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ABSTRACT

Learning discrete representations with vector quantization (VQ) has emerged as a
powerful approach in representation learning across vision, audio, and language.
However, most VQ models rely on a single, fixed-rate codebook, requiring ex-
tensive retraining for new bitrates or efficiency requirements. We introduce Rate-
Adaptive Quantization (RAQ), a multi-rate codebook adaptation framework for
VQ models. RAQ integrates a lightweight sequence-to-sequence (Seq2Seq) code-
book generator with the base VQ model, enabling on-demand codebook adap-
tation to any target size at inference. Additionally, we provide a clustering-based
post-hoc alternative for pre-trained VQ models, suitable when modifying the train-
ing pipeline or joint training is not feasible. Our experiments demonstrate that
RAQ performs effectively across multiple rates and VQ models, often outperform-
ing fixed-rate baselines. This model-agnostic adaptability enables a single system
to meet varying bitrate requirements in reconstruction and generation tasks.

1 INTRODUCTION

Vector quantization (VQ) (Gray, 1984) is a fundamental technique for learning discrete represen-
tations for various tasks (Krishnamurthy et al., 1990; Gong et al., 2014; Van Niekerk et al., 2020)
in the field of machine learning. The Vector Quantized Variational Autoencoder (VQ-VAE) (Van
Den Oord et al., 2017; Razavi et al., 2019), which extends the encoder-decoder structure of the
Variational Autoencoder (VAE) (Kingma & Welling, 2013; Rezende & Viola, 2018), introduces dis-
crete latent representations that have proven effective across vision (Razavi et al., 2019; Esser et al.,
2021), audio (Dhariwal et al., 2020; Yang et al., 2023), and speech tasks (Kumar et al., 2019; Xing
et al., 2023). The inherently discrete nature of these modalities makes VQ particularly well-suited
for complex inference and generation.

Recent developments have further enhanced VQ-based discrete representation learning by integrat-
ing it with deep generative models, such as Generative Adversarial Networks (GANs) (Esser et al.,
2021) and Denoising Diffusion Probabilistic Models (DDPMs) (Cohen et al., 2022; Gu et al., 2022;
Yang et al., 2023). As VQ models are integrated into these diverse generative frameworks, their
utility and applicability in various tasks are becoming increasingly evident. However, even with
these advancements, scalability remains a bottleneck. In practical settings such as live streaming,
telepresence, and on-device applications, the available bandwidth and compute resources can fluctu-
ate dramatically. A single fixed-rate VQ model either wastes bits when higher quality is possible or
severely degrades fidelity under tight constraints. Maintaining separate VQ models for each bitrate
is infeasible and incurs significant overhead. Hence, a robust framework that can seamlessly adapt
its compression rate is crucial for real-world deployments.

Several works have explored enhancing the flexibility of codebooks. Li et al. (2023) introduced
a codebook-resizing technique for publicly available VQ models by applying hyperbolic embed-
dings, Malka et al. (2023) propose a nested codebook to support multiple quantization levels, and
multi-codebook vector quantization is used in speech (Guo et al., 2022) and a knowledge distilla-
tion setting (Guo et al., 2023). Recently, Huijben et al. (2024) focused on unsupervised codebook
generation based on residual quantization by studying the vector quantizer itself. However, it re-
mains impractical to increase the rate of an already-deployed quantizer by appending new residual
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stages after training. Simply adding more codebooks tends to disrupt the learned latent distribution
and often necessitates a reduction in the spatial/temporal resolution of feature maps. This post-
hoc capacity-scaling bottleneck is what motivated the development of our RAQ framework, which
adapts bit rates through a lightweight Seq2Seq module that generates new codebook embeddings,
while leaving the original VQ architecture untouched.

In this paper, we present Rate-Adaptive Quantization (RAQ), a framework designed to flexibly mod-
ulate the effective codebook size of a single VQ model without retraining. By incorporating a
Sequence-to-Sequence (Seq2Seq) (Sutskever et al., 2014) into the VQ model, RAQ enables one
system to cover multiple compression levels, reducing the need for separate models dedicated to
each rate. This adaptability not only minimizes storage and maintenance costs but also provides a
smoother user experience in real-time communications or streaming environments, where bandwidth
availability can vary from moment to moment. While our main focus is on the Seq2Seq-based RAQ,
we additionally propose a model-based alternative that applies differentiable k-means (DKM) (Cho
et al., 2021) clustering to a pre-trained VQ model, offering codebook adaptation when joint training
or architectural modification is not feasible. This simple approach provides a practical fallback in
scenarios where retraining or model modification is not feasible.

Our contributions are summarized as follows:

• We propose the Rate-Adaptive Quantization (RAQ) framework for flexible multi-rate code-
book adaptation, using a Sequence-to-Sequence (Seq2Seq) module to generate codebook
embeddings of any target size without retraining. This method can be integrated into exist-
ing VQ models with minimal modifications.

• To mitigate distribution mismatch in autoregressive Seq2Seq codebook adaptation, we in-
troduce a cross-forcing training procedure. This approach ensures stable codebook genera-
tion across diverse rates and enhances reconstruction fidelity.

• We evaluate RAQ on several VQ benchmarks and show that a single RAQ-enabled model
consistently meets or exceeds the performance of multiple fixed-rate VQ baselines while
using the same encoder-decoder architecture.

2 BACKGROUND

2.1 VECTOR-QUANTIZED VARIATIONAL AUTOENCODER

VQ-VAEs (Van Den Oord et al., 2017) can successfully represent meaningful features that span
multiple dimensions of data space by discretizing continuous latent variables to the nearest codebook
vector in the codebook. In a VQ model, learning of discrete representations is achieved by quantizing
the encoded latent variables to their nearest neighbors in a trainable codebook and decoding the
input data from the discrete latent variables. To represent the data x from dataset D discretely,
a codebook e consisting of K learnable codebook vectors {ei}Ki=1 ⊂ Rd is employed (where d
denotes the dimensionality of each codebook vector ei). The quantized discrete latent variable
zq(x|e) is decoded to reconstruct the data x. The vector quantizer Q is modeled as a deterministic
categorical posterior that maps each spatial position [m,n] of the continuous latent representation
ze(x)[m,n] of the data x by a deterministic encoder fϕ to zq(x|e)[m,n] by finding the nearest
neighbor from the codebook e = {ei}Ki=1 as

zq(x|e)[m,n] = Q
(
ze(x)[m,n]

∣∣e) = argmini ∥ze(x)[m,n]− ei∥ , (1)

The quantized representation uses log2K bits to index one of the K selected codebook vectors
{ei}Ki=1. The deterministic decoder fθ reconstructs the data x from the quantized discrete latent
variable zq(x|e) as x̂ = fθ

(
zq(x|e)|e)

)
. During the training process, the encoder fϕ, decoder fθ,

and codebook e are jointly optimized to minimize the loss LVQ
(
ϕ, θ, e;x

)
=

log pθ(x|zq(x|e))︸ ︷︷ ︸
Lrecon

+
∣∣∣∣sg

[
fϕ(x)

]
− zq(x|e)

∣∣∣∣2
2︸ ︷︷ ︸

Lembed

+β
∣∣∣∣sg

[
zq(x|e)

]
− fϕ(x)

∣∣∣∣2
2︸ ︷︷ ︸

Lcommit

(2)

where sg[·] is the stop-gradient operator. TheLrecon is the reconstruction loss between the input data
x and the reconstructed decoder output x̂. The two Lembed and Lcommit losses apply only to code-
book variables and encoder weights with a weighting hyperparameter β to prevent fluctuations from
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Figure 1: An overview of our RAQ framework applied to a base VQ model. During training, the
codebook adaptation module employs cross-forcing to generate adapted codebooks ẽ for randomly
sampled sizes K̃ from the base codebook e. At inference, a user-specified target K̃ produces the
corresponding adapted codebook for rate-adaptive quantization.

one codebook vector to another. Since the quantization process is non-differentiable, the codebook
loss is typically approximated via a straight-through gradient estimator (Bengio et al., 2013), such
as ∂L/∂fϕ(x) ≈ ∂L/∂zq(x). Both conventional VAE (Kingma & Welling, 2013) and VQ-VAE
(Van Den Oord et al., 2017) have objective functions consisting of the sum of reconstruction error
and latent regularization. To improve performance and convergence rate, an exponential moving
average (EMA) update is usually applied for the codebook optimization (Van Den Oord et al., 2017;
Razavi et al., 2019). Thus, VQ models serve as a foundation for many advanced generative models,
forming the core approach to discrete latent representation.

2.2 SEQUENCE-TO-SEQUENCE LEARNING

The Seq2Seq (Sutskever et al., 2014) model is widely used in sequence prediction tasks such as
language modeling and machine translation (Dai & Le, 2015; Luong et al., 2016; Ranzato et al.,
2016). The model employs an initial LSTM, called the encoder, to process the input sequence x1:N
sequentially and produce a substantial fixed-dimensional vector representation, called the context
vector. The output sequence y1:T is then derived by a further LSTM, the decoder. A Seq2Seq with
parameters ψ estimates the distribution of output sequence y1:T by decomposing it into an ordered
product of conditional probabilities:

p
(
y1:T |x1:N ;ψ

)
=

T∏
t=1

p
(
yt|y1:t−1, x1:N ;ψ

)
(3)

During training, the Seq2Seq model typically uses teacher-forcing (Williams & Zipser, 1989), where
the target sequence is provided to the decoder at each time step, instead of the decoder using its own
previous output as input. This method helps the model converge faster by providing the correct
context during training.

3 METHODS

Although VQ models have demonstrated strong performance across modalities, their fixed codebook
size can limit adaptability under varying data characteristics or resource constraints. In practice, the
choice of the codebook size K (a key hyperparameter in VQ models) can vary widely with (i)
on the application domain (e.g., small codebooks, K ≈ 8, in certain audio domains (Chae et al.,
2025)), (ii) input dimensionality and resolution (e.g., image generation models report K from 512
up to 16,384 (Esser et al., 2021)), and (iii) the model architecture and quantization scheme. This
variability often forces practitioners to retrain or maintain multiple VQ models at different rates.
To address these challenges, we introduce the RAQ framework, which adjusts a VQ model’s rate
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by increasing or decreasing the codebook size K on demand. We formalize RAQ as a mapping
Ψ : Rd×K −→ Rd×K̃ for any integer K̃ ∈ N. We next detail a Seq2Seq-based RAQ strategy,
followed by a model-based (clustering) alternative.

3.1 RATE-ADAPTIVE QUANTIZATION

Overview The RAQ framework is designed to integrate seamlessly with existing VQ models with-
out requiring significant architectural modifications. As illustrated in Figure 1, RAQ is integrated
into a base VQ model which consists of an encoder-decoder pair and a trainable base codebook
e. The adapted codebook ẽ is generated by a Seq2Seq model from the base codebook e. During
training, K̃ is randomly sampled under a cross-forcing strategy. At inference, a user-specified target
K̃ is used to generate the codebook on demand.

Scope and Compatibility with Vector Quantizers RAQ exclusively operates at the quantization
layer of existing VQ models and applies to any quantizer that uses a vector-embedding-based dis-
crete representation. Hierarchical VQ (Razavi et al., 2019), stochastic quantization (Takida et al.,
2022), residual quantization (Huijben et al., 2024), and linear-transformed VQ (Zhu et al., 2024) are
some of the representative examples. Importantly, RAQ does not alter the base training procedure or
the overall architecture. Unlike autoregressive token predictors (Esser et al., 2021; Yu et al., 2022;
Huijben et al., 2024), which generate discrete index sequences under fixed codebook embeddings,
RAQ synthesizes the codebook itself.

Autoregressive Generation of Adapted Codebooks Our codebook adaptation module Gψ maps
a base codebook e to an adapted codebook ẽ via an Seq2Seq model. Each base codebook vector ei of
e is treated analogously to a token in language modeling. We train the Seq2Seq module to produce
a set of K̃ adapted codebook embeddings. This autoregressive generation ensures that each ẽi is
conditioned on the previously generated vectors, promoting coherence and structural consistency.
Formally, the adapted codebook is generated as

p
(
ẽ|e;ψ

)
=

K̃∏
i=1

p
(
ẽi|ẽ<i, e1:K ;ψ

)
(4)

where ẽ<i denotes the vectors generated before step i. Unlike typical Seq2Seq setups that optimize
next-token likelihood, the order of ẽi:K̃ is not semantically meaningful here; what matters is the
distribution of embeddings. Accordingly, RAQ trains the Seq2Seq module with the base VQ objec-
tive computed using ẽ (e.g., reconstruction or perceptual losses), tying codebook generation directly
to downstream reconstruction quality without imposing an arbitrary sequence order or introducing
extra losses.

Codebook Encoding We begin by initializing the target codebook size K̃. During training, K̃
is randomly sampled from a predefined range at each iteration. Each base codebook vector ei is
sequentially processed by LSTM cells, whose hidden and cell states (h, c) summarize context over
the base codebook. This encoding captures dependencies among the base embeddings and provides
a foundation for generating a coherent adapted codebook.

Codebook Decoding via Cross-Forcing We decode with a cross-forcing strategy that alternates
teacher forcing and free running strategy to stably generate variable-size codebooks. Standard
teacher forcing (Williams & Zipser, 1989) can be brittle when the target adapted codebook ẽ is
much longer than the base codebook, amplifying exposure bias. Cross-forcing mitigates this by
interleaving the two modes, akin to professor forcing (Lamb et al., 2016). During training, the
cross-forcing strategy operates as:

• Teacher-Forcing Phase: For odd indices i up to 2K (i.e., 1 ≤ i ≤ 2K and i is odd), the
model uses the corresponding base codebook vector ej as input, where j = i+1

2 :

ẽi = LSTMψ(ẽ<i, ej ,h, c).

This ensures that the fundamental distributional features of the base codebook are preserved
during the early generation steps.
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• Free-Running Phase: For even indices i up to 2K (i is even and i ≤ 2K), and for all
indices beyond 2K (i.e., i > 2K), the model relies on its previously generated adapted
codebook vector ẽi−1:

ẽi = LSTMψ(ẽ<i, ẽi−1,h, c).

By switching to its own outputs, the model learns to maintain coherence and consistency
across the adapted codebook vectors for different sizes of K̃.

Learning the codebook adaptation module Gψ via cross-forcing is a key component of our RAQ.
We provide an empirical evaluation of its effectiveness in Appendix A.3.2.

Training Procedure RAQ follows the objective of the base VQ model. Concretely, for a con-
ventional VQ-VAE, let LVQ (in equation 2) denote the standard loss. At each iteration, we sample a
target size K̃ from a predefined range, generate an adapted codebook ẽ = Gψ(e; K̃), and jointly op-
timize (ϕ, θ, e, ψ) by minimizing a combined objective (LVQ +LRAQ), where LRAQ

(
ϕ, θ, ψ, e;x

)
=

log pθ
(
x|zq(x|Gψ(e))

)
+
∣∣∣∣sg [fϕ(x)]−zq

(
x|Gψ(e)

)∣∣∣∣2
2
+β

∣∣∣∣sg
[
zq
(
x|Gψ(e)

)]
−fϕ

(
x
)∣∣∣∣2

2
. (5)

Equivalently, RAQ trains by plugging the adapted codebook ẽ into the existing objective function
(no additional auxiliary losses are introduced). Sampling K̃ each iteration exposes the model to
multiple rates within a single training run.

3.2 MODEL-BASED RATE-ADAPTIVE QUANTIZATION (ALTERNATIVE)

We present a post-hoc, model-based RAQ variant that adapts the codebook rate while leaving the rest
of the base VQ model unchanged. Unlike the Seq2Seq-based RAQ, this approach adds no learnable
modules; it directly resizes a pre-trained codebook e to a target K̃ via clustering. Optional brief
fine-tuning with the adapted codebook can be applied but is not required.

To obtain an adapted codebook ẽ of size K̃, we employ differentiable k-means (DKM) (Cho et al.,
2021), originally proposed for compressing model weights via layer-wise clustering. Here, DKM is
repurposed to cluster the embedding vectors in e, yielding a reduced (or increased) codebook while
preserving structure in the embedding space. We also leverage inverse functionalization (IKM) to
accommodate increases in codebook size, enabling both rate reduction and rate expansion.

Codebook Reduction (K̃ < K) In the rate-reduction task, DKM performs iterative, differentiable
codebook clustering on K̃ clusters. Let C = {cj}K̃j=1 be the cluster centers for the base codebook e
(Further details are provided in Appendix A.2.1). The process is as follows:

• Initialize the centroids C = {cj}K̃j=1 by randomly selecting K̃ codebook vectors from e or
by using k-means++. The last updated C is used in subsequent iterations.

• Compute the Euclidean distance between each ei and cj , denoting Di,j = −f(ei, cj) to
form the matrix D.

• Form the attention matrix A via a softmax with temperature τ , where each row satisfies

Ai,j =
exp

(
Di,j

τ

)
∑

k exp
(

Di,k
τ

) .

• Compute the candidate centroids C̃ = {c̃j} by c̃j =
∑

i Ai,jei∑
i Ai,j

, then update C← C̃.

• Repeat until ∥C − C̃∥ ≤ ϵ or the iteration limit is reached. We then multiply A by C to
obtain the final ẽ.

The above iterative process can be summarized as follows:

ẽ = argmin
ẽ

LDKM(e; ẽ) = argmin
C

|C−AC| = argmin
C

K̃∑
j=1

∣∣∣∣cj − ∑
iAi,jei∑
iAi,j

∣∣∣∣ . (6)

Since the procedure is differentiable, the centroids and soft assignments can be optimized with a few
steps of SGD. The temperature τ controls assignment hardness. After convergence, we assign each
codebook vector to its nearest centroid according to the last attention matrix A, thereby finalizing
the compressed codebook.
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Codebook Expansion (K̃ > K) As bandwidth and quality budgets increase, models benefit from
a larger codebook, so codebook expansion must be supported. We propose an inverse functional
DKM (IKM) method that grows the number of centroids from K to K̃ and then refines them using
the same DKM updates used in reduction. Algorithmic details and optimization choices are deferred
to Appendix A.2.2.

Model-based RAQ operates directly on the codebook of any pre-trained VQ model, enabling post-
hoc codebook rate adjustment without introducing new learnable modules. This approach is useful
when training or integrating Seq2Seq-based RAQ is impractical. As it relies on differentiable clus-
tering, fine-tuning is also supported via post-training. Appendix A.2.4 provides comparisons with
alternative clustering methods and the effect of post-training.

4 RELATED WORK

VQ and its Improvements The VQ-VAE (Van Den Oord et al., 2017) has inspired numerous
developments since its inception. Łańcucki et al. (2020) and Zheng & Vedaldi (2023) proposed
codebook reset and online clustering methods to mitigate codebook collapse, improving training ef-
ficiency. SQ-VAE (Takida et al., 2022) incorporated stochastic quantization and a trainable posterior
categorical distribution to enhance VQ performance. Recently, SimVQ (Zhu et al., 2024) tackles the
long-standing representation-collapse issue in vanilla VQ models by reparameterizing the codebook
via linear transformation. Several works have introduced substantial structural changes to VQ mod-
eling; for instance, RQ-VAE (Lee et al., 2022) employed a two-step residual quantization framework
for high-resolution images, while FSQ (Mentzer et al., 2023) replaced VQ with finite scalar quan-
tization to address codebook collapse. Our approach focuses on making rate-adaptive VQ without
substantially altering the quantization mechanism or architecture, allowing it to scale effectively in
both basic and advanced VQ models.

Variable-Rate Neural Image Compression Several studies have proposed variable-rate image
compression based on autoencoders and VAEs (Yang et al., 2020; Choi et al., 2019; Cui et al.,
2020), or using recurrent neural networks (Johnston et al., 2018). Song et al. (2021) introduced
spatial feature transforms for compression, while Duong et al. (2023) combined learned transforms
and entropy coding in a single model aligned with the rate-distortion curve. Variable-rate methods
for discrete representation also exist. Dieleman et al. (2021) learn event-based codes with scalar
quantization and control rate via channel budgets and target event rates, rather than resizing a fixed
VQ codebook. In contrast, RAQ targets the VQ codebook itself. We adapt the vector embedding set
to a user-specified size at inference without redesigning the underlying quantization mechanism or
training a separate model per rate. Our RAQ directly addresses the practical need for a single VQ
model to cover multiple bitrates.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Settings We perform empirical evaluations on 3 vision datasets: CIFAR10 (Krizhevsky et al.) and
CelebA (Liu et al., 2015), and ImageNet (Russakovsky et al., 2015). We use the same architecture
and hyperparameters within each baseline model. The adapted codebook sizes range from 16 to
1024 for CIFAR10, 32 to 2048 for CelebA, and 32 to 4096 for ImageNet, while the base codebooks
of baseline VQ models are fixed. RAQ-based models set the base codebook size to the middle of the
range. We also provide details on each model’s parameter count and complexity in Appendix A.2.5.

Evaluation Metrics We quantitatively evaluated our method using Peak-Signal-to-Noise-Ratio
(PSNR), Structural Similarity Index Measure (SSIM), reconstructed Fréchet Inception Distance
(rFID) (Heusel et al., 2017), Learned Perceptual Image Patch Similarity (LPIPS) (Zhang et al.,
2018), and codebook perplexity. PSNR measures the ratio between the maximum possible power
of a signal and the power of the corrupted noise affecting data fidelity (Korhonen & You, 2012).
SSIM assesses structural similarity between two images (Wang et al., 2004). rFID and LPIPS as-
sess the quality of reconstructed images by comparing the distribution of features extracted from

6
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(a) CIFAR10 (32× 32), baseline VQ model: VQ-VAE (Van Den Oord et al., 2017)

(b) CelebA (64× 64), baseline model: VQ-VAE (Van Den Oord et al., 2017)

Figure 2: Reconstruction results on (a) CIFAR10 and (b) CelebA at various codebook sizes K̃.
The shaded area indicates the 95.45% confidence interval based on 4 runs with different seeds.

the test data with that of the original data. Codebook perplexity, defined as e−
∑K̃

i pei log pei where
pei =

Nei∑K̃
j Nej

and Nei represents the encoded number for latent representation with codebook ei,

indicates a uniform prior distribution when the perplexity value reaches the codebook size K̃.

5.2 QUANTITATIVE EVALUATION

We first empirically evaluate the effectiveness of RAQ using the vanilla VQ-VAE (Van Den Oord
et al., 2017) on CIFAR10 and CelebA dataset. To establish a robust baseline, we trained multiple
VQ-VAE models with varying codebook sizes K as fixed-rate benchmarks. We then tested RAQ’s
adaptability by dynamically adjusting the codebook size K̃ within a single VQ-VAE. Figure 2 shows
the comparative results.

RAQ closely matches the performance of multiple fixed-rate VQ-VAE models across most met-
rics, demonstrating its ability to maintain high reconstruction quality while offering rate flexibility.
Specifically, under identical compression rates and network architectures, all RAQ variants achieve
PSNR and SSIM scores nearly on par with their fixed-rate counterparts (e.g., within about 0.94 dB
difference in PSNR on CIFAR10). When we increase the rate, RAQ occasionally shows slightly
lower PSNR and SSIM but improves rFID, reflecting improved perceptual quality and better align-
ment with the dataset distribution. For instance, at K̃ = 512 on CelebA, rFID improves by up to
about 9.6% compared to a fixed-rate VQ-VAE with the same codebook size, highlighting RAQ’s
ability to maintain visual coherence and realism in generative tasks. However, the model-based
RAQ variant typically underperforms our Seq2Seq-based approach except in certain rate-reduction
tasks. For further discussion of model-based RAQ, see Section 5.4.

We also evaluate RAQ across four representative VQ baselines (hierarchical VQ-VAE-2 (Razavi
et al., 2019), stage-1 VQGAN (Esser et al., 2021), SQ-VAE (Takida et al., 2022), and SimVQ (Zhu
et al., 2024)) to assess both rate flexibility and architectural generality. Table 1 reports mean PSNR,
SSIM, LPIPS, and codebook perplexity over four runs. RAQ maintains or improves reconstruction
quality relative to fixed-rate baselines while enabling on-demand adaptation of the codebook size.

On VQ-VAE-2, RAQ increases perplexity at higher rates while yielding comparable or better
PSNR/LPIPS at mid–high K̃. On stage-1 VQGAN, RAQ improves LPIPS in the mid-rate regime
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Table 1: Performance comparison for VQ-VAE-2 (Razavi et al., 2019), stage-1 VQGAN (Esser et al.,
2021), SQ-VAE (Takida et al., 2022), and SimVQ (Zhu et al., 2024) with and without RAQ at mul-
tiple adapted codebook sizes K̃. Bold indicates that the proposed method outperforms the baseline
model, and the † denotes that the improvement is statistically indistinguishable from the baseline
based on overlapping 95.45% confidence intervals.

Method VQ-VAE-2 / CelebA (128× 128) Method VQGAN / ImageNet (256× 256)

K K̃ PSNR↑ SSIM↑ LPIPS↓ Prplx.↑ K K̃ PSNR↑ SSIM↑ LPIPS↓ Prplx.↑
VQ-VAE-2 2048 – 33.37 0.9884 0.1050 334.7 VQGAN 512 – 21.00 0.7543 0.1000 296.3
VQ-VAE-2 1024 – 32.73 0.9865 0.1172 183.2 VQGAN 256 – 20.65 0.7383 0.1083 140.0
VQ-VAE-2 512 – 32.18 0.9842 0.1313 103.1 VQGAN 128 – 20.29 0.7221 0.1176 75.0
VQ-VAE-2 256 – 31.29 0.9810 0.1464 61.6 VQGAN 64 – 19.92 0.7015 0.1303 40.1
VQ-VAE-2 128 – 30.72 0.9780 0.1588 36.3 VQGAN 32 – 19.58 0.6834 0.1415 21.9

2048

1024 29.23 0.9717 0.1694 178.1

512

256 19.98 0.7311 0.1185 148.5
VQ-VAE-2 512 28.01 0.9642 0.2067 103.0 VQGAN 128 18.93 0.7035 0.1444 74.1
+ random 256 26.43 0.9514 0.2584 60.4 + random 64 17.37 0.6614 0.1917 37.2

select 128 16.21 0.7266 0.5536 14.1 select 32 14.64 0.5801 0.3148 18.9

VQ-VAE-2

2048

1024 31.62 0.9813 0.1404 131.1 VQGAN

512

256 20.43 0.7381 0.1119 147.1
+ model 512 30.23 0.9733 0.1739 53.8 + model 128 19.74 0.7182 0.1314 75.3

-based 256 29.09 0.9658 0.2068 30.6 -based 64 18.82 0.6908 0.1642 39.6
RAQ 128 27.54 0.9518 0.2673 15.6 RAQ 32 17.71 0.6546 0.2081 21.0

256

2048 33.26† 0.9881† 0.1097 465.2

64

512 20.84 0.7415 0.1024 311.4
VQ-VAE-2 1024 32.77 0.9865† 0.1171 239.7 VQGAN 256 20.61† 0.7332 0.1079 159.7
+ RAQ 512 32.24 0.9847 0.1256 133.6 + RAQ 128 20.26† 0.7207† 0.1159 85.8

256 31.33 0.9809† 0.1439 67.0 64 19.86† 0.7052 0.1283 45.0
128 30.39† 0.9771† 0.1663 38.7 32 19.03 0.6787 0.1554 23.1

SQ-VAE / CelebA (128× 128) SimVQ / ImageNet (128× 128)

SQ-VAE 2048 – 32.04 0.9167 0.0911 449.40 SimVQ 4096 – 29.98 0.9109 0.1471 1667.61
SQ-VAE 1024 – 31.62 0.9141 0.0986 275.69 SimVQ 2048 – 29.71 0.9067 0.1536 987.94
SQ-VAE 512 – 30.96 0.9023 0.1088 149.17 SimVQ 1024 – 29.30 0.8986 0.1673 565.20
SQ-VAE 256 – 30.40 0.8927 0.1198 86.61 SimVQ 512 – 28.82 0.8882 0.1835 319.99
SQ-VAE 128 – 29.72 0.8786 0.1295 53.87 SimVQ 256 – 28.25 0.8747 0.2035 174.69
SQ-VAE 64 – 28.72 0.8613 0.1512 28.11 SimVQ 128 – 27.68 0.8601 0.2221 91.08

128

2048 31.85 0.9142 0.0927 521.19

512

4096 30.03 0.9117 0.1488 2242.70
1024 31.40 0.9074 0.0973 269.29 2048 29.74 0.9066 0.1555 1184.28

SQ-VAE 512 30.82 0.8990 0.1041 156.03 SimVQ 1024 29.32 0.8990 0.1657 634.20
+ RAQ 256 30.09 0.8905 0.1156 90.36 + RAQ 512 28.81 0.8885 0.1810 334.01

128 28.95 0.8734 0.1352 53.93 256 28.19 0.8741 0.2021 174.76
64 26.97 0.8356 0.1738 23.66 128 27.15 0.8503 0.2366 92.15

while staying within confidence bounds at extremes. For SQ-VAE and SimVQ (bottom blocks),
RAQ consistently tracks or exceeds fixed-rate baselines across multiple K̃. In contrast, random
selection and the model-based variant degrade notably once more than half of the codebook is re-
moved. These results indicate that RAQ’s benefits extend beyond a single backbone and quantization
scheme. Beyond reconstruction metrics, we observe systematically higher perplexity at larger K̃
with RAQ, indicating more balanced code usage and richer latent capacity. Consistent with (Wu &
Flierl, 2020; Takida et al., 2022; Vuong et al., 2023), increased codebook perplexity often correlates
with better reconstruction. This improvement is especially evident at larger codebook sizes, where
RAQ produces non-degenerate codebooks with broadly balanced usage, not just larger codebooks.
This aligns with maximizing entropy in discrete representations and indicates that RAQ activates
latent capacity underutilized by vanilla VQs.

In summary, RAQ offers substantial advantages in portability and reduced complexity. By consol-
idating multiple fixed-rate VQ models into a single adaptable framework, it saves training/storage
overhead and simplifies deployment. Although minor trade-offs may appear at certain rates, the
combination of flexibility and efficiency makes RAQ attractive across diverse VQ frameworks.

5.3 QUALITATIVE EVALUATION

For our qualitative evaluation, we visualize a single RAQ model based on VQ-VAE-2 (Razavi et al.,
2019) reconstructing three Kodak (Kodak, 1993) images at four adapted codebook sizes (Figure 3).
As the rate decreases, RAQ exhibits a smooth, graceful degradation: global shapes and hues remain
stable while fine textures progressively become smoother. In the parrot (top row), the wrinkles
marked with blue boxes remain sharp down to K̃ = 256. In the sailboat (middle row), the green-
boxed sail numbers are clearly visible down to K̃ = 256. On the building facade (bottom row),

8
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Figure 3: Multi-rate reconstructions with a single RAQ model. Three Kodak (768 × 512) images
reconstructed at four codebook sizes. Colored boxes highlight fine details.

the text marked in red boxes maintains readability across all rates. Even at the lowest rate (K̃ =
64), all three images retain coherent structure and plausible colors. This demonstrates the superior
effectiveness of our RAQ in handling variable-rate compression tasks, particularly in high-resolution
image reconstruction scenarios. Further demonstrations can be found in Appendix A.3.7.

5.4 DISCUSSION

Model-Based RAQ We also study a post-hoc, model-based variant that adapts rates without re-
optimization, though its behavior depends on clustering dynamics. It is generally competitive
for codebook reduction (K̃ < K) but shows sensitivity when expanding the codebook (K̃ > K)
due to initialization, which can yield unstable assignments and suboptimal local minima (see
Appendix A.2.3). In our supplementary study (Appendix A.2.4), plain DKM/k-means++/GMM
achieve similar performance, whereas DKM+post-training closes much of the gap, suggesting a
practical fallback when Seq2Seq-based RAQ is infeasible. Despite these limitations, model-based
RAQ remains attractive in resource-constrained settings, since it only clusters the existing codebook
and scales to large backbones (Yu et al., 2022) where retraining costs dominate.

Stage-2 Compatibility with Autoregressive Priors Unlike autoregressive token priors that pre-
dict index sequences under a fixed codebook, RAQ creates the codebook itself for any target K̃
after training, leaving token modeling untouched. For completeness, we pair a single stage-1 RAQ-
based VQ model with PixelCNN (van den Oord et al., 2016) and Transformer priors across multiple
K̃ (See Appendix A.3.1). These studies show competitive performance versus fixed-rate baselines
while avoiding separate stage-1 retraining per rate, indicating that RAQ maintains stage-2 compati-
bility and downstream expressivity over multiple K̃.

Additional Ablation Appendix A.3.2 ablates cross-forcing. When expanding the codebook
(K̃ > K), it stabilizes generation and improves rFID (up to 4.9%) with modest PSNR/SSIM gains
(Table 12). For K̃ ≤ K, it can slightly underperform, reflecting its expansion-oriented design.

Computational Cost Please see Appendix A.2.6 for complexity experiments. RAQ unavoidably
increases training time, but because a single model serves multiple rates, the overall cost remains
practical. The latency to generate an adapted codebook for a target rate is only 10–140ms, after
which throughput is comparable to fixed-rate VQ models.

Conclusion In summary, RAQ enables multi-rate codebook adaptation across VQ models with a
single stage-1 backbone while retaining compatibility with stage-2 priors. Remaining limitations
include initialization sensitivity in model-based expansion and the need for deeper analysis, which
we leave to future work.

9
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Ethics Statement RAQ is designed as a rate-adaptive extension of VQ models and can be applied
in all domains where VQ models are used. As with all generative models, attention should be given
to potential biases in the training data, as these can affect generated outputs. RAQ does not introduce
any new ethical concerns beyond those inherent in VQ models.

Reproducibility Statement Appendix A.1 provides details of the experiments. The complete
code necessary to reproduce our experiments is included in the supplementary material.
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A APPENDIX

A.1 EXPERIMENT DETAILS

A.1.1 ARCHITECTURES AND HYPERPARAMETERS

The model architecture for this study is based on the conventional VQ-VAE framework outlined
in the original VQ-VAE paper (Van Den Oord et al., 2017), and is implemented with reference to
the VQ-VAE-2 (Razavi et al., 2019) implementation repositories123 and an open-source VQ-VAE +
PixelCNN implementation used for our unconditional prior experiments.4 We also relied on open-
source VQGAN resources, including pretrained generator/discriminator weights5 and a PyTorch
implementation6 used for training and evaluation pipelines.

We are using the ConvResNets from the repositories. These networks consist of convolutional lay-
ers, transpose convolutional layers and ResBlocks. Experiments were conducted on two different
computer setups: a server with 4 RTX 4090 GPUs and a machine with 2 RTX 3090 GPUs. PyTorch
(Paszke et al., 2019), PyTorch Lightning (Falcon, 2019), and the AdamW (Loshchilov & Hutter,
2019) optimizer were used for model implementation and training. Evaluation metrics such as the
Structural Similarity Index (SSIM) and the Frechet Inception Distance (rFID) were computed using
implementations of pytorch-msssim 7 and pytorch-fid 8, respectively. The detailed model parame-
ters are shown in Table 2. RAQs are constructed based on the described VQ-VAE parameters with
additional consideration of each parameter.

Table 2: Architecture and hyperparameters for training VQ-VAE and RAQ models.

Method Parameter CIFAR10 CelebA ImageNet

VQ-VAE (Van Den Oord et al., 2017)

Input size 32×32×3 64× 64× 3, 128× 128× 3 224×224×3
Latent layers 8×8 16×16, 32×32 56×56
Hidden units 128 128 256

Residual units 64 64 128
# of ResBlock 2 2 2

Original codebook size (K) 24 ∼ 210 25 ∼ 211 27 ∼ 212

Codebook dimension (d) 64 64 128
β (Commit loss weight) 0.25 0.25 0.25

Weight decay in EMA (γ) 0.99 0.99 0.99
Batch size 128 128 32
Optimizer AdamW AdamW AdamW

Learning rate 0.0005 0.0005 0.0005
Max. training steps 195K 635.5K 961K

Model-based RAQ

Original codebook size (K) 64, 128 128, 256 512
Adapted codebook size (K̃) 24 ∼ 210 25 ∼ 211 26 ∼ 212

Max. DKM iteration 200 200 200
Max. IKM iteration 5000 5000 5000

τ of softmax 0.01 0.01 0.01

RAQ

Original codebook size (K) 64, 128 128, 256 512
Adapted codebook size (K̃) 24 ∼ 210 25 ∼ 211 26 ∼ 212

Max. Codebook size 1024 2048 4096
Min. Codebook size 8 16 64
Input size (Seq2Seq) 64 64 128

Hidden size (Seq2Seq) 64 64 128
# of recurrent layers (Seq2Seq) 2 2 2

A.1.2 DATASETS AND PREPROCESSING

For the CIFAR10 dataset, the training set is preprocessed using a combination of random cropping
and random horizontal flipping. Specifically, a random crop of size 32× 32 with padding of 4 using

1https://github.com/mattiasxu/VQVAE-2
2https://github.com/rosinality/vq-vae-2-pytorch
3https://github.com/EugenHotaj/pytorch-generative
4https://github.com/KimRass/VQ-VAE-PixelCNN
5https://github.com/aa1234241/vqgan
6https://github.com/dome272/VQGAN-pytorch
7https://github.com/VainF/pytorch-msssim
8https://github.com/mseitzer/pytorch-fid
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the ’reflect’ padding mode is applied, followed by a random horizontal flip. The validation and
test sets are processed by converting the images to tensors without further augmentation. For the
CelebA dataset, the training set is preprocessed with a series of transformations. The images are
resized and center cropped to 64×64 or 128×128, normalized, and subjected to random horizontal
flipping. A similar preprocessing is applied to the validation set, while the test set is processed
without augmentation. For the ImageNet dataset, the training set is preprocessed with a series of
transformations. The images are resized to 256× 256 and center cropped to 224× 224, normalized,
and subjected to random horizontal flipping. A similar preprocessing is applied to the validation set,
while the test set is processed without augmentation. These datasets are loaded into PyTorch using
the provided data modules, and the corresponding data loaders are configured with the specified
batch sizes and learning rate for efficient training (described in Table 2). The datasets are used as
input for training, validation, and testing of the VQ-VAE model.

A.2 MODEL-BASED RAQ: ADDITIONAL DETAILS AND ANALYSES

A.2.1 CODEBOOK CLUSTERING

In this subsection, we formalize codebook clustering for model-based RAQ and fix notation used
by DKM. Given a set of the original codebook representations e = {ei}Ki=1, we aim to partition the
K codebook vectors into K̃(≤ K) codebook vectors ẽ = {ẽi}K̃i=1. Each codebook vector resides
in a D-dimensional Euclidean space. Using the codebook assignment function g(·), then g(ei) = j
means i-th given codebook assigned j-th clustered codebook. Our objective for codebook clustering
is to minimize the discrepancy L between the given codebook e and clustered codebook ẽ:

argmin
ẽ,g

L(e; ẽ) = argmin
ẽ,g

K̃∑
i=1

||ei − ẽg(ei)|| (7)

with necessary conditions

g(ei) = argmin
j∈1,2,...,K̃

||ei − ẽj || , ẽj =

∑
i:g(ei)=j

ei

Nj
(8)

where Nj is the number of samples assigned to the codebook ẽj .

A.2.2 CODEBOOK EXPANSION (VIA IKM)

We now describe codebook expansion for model-based RAQ and the inverse-functional DKM (IKM)
procedure used to synthesize a larger codebook from a trained one.

While k-means clustering is effective for compressing codebook vectors, it has algorithmic limita-
tions when adding new codebook vectors. To address this, we introduce inverse-functional DKM
(IKM), which increases the number of codebook vectors by approximating the distribution of a
trained codebook. We measure distributional discrepancy via maximum mean discrepancy (MMD)
between the base codebook and the clustered, synthesized codebook. MMD is a kernel-based two-
sample statistic that quantifies distributional similarity (Gretton et al., 2012).

Given a trained base codebook e of size K, IKM generates an expanded codebook ẽ of size K̃ > K
as follows:

• Initialize a d-dimensional adapted codebook vector ẽ = {ẽi}K̃i=1 as ẽ ∼ N (0, d−
1
2 IK̃)

• Cluster ẽ via the DKM process (equation 6): gDKM(ẽ) = argmin
gDKM(ẽ)

LDKM(ẽ; gDKM(ẽ)).

• Calculate the MMD between the true original codebook e and the DKM clustered gDKM(ẽ).
• Optimize ẽ to minimize the MMD objective LIKM(e; ẽ) = MMD(e, gDKM(ẽ)) + λ||ẽ||2.

where λ is the regularization parameter controlling the strength of the L2 regularization term. The
IKM process can be summarized as ẽ = argmin

ẽ
LIKM(e; ẽ). Since DKM does not block gradient

flow, we easily can update the codebook ẽ using stochastic gradient descent (SGD) as ẽ = ẽ −
η∇LIKM(e, ẽ).

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A.2.3 INITIALIZATION SENSITIVITY IN EXPANSION

We observe a marked degradation when increasing the codebook size (K̃ > K) under the clustering-
only variant. Empirically, this is primarily driven by initialization in IKM: newly synthesized vectors
may be placed far from the manifold spanned by the trained base codebook, making soft assignments
unstable and prone to poor local minima. This yields higher run-to-run variance and lower recon-
struction quality at large K̃.

While our primary focus is the novelty and efficacy of the Seq2Seq-based RAQ, a systematic study
of more robust initialization strategies for model-based RAQ remains promising future work.

A.2.4 COMPARISON TO CLUSTERING BASELINES

We compare the model-based RAQ variant against standard clustering/compression baselines on a
pre-trained VQ-VAE (trained on CelebA 64×64) using the base codebook (K = 1024). For each
target adapted codebook size K̃∈{512, 256, 128}, we adapt the codebook with:

• DKM: As described in our main paper.
• k-means++: An effective initialization method for the k-means clustering algorithm.
• Gaussian Mixture Model (GMM): A probabilistic clustering method assuming data

points come from a finite mixture of Gaussian distributions.
• DKM + post-training: Fine-tuning the original VQ model using the compressed codebook

obtained from DKM.

Table 3: Comparison of codebook clustering methods for model-based RAQ. Metrics are PSNR↑ /
SSIM↑ / Perplexity↑; mean over 4 seeds.

Method Adapted codebook size K̃

1024 512 256 128

DKM 26.41 / 0.8351 / 99.9 25.24 / 0.8078 / 52.3 24.37 / 0.7720 / 32.5 23.20 / 0.7415 / 20.0
k-means++ 26.22 / 0.8400 / 60.8 25.28 / 0.8071 / 40.2 24.51 / 0.7872 / 29.4 23.38 / 0.7486 / 21.3
GMM 26.19 / 0.8350 / 62.4 25.22 / 0.8057 / 40.1 24.46 / 0.7814 / 30.0 23.51 / 0.7487 / 21.3

DKM + post-training 28.39 / 0.8959 / 180.9 27.69 / 0.8842 / 95.0 26.97 / 0.8675 / 56.7 25.66 / 0.8309 / 28.6

Table 3 indicate that basic clustering methods achieve similar codebook reduction performance.
However, the differentiable nature of DKM uniquely enables efficient fine-tuning, substantially im-
proving the compression performance within the same model architecture. Thus, while initial clus-
tering performance differences are modest, the capability for post-training underscores the notable
advantage and novelty of our proposed RAQ method.

A.2.5 MODEL COMPLEXITY

In this section, we provide a comparison of model complexity in terms of the total number of train-
able parameters for our VQ-based models, both with and without our RAQ module. The following
tables list parameter counts for the VQ-VAE and RAQ (our proposed method) variations on (i) CI-
FAR10 (Table 4), (ii) CelebA (Table 5), and (iii) ImageNet (Table 6).

As shown in the tables below, the addition of RAQ introduces a new Seq2Seq component to facilitate
codebook adaptation, resulting in a modest increase in the number of parameters:

• In VQ-VAE, whose total parameter count is on the order of a few hundred thousand, the
RAQ overhead typically adds ∼ 200K+ parameters (e.g., for CIFAR10, the total parameter
count increases from about 468K to 732K for K = 128).

• In stage-1 VQGAN, which already has tens of millions of parameters, the additional pa-
rameters introduced by RAQ are less than 1% of the total. For instance, the total grows from
72.0M to approximately 72.6M—a practically negligible difference in large-scale settings.

These observations demonstrate that RAQ remains practical for a variety of model scales and does
not incur substantial overhead, even when applied to deeper architectures.
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Table 4: Number of parameters for training VQ-VAE and RAQ models on the CIFAR10 dataset.

Method # params
Encoder Decoder Quantizer Seq2Seq Total

VQ-VAE (K = 1024) 196.3K 262K 65.5K - 525K

VQ-VAE (K = 512) 196.3K 262K 32.8K - 492K

VQ-VAE (K = 256) 196.3K 262K 16.4K - 476K

VQ-VAE (K = 128) 196.3K 262K 8.2K - 468K

VQ-VAE (K = 64) 196.3K 262K 4.1K - 463K

VQ-VAE (K = 32) 196.3K 262K 2.0K - 461K

VQ-VAE (K = 16) 196.3K 262K 1.0K - 460K

RAQ (K = 128) 196.3K 262K 8.2K 263.7K 732K

RAQ (K = 64) 196.3K 262K 4.1K 263.7K 728K

Table 5: Number of parameters for training VQ-VAE and RAQ models on the CelebA dataset.

Method # params
Encoder Decoder Quantizer Seq2Seq Total

VQ-VAE (K = 2048) 196.3K 262K 131K - 590K

VQ-VAE (K = 1024) 196.3K 262K 65.5K - 525K

VQ-VAE (K = 512) 196.3K 262K 32.8K - 492K

VQ-VAE (K = 256) 196.3K 262K 16.4K - 476K

VQ-VAE (K = 128) 196.3K 262K 8.2K - 468K

VQ-VAE (K = 64) 196.3K 262K 4.1K - 463K

VQ-VAE (K = 32) 196.3K 262K 2.0K - 461K

RAQ (K = 256) 196.3K 262K 16.4K 263.7K 740K

RAQ (K = 128) 196.3K 262K 8.2K 263.7K 732K

Table 6: Number of parameters for training stage-1 VQGAN and RAQ models on the ImageNet
dataset.

Method # params
Quantizer Seq2Seq Total

VQGAN (K = 512) 65.5K - 72.0M

VQGAN (K = 256) 32.8K - 72.0M

VQGAN (K = 128) 16.4K - 72.0M

VQGAN (K = 64) 8.2K - 72.0M

VQGAN (K = 32) 4.1K - 71.9M

RAQ (K = 128) 16.4K 610K 72.6M

A.2.6 TRAINING/INFERENCE TIME

Setup All timings were measured on a single NVIDIA RTX 3090 with batch size 128. We report
per-epoch wall-clock time. We compare a single RAQ model (K=256) against multiple fixed-rate
VQ baselines (K∈{64, 256, 1024}) and the model-based RAQ.
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Training Time As expected, adding the Seq2Seq adapter increases per-epoch time versus a sin-
gle fixed-rate VQ; however, when multiple bitrates are required, one RAQ model replaces several
separately trained VQs, reducing total training and maintenance cost.

Table 7: Training time per epoch on the CelebA train set using an NVIDIA RTX 3090 GPU.

Method K Training time per epoch (s) # params

VQ-VAE / Model-based RAQ 64 18.09± 0.256 463K
VQ-VAE / Model-based RAQ 256 18.43± 0.10 476K
VQ-VAE / Model-based RAQ 1024 21.64± 0.11 525K
RAQ 256 514.97± 8.17 740K

Inference Time We consider two deployment regimes: (i) a pessimistic setting that regenerates
the adapted codebook for every mini-batch (upper bound on cost), and (ii) a cached setting that
adapts the codebook once per target rate K̃ and reuses it thereafter (realistic case).

Table 8: Inference time per epoch on CelebA (test set) when regenerating per mini-batch.

Method K̃ Inference time per epoch (s)

VQ-VAE (K = 64) – 1.86± 0.10
VQ-VAE (K = 256) – 1.91± 0.12
VQ-VAE (K = 1024) – 1.86± 0.09
Model-based RAQ (K = 256) 64 1.98± 0.09
RAQ (K = 256) 64 3.05± 0.11
Model-based RAQ (K = 256) 1024 70.91± 11.82
RAQ (K = 256) 1024 33.21± 0.27

One-time Codebook Adaptation Latency To reflect practical use, we additionally measure the
one-time latency to adapt and cache a codebook for a given K̃; subsequent batches reuse this code-
book at no extra cost. The added latency is on the order of 10-140ms.

Table 9: One-time adaptation latency per target rate (cached at inference).

K̃ Latency (ms)

64 9.67± 10.34
128 18.08± 9.32
256 36.00± 9.49
512 71.63± 10.99

1024 143.94± 12.63

Summary Table 8 should be interpreted as an upper bound (regenerate-per-batch). In realistic
deployments (adapting once per K̃ and caching) the extra latency (Table 9) is negligible, while a
single RAQ model still replaces multiple fixed-rate VQs in storage and operational complexity.

A.3 ADDITIONAL EXPERIMENTS

A.3.1 STAGE-2 COMPATIBILITY WITH AUTOREGRESSIVE PRIORS

In our end-to-end setups, the stage-2 VQ model is an autoregressive Transformer prior trained on
sequences of VQ code indices produced by the stage-1 VQ encoder. Rather than refining pixels
directly, it models the distribution of latent token sequences and generates new index sequences that
the VQ decoder then maps back to images. This factorization enables us to pair RAQ-adapted latents
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with a fixed stage-2 prior across multiple target rates K̃ without the need for retraining separate
stage-1 models.

RAQ-VAE denotes a standard VQ-VAE whose stage-1 quantizer is augmented with our Seq2Seq
codebook adaptation module. RAQGAN analogously augments a stage-1 VQGAN (generator and
discriminator) with the same RAQ module, leaving the adversarial training pipeline unchanged.

RAQ-VAE with PixelCNN First, we evaluated the performance of unconditional image genera-
tion by combining the trained Stage-1 autoencoders (VQ-VAE and RAQ-VAE) with a PixelCNN
decoder that was trained on the Fashion-MNIST dataset. For each codebook size, we generated
10,000 samples via categorical sampling with a temperature of 1.0, and reported both the Inception
Score (IS) and the Fréchet Inception Distance (FID), which are the most widely adopted metrics for
generative modelling.

Table 10: Evaluation of unconditional image generation. PixelCNN with stage-1 VQ-VAE encoder
(top) and single stage-1 RAQ-VAE encoder (bottom).

Method K̃ FID ↓ IS ↑
VQ-VAE (K=256) + PixelCNN – 48.88 4.04
VQ-VAE (K=128) + PixelCNN – 53.46 3.95
VQ-VAE (K=64) + PixelCNN – 53.69 3.95
VQ-VAE (K=32) + PixelCNN – 54.58 4.14
VQ-VAE (K=16) + PixelCNN – 58.53 3.92

RAQ (K=64) + PixelCNN

256 47.96 4.09
128 50.81 4.08
64 51.24 4.06
32 52.43 3.98
16 58.47 3.96

As shown in Table 10, RAQ-VAE combined with PixelCNN achieves competitive, and in some cases
slightly improved, FID and IS values across all tested codebook sizes compared to baseline VQ-
VAE. This demonstrates that the expressivity of the RAQ-adapted latent variables is well preserved
for synthesis purposes.

Figure 4: Unconditional samples with a PixelCNN prior. Top: VQ-VAE baselines (K=K̃). Bottom:
one RAQ-VAE (K=64) with K̃.

Qualitatively, both fixed-rate VQ-VAE and the single RAQ-VAE produce diverse, coherent samples
across the rates. RAQ maintains comparable visual fidelity while varying K̃ without retraining the
stage-1 model.

RAQGAN with Transformer Next, to further evaluate conditional image generation, we in-
tegrated VQGAN and RAQGAN stage-1 models with a transformer-based autoregressive prior
(minGPT) on the Oxford Flowers102 dataset. We fine-tuned each model (with pretrained encoder,
generator, and discriminator) on the Flowers102 train dataset across various codebook sizes and
generated 6149 half-conditional test samples.
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Table 11: Evaluation of conditional image generation (temperature 1.0, top-k sampling of k = 100).
MinGPT with stage-1 VQGAN generator (top) and single stage-1 RAQGAN generator (bottom).

Method K̃ FID ↓
VQGAN (K=1024) + minGPT – 35.67
VQGAN (K=512) + minGPT – 40.13
VQGAN (K=256) + minGPT – 38.47

RAQ (K=512) + minGPT
1024 34.00
512 33.47
256 35.47

In Table 11, the results demonstrate that RAQGAN can be effectively combined with an autore-
gressive transformer prior, yielding performance on par with or superior to standard VQGAN-based
models. Furthermore, our results demonstrate that a single RAQ-based model can flexibly support
a wide range of adapted codebook sizes with consistently strong generative quality, unlike conven-
tional VQGAN-Transformer approaches that require training separate VQGANs for each bitrate or
target rate. Notably, RAQ-adapted latents remain fully compatible with stage-2 autoregressive mod-
els, allowing seamless end-to-end synthesis at arbitrary rates. This property is especially beneficial
in practical deployment scenarios, where resource constraints or bandwidth conditions may change
dynamically, as it enables flexible adaptation to different rates without retraining or model switching.

Figure 5: Conditional samples with Transformer (minGPT) on Flowers102 dataset. Top: VQGAN
baselines (K=K̃). Bottom: one RAQGAN (K=512) with K̃.

Qualitatively, both VQGAN and the single RAQGAN yield diverse, class-consistent samples. RAQ-
GAN maintains comparable visual quality while varying K̃ without retraining the stage-1 model.

Across both priors, these small-scale studies suggest that RAQ-adapted latent variables are compat-
ible with stage-2 VQ models over a range of K̃ and can be paired with off-the-shelf priors without
additional stage-1 retraining. While a broader evaluation is left to future work, the evidence here
supports straightforward end-to-end use of one stage-1 model under changing bitrate constraints.

A.3.2 EFFECTIVENESS OF CROSS-FORCING

We performed an ablation study to analyze the impact of our cross-forcing training strategy on
the stability and fidelity of codebook generation. Using a base RAQ model with an original
codebook size K = 128 on the CelebA dataset, we compared two variants: (1) RAQ-w/o-
CF without cross-forcing, and (2) RAQ-w/-CF with cross-forcing. Table 12 shows the recon-
struction metrics (MSE, PSNR, rFID, and SSIM) for different adapted codebook sizes K̃ ∈
{32, 64, 128, 256, 512, 1024, 2048}. We find that RAQ-w/-CF gives significantly better performance
than RAQ-w/o-CF when K̃ > K, leading to up to 4.9% improvement in rFID and noticeable gains in
PSNR and SSIM. In contrast, for smaller or equal codebook sizes (K̃ ≤ K), RAQ-w-CF sometimes
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Table 12: Reconstruction performance of RAQ (K = 128) with or without cross-forcing on the
CelebA test dataset

Method K̃ MSE (×103) ↓ PSNR ↑ rFID ↓ SSIM ↑
2048 (↑) 1.618±0.016 27.91±0.04 22.64±0.76 0.8810±0.0013
1024 (↑) 1.794±0.027 27.47±0.07 24.67±0.80 0.8710±0.0016
512 (↑) 2.042±0.021 26.90±0.05 26.90±0.04 0.8589±0.0044

RAQ-w/-CF 256 (↑) 2.412±0.101 26.18±0.18 30.81±1.59 0.8391±0.0125
128 (-) 2.801±0.039 25.53±0.06 36.30±1.12 0.8209±0.0072
64 (↓) 3.895±0.095 24.10±0.11 47.63±5.82 0.7892±0.0067
32 (↓) 5.357±0.630 22.74±0.54 62.39±3.76 0.7414±0.0304

2048 (↑) 1.661±0.056 27.80±0.14 23.58±0.26 0.8789±0.0030
1024 (↑) 1.815±0.050 27.42±0.12 25.46±0.26 0.8705±0.0024
512 (↑) 2.068±0.059 26.85±0.12 27.81±0.42 0.8567±0.0046

RAQ-w/o-CF 256 (↑) 2.449±0.052 26.12±0.09 32.32±1.20 0.8407±0.0031
128 (-) 2.779±0.015 25.57±0.02 36.08±0.98 0.8261±0.0019
64 (↓) 3.860±0.237 24.15±0.26 45.13±2.79 0.7942±0.0154
32 (↓) 6.289±0.709 22.04±0.47 72.85±16.69 0.7338±0.0225

underperforms its counterpart by a small margin. We hypothesize that cross-forcing is specifically
designed to stabilize the generation of larger adapted codebooks (up to twice the original size),
which can result in a slight tradeoff when quantizing at or below the baseline codebook size.

A.3.3 SEQ2SEQ MODEL SIZE

Regarding the sensitivity of our RAQ to the Seq2Seq model size, we conducted additional exper-
iments. Using our RAQ framework applied to a VQ-VAE-2 (Razavi et al., 2019) baseline on the
CelebA (128×128) dataset with an original codebook size of K = 256, we compared two configu-
rations:

• RAQ with 2 LSTM layers: This configuration uses approximately 528K parameters in
the Seq2Seq model (about 10.78% of the total model parameters).

• RAQ with 4 LSTM layers: Here, the Seq2Seq model’s parameter count increases to
approximately 1.06M (about 19.63% of the total model parameters).

Table 13: RAQ performance with different layer configurations on varying codebook sizes. We con-
trolled all other variables over four random seeds (only values significantly outside the confidence
interval are bolded).

Method K̃ PSNR LPIPS Perplexity (%)

RAQ, 2 layers

2048 33.26 0.1097 22.71
1024 32.77 0.1171 23.41
512 32.24 0.1256 26.10
256 31.33 0.1439 26.18
128 30.39 0.1663 30.21
64 28.76 0.2009 37.89

RAQ, 4 layers

2048 33.16 0.1052 22.53
1024 32.76 0.1107 24.28
512 32.17 0.1192 26.54
256 31.49 0.1325 25.05
128 30.40 0.1548 31.36
64 27.79 0.2162 35.45

The results show that increasing the LSTM layers from 2 to 4 yields only marginal improvements
(e.g., a slight improvement in LPIPS) despite nearly doubling the parameter count. These findings
indicate that our compact LSTM-based design achieves an appropriate balance between computa-
tional efficiency and performance within our current framework. We also note that if the baseline
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VQ model were considerably larger (for example, using a ViT-based encoder/decoder), the relative
impact of the Seq2Seq model’s size might be reduced, and exploring larger architectures could be
more promising.

A.3.4 CODEBOOK SIZE SWITCHING WITHIN A SEQUENCE

To evaluate the stability of our RAQ scheme when switching between codebook sizes within a se-
quence, we conducted additional experiments on the Kodak dataset. We used a VQ-VAE-2 model
trained with RAQ (original codebook sizeK = 256) on ImageNet (256×256) and varied the adapted
codebook sizes for both the bottom- and top-level latent maps during inference. Table 14 summa-
rizes the PSNR, SSIM, and LPIPS metrics under all combinations of bottom- and top-level codebook
sizes.

Table 14: Performance when switching between codebook sizes for top and bottom latent codes on
Kodak dataset). The input to the model is 768x512 images of Kodak dataset that is compressed to
quantized latent maps of size 192×128 and 96×64 for the bottom and top levels, respectively.

Bottom K̃ Top K̃ PSNR SSIM LPIPS

4096 4096 30.24 0.9739 0.10698
4096 1024 30.21 0.9735 0.10850
1024 4096 29.80 0.9706 0.11491
1024 1024 29.78 0.9701 0.11628
1024 256 29.70 0.9691 0.11930
256 1024 29.00 0.9639 0.13077
256 256 28.96 0.9631 0.13298
256 64 28.79 0.9607 0.13941
64 256 27.98 0.9528 0.15973
64 64 27.85 0.9506 0.16575

These results confirm that switching codebook sizes within a latent sequence does not degrade re-
construction stability. Prior work reports that the top-level code captures global structure while the
bottom-level code encodes local details (Razavi et al., 2019); our findings further reveal that the
bottom-level codebook size exerts a stronger influence on reconstruction quality.

A.3.5 MODEL-BASED RAQ

Rate Reduction As analyzed in Section 5.2, RAQ generally outperforms model-based RAQ, but
some rate-reduction results on CIFAR10 show that model-based RAQ performs much more sta-
bly than in the codebook increasing task. This indicates that simply clustering codebook vectors,
without additional neural models like Seq2Seq, can achieve remarkable performance. In Table 15,
the performance via codebook clustering was evaluated with different original/adapted codebook
sizes K: 1024 / K̃: 512, 256, 128 on CIFAR10 and K: 2048 / K̃: 1024, 512, 256, 128 on
CelebA. The conventional VQ-VAE preserved as many codebooks in the original codebook as in
the adapted codebook, while randomly codebook-selected VQ-VAE results remained meaningless.
Model-based RAQ adopted this baseline VQ-VAE model and performed clustering on the adapted
codebook. Model-based RAQ shows a substantial performance difference in terms of reconstructed
image distortion and codebook usage compared to randomly codebook-selected VQ-VAE. Even
when evaluating absolute performance, it is intuitive that online codebook representation via model-
based RAQ provides some performance guarantees.

Rate Expansion In our proposed RAQ scenario, increasing the codebook size beyond the base size
is a more demanding and crucial task than reducing it. The crucial step in building RAQ is to achieve
higher rates from a fixed model architecture and compression rate, ensuring usability. Therefore,
the codebook increasing task was the main challenge. The Seq2Seq decoding algorithm based on
cross-forcing is designed with this intention. In Figure 2, the codebook generation performance
was evaluated with different original/adapted codebook sizes K: 64, 128 / K̃: 64, 128, 256, 512,
1024 on CIFAR10 and K: 128, 256 / K̃: 128, 256, 512, 1024, 2048 on CelebA datasets. RAQ
outperforms model-based RAQ in the rate-increasing task and partially outperforms conventional
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Table 15: Reconstruction performances of model-based RAQ for rate-reduction task according to
adapted codebook size K̃.

Method K̃
CIFAR10 (K = 1024)

PSNR ↑ rFID ↓ Perplexity ↑
VQ-VAE (baseline model) - 25.48 51.90 708.60

512 24.35 63.67 289.29
VQ-VAE (random select) 256 22.81 78.00 111.77

128 20.87 93.57 48.87

512 24.62 55.78 285.68
Model-based RAQ 256 23.81 62.53 134.54

128 23.07 69.45 73.17

Method K̃
CelebA (K = 2048)

PSNR ↑ rFID ↓ Perplexity ↑
VQ-VAE (baseline model) - 28.26 22.89 273.47

1024 24.02 38.92 103.50
VQ-VAE (random select) 512 18.99 71.64 49.59

256 23.54 115.12 27.86

1024 26.40 31.37 102.36
Model-based RAQ 512 25.24 39.07 53.45

256 24.36 45.54 32.86

Figure 6: Reconstruction performance at different rates (adapted codebook sizes) evaluated on
CelebA (64 × 64) test set. In the graph, the black VQ-VAE-2s (Razavi et al., 2019) are separate
models trained on each codebook size, while the RAQs are one model per line.

VQ-VAE trained on the same codebook size (K = K̃). This effect is particularly pronounced
on CelebA. However, increasing the difference between the original and adapted codebook sizes
leads to a degradation of RAQ performance. This effect is more dramatic for model-based RAQ
due to its algorithmic limitations, making its performance less stable at high rates. Improving the
performance of model-based RAQ, such as modifying the initialization of the codebook vector,
remains a limitation.

A.3.6 QUANTITATIVE RESULTS

VQ-VAE In Table 16 and 17, we present additional quantitative results for the reconstruction on
CIFAR10 and CelebA datasets. The error indicates a 95.45% confidence interval based on 4 runs
with different training seeds.

VQ-VAE-2 Figure 6 shows the reconstruction performance using VQ-VAE-2 as the baseline
model.
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Table 16: Reconstruction performance on CIFAR10 dataset. The 95.45% confidence interval is
provided based on 4 runs with different training seeds.

Method Bit Rate Codebook Usability Distortion Perceptual Similarity

K̃ Usage Perplexity PSNR rFID SSIM

VQ-VAE (K = K̃) 1024 972.66±2.97 708.60±7.04 25.48±0.02 51.90±0.51 0.8648±0.0005

VQ-VAE (K = K̃) 512 507.52±0.51 377.08±5.92 24.94±0.01 56.65±0.91 0.8490±0.0003

VQ-VAE (K = K̃) 256 256±0 204.43±4.36 24.43±0.02 61.40±0.78 0.8310±0.0006

VQ-VAE (K = K̃) 128 128±0 106.44±1.54 23.85±0.01 66.70±1.12 0.8096±0.0009

VQ-VAE (K = K̃) 64 64±0 55.64±0.27 23.24±0.01 74.00±1.64 0.7849±0.0009

VQ-VAE (K = K̃) 32 32±0 29.25±0.13 22.53±0.02 81.68±1.01 0.7545±0.0009

VQ-VAE (K = K̃) 16 16±0 15.01±0.21 21.76±0.01 89.75±0.83 0.7156±0.0024

1024 972.66±2.97 708.60±7.04 25.48±0.02 51.90±0.51 0.8648±0.0005
512 498.38±1.85 289.29±16.67 24.35±0.11 63.67±2.49 0.8305±0.0056

VQ-VAE 256 253.01±0.66 111.77±21.53 22.81±0.38 78.00±5.07 0.7822±0.0100
(K = 1024) 128 127.34±0.33 48.87±11.31 20.87±0.73 93.57±9.87 0.7254±0.0235
(random select) 64 64±0 24.31±5.26 19.46±0.98 109.90±14.20 0.6720±0.0309

32 32±0 13.50±1.45 17.76±1.12 126.57±15.89 0.6102±0.0350

1024 979.16±3.72 738.48±7.39 25.18±0.03 54.65±0.99 0.8520±0.0007
512 507.47±0.85 387.18±6.87 24.82±0.02 57.57±0.95 0.8417±0.0005
256 256±0 207.78±12.13 24.34±0.02 61.76±1.22 0.8274±0.0008

RAQ (K = 128) 128 128±0 107.77±0.58 23.91±0.0 65.37±0.68 0.8132±0.0011
64 64±0 55.59±1.81 22.87±0.04 77.49±2.39 0.7770±0.0036
32 32±0 27.77±2.03 21.85±0.15 89.38±4.33 0.7356±0.0064
16 16±0 14.84±0.74 20.82±0.09 98.93±4.64 0.6918±0.0033

1024 744.36±18.74 395.23±2.77 24.15±0.03 63.88±1.26 0.8213±0.0014
512 430.06±11.58 256.23±7.50 24.04±0.03 64.74±0.96 0.8177±0.0012

Model-based RAQ 256 244.61±3.13 185.02±3.31 23.93±0.01 65.65±1.12 0.8139±0.0010
(K = 128) 128 128±0 106.44±1.54 23.85±0.01 66.70±1.12 0.8096±0.0009

64 64±0 49.55±1.29 22.85±0.55 72.61±0.77 0.7780±0.0013
32 32±0 25.65±0.76 21.88±0.75 82.12±1.74 0.7405±0.0046
16 16±0 13.79±0.06 20.89±0.04 95.03±0.34 0.6972±0.0010

1024 972.14±6.49 725.55±10.90 25.04±0.01 55.34±1.48 0.8487±0.0012
512 506.38±1.23 382.43±10.58 24.70±0.02 57.91±1.42 0.8387±0.0011
256 255.52±0.48 196.17±9.95 24.25±0.02 61.96±1.00 0.8245±0.0012

RAQ (K = 64) 128 128±0 109.65±3.50 23.71±0.01 66.89±1.07 0.8071±0.0014
64 64±0 56.31±0.46 23.23±0.01 71.17±1.17 0.7897±0.0013
32 32±0 29.62±0.66 21.84±0.09 90.04±1.44 0.7350±0.0038
16 16±0 15.11±0.67 20.79±0.18 104.86±5.91 0.6918±0.0084

1024 706.20±115.18 345.50±107.06 23.65±0.13 70.30±2.02 0.8013±0.0051
512 428.39±12.29 231.41±14.64 23.55±0.04 71.01±1.38 0.7988±0.0005

Model-based RAQ 256 233.75±4.63 140.19±2.82 23.39±0.05 71.72±1.43 0.7935±0.0012
(K = 64) 128 125.07±1.58 101.16±16.04 23.32±0.05 72.68±1.47 0.7901±0.0008

64 64±0 55.64±0.27 23.24±0.01 74.00±1.64 0.7849±0.0009
32 32±0 26.21±0.95 22.07±0.13 81.61±2.26 0.7569±0.0014
16 16±0 13.59±0.85 20.88±0.23 92.84±3.30 0.7004±0.0063
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Table 17: Reconstruction performance on CelebA dataset. The 95.45% confidence interval is
provided based on 4 runs with different training seeds.

Method Bit Rate Codebook Usability Distortion Perceptual Similarity

K̃ Usage Perplexity PSNR rFID SSIM

VQ-VAE (K = K̃) 2048 779.07±8.35 273.47±6.86 28.26±0.03 22.89±0.71 0.8890±0.0027

VQ-VAE (K = K̃) 1024 456.86±3.53 160.35±2.73 27.73±0.05 26.67±1.43 0.8763±0.0029

VQ-VAE (K = K̃) 512 259.59±3.99 95.09±1.28 27.11±0.01 29.77±0.95 0.8636±0.0022

VQ-VAE (K = K̃) 256 144.44±2.49 57.86±0.91 26.46±0.03 31.53±1.01 0.8481±0.0009

VQ-VAE (K = K̃) 128 80.26±0.99 34.98±0.39 25.72±0.04 36.25±0.98 0.8279±0.0027

VQ-VAE (K = K̃) 64 44.94±1.03 20.04±0.37 24.78±0.03 41.22±0.77 0.7986±0.0037

VQ-VAE (K = K̃) 32 25.48±0.69 12.69±0.31 23.76±0.06 46.56±1.97 0.7660±0.0032

2048 779.07±8.35 273.47±6.86 28.26±0.03 22.89±0.71 0.8890±0.0027
VQ-VAE 1024 384.31±6.76 103.50±3.28 24.02±1.10 38.92±3.27 0.7963±0.0201
(K = 2048) 512 210.69±9.23 49.59±4.54 18.99±1.40 71.64±8.27 0.7037±0.0221
(random select) 256 115.33±7.73 27.86±3.39 16.33±0.61 115.12±11.93 0.6353±0.0173

2048 885.53±6.76 347.99±5.17 27.96±0.14 23.02±0.33 0.8858±0.0033
1024 490.86±4.98 187.33±10.37 27.51±0.13 25.08±0.23 0.8758±0.0036
512 275.84±1.72 104.61±5.00 26.95±0.086 27.96±0.49 0.8637±0.0045

RAQ (K = 256) 256 144.79±1.21 52.63±0.28 26.29±0.054 32.34±0.86 0.8463±0.0030
128 80.21±4.27 32.23±3.87 25.13±0.26 39.67±2.29 0.8162±0.0071
64 42.93±1.61 20.85±1.22 24.09±0.21 51.57±6.66 0.7912±0.0094
32 22.76±1.57 12.32±0.91 22.62±0.27 69.65±9.49 0.7479±0.0129

2048 704.17±108.04 117.53±33.57 26.54±0.10 30.34±1.39 0.8507±0.0041
1024 460.77±26.98 134.48±11.26 26.59±0.06 30.49±1.10 0.8509±0.0021
512 279.53±9.48 100.64±8.94 26.40±0.08 30.95±0.98 0.8488±0.0017

Model-based RAQ 256 144.44±2.49 57.86±0.91 26.46±0.03 31.53±1.01 0.8481±0.0009
(K = 256) 128 75.31±3.09 25.05±1.95 24.44±0.25 38.95±2.91 0.7890±0.0141

64 41.66±1.22 14.73±0.56 22.85±0.36 48.96±1.13 0.7391±0.0192
32 22.96±0.90 10.16±0.95 21.81±0.45 62.46±0.00 0.7077±0.0195

2048 891.13±7.11 345.25±5.15 27.91±0.04 22.64±0.76 0.8810±0.0013
1024 490.15±14.39 176.71±6.19 27.47±0.07 24.67±0.80 0.8710±0.0016
512 272.60±2.08 96.87±2.68 26.90±0.05 26.90±0.04 0.8589±0.0044

RAQ (K = 128) 256 152.65±2.45 60.90±2.18 26.18±0.18 30.81±1.59 0.8391±0.0125
128 79.17±0.93 31.36±0.77 25.53±0.06 36.30±1.12 0.8209±0.0072
64 42.71±1.66 19.78±2.31 24.10±0.11 47.63±5.82 0.7892±0.0067
32 22.42±1.92 11.43±2.14 22.74±0.54 62.39±3.76 0.7414±0.0304

2048 350.02±100.57 64.87±21.22 22.77±0.78 52.37±10.94 0.7463±0.0347
1024 432.15±45.80 102.79±17.34 25.57±0.19 35.62±1.46 0.8296±0.0062
512 262.78±29.47 75.63±12.04 25.50±0.29 36.82±0.73 0.8265±0.0026

Model-based RAQ 256 153.16±5.46 53.22±4.62 25.42±0.28 36.78±1.27 0.8285±0.0022
(K = 128) 128 80.26±0.99 34.98±0.39 25.72±0.04 36.25±0.98 0.8279±0.0027

64 41.88±0.72 16.70±0.43 23.63±0.16 47.09±4.09 0.7736±0.0080
32 23.31±0.89 9.56±0.77 21.64±0.13 64.85±6.92 0.7037±0.0102
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Figure 7: Qualitative comparison on ImageNet (256 × 256) at different compression rates. Top
row: Fixed-rate VQ-VAEs trained separately at each rate. Middle row: A single VQ-VAE (K =
4096) with randomly selected codebooks. Bottom row: Our RAQ with VQ-VAE (K = 512) with
adapting the codebook size.

A.3.7 ADDITIONAL QUALITATIVE RESULTS

For our qualitative evaluation, We first compare a single RAQ-based model against multiple VQ-
VAEs trained at different rates (0.1458 bpp to 0.25 bpp) on ImageNet (256 × 256). As illustrated
in Figure 7, each fixed-rate VQ-VAE (top row) shows a progressive decline in image quality as
the rate decreases, consistent with the quantitative evaluation. Unlike RAQ-based reconstruction,
randomly selecting codebooks from a single VQ-VAE trained at K = 4096 (middle row) results
in color distortions and inconsistent hues, especially at 0.1667 bpp. Despite retaining the basic
structure, the mismatched usage of codebooks still produces unnatural appearances. By contrast,
our RAQ-based VQ-VAE (bottom row), trained at a low-rate base codebook of 0.1875 bpp (roughly
K = 512), effectively preserves high-level semantic features and color fidelity using only a single
model. Notably, it recovers finer details (e.g., the cat’s whiskers) far better than models relying on
randomly selected codebooks. Although image quality declines slightly at the lowest bpp, largely
due to the limited capacity of the baseline VQ-VAE, this issue can be mitigated by using more
advanced VQ architectures or refining training procedures. Training RAQ with a smaller original
codebook size K can also help reduce performance degradation at lower rates.

We conducted additional experiments using the VQ-VAE-2 model (Razavi et al., 2019) with an
original codebook size of K = 512. To enhance perceptual quality, we incorporated the LPIPS loss
(Zhang et al., 2018) into the training objective and trained the model on the ImageNet dataset at
a resolution of 256 × 256. The reconstruction task involved reconstructing 24 high-quality images
from the Kodak dataset (Kodak, 1993), each with a resolution of 768×512. For codebook adaptation,
we adjusted the codebook size to K̃ ∈ {4096, 1024, 256, 64} using our RAQ framework. The
qualitative results are illustrated in Figure 8. Contrary to Figure 7, where reducing the codebook
size in a less complex VQ-VAE model led to noticeable performance degradation, our RAQ-based
VQ-VAE-2 demonstrated robust performance across various codebook sizes. Specifically, even as
the codebook size decreased, the RAQ-based VQ-VAE-2 model effectively preserved image quality
at higher resolutions. These results indicate that increasing the model complexity and refining the
training methodology significantly enhance the RAQ framework’s ability to adapt codebook rates
without compromising reconstruction fidelity.
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Figure 8: Reconstructed images for Kodak (Kodak, 1993) dataset at different rates.
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