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Abstract. Quadrupedal locomotion skills are challenging to develop. In
recent years, Deep Reinforcement Learning (DRL) promises to automate
the development of locomotion controllers and map sensory observations
to low-level actions. However, legged locomotion still is a challenging task
for DRL algorithms, especially when energy efficiency is taken into con-
sideration. In this paper, we propose a DRL scheme for efficient trotting
applied on Laelaps II quadruped in MuJoCo. First, an accurate model
of the robot is created by revealing the necessary parameters to be im-
ported in the simulation, while special focus is given to the quadruped’s
drivetrain. Concerning, the reward function and the action space, we in-
vestigate the best way to integrate in the reward, the terms necessary
to minimize the Cost of Transport (CoT ) while maintaining a trotting
locomotion pattern. Last, we present how our solution increased the en-
ergy efficiency for a simple task of trotting on level terrain similar to the
treadmill-robot environment at the Control Systems Lab [1] of NTUA.

Keywords: Legged robots, learning locomotion, energy efficiency, deep
reinforcement learning

1 Introduction

Locomotion skills for quadruped robots require fast reactions, coordinated con-
trol of legs, precise manipulation of contact forces, and robust balance control.
Setting up such controllers requires significant expertise and often tedious man-
ual tuning. Data-driven methods, such as model-free DRL already have pro-
duced promising results showing that they can overcome the simplification of
prior model-based approaches by learning effective controllers directly from ex-
perience [2] [3] [4] [5]. According to [6], using a low-level toe trajectory planner,
markedly reduces training time but requires an investigation on which gait pa-
rameters will be left for the agent to learn. Another aspect of DRL is the fact
that learning based locomotion controllers usually focus on the target task to be
achieved without investigating the energy consumption during that task [7], or
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they just penalise high joint accelerations [3] [8] without mechanical antagonism
in mind [9]. Additionally, achieving a gait such as trotting, requires accurate
orchestration of the robot legs, i.e., a task harder to train in joint space since it
requires even more training data, while during training it may produce invalid
configurations and thus, special care is needed to avoid this [8] [10]. As a result,
learning energy efficient locomotion skills for legged robots while maintaining a
well orchestrated locomotion pattern has room for improvement especially when
dynamic motions are involved. In this work, the trotting motion is investigated so
that the quadruped robot Laelaps II [1] is able to move forward on level terrain,
without diverging from its goal, while achieving reduced energy consumption.

1.1 Contribution & Overview

We propose learning efficient controllers directly in Cartesian space by selecting
specific toe trajectory attributes while maintaining a trotting pattern as well
as constant toe clearance from the ground. It is the first time that DRL with
energy efficiency in mind is investigated for Laelaps II quadruped. As a result,
it is shown that the Cost of Transport (CoT ) is significantly reduced with the
proposed reward function even when compared to similar approaches [3] [8],
since in this work actuator mechanical antagonism and electric loses are taken
into account in the reward function.

The rest of the paper is organised as follows: Section 2 introduces Laelaps II
quadruped and justifies all the choices towards creating an accurate model for
training. Section 3 describes the developed training environment that produces
the policies for energy efficient trotting. The final two sections present the results
and discuss future research directions.

2 Laelaps II Quadruped

2.1 Robot Description

The Laelaps II quadruped, developed by the Legged Robots Team of the Control
Systems Laboratory (CSL) [1] at the National Technical University of Athens
(NTUA), is a 40 kg, state of the art quadruped that serves as a research plat-
form for control, software development & DRL. Laelaps II legs consist of 3 main
segments (femur, tibia, foot) and 3 revolute joints namely hip, knee and ankle
joint. The hip and knee joints are actuated by actuation units mounted on the
robot’s body whereas the ankle joints are passive (a spring tendon connects foot
and tibia), see Figure 1a. Each actuation unit (see Figure 1b) consists of the elec-
tric motor, the planetary gearbox, the encoder and the timing belt transmission
(26/48 reduction ratio). For the hip, a Maxon EC45 250W brushless motor is
used, along with its GP52C planetary gearbox (with reduction ratio 8/343). The
knees share the same family of gearboxes (with reduction ratio 12/637) with the
hips, but they are actuated by Maxon RE50 200W brushed motors. In the knees’
case, a parallel mechanism (close kinematic chain consisting of the transmission
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arm, femur, tibia and rod) is responsible for the power transmission. A more
detailed descriptions of the robot’s architecture is presented in [11] [12].

The objective of this work is to create an accurate model of the robot’s
dynamics, which will be used in DRL training, aiming to produce energy-efficient
motions on flat terrain similar to the treadmill-robot setup at CSL [1]. Accurate
modeling is a key requirement in extracting valid results and applying the trained
policies to the real robot in the future. Towards this, the MuJoCo [13] rigid body
dynamics simulator was chosen since it offers notable contact stability [14] and
is able to deal with closed kinematic chains present in Laelaps II legs.

(a) (b)

Fig. 1: Laelaps II: (a) MuJoCo model, (b) Drivetrain.

2.2 Laelaps II MuJoCo Model

Our main aim during the modeling process was to create a MuJoCo model as
realistic as possible. To this end, all the electrical and mechanical properties of
the model (see Figure 1a) correspond to the Laelaps II quadruped [9] [11]. The
properties were derived from the components’ datasheets and/or were experi-
mentally verified. Special mention should be made to the identification of the
frictional parameters of each actuation unit, since they are directly connected to
energy consumption.

In order to characterize the friction type we conducted various experiments
with constant velocity. The sampling points were carefully chosen to be at the
boundary of the breakaway torque as suggested in [15]. For a wide range of
voltages, i.e. 0-48V, applied at the motor’s terminals, current consumption was
measured using the high-precision FLUKE 289 True RMS multimeter1. Addi-
tionally, using a HEDL 5640 quadrature encoder2 the joint’s angular velocity was
recorded. The current measurements were converted to torque at the actuation
unit’s output shaft using (1), with T and n being the actuation unit’s output
torque and reduction ratio respectively , KT the motor’s torque constant and im

1 https://www.fluke.com/en/product/electrical-testing/digital-multimeters/fluke-289
2 https://docs.broadcom.com/doc/AV02-0993EN.
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the applied current. The results of the described procedure are displayed in Fig-
ure 2. Note that the sampling indicates that there were no significant deviations
in the reverse direction. As a result, the same model is used for both directions
of motion.

T = KT imn (1)

The linear model of equation (2) accounts for the static and linear viscous
friction components, with τi and q̇i representing the ith sample of the frictional
torque and angular velocity respectively and offers the right balance between
accuracy and modeling complexity. The f1 & f2 are the unknown friction coef-
ficients.

τi = f1q̇i + f2sign(q̇i) (2)

This model is ideal for a model-based control design in terms of execution time,
while at the same time it exhibits a good R2 index. The regression problem is
solved using linear least-squares, which produce the coefficients given in Figures
2a & 2b for the hip’s & knee’s joints, respectively. Note that the torques induced
by friction are relatively low, when compared to the maximum ones that the
system can output at present, namely 70.21 Nm for the hips and 109.76 Nm for
the knees. To avoid unrealistic motions, these limits are included in the developed
MuJoCo model.

(a) (f1, f2) = (0.138, 0.568) [Nm]. (b) (f1, f2) = (0.211, 0.703) [Nm].

Fig. 2: (a) Hip experiment’s friction model. (b) Knee experiment’s friction model.

2.3 Laelaps II Planner

The planner introduced in [12] has been utilised here to allow the robot’s model
to move with constant stance velocity in MuJoCo, resulting in smoother gaits.
This is a vital step towards the integration and testing of various motion modes,
like trotting, originally investigated in [16]. Each leg follows a trajectory which
includes separate formulations for swing and stance phases. The planner dic-
tates the appropriate formula, by measuring the time progression of each step
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compared to the step’s total period. By using the modulo operation, the whole
process becomes independent of the step number. Moreover, a time phase shift
is introduced, to enable different modes of motion (e.g. trotting, walking, etc.).

Let Tstep be the total duration of a step, ∆tphase its phase shift, while Tsw

and Tst the periods of the swing & stance trajectory phases, respectively. To
make the trajectory invariant to the step’s number, ttraj is introduced. Finally,
the variable dirleg is used to change the direction of leg’s motion, with dirleg = 0
for forward and dirleg = 1 for backward motion. The resultant operational space
trajectory (xE,des, yE,des) is the half ellipse illustrated in Figure 3, while its
formulation is presented in equations (3)-(5). Note that the ellipse’s center is
represented by (x0, y0) while its horizontal and vertical radii with a and b,
respectively. The operational-space trajectory is converted to a joint-space angle
sequence that, in turn, is supplied to the low-level PV controllers of Laelaps II
to produce the torques required by the desired motion.

ttraj = (t+∆phase) mod (Tstep), with Tstep = Tsw + Tst (3)

Swing Phase

xE,des = x0 + a cos (θtraj + dirlegπ)

yE,des = y0 + b sin θtraj , with θtraj =
π

2

(
cos

πttraj
Tsw

+ 1

)
(4)

Stance Phase

xE,des = x0 + (1− 2dirleg) (a− (ttraj − Tsw)Vst) , Vst =
2a

Tst

yE,des = y0

(5)

Fig. 3: Laelaps II toe’s Cartesian path.

3 Training Environment

The fundamental constituents of every DRL training system is the task in context
with an environment that the agent interacts. Here, the task is defined as a low-
energy, low-frequency trotting in flat terrain and the environment consists of the
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MuJoCo model of Laelaps II traversing level terrain. The low-frequency trotting
is promoted as the task, since experimental work has shown that it presents
stability issues due to significant body-roll during motion; as a result a restrain
mechanism was developed at CSL [1] (Laelaps II cannot perform hip abduction).
For the environment, the OpenAI gym [17] together with Stable Baselines 3 [18]
were utilised. According to [19], Soft Actor-Critic (SAC) [20] is a good match for
training legged locomotion tasks and as a result it was employed in the current
work. Concerning the hyperparameters, the buffer size was 100000, the learning
rate was 0.0003 and the batch size was 256, while all other parameters were kept
at the default values of [18].

3.1 Reward

To achieve efficient trotting, the energy consumption of the robot should be
included in the reward function. The total actuation energy (Etot) comes as the
sum of the mechanical part of the actuation energy (Eact) and the electric losses
(Eel) [9]. These quantities can be calculated by integrating the corresponding
power formulas in (6). For the integration the Simpson 1/3 [21] was used for a
given timestep (dt) and period (∆t = t2 − t1). Note that τm,i, q̇m,i, Rm,i and
KT,i are the ith motor’s torque, angular velocity, windings’ resistance and torque
constant, respectively.

Eact =

∫ t2

t1

8∑
i=1

|τm,iq̇m,i| dt & Eel =

∫ t2

t1

8∑
i=1

[(
τm,i

KT,i

)2

Rm,i

]
dt (6)

The total energy is not a good metric for measuring the agent’s performance
and reward compared to the Cost of Transport (CoT = Etot/(mg∆x)), which
represents the energy required to move a robot of unit mass for one meter. In
the reward function (7), a simplified version of CoT is used since the robot’s
mass (m) and the gravity’s acceleration (g) are constants. Furthermore, the
aforementioned reward accounts for the distance traversed from the beginning
of the episode (∆xep), not only the one in the current step. Finally, the small
constant ϵ is introduced to avoid division by ∼ 0 values, e.g.: when the robot
stands still, which would destabilise the training process. A good value for the
weight wen has been found to be 3 · 10−4.

rewen = −wen
Etot

∆xep + ϵ
(7)

The second objective of the training task is to produce a policy that drives
the quadruped forward without diverging from its goal. Laelaps II is an appro-
priate test-bed to evaluate the developed algorithm, since it cannot perform hip
abduction which would help in stabilizing the robot in cases of increasing body
roll/yaw angles. As a result, the terms (8) in the reward function are introduced
to achieve the second objective. The weights wx & wy were set to 35 and 15,
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respectively, to promote forward motion. Finally, the total reward (rewtot) which
is calculated on every agent’s timestep is presented in (9).

rewx = wx (|xnow − xprevious|) & rewy = −wy| |ynow| − |yprevious| | (8)

rewtot = rewx + rewy + rewen (9)

3.2 Action Space

As showcased in Section 2.3, the quadruped’s planners accept various parameters
that form the desired trajectory of each toe. The high-level controller, in this
case the DRL policy, is responsible for setting these parameters. However, to
achieve a desired gait some of them need to remain unchanged. With that said,
the vertical radius (b) remains constant during motion as it is related to the
toe’s clearance from the ground. For the current scenario its value is chosen
to be 0.04m, for all legs to avoid toe-collisions with the ground during their
respective swing-phases, due to potential moderate body-roll/pitch induced by
the whole-body motion. Moreover, the stance and swing phases are equal and
constant, at 0.5s each, to maintain a low-frequency trotting that the real robot
can execute. Finally, the time-phase of either set of diagonal legs is the same
and Tstep/2 different from the other pair.

The rationale behind these choices is for the agent to learn parameters that
effectively maximize the total reward of equation (9) and do not degrade the
quality and synchronization of the desired gait. With this in mind, the agent
selects the center (x0, y0) of the semi-ellipse and its horizontal radius (a). This
center affects the body’s pose and stability, while the horizontal radius is directly
coupled to both the body’s velocity and direction and thus to its kinetic energy.
The resultant action space is given in equation (10), where L & R correspond
to left and right legs while F & H to fore and hind ones, respectively.[

(x0, y0, a)RF , (x0, y0, a)RH , (x0, y0, a)LF , (x0, y0, a)LH

]
∈ R12×1, (10)

3.3 Observation Space

The observation space includes the standard outputs of the IMU [22] mounted
on Laelaps II. Specifically, the linear (vx, vy, vz) and angular (ωx, ωy, ωz) com-
ponents of the body’s velocity are included along with its roll-pitch-yaw angles
(θx, θy, θz). In accordance with [23] the observations time progress is also in-
cluded in the observation space. In general to capture a motion, the sampling
frequency is required to be at least two-times faster than the motion’s frequency
(see Nyquist-Shannon [24]). So, in the current work the observations are sampled
ten-times faster than the fundamental frequency of the toe’s motion (which is
fmotion = 2/Tstep = 2Hz), namely 20Hz, to be on the safe-side and account
for unexpected motion changes that may happen due to unmodeled dynamics.
Then, the observation space is formed as in equation (11).[

(vx, vy, vz)t−9...now
, (ωx, ωy, ωz)t−9...now

, (θx, θy, θz)t−9...now

]
∈ R90×1 (11)
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3.4 DRL Control Architecture

The described architecture in Section 3 along with the created model presented in
Section 2 is adumbrated in Figure 4. The proposed architecture extends the stan-
dard OpenAI gym’s framework by defining several callbacks and nested loops to
execute multiple tasks in different frequencies. Specifically, the dynamics engine
runs at 5kHz to ensure convergence and avoid zero-crossing errors. At the same
time, the planner along with the low-level PV leg-controllers run at 500Hz. The
agent chooses an action at a much slower rate, namely 2Hz, i.e., on every toe’s
touchdown or liftoff, since each pair of diagonal legs have Tstep/2 time-phase shift
between them. Note that this is the ideal case, i.e., trotting motion. When the
agent chooses significantly different attributes for each leg, the aforementioned
assumption is invalid. However, this happens only when it corrects the robot’s
pose and direction, not during the steady-state forward motion. The framework
of Figure 4 is used for both training and testing.

Fig. 4: Laelaps II DRL control architecture.

4 Results

The presentation of the results section focuses on three points: (a) the reduction
of the CoT when using the energy reward term presented in Section 3.1, (b) the
improvement in the quality of the produced motion with the proposed reward
function, and (c) the fact that the produced footsteps tend to be within a specific
area of the leg’s workspace. The last conclusion coincides with work presented in
[9] and opens new research directions, showing that the proposed DRL scheme
is a way to validate analytic approaches on energy efficiency for the Laelaps II.

First, the energy levels are presented without and with the proposed energy
term in the reward function in Figures 5a & 5b, respectively. The lower energy
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consumed together with the longer distance covered (see Figure 6a for the CoM’s
trajectory) in the second case results in a drop of ∼ 37% in the CoT in favour
of the developed reward function. Specifically, CoT = 3.01 in case of no energy
term in the reward function compared to CoT = 1.89 when the energy term is
introduced in the reward function).

The quality of motion is visualised in Figure 6. Specifically, in Figure 6a & 6b
the CoM trajectory in the XY plane, i.e., top view in MuJoCo simulation environ-
ment, are presented for both simulation experiments. With the proposed reward
function the robot moves almost in a straight line. In addition, the bounded yaw
angle of the robot’s body is shown in Figure 6b. The yaw angle depicts the di-
rection of the robot’s body which using the proposed reward function is heading
towards the goal with maximum yaw angle −0.05 rad.

Last, Figures 7a & 7b illustrate the footsteps, i.e., ellipse centers and ellipse a
radii that the DRL control scheme produces. The fact that the agent is trained
to reduce energy consumption for the given task, results in smoother motion
with bounded body angles as well footsteps that are within a limited area of
the legs workspace. The latter coincides with analytical studies presented in [9].
Figure 8a summarises the training procedure and the produced CoT from each
learned policy. Similar approaches have also tried to reduce energy consumption
by penalising joint acceleration or the mechanical part of the actuation power
during a gait, but not the drivetrain’s total energy demands (6). After training
and testing them on Laelaps II, our approach still achieved the lowest CoT , i.e.,
1.89 (see Figure 8b).

(a) (b)

Fig. 5: Energy levels (a) without, (b) with the proposed reward function.

5 Conclusion & Future Work

This work described a systematic approach in producing energy efficient trotting
motions using DRL. A detailed model of the Laelaps II quadruped was developed
in MuJoCo and trained to move forward without diverging from its goal. A
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(a) (b)

Fig. 6: Motion quality. (a) CoM trajectories in top view. (b) Body yaw angle.

(a) (b)

Fig. 7: (a) The produced ellipse centers with the proposed reward function tend
to be in specific area of the leg’s workspace (black rectangle on the left). (b) The
a radius also converges to a specific value.

(a) (b)

Fig. 8: (a) All algorithms were trained until the mean reward converged so that
the quadruped could successfully reach the goal on level terrain. (b) Using the
proposed reward function the lowest CoT was achieved.



Learning energy efficient trotting for legged robots 11

term for energy efficiency was introduced in the reward function resulting in (a)
smoother produced motions, (b) reduction in the CoT by ∼ 37%, and (c) smaller
ranges in the body yaw angle, showing that the robot was not diverging from
its goal. Additionally, the corrective actions needed during its transition to the
goal were reduced. Last, the footsteps, i.e., ellipse centers and a radii, produced
by the proposed DRL control scheme tended to be within a specific area of the
legs workspace. Previous analytical studies reached similar conclusions [9].

Concerning future research directions, the gains of the low-level PV con-
trollers can be also included in the DRL action space to investigate their effect
on energy efficiency [11]. The training pipeline as well as the trained policies are
open-source and available to download from the CSL’s Bitbucket repository [25].
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