more significant, leading to less memory
reduction ratios. However, our proposed CoMERA still uses the least memory.

We run the experiments on the RTX 3090 GPU. The work GaLore[41] uses the RTX 4090 GPU for
experiments, so we also compare them on the RTX 3090 GPU. The results are in Appendix A.9.

5.4 Preliminary LLM Pre-Training Results: Case Study on CodeBERT
To show the benefit of CoMERA in pre-training (domain-specific) LLMs, we follow the setup from
CodeBERT [10] to pre-train a BERT-like model for code generation. The pre-training dataset is
the CodeSearchNet [21], a collection of 2M (comment, code) pairs and 6M pure code sequences
from open-source libraries with 6 types of programming languages. We pre-train CodeBERTLARGE
(357M) and its CoMERA (84M) variant using the masked language modeling (MLM) objective and
compare their training loss in Figure 10. We achieve up to 12.72× compression on tensorized layers
and 4.23× overall compression with final loss of 0.40 vs 0.28. There is a small gap between the
final losses. However, this does not necessarily imply performance degradation on downstream tasks,
based on our observation on BERTLARGE[9] shown in Appendix A.10. Furthermore, CoMERA is
2.3× and 1.9× faster than standard pre-training in Phase 1 and Phase 2 respectively, when evaluated
on the Nvidia RTX 3090 GPU. Our current CoMERA implementation is still slower than standard
pre-training on massive GPUs, since no performance optimization has been done on HPC.

6 Conclusions and Future work

This work has presented CoMERA framework to reduce the memory and computing time of training
AI models. We have investigated rank-adaptive training via multi-objective optimization to meet
specific model sizes while maintaining model performance. We have achieved real training speedup
on GPU via three optimizations: optimizing the tensorized embedding tables, optimizing the con-
traction path in tensorized forward and backward propagation, and optimizing the GPU latency via
CUDAGraph. The experiments on a transformer model demonstrated that CoMERA can achieve
2− 3× speedup per training epoch. The model sizes of the transformer and a DLRM model have
been reduced by 43× to 99× in the training process, leading to significant peak memory reduction
(e.g., 7× total reduction in large-batch training of DLRM on a single GPU). Our method has also
outperformed the latest GaLore and LTE frameworks in both memory and runtime efficiency. More
importantly, our method has demonstrated significant speedup and model compression in pre-training
CodeBERT, a domain-specific LLM for automatic code generation. We have also observed further
speedup by combining CoMERA with mixed-precision computation. The discussions and some
preliminary results are in Appendix A.11.

Unlike large-size matrix operations, the small low-rank tensor operations used in CoMERA are not
yet well-supported by existing GPU kernels. The performance of CoMERA can be further boosted
significantly after a comprehensive GPU and HPC optimization. The existing optimizers, e.g. Adam,
are well-studied for uncompressed training. However, CoMERA has a very different optimization
landscape due to the tensorized structure. Therefore, it is also worth studying the optimization
algorithms specifically for CoMERA in the future.
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A Supplementary Material

A.1 Comparison with existing works

SVDinsTN [43] uses sparse diagonal matrices and the ℓ1 regularization to control tensor ranks
for a compact tensor structure of a given tensor. In contrast, our work compresses weights during
end-to-end training without any prior information on the tensor (i.e., model parameters). Both works
use sparse diagonal matrices and ℓ1 terms to control tensor ranks. Using diagonal matrices to control
the ranks of matrices is very common, like SVD. The ℓ1 norm is also widely used to induce sparsity
in various models, like compressed sensing and Lasso regression. It is natural to combine these two
techniques to control tensor ranks, regardless of tensor formats. Moreover, our work formulates the
problem as a more generic multi-objective problem and uses a two-stage algorithm to solve it. The
formulation in SVDinsTN is similar to linear scalarization approach in our early stage. Our work
further uses the achievement scalarization in the late stage to find a model close to our preferred
model performance and size.

HEAT [11] also considers contraction optimization for post-training model compression of trained
models. In contrast, CoMERA considers end-to-end tensor-compressed training, where no model
parameters are known prior to training. In addition, HEAT only discusses the single path optimization
for forward propagation in CP format. We have optimized d+ 2 contraction paths jointly in both
forward- and back- propagation in TT format. Since these contractions can be coupled, we have also
minimized the overall computation costs by reusing intermediate results.

A.2 Proof of Proposition 3.1

Proof. The objective function in (9) is bounded below by 0. Hence, the problem (9) has a finite
infimum value f∗. Let {Gk,Dk}∞k=1 be a sequence such that limk→∞ L(Gk,Dk) + γŜ(Dk) +
β∥Gk∥2 = f∗. The sequence must be bounded because of the l1 regularization of D and the ℓ2
regularization of G. As a result, the sequence has a cluster point (G∗,D∗) which is a minimizer of
the (9). Let C := ∥G∗∥2. The relaxation (9) is equivalent to the constrained optimization problem.

min
G,D

L(G,D) + γŜ(D) (30)

s.t. ∥G∥2 ≤ C.

It implies that the solution to the training problem (9) is a Pareto point of the multi-objective
optimization problem minG,D(L(G,D), Ŝ(D)).

A.3 Algorithm for Late Stage Optimization in Section 3.2

The algorithm for the late stage optimization in Section 3.2 is summarized in Algorithm 1.

Algorithm 1 Solve relaxed scalarization problem (12)
Input: Initializations G0,D0, constants L0, S0, w1, w2, ρ, β, and an optimization algorithm O.
Output: Tensor cores GT and rank-control parameters DT .

for t = 0, . . . , T − 1 do
if w1(L(Gt,Dt)− L0) ≥ w2(S(Dt)− S0) then

The optimization algorithm O runs one step on the problem (13).
else

The optimization algorithm O runs one step on the problem (14).
end if

end for

A.4 Proof of Proposition 4.1

Proof. For convenience, let Vi be a string of characters to specify the dimension of Vi, Ci be the set
of tensor cores used to obtain Vi, and Xi be the tensor by contracting X with V1, . . . .Vi, denoted by
the string Xi.
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We first show that V1 must be in the proposed format. Suppose otherwise for contradiction. Let Gi

be the first tensor core used to obtain V1. If i = 1, then we write V1 = V 1
1 V

2
1 where the tensor V1

1
corresponding to V 1

1 is obtained by contractions of longest consecutive tensor cores containing Gi in
the set C1. Let Z1 = V 1

i ∩ X̃ , Z2 = V 2
i ∩ X̃ . The number of flops for the contraction between X̃

and V1 is π(X)π(V 1
1 )π(V 2

1 )
π(Z1)π(Z2)

. If we first contract X̃ with V1
1 and then contract the obtained tensor with

V2
1 , the number of flops is π(X)π(V 1

1 )
π(Z1)

+
π(X)π(V 1

1 )π(V 2
1 )

π(Z1)2π(Z2)
which is less than π(X)π(V 1

1 )π(V 2
1 )

π(Z1)π(Z2)
since

Z2 ̸= V 2
1 . It contradicts our assumption that this is the optimal path. If d ≥ i > 1, let S be the

tensor generated by the longest consecutive tensor cores containing Gi−1 and used in the optimal
path. A better path is to first contract V1 with S to obtain W , then contract W with X and all other
unused parts in the optimal path. It is better because the number of flops for contracting W and X
is no greater than that for contracting V1 and X and the new path reduces the number of flops in
the remaining contractions. The reduction in the remaining contractions is more than the potential
flop increase in obtaining W when the batch size b is big enough. Finally, we consider the case that
i > d. Let Gj be the first tensor core used to obtain V2. If j > d, then first contracting V1 and V2

and then all other parts is a better choice. Otherwise, if j ≤ d, let V1
2 be the tensor contracted by

the consecutive tensors containing Gj in C2. The tensor V can be represented by the contraction of
V1

2 and another tensor V2
2 generated by the remaining tensor cores in C2. In this scenario, we can

contract V1
2 with V1 to get S, then S with X to get W , then V2

2 with W , and finally the obtained
tensor with V3, . . . ,Vk. It is not hard to verify contracting V1

2 and V1, S and S and X , and W and
V2

2 uses less flops than directly contracting X with V1 and V2 directly when the batch size b is large.
Summarizing everything above, we can conclude that V1 must be in the proposed format.

The contraction of Xi and Vi+1, . . . ,Vk has the similar structure to the contraction of X and
V1, . . . ,Vk. By applying the same proof, we conclude that the tensors Vi’s must be in the format
stated in the proposition and we will contract the input tensor X with the tensors tenV1, . . . ,Vk in
the sequential order.

A.5 Algorithm for Contraction Path in Section 4.2

The empirical near-optimal contraction path for tensor-compressed training is shown in Algorithm 2.

Figure 11 presents the tensor diagrams for contraction paths of TT forward- and back- propagation as
discussed in Section 4.2.

Algorithm 2 Empirical path for tensor-compressed forward- and back- propagation
Forward Input: Tensor cores G1, . . . ,G2d and input matrix X.
Forward Output: Output matrix Y, and intermediate results.

1: Reshape the matrix X to the tensor X .
2: Compute Ad,A−d,Bd,B−d in the sequential order and store intermediate results of

{Ai,A−i,Bi,B−i}di=1 for back-propagation.
3: Compute T1 as in (22) to store it for back-propagation.
4: Compute Y as in (23) and reshape it to the appropriate matrix Y.

Backward Input: Inputs of Forward, stored results from Forward, and output gradient gY.
Backward Output: Gradients gX,gG1 , . . . ,gG2d

.
1: Reshape the gradient gY to the tensor gY .
2: Compute U1 and gX as in (24), (25) and store U1 for future use.
3: Compute gGi

for i ≥ d+ 1 as in (26), (27) using stored tensors.
4: Compute gGi

for i ≤ d as in (22), (29) using stored tensors.

A.6 Small Batch Case for Contraction Path in Section 4.2

Small batch case. The empirical contraction path in Algorithm 2 eliminates the batch size dimen-
sion b early, so it is nearly optimal when the batch size is large. We may search for a better path
using a greedy search algorithm to minimize the total operations. In each iteration, we prioritize
the pairs that output the smallest tensors. Such a choice can quickly eliminate large intermediate
dimensions to reduce the total number of operations. When the batch size is large, the searched path
is almost identical to the empirical path in Algorithm 2 which eliminates the batch size dimension b
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(a) TT-vector forward-propagation

(b) TT-vector back-propagation: compute gX

(c) TT-vector back-propagation: compute gGi , 1 ≤ i ≤ d

(d) TT-vector back-propagation: compute gGi , d+ 1 ≤ i ≤ 2d

Figure 11: Tensor diagrams for contraction paths of TT forward- and back- propagation.

early. The searched path may differ from Algorithm 2 for small batch sizes, but their execution times
on GPU are almost the same. This is because the tensor contractions for smaller batch sizes have a
minor impact on the GPU running times. Consequently, despite certain tensor contractions in the
empirical path being larger than those in the optimal path, the actual GPU execution times between
them exhibit only negligible differences. Therefore, the empirical contraction path in Algorithm 2 is
adopted for all batch sizes in CoMERA.

A.7 Compression Settings for the Experiment in Section 5.1

The compression settings for the experiment in Section 5.1 are shown in Table 4.

16



Table 4: Tensorized setting for the Transformer model in CoMERA.
format linear shape tensor shape rank

embedding TTM (30527,768) (64,80,80,60) 30
attention TT (768,768) (12,8,8,8,8,12) 30

feed-forward TT (768,3072) (12,8,8,12,16,16) 30

Figure 12: Per epoch training time of CoMERA on MNLI for various compression ratios.

A.8 Per Epoch Training Time of CoMERA on MNLI for Various Compression Ratios

Table 12 shows the per-epoch training time of CoMERA on MNLI dataset for different compression
ratios. The acceleration is more obvious for larger compression ratios. When the compression ratio is
greater than 1, CoMERA always has speedup. When the compression ratio approaches 1, the time of
CoMERA approaches that of uncompressed training.

A.9 Comparison with GaLore and LTE on a single RTX 4090 GPU

Since GaLore[41] uses a single RTX 4090 GPU for experiments in the original paper, we also run the
experiments on the RTX 3090 GPU and compare the results. Figure 13 presents the training time
and peak memory consumption. Compared to RTX 3090, the training on RTX 4090 uses similar
memory and takes less training time, and CoMERA is still the fastest method and consumes the
least memory among all three techniques. The memory savings are almost the same as the results
reported in Figure 1 in our paper. The speed-up factors are almost identical for batch sizes 32, 64,
and 128. For batch size 1, our method is 1.2× faster and 1.7× faster than GaLore on RTX 3090,
respectively. The difference is that RTX 4090 GPU significantly accelerates matrix multiplications
of batch size 1, while it does not accelerate that much for smaller tensor contractions. We find that
r = 30 matrix multiplication on RTX 3090 has a similar speedup for both batch sizes, whereas the
same multiplication on RTX 4090 only has speedup for batch 32 and does not have any speedup for
batch 1. We would like to note that it might be caused by that different GPU platforms have different
backend overhead, which can become more dominant as computation decreases to batch=1. We will
continue optimizing GPU-level kernels to accelerate small tensor contractions and expect to see a
similar speedup.

A.10 CoMERA Pretraining Result on BERTLARGE

CoMERA on Original BERTLARGE. Our results on CodeBERT is rather preliminary as only
pre-training loss is available. For the original BERTLARGE[9] (336M) and its CoMERA (125M)
variant that we trained by using Wikipedia (2500M words), we achieve up to 6.36× compression on
tensorized layers and 2.69× overall compression, with final loss of 1.45 vs 1.26. On downstream
tasks, CoMERA ourperforms BERTLARGE on SST-2 (accuracy: 92.10% vs 91.74%) and MRPC
(accuracy: 86.82% vs 86.00%), underperforms BERTLARGE on SQuAD (f1: 88.76% vs 90.68%).
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(a) Training time per epoch. (b) Peak memory consumption.

Figure 13: Training time and total memory cost of CoMERA, GaLore [41] and LTE [20] on a
six-encoder transformer with varying batch sizes. The experiment is done on Nvidia RTX 4090 GPU.

Table 5: Speed-up of mixed-precision computation on tensor-compressed linear layers.

shape (b,m,n) tensor-vector matrix-vector
FP8-mix FP32 FP8 FP32

(10000,1024,1024) 1.95 1.63 1.02 2.82
(20000,1024,1024) 2.02 3.37 1.93 5.41
(40000,1024,1024) 2.55 6.82 4.27 10.93
(10000,1024,4096) 1.97 3.96 3.69 10.28
(20000,1024,4096) 2.96 8.32 7.26 20.93
(40000,1024,4096) 5.47 17.13 15.27 45.60

A.11 Discussion: Mixed-Precision CoMERA

Modern GPUs offer low-precision computation to speed up the training and inference. It is natural
to combine low-rank tensor compression and quantization to achieve the best training efficiency.
However, CoMERA involves many small-size low-rank tensor contractions, and a naive low-precision
implementation may even slow down the training due to the overhead caused by precision conversions.

To resolve the above issue, we implement mixed-precision computation in CoMERA based on one
simple observation: large-size contractions enjoy much more benefits of low-precision computation
than small-size ones. This is because the overhead caused by precision conversions can dominate the
runtime in small-size contractions. In large-batch tensor-compressed training, small- and large-size
tensor contractions can be distinguished by whether the batch size dimension b is involved. In general,
a contraction with the batch b is regarded as large and is computed in a low precision. Otherwise, it is
regarded small and is computed in full-precision. The actual mixed-precision algorithm depends on
the contraction path used in the forward- and back- propagations of CoMERA.

Figure 14: Convergence of mixed-precision CoMERA
on the six-encoder transformer.

Runtime. We evaluate the mixed-
precision forward and backward propaga-
tions of CoMERA in a FP8 precision on
the NVIDIA L4 GPU. We consider a single
linear layer. The shapes (1024, 1024) and
(1024, 4096) are converted to the TT shapes
(16, 8, 8, 8, 8, 16) and (16, 8, 8, 16, 16, 16)
respectively, and the ranks are both 32. The
total execution time for 1000 forward and
backward propagations are shown in Table
5. The FP8 tensor-compressed linear layer
has about 3× speed-up compared to the
FP8 vanilla linear layer when the batch size
and layer size are large. When the batch size is small, the FP8 vanilla linear layer is even faster. This
is because the tensor-compressed linear layer consists of a few sequential computations that are
not well supported by current GPU kernels. We expect to see a more significant acceleration after
optimizing the GPU kernels.

Convergence. We use the mixed-precision CoMERA to train the DLRM model and the six-encoder
transformer. The result on DLRM is shown in Table 6. The convergence curve of the six-encoder
transformer is shown in Figure 14. The experiments demonstrate that the accuracy of FP8 training is
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Table 6: Training results of mixed-precision CoMERA on DLRM (batch size=10,000).
accuracy normalized CE

FP32 CoMERA 78.76% 0.792
FP8/FP32 mixed-precision CoMERA 78.88% 0.793

similar to FP32 training. However, we did not see much acceleration of using FP8 in the experiments.
This is mainly because of 1⃝ the computation overhead of slow data type casting between FP32 and
FP8; 2⃝ the sequential execution of small tensor contractions that are not well supported by current
GPUs; 3⃝ the relatively small sizes of linear layers in the tested models. We will investigate these
problems in the future, and are optimistic to see significant acceleration on larger models.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction accurately reflect the methods in Section 3 and
Section 4 and the numerical results in Section 5.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We mentioned that current GPU-level optimization is not optimal yet and there
still exist lots of opportunities for improvement.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: The complete assumptions and proofs are provided in the Appendix, e.g.
Appendix A.2 and Appendix A.6.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The paper clearly describes the proposed methods in Section 3 and Section 4.
The experimental settings are provided in Section 5.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We used the open-sourced data for experiments. An implementation of
CoMERA is available at https://github.com/ziyangjoy/CoMERA.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The experimental settings are provided in Section 5.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: The paper focuses on the computation-efficiency training. We mainly report
the resource usage and training results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The computer resources are provided in Section 5.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our paper is about new computational algorithms for efficient training of large
models. It conforms with the NeurIPS code of ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Our paper proposes new methods for efficient training of large models. The
research has the possibility to significantly reduce the training costs of large models and
also accelerate the inference. It is discussed in Section 1 and Section 6.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper is about efficient training methods and poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Yes, they are properly credited, mentioned, and respected.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper is about methods and algorithms for efficient training. No new
assets are released.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper is about methods and algorithms for efficient training. It does not
involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: he paper is about methods and algorithms for efficient training. It does not
involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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