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ABSTRACT

Learning discrete representations with vector quantization (VQ) has emerged as a
powerful approach in representation learning across vision, audio, and language.
However, most VQ models rely on a single, fixed-rate codebook, requiring ex-
tensive retraining for new bitrates or efficiency requirements. We introduce Rate-
Adaptive Quantization (RAQ), a multi-rate codebook adaptation framework for
VQ models. RAQ integrates a lightweight sequence-to-sequence (Seq2Seq) code-
book generator with the base VQ model, enabling on-demand codebook adap-
tation to any target size at inference. Additionally, we provide a clustering-based
post-hoc alternative for pre-trained VQ models, suitable when modifying the train-
ing pipeline or joint training is not feasible. Our experiments demonstrate that
RAQ performs effectively across multiple rates and VQ models, often outperform-
ing fixed-rate baselines. This model-agnostic adaptability enables a single system
to meet varying bitrate requirements in reconstruction and generation tasks.

1 INTRODUCTION

Vector quantization (VQ) (Gray, [1984) is a fundamental technique for learning discrete represen-
tations for various tasks (Krishnamurthy et al.l [1990; |Gong et al.l [2014; [Van Niekerk et al.| [2020)
in the field of machine learning. The Vector Quantized Variational Autoencoder (VQ-VAE) (Van
Den Oord et al., |2017; [Razavi et al., |2019), which extends the encoder-decoder structure of the
Variational Autoencoder (VAE) (Kingma & Welling, 2013 Rezende & Viola, [2018)), introduces dis-
crete latent representations that have proven effective across vision (Razavi et al., [2019; |[Esser et al.}
2021)), audio (Dhariwal et al., 2020; Yang et al., [2023)), and speech tasks (Kumar et al.| 2019; Xing
et al.,[2023). The inherently discrete nature of these modalities makes VQ particularly well-suited
for complex inference and generation.

Recent developments have further enhanced VQ-based discrete representation learning by integrat-
ing it with deep generative models, such as Generative Adversarial Networks (GANs) (Esser et al.,
2021) and Denoising Diffusion Probabilistic Models (DDPMs) (Cohen et al., 2022; Gu et al., 2022;
Yang et all 2023). As VQ models are integrated into these diverse generative frameworks, their
utility and applicability in various tasks are becoming increasingly evident. However, even with
these advancements, scalability remains a bottleneck. In practical settings such as live streaming,
telepresence, and on-device applications, the available bandwidth and compute resources can fluctu-
ate dramatically. A single fixed-rate VQ model either wastes bits when higher quality is possible or
severely degrades fidelity under tight constraints. Maintaining separate VQ models for each bitrate
is infeasible and incurs significant overhead. Hence, a robust framework that can seamlessly adapt
its compression rate is crucial for real-world deployments.

Several works have explored enhancing the flexibility of codebooks. [Li et al.| (2023) introduced
a codebook-resizing technique for publicly available VQ models by applying hyperbolic embed-
dings, Malka et al.|(2023) propose a nested codebook to support multiple quantization levels, and
multi-codebook vector quantization is used in speech (Guo et al., [2022) and a knowledge distilla-
tion setting (Guo et al.l [2023). Recently, Huijben et al.| (2024) focused on unsupervised codebook
generation based on residual quantization by studying the vector quantizer itself. However, it re-
mains impractical to increase the rate of an already-deployed quantizer by appending new residual
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stages after training. Simply adding more codebooks tends to disrupt the learned latent distribution
and often necessitates a reduction in the spatial/temporal resolution of feature maps. This post-
hoc capacity-scaling bottleneck is what motivated the development of our RAQ framework, which
adapts bit rates through a lightweight Seq2Seq module that generates new codebook embeddings,
while leaving the original VQ architecture untouched.

In this paper, we present Rate-Adaptive Quantization (RAQ), a framework designed to flexibly mod-
ulate the effective codebook size of a single VQ model without retraining. By incorporating a
Sequence-to-Sequence (Seq2Seq) (Sutskever et al., 2014) into the VQ model, RAQ enables one
system to cover multiple compression levels, reducing the need for separate models dedicated to
each rate. This adaptability not only minimizes storage and maintenance costs but also provides a
smoother user experience in real-time communications or streaming environments, where bandwidth
availability can vary from moment to moment. While our main focus is on the Seq2Seq-based RAQ,
we additionally propose a model-based alternative that applies differentiable k-means (DKM) (Cho
et al.| [2021) clustering to a pre-trained VQ model, offering codebook adaptation when joint training
or architectural modification is not feasible. This simple approach provides a practical fallback in
scenarios where retraining or model modification is not feasible.

Our contributions are summarized as follows:

* We propose the Rate-Adaptive Quantization (RAQ) framework for flexible multi-rate code-
book adaptation, using a Sequence-to-Sequence (Seq2Seq) module to generate codebook
embeddings of any target size without retraining. This method can be integrated into exist-
ing VQ models with minimal modifications.

» To mitigate distribution mismatch in autoregressive Seq2Seq codebook adaptation, we in-
troduce a cross-forcing training procedure. This approach ensures stable codebook genera-
tion across diverse rates and enhances reconstruction fidelity.

* We evaluate RAQ on several VQ benchmarks and show that a single RAQ-enabled model

consistently meets or exceeds the performance of multiple fixed-rate VQ baselines while
using the same encoder-decoder architecture.

2 BACKGROUND

2.1 VECTOR-QUANTIZED VARIATIONAL AUTOENCODER

VQ-VAEs (Van Den Oord et al., 2017) can successfully represent meaningful features that span
multiple dimensions of data space by discretizing continuous latent variables to the nearest codebook
vector in the codebook. In a VQ model, learning of discrete representations is achieved by quantizing
the encoded latent variables to their nearest neighbors in a trainable codebook and decoding the
input data from the discrete latent variables. To represent the data x from dataset D discretely,
a codebook e consisting of K learnable codebook vectors {e;}X, < R? is employed (where d
denotes the dimensionality of each codebook vector e;). The quantized discrete latent variable
z4(x|e) is decoded to reconstruct the data x. The vector quantizer () is modeled as a deterministic
categorical posterior that maps each spatial position [m, n] of the continuous latent representation
z.(x)[m, n| of the data x by a deterministic encoder fy4 to z,(x|e)[m,n] by finding the nearest
neighbor from the codebook e = {e;} X, as

2,(xle)m.n] = Q(z.(x)[m.nl[e) = argmin; |z, (x)[m,n] i (M

The quantized representation uses log, K bits to index one of the K selected codebook vectors
{ei}2 . The deterministic decoder fy reconstructs the data x from the quantized discrete latent
variable z,(x|e) as X = fy(z4(x|e)|e)). During the training process, the encoder f,, decoder fo,
and codebook e are jointly optimized to minimize the loss Lyq (gzﬁ, 0,¢€; x) =

log pg (x|z, (x[e)) + | [sg [ f4(x)] — zq(x[e)||3 + B]|sg[2zq(xle)] — fs(x)]| @)

Lrecon Lembed Lcommit

where sg[-] is the stop-gradient operator. The L,ccon is the reconstruction loss between the input data
x and the reconstructed decoder output X. The two Lembed and Leommis losses apply only to code-
book variables and encoder weights with a weighting hyperparameter (3 to prevent fluctuations from
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Figure 1: An overview of our RAQ framework applied to a base VQ model. During training, the
codebook adaptation module employs cross-forcing to generate adapted codebooks € for randomly
sampled sizes K from the base codebook e. At inference, a user-specified target K produces the
corresponding adapted codebook for rate-adaptive quantization.

one codebook vector to another. Since the quantization process is non-differentiable, the codebook
loss is typically approximated via a straight-through gradient estimator (Bengio et al., [2013), such
as OL/0f4(x) ~ 0L/0z,(x). Both conventional VAE (Kingma & Welling| 2013) and VQ-VAE
(Van Den Oord et al., [2017) have objective functions consisting of the sum of reconstruction error
and latent regularization. To improve performance and convergence rate, an exponential moving
average (EMA) update is usually applied for the codebook optimization (Van Den Oord et al., 2017}
Razavi et al.|, |2019). Thus, VQ models serve as a foundation for many advanced generative models,
forming the core approach to discrete latent representation.

2.2 SEQUENCE-TO-SEQUENCE LEARNING

The Seq2Seq (Sutskever et al., 2014) model is widely used in sequence prediction tasks such as
language modeling and machine translation (Dai & Lel [2015; Luong et al., [2016; Ranzato et al.,
2016). The model employs an initial LSTM, called the encoder, to process the input sequence z1.y
sequentially and produce a substantial fixed-dimensional vector representation, called the context
vector. The output sequence y;.7 is then derived by a further LSTM, the decoder. A Seq2Seq with
parameters v estimates the distribution of output sequence y;.7 by decomposing it into an ordered
product of conditional probabilities:

T

p(yrrlein;v) = Hp(yt|y1:t—1,ﬂ?1:N§¢) (3)

t=1

During training, the Seq2Seq model typically uses teacher-forcing (Williams & Zipser,|1989), where
the target sequence is provided to the decoder at each time step, instead of the decoder using its own
previous output as input. This method helps the model converge faster by providing the correct
context during training.

3 METHODS

Although VQ models have demonstrated strong performance across modalities, their fixed codebook
size can limit adaptability under varying data characteristics or resource constraints. In practice, the
choice of the codebook size K (a key hyperparameter in VQ models) can vary widely with (i)
on the application domain (e.g., small codebooks, K ~ 8, in certain audio domains (Chae et al.,
2023)), (ii) input dimensionality and resolution (e.g., image generation models report K from 512
up to 16,384 (Esser et al.l [2021)), and (iii) the model architecture and quantization scheme. This
variability often forces practitioners to retrain or maintain multiple VQ models at different rates.
To address these challenges, we introduce the RAQ framework, which adjusts a VQ model’s rate
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by increasing or decreasing the codebook size K on demand. We formalize RAQ as a mapping

T : RIXK —y RIXK for any integer K € N. We next detail a Seq2Seq-based RAQ strategy,
followed by a model-based (clustering) alternative.

3.1 RATE-ADAPTIVE QUANTIZATION

Overview The RAQ framework is designed to integrate seamlessly with existing VQ models with-
out requiring significant architectural modifications. As illustrated in Figure [T, RAQ is integrated
into a base VQ model which consists of an encoder-decoder pair and a trainable base codebook
e. The adapted codebook € is generated by a Seq2Seq model from the base codebook e. During

training, K is randomly sampled under a cross-forcing strategy. At inference, a user-specified target
K is used to generate the codebook on demand.

Scope and Compatibility with Vector Quantizers RAQ exclusively operates at the quantization
layer of existing VQ models and applies to any quantizer that uses a vector-embedding-based dis-
crete representation. Hierarchical VQ (Razavi et al.| 2019), stochastic quantization (Takida et al.,
2022)), residual quantization (Huijben et al., 2024), and linear-transformed VQ (Zhu et al., [2024) are
some of the representative examples. Importantly, RAQ does not alter the base training procedure or
the overall architecture. Unlike autoregressive token predictors (Esser et al., 2021} [Yu et al.| 2022}
Huijben et al.| [2024)), which generate discrete index sequences under fixed codebook embeddings,
RAQ synthesizes the codebook itself.

Autoregressive Generation of Adapted Codebooks Our codebook adaptation module G, maps
a base codebook e to an adapted codebook € via an Seq2Seq model. Each base codebook vector e; of
e is treated analogously to a token in language modeling. We train the Seq2Seq module to produce
a set of K adapted codebook embeddings. This autoregressive generation ensures that each é; is
conditioned on the previously generated vectors, promoting coherence and structural consistency.
Formally, the adapted codebook is generated as

K
p(&le;y) = Hp(éi|é<i,€1:K;¢) “4)

i=1

where €.; denotes the vectors generated before step ¢. Unlike typical Seq2Seq setups that optimize
next-token likelihood, the order of €. R is not semantically meaningful here; what matters is the
distribution of embeddings. Accordingly, RAQ trains the Seq2Seq module with the base VQ objec-
tive computed using € (e.g., reconstruction or perceptual losses), tying codebook generation directly
to downstream reconstruction quality without imposing an arbitrary sequence order or introducing
extra losses.

Codebook Encoding We begin by initializing the target codebook size K. During training, K
is randomly sampled from a predefined range at each iteration. Each base codebook vector e; is
sequentially processed by LSTM cells, whose hidden and cell states (h, ¢) summarize context over
the base codebook. This encoding captures dependencies among the base embeddings and provides
a foundation for generating a coherent adapted codebook.

Codebook Decoding via Cross-Forcing We decode with a cross-forcing strategy that alternates
teacher forcing and free running strategy to stably generate variable-size codebooks. Standard
teacher forcing (Williams & Zipser} [1989) can be brittle when the target adapted codebook € is
much longer than the base codebook, amplifying exposure bias. Cross-forcing mitigates this by
interleaving the two modes, akin to professor forcing (Lamb et all 2016). During training, the
cross-forcing strategy operates as:

* Teacher-Forcing Phase: For odd indices ¢ up to 2K (i.e., 1 < ¢ < 2K and ¢ is odd), the
model uses the corresponding base codebook vector e; as input, where j = %:

éi = LSTMw(é<“ €5, h, C).

This ensures that the fundamental distributional features of the base codebook are preserved
during the early generation steps.
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* Free-Running Phase: For even indices ¢ up to 2K (i is even and ¢ < 2K), and for all
indices beyond 2K (i.e., ¢ > 2K), the model relies on its previously generated adapted
codebook vector €;_1:

éi = LSTMw (é<7;7 éifl, h, C).
By switching to its own outputs, the model learns to maintain coherence and consistency
across the adapted codebook vectors for different sizes of K.

Learning the codebook adaptation module G, via cross-forcing is a key component of our RAQ.
We provide an empirical evaluation of its effectiveness in Appendix

Training Procedure RAQ follows the objective of the base VQ model. Concretely, for a con-
ventional VQ-VAE, let Lyq (in equation denote the standard loss. At each iteration, we sample a
target size K froma predefined range, generate an adapted codebook & = G (e; K ), and jointly op-
timize (¢, 6, e, 1)) by minimizing a combined objective (Lyq + Lrag), where Lrag (qb, 0,1, e; x) =

log po (x| (x| Gy (€))) + |[sg [ (x)] — 24 (XIGy(e)) [ + B2 [2 (xIGu(€))] = f5 (%) [[3. (5)

Equivalently, RAQ trains by plugging the adapted codebook e into the existing objective function

(no additional auxiliary losses are introduced). Sampling K each iteration exposes the model to
multiple rates within a single training run.

3.2 MODEL-BASED RATE-ADAPTIVE QUANTIZATION (ALTERNATIVE)

We present a post-hoc, model-based RAQ variant that adapts the codebook rate while leaving the rest
of the base VQ model unchanged. Unlike the Seq2Seg-based RAQ, this approach adds no learnable

modules; it directly resizes a pre-trained codebook e to a target K via clustering. Optional brief
fine-tuning with the adapted codebook can be applied but is not required.

To obtain an adapted codebook € of size K, we employ differentiable k-means (DKM) (Cho et al.,
2021)), originally proposed for compressing model weights via layer-wise clustering. Here, DKM is
repurposed to cluster the embedding vectors in e, yielding a reduced (or increased) codebook while
preserving structure in the embedding space. We also leverage inverse functionalization (IKM) to
accommodate increases in codebook size, enabling both rate reduction and rate expansion.

Codebook Reduction (f( < K) Intherate-reduction task, DKM performs iterative, differentiable

codebook clustering on K clusters. Let C = {c;} 3K~:1 be the cluster centers for the base codebook e
(Further details are provided in Appendix [A.2.T)). The process is as follows:

* Initialize the centroids C = {¢;} 3[}:1 by randomly selecting K codebook vectors from e or
by using k-means++. The last updated C is used in subsequent iterations.

* Compute the Euclidean distance between each e; and c;, denoting D; ; = —f (es, cj) to
form the matrix D.

* Form the attention matrix A via a softmax with temperature 7, where each row satisfies
A e )
Zk: exp( T’k )
Ajjeq

« Compute the candidate centroids C = {¢j}by¢; = %T’ then update C « C.

,J

« Repeat until ||C — C|| < e or the iteration limit is reached. We then multiply A by C to
obtain the final e.

The above iterative process can be summarized as follows:

> Aije
Ay |

Since the procedure is differentiable, the centroids and soft assignments can be optimized with a few
steps of SGD. The temperature 7 controls assignment hardness. After convergence, we assign each
codebook vector to its nearest centroid according to the last attention matrix A, thereby finalizing
the compressed codebook.

K
€ = argmin Lpkm(e; €) = argmin |C — AC| = arg minz (6)
& c c

Jj=1

Cj*
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Codebook Expansion (K > K) As bandwidth and quality budgets increase, models benefit from
a larger codebook, so codebook expansion must be supported. We propose an inverse functional
DKM (IKM) method that grows the number of centroids from K to K and then refines them using
the same DKM updates used in reduction. Algorithmic details and optimization choices are deferred

to Appendix

Model-based RAQ operates directly on the codebook of any pre-trained VQ model, enabling post-
hoc codebook rate adjustment without introducing new learnable modules. This approach is useful
when training or integrating Seq2Seq-based RAQ is impractical. As it relies on differentiable clus-
tering, fine-tuning is also supported via post-training. Appendix [A.2.4] provides comparisons with
alternative clustering methods and the effect of post-training.

4 RELATED WORK

VQ and its Improvements The VQ-VAE (Van Den Oord et al., 2017) has inspired numerous
developments since its inception. ancucki et al.| (2020) and Zheng & Vedaldi| (2023)) proposed
codebook reset and online clustering methods to mitigate codebook collapse, improving training ef-
ficiency. SQ-VAE (Takida et al.,|2022)) incorporated stochastic quantization and a trainable posterior
categorical distribution to enhance VQ performance. Recently, SimVQ (Zhu et al.||2024)) tackles the
long-standing representation-collapse issue in vanilla VQ models by reparameterizing the codebook
via linear transformation. Several works have introduced substantial structural changes to VQ mod-
eling; for instance, RQ-VAE (Lee et al.||2022) employed a two-step residual quantization framework
for high-resolution images, while FSQ (Mentzer et al., 2023) replaced VQ with finite scalar quan-
tization to address codebook collapse. Our approach focuses on making rate-adaptive VQ without
substantially altering the quantization mechanism or architecture, allowing it to scale effectively in
both basic and advanced VQ models.

Variable-Rate Neural Image Compression Several studies have proposed variable-rate image
compression based on autoencoders and VAEs (Yang et al., [2020; |Choi et al 2019; (Cui et al.
2020), or using recurrent neural networks (Johnston et al., [2018)). |Song et al.| (2021) introduced
spatial feature transforms for compression, while Duong et al.| (2023)) combined learned transforms
and entropy coding in a single model aligned with the rate-distortion curve. Variable-rate methods
for discrete representation also exist. [Dieleman et al.| (2021)) learn event-based codes with scalar
quantization and control rate via channel budgets and target event rates, rather than resizing a fixed
VQ codebook. In contrast, RAQ targets the VQ codebook itself. We adapt the vector embedding set
to a user-specified size at inference without redesigning the underlying quantization mechanism or
training a separate model per rate. Our RAQ directly addresses the practical need for a single VQ
model to cover multiple bitrates.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Settings We perform empirical evaluations on 3 vision datasets: CIFAR10 (Krizhevsky et al.) and
CelebA (Liu et al.l 2015), and ImageNet (Russakovsky et al.l 2015). We use the same architecture
and hyperparameters within each baseline model. The adapted codebook sizes range from 16 to
1024 for CIFAR10, 32 to 2048 for CelebA, and 32 to 4096 for ImageNet, while the base codebooks
of baseline VQ models are fixed. RAQ-based models set the base codebook size to the middle of the
range. We also provide details on each model’s parameter count and complexity in Appendix

Evaluation Metrics We quantitatively evaluated our method using Peak-Signal-to-Noise-Ratio
(PSNR), Structural Similarity Index Measure (SSIM), reconstructed Fréchet Inception Distance
(rFID) (Heusel et al.| 2017), Learned Perceptual Image Patch Similarity (LPIPS) (Zhang et al.
2018)), and codebook perplexity. PSNR measures the ratio between the maximum possible power
of a signal and the power of the corrupted noise affecting data fidelity (Korhonen & Youl [2012).
SSIM assesses structural similarity between two images (Wang et al.| [2004). rFID and LPIPS as-
sess the quality of reconstructed images by comparing the distribution of features extracted from
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Figure 2: Reconstruction results on (a) CIFAR10 and (b) CelebA at various codebook sizes K.
The shaded area indicates the 95.45% confidence interval based on 4 runs with different seeds.

the test data with that of the original data. Codebook perplexity, defined as e~ S e, logpe, where

N, . .
De;, = S o and V., represents the encoded number for latent representation with codebook e;,
3J €j

indicates a uniform prior distribution when the perplexity value reaches the codebook size K.

5.2 QUANTITATIVE EVALUATION

We first empirically evaluate the effectiveness of RAQ using the vanilla VQ-VAE (Van Den Oord
2017) on CIFARI10 and CelebA dataset. To establish a robust baseline, we trained multiple
VQ-VAE models with varying codebook sizes K as fixed-rate benchmarks. We then tested RAQ’s

adaptability by dynamically adjusting the codebook size K withina single VQ-VAE. Figure shows
the comparative results.

RAQ closely matches the performance of multiple fixed-rate VQ-VAE models across most met-
rics, demonstrating its ability to maintain high reconstruction quality while offering rate flexibility.
Specifically, under identical compression rates and network architectures, all RAQ variants achieve
PSNR and SSIM scores nearly on par with their fixed-rate counterparts (e.g., within about 0.94 dB
difference in PSNR on CIFAR10). When we increase the rate, RAQ occasionally shows slightly
lower PSNR and SSIM but improves rFID, reflecting improved perceptual quality and better align-
ment with the dataset distribution. For instance, at K = 512 on CelebA, rFID improves by up to
about 9.6% compared to a fixed-rate VQ-VAE with the same codebook size, highlighting RAQ’s
ability to maintain visual coherence and realism in generative tasks. However, the model-based
RAQ variant typically underperforms our Seq2Seq-based approach except in certain rate-reduction
tasks. For further discussion of model-based RAQ, see Section @

We also evaluate RAQ across four representative VQ baselines (hierarchical VQ-VAE-2 (Razavi
et al., 2019), stage-1 VQGAN 2021), SQ-VAE (Takida et al.,[2022), and SimVQ (Zhu
et al.| 2024)) to assess both rate flexibility and architectural generality. Table[I|reports mean PSNR,
SSIM, LPIPS, and codebook perplexity over four runs. RAQ maintains or improves reconstruction
quality relative to fixed-rate baselines while enabling on-demand adaptation of the codebook size.

On VQ-VAE-2, RAQ increases perplexity at higher rates while yielding comparable or better
PSNR/LPIPS at mid-high K. On stage-1 VQGAN, RAQ improves LPIPS in the mid-rate regime
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Table 1: Performance comparison for VQ-VAE-2 (Razavi et al.,|2019), stage-1 VOGAN (Esser et al.}
2021), SO-VAE (Takida et al.,~2022), and SimVQ (Zhu et al .| [2024) with and without RAQ at mul-
tiple adapted codebook sizes K. Bold indicates that the proposed method outperforms the baseline
model, and the 1 denotes that the improvement is statistically indistinguishable from the baseline
based on overlapping 95.45% confidence intervals.

VQ-VAE-2 / CelebA (128 x 128) VQGAN / ImageNet (256 x 256)

Method Method
K K PSNRt SSIMt LPIPS| Prplx.t K K  PSNRt SSIM{ LPIPS| Prplx.t
VQ-VAE-2 2048 - 3337 09884 0.1050 3347 VQGAN 512 - 21.00 07543 0.1000 2963
VQ-VAE-2 1024 - 3273 09865 0.1172 1832 VQGAN 256 - 20.65 07383  0.1083 1400
VQ-VAE2 512 - 3218 09842 0.1313  103.1 VQGAN 128 - 2029 07221 0.1176 75.0
VQ-VAE-2 256 - 3129 09810 0.1464  61.6 VQGAN 64 - 1992 07015  0.1303 40.1
VQ-VAE-2 128 - 3072 09780 0.1588 363 VQGAN 32 - 1958  0.6834  0.1415 21.9
1024 2923 09717 0.1694  178.1 256 1998 07311  0.1185 1485
VQ-VAE-2 ,, 512 2801 09642 02067 1030 VQGAN ., 128 1893 07035 0.1444 74.1
+ random 256 2643 09514 02584 604  + random 64 1737 06614  0.1917 372
select 128 1621  0.7266 05536  14.1 select 32 1464 05801 03148 189
VQ-VAE-2 1024 31.62 09813  0.1404 131.1 VQGAN 256 2043 07381  0.1119  147.1
+model 0. 512 3023 09733 00739 538 +model ., 128 1974 07182 0.1314 75.3
-based 256 29.09 09658 02068  30.6 -based 64 1882 0.6908  0.1642 39.6
RAQ 128 2754 09518  0.2673 15.6 RAQ 32 1771 0.6546  0.2081 21.0
2048 33267 098817  0.1097  465.2 512 2084 07415 0.1024 3114
VQ-VAE-2 1024 3277 098657 01171  239.7 VQGAN 256 20611 07332 01079  159.7
+RAQ 256 512 3224 09847 0.1256 133.6 +RAQ 64 128 2026" 072077 0.1159 85.8
256 31.33 098097 0.1439  67.0 64 19867 07052  0.1283 45.0
128 3039" 097711 0.1663 387 32 19.03 06787  0.1554 23.1
SQ-VAE / CelebA (128 x 128) SimVQ / ImageNet (128 x 128)
SQ-VAE 2048 - 3204 09167 0.0911 449.40 SimVQ 4096 - 2098 09109 0.1471  1667.61
SQ-VAE 1024 - 3162 09141  0.0986 275.69 SimVQ 2048 - 2971 09067 0.1536  987.94
SQ-VAE 512 - 3096 09023 0.1088 149.17 SimVQ 1024 - 2930  0.8986 0.1673  565.20
SQ-VAE 256 - 3040  0.8927 0.1198  86.61 SimVQ 512 - 2882  0.8882  0.1835  319.99
SQ-VAE 128 - 2072 08786 0.1295 53.87 SimVQ 256 - 2825  0.8747 02035  174.69
SQ-VAE 64 - 2872 08613 01512 28.11 SimVQ 128 - 27.68  0.8601 02221  91.08
2048  31.85 09142  0.0927 521.19 4096 30.03 09117  0.1488  2242.70
1024 3140 09074  0.0973  269.29 2048 2974 09066  0.1555 1184.28
SQ-VAE g 512 3082 08990 01041 15603 SimVQ s1p 10242032 08990  0.1657 63420
+RAQ 256 3009  0.8905 0.1156 9036 +RAQ 512 28.81  0.8885 01810  334.01
128 2895 08734 01352 53.93 256 28.19  0.8741 02021 174.76
64 2697 08356 0.1738  23.66 128 27.15  0.8503 02366  92.15

while staying within confidence bounds at extremes. For SQ-VAE and SimVQ (bottom blocks),
RAQ consistently tracks or exceeds fixed-rate baselines across multiple K. In contrast, random
selection and the model-based variant degrade notably once more than half of the codebook is re-
moved. These results indicate that RAQ’s benefits extend beyond a single backbone and quantization
scheme. Beyond reconstruction metrics, we observe systematically higher perplexity at larger K
with RAQ, indicating more balanced code usage and richer latent capacity. Consistent with (Wu &
Flierl, 2020; Takida et al.,[2022; |Vuong et al., 2023)), increased codebook perplexity often correlates
with better reconstruction. This improvement is especially evident at larger codebook sizes, where
RAQ produces non-degenerate codebooks with broadly balanced usage, not just larger codebooks.
This aligns with maximizing entropy in discrete representations and indicates that RAQ activates
latent capacity underutilized by vanilla VQs.

In summary, RAQ offers substantial advantages in portability and reduced complexity. By consol-
idating multiple fixed-rate VQ models into a single adaptable framework, it saves training/storage
overhead and simplifies deployment. Although minor trade-offs may appear at certain rates, the
combination of flexibility and efficiency makes RAQ attractive across diverse VQ frameworks.

5.3 QUALITATIVE EVALUATION

For our qualitative evaluation, we visualize a single RAQ model based on VQ-VAE-2 (Razavi et al.}
2019) reconstructing three Kodak (Kodak} |1993)) images at four adapted codebook sizes (Figure EI)
As the rate decreases, RAQ exhibits a smooth, graceful degradation: global shapes and hues remain
stable while fine textures progressively become smoother. In the parrot (top row), the wrinkles
marked with blue boxes remain sharp down to K = 256. In the sailboat (middle row), the green-
boxed sail numbers are clearly visible down to ' = 256. On the building facade (bottom row),
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Figure 3: Multi-rate reconstructions with a single RAQ model. Three Kodak (768 x 512) images
reconstructed at four codebook sizes. Colored boxes highlight fine details.

the text marked in red boxes maintains readability across all rates. Even at the lowest rate (K =
64), all three images retain coherent structure and plausible colors. This demonstrates the superior
effectiveness of our RAQ in handling variable-rate compression tasks, particularly in high-resolution
image reconstruction scenarios. Further demonstrations can be found in Appendix [A.377]

5.4 DISCUSSION

Model-Based RAQ We also study a post-hoc, model-based variant that adapts rates without re-
optimization, though its behavior depends on clustering dynamics. It is generally competitive
for codebook reduction (K < K) but shows sensitivity when expanding the codebook (K > K)
due to initialization, which can yield unstable assignments and suboptimal local minima (see
Appendix [A2.3). In our supplementary study (Appendix [A.2:4), plain DKM/k-means++/GMM
achieve similar performance, whereas DKM+post-training closes much of the gap, suggesting a
practical fallback when Seq2Seq-based RAQ is infeasible. Despite these limitations, model-based
RAQ remains attractive in resource-constrained settings, since it only clusters the existing codebook
and scales to large backbones 2022) where retraining costs dominate.

Stage-2 Compatibility with Autoregressive Priors Unlike autoregressive token priors that pre-

dict index sequences under a fixed codebook, RAQ creates the codebook itself for any target K
after training, leaving token modeling untouched. For completeness, we pair a single stage-1 RAQ-
based VQ model with PixelCNN (van den Oord et al.,[2016) and Transformer priors across multiple

K (See Appendix . These studies show competitive performance versus fixed-rate baselines
while avoiding separate stage-1 retraining per rate, indicating that RAQ maintains stage-2 compati-

bility and downstream expressivity over multiple K.

Additional Ablation Appendix [A:3.7] ablates cross-forcing. When expanding the codebook
(K > K), it stabilizes generation and improves rFID (up to 4.9%) with modest PSNR/SSIM gains
(Table . For K < K, it can slightly underperform, reflecting its expansion-oriented design.

Computational Cost Please see Appendix [A.2.6]for complexity experiments. RAQ unavoidably
increases training time, but because a single model serves multiple rates, the overall cost remains
practical. The latency to generate an adapted codebook for a target rate is only 10-140 ms, after
which throughput is comparable to fixed-rate VQ models.

Conclusion In summary, RAQ enables multi-rate codebook adaptation across VQ models with a
single stage-1 backbone while retaining compatibility with stage-2 priors. Remaining limitations
include initialization sensitivity in model-based expansion and the need for deeper analysis, which
we leave to future work.
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Ethics Statement RAQ is designed as a rate-adaptive extension of VQ models and can be applied
in all domains where VQ models are used. As with all generative models, attention should be given
to potential biases in the training data, as these can affect generated outputs. RAQ does not introduce
any new ethical concerns beyond those inherent in VQ models.

Reproducibility Statement Appendix provides details of the experiments. The complete
code necessary to reproduce our experiments is included in the supplementary material.
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A APPENDIX

A.1 EXPERIMENT DETAILS

A.1.1 ARCHITECTURES AND HYPERPARAMETERS

The model architecture for this study is based on the conventional VQ-VAE framework outlined
in the original VQ-VAE paper (Van Den Oord et al., |2017), and is implemented with reference to
the VQ-VAE-2 (Razavi et al.,|2019) implementation repositoriesfm and an open-source VQ-VAE +
PixelCNN implementation used for our unconditional prior experimentsE] We also relied on open-
source VQGAN resources, including pretrained generator/discriminator weightsﬂ and a PyTorch
implementatiorﬁ used for training and evaluation pipelines.

We are using the ConvResNets from the repositories. These networks consist of convolutional lay-
ers, transpose convolutional layers and ResBlocks. Experiments were conducted on two different
computer setups: a server with 4 RTX 4090 GPUs and a machine with 2 RTX 3090 GPUs. PyTorch
(Paszke et al., [2019), PyTorch Lightning (Falcon, [2019), and the AdamW (Loshchilov & Hutter,
2019) optimizer were used for model implementation and training. Evaluation metrics such as the
Structural Similarity Index (SSIM) and the Frechet Inception Distance (rFID) were computed using
implementations of pytorch-msssim |'|and pytorch-fid |°} respectively. The detailed model parame-
ters are shown in Table 2| RAQs are constructed based on the described VQ-VAE parameters with
additional consideration of each parameter.

Table 2: Architecture and hyperparameters for training VQ-VAE and RAQ models.

Method Parameter CIFAR10 CelebA ImageNet
Input size 32x32%x3 64 x 64 x 3,128 x 128 x 3 224x224x3
Latent layers 8x8 16x16,32x32 56x56
Hidden units 128 128 256
Residual units 64 64 128
# of ResBlock 2 2 2
. 3 Original codebook size (K) 2% ~ 210 2° ~ 21 27 ~ 212
VQ-VAE (Van Den Oord et al.J2017) "¢ jebook dimension (d) 64 64 128
B (Commit loss weight) 0.25 0.25 0.25
Weight decay in EMA () 0.99 0.99 0.99
Batch size 128 128 32
Optimizer AdamW AdamW AdamW
Learning rate 0.0005 0.0005 0.0005
Max. training steps 195K 635.5K 961K
Original codebook size (K) 64, 128 128, 256 512
Adapted codebook size (K) 24 ~ 210 25 ~ 211 20 ~ 212
Model-based RAQ Max. DKM iteration 200 200 200
Max. IKM iteration 5000 5000 5000
7 of softmax 0.01 0.01 0.01
Original codebook size (K) 64,128 128, 256 512
Adapted codebook size (K) 24 ~ 210 25 ~ 21t 20 ~ 212
Max. Codebook size 1024 2048 4096
RAQ Min. Codebook size 8 16 64
Input size (Seq2Seq) 64 64 128
Hidden size (Seq2Seq) 64 64 128
# of recurrent layers (Seq2Seq) 2 2 2

A.1.2 DATASETS AND PREPROCESSING

For the CIFAR10 dataset, the training set is preprocessed using a combination of random cropping
and random horizontal flipping. Specifically, a random crop of size 32 x 32 with padding of 4 using

"https://github.com/mattiasxu/VQVAE-2
*https://github.com/rosinality/vq-vae-2-pytorch
3https://github.com/EugenHotaj/pytorch-generative
*https://github.com/KimRass/VQ-VAE-Pixel CNN
Shttps://github.com/aal234241/vqgan
Shttps://github.com/dome272/VQGAN-pytorch
"https://github.com/VainF/pytorch-msssim
8https://github.com/mseitzer/pytorch-fid
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the ’reflect’” padding mode is applied, followed by a random horizontal flip. The validation and
test sets are processed by converting the images to tensors without further augmentation. For the
CelebA dataset, the training set is preprocessed with a series of transformations. The images are
resized and center cropped to 64 x 64 or 128 x 128, normalized, and subjected to random horizontal
flipping. A similar preprocessing is applied to the validation set, while the test set is processed
without augmentation. For the ImageNet dataset, the training set is preprocessed with a series of
transformations. The images are resized to 256 X 256 and center cropped to 224 x 224, normalized,
and subjected to random horizontal flipping. A similar preprocessing is applied to the validation set,
while the test set is processed without augmentation. These datasets are loaded into PyTorch using
the provided data modules, and the corresponding data loaders are configured with the specified
batch sizes and learning rate for efficient training (described in Table [2). The datasets are used as
input for training, validation, and testing of the VQ-VAE model.

A.2 MODEL-BASED RAQ: ADDITIONAL DETAILS AND ANALYSES
A.2.1 CODEBOOK CLUSTERING

In this subsection, we formalize codebook clustering for model-based RAQ and fix notation used
by DKM. Given a set of the original codebook representations e = {e; } X |, we aim to partition the

K codebook vectors into K (< K) codebook vectors & = {&;}£,. Each codebook vector resides
in a D-dimensional Euclidean space. Using the codebook assignment function g(-), then g(e;) = j
means i-th given codebook assigned j-th clustered codebook. Our objective for codebook clustering
is to minimize the discrepancy £ between the given codebook e and clustered codebook é:

K
argmin £(e; €) = arg minz llei — Egen | 7
é,g é,9 i=1
with necessary conditions
. ~ ~ Z )=j €i
g(e;) = argmin |le; — €|, €& = % (8)
je1,2,.... K J

where IV; is the number of samples assigned to the codebook €;.

A.2.2 CODEBOOK EXPANSION (VIA IKM)

We now describe codebook expansion for model-based RAQ and the inverse-functional DKM (IKM)
procedure used to synthesize a larger codebook from a trained one.

While k-means clustering is effective for compressing codebook vectors, it has algorithmic limita-
tions when adding new codebook vectors. To address this, we introduce inverse-functional DKM
(IKM), which increases the number of codebook vectors by approximating the distribution of a
trained codebook. We measure distributional discrepancy via maximum mean discrepancy (MMD)
between the base codebook and the clustered, synthesized codebook. MMD is a kernel-based two-
sample statistic that quantifies distributional similarity (Gretton et al., 2012).

Given a trained base codebook e of size K, IKM generates an expanded codebook e of size K>K
as follows:

* Initialize a d-dimensional adapted codebook vector & = {éq;}fil as & ~ N(0, d-=1 =)

* Cluster € via the DKM process (equationﬂ): gokm(€) = arg min Lpgm(€; gpkm(€)).

gDKM(é)
* Calculate the MMD between the true original codebook e and the DKM clustered gpkn (€).
* Optimize & to minimize the MMD objective Lixm(e; €) = MMD(e, gpkm(€)) + Al[€]]?.

where A is the regularization parameter controlling the strength of the L2 regularization term. The
IKM process can be summarized as € = arg min Lixm(e; €). Since DKM does not block gradient

e
flow, we easily can update the codebook € using stochastic gradient descent (SGD) as € = € —
UVLIKM (e, é)
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A.2.3 INITIALIZATION SENSITIVITY IN EXPANSION

We observe a marked degradation when increasing the codebook size (K > K) under the clustering-
only variant. Empirically, this is primarily driven by initialization in IKM: newly synthesized vectors
may be placed far from the manifold spanned by the trained base codebook, making soft assignments
unstable and prone to poor local minima. This yields higher run-to-run variance and lower recon-

struction quality at large K.

While our primary focus is the novelty and efficacy of the Seq2Seq-based RAQ, a systematic study
of more robust initialization strategies for model-based RAQ remains promising future work.

A.2.4 COMPARISON TO CLUSTERING BASELINES

We compare the model-based RAQ variant against standard clustering/compression baselines on a
pre-trained VQ-VAE (trained on CelebA 64x64) using the base codebook (K = 1024). For each

target adapted codebook size K € {512, 256,128}, we adapt the codebook with:

* DKM: As described in our main paper.
* k-means++: An effective initialization method for the k-means clustering algorithm.

e Gaussian Mixture Model (GMM): A probabilistic clustering method assuming data
points come from a finite mixture of Gaussian distributions.

* DKM + post-training: Fine-tuning the original VQ model using the compressed codebook
obtained from DKM.

Table 3: Comparison of codebook clustering methods for model-based RAQ. Metrics are PSNR? /
SSIMT / PerplexityT; mean over 4 seeds.

Adapted codebook size K

Method

1024 512 256 128
DKM 26.41/0.8351/99.9 25.24/0.8078/52.3 24.37/0.7720/32.5 23.20/0.7415/20.0
k-means++ 26.22/0.8400/60.8 25.28/0.8071/40.2 24.51/0.7872/29.4 23.38/0.7486/21.3
GMM 26.19/0.8350/62.4  2522/0.8057/40.1 24.46/0.7814/30.0 23.51/0.7487/21.3

DKM + post-training  28.39/0.8959/180.9 27.69/0.8842/95.0 26.97/0.8675/56.7 25.66/0.8309 /28.6

Table [3] indicate that basic clustering methods achieve similar codebook reduction performance.
However, the differentiable nature of DKM uniquely enables efficient fine-tuning, substantially im-
proving the compression performance within the same model architecture. Thus, while initial clus-
tering performance differences are modest, the capability for post-training underscores the notable
advantage and novelty of our proposed RAQ method.

A.2.5 MODEL COMPLEXITY

In this section, we provide a comparison of model complexity in terms of the total number of train-
able parameters for our VQ-based models, both with and without our RAQ module. The following
tables list parameter counts for the VQ-VAE and RAQ (our proposed method) variations on (i) CI-
FARI10 (Table[), (ii) CelebA (Table[3)), and (iii) ImageNet (Table [6).

As shown in the tables below, the addition of RAQ introduces a new Seq2Seq component to facilitate
codebook adaptation, resulting in a modest increase in the number of parameters:

* In VQ-VAE, whose total parameter count is on the order of a few hundred thousand, the
RAQ overhead typically adds ~ 200K+ parameters (e.g., for CIFAR10, the total parameter
count increases from about 468K to 732K for K = 128).

* In stage-1 VQGAN, which already has tens of millions of parameters, the additional pa-
rameters introduced by RAQ are less than 1% of the total. For instance, the total grows from
72.0M to approximately 72.6M—a practically negligible difference in large-scale settings.

These observations demonstrate that RAQ remains practical for a variety of model scales and does
not incur substantial overhead, even when applied to deeper architectures.
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Table 4: Number of parameters for training VQ-VAE and RAQ models on the CIFAR10 dataset.

Method # params

Encoder Decoder Quantizer Seq2Seq Total
VQ-VAE (K =1024) 196.3K 262K 65.5K - 525K
VQ-VAE (K = 512) 196.3K 262K 32.8K - 492K
VQ-VAE (K = 256) 196.3K 262K 16.4K - 476K
VQ-VAE (K = 128) 196.3K 262K 8.2K - 468K
VQ-VAE (K = 64) 196.3K 262K 4.1K - 463K
VQ-VAE (K = 32) 196.3K 262K 2.0K - 461K
VQ-VAE (K = 16) 196.3K 262K 1.0K - 460K
RAQ (K = 128) 196.3K 262K 8.2K 263.7K 732K
RAQ (K =64) 196.3K 262K 4.1K 263.7K 728K

Table 5: Number of parameters for training VQ-VAE and RAQ models on the CelebA dataset.

Method # params

Encoder Decoder Quantizer Seq2Seq Total
VQ-VAE (K =2048) 196.3K 262K 131K - 590K
VQ-VAE (K =1024) 196.3K 262K 65.5K - 525K
VQ-VAE (K = 512) 196.3K 262K 32.8K - 492K
VQ-VAE (K = 256) 196.3K 262K 16.4K - 476K
VQ-VAE (K = 128) 196.3K 262K 8.2K - 468K
VQ-VAE (K = 64) 196.3K 262K 4.1K - 463K
VQ-VAE (K = 32) 196.3K 262K 2.0K - 461K
RAQ (K = 256) 196.3K 262K 16.4K 263.7K 740K
RAQ (K = 128) 196.3K 262K 8.2K 263.7K 732K

Table 6: Number of parameters for training stage-1 VQGAN and RAQ models on the ImageNet
dataset.

Method # params

Quantizer Seq2Seq  Total
VQGAN (K = 512) 65.5K - 72.0M
VQGAN (K = 256) 32.8K - 72.0M
VQGAN (K =128) 16.4K - 72.0M
VQGAN (K = 64) 8.2K - 72.0M
VQGAN (K = 32) 4.1K - 71.9M
RAQ (K = 128) 16.4K 610K 72.6M

A.2.6 TRAINING/INFERENCE TIME
Setup All timings were measured on a single NVIDIA RTX 3090 with batch size 128. We report

per-epoch wall-clock time. We compare a single RAQ model (K =256) against multiple fixed-rate
VQ baselines (K € {64, 256,1024}) and the model-based RAQ.
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Training Time As expected, adding the Seq2Seq adapter increases per-epoch time versus a sin-
gle fixed-rate VQ; however, when multiple bitrates are required, one RAQ model replaces several
separately trained VQs, reducing total training and maintenance cost.

Table 7: Training time per epoch on the CelebA train set using an NVIDIA RTX 3090 GPU.

Method K Training time per epoch (s) # params
VQ-VAE / Model-based RAQ 64 18.09 £ 0.256 463K
VQ-VAE / Model-based RAQ 256 18.43 £0.10 476K
VQ-VAE / Model-based RAQ 1024 21.64 £0.11 525K
RAQ 256 514.97 + 8.17 740K

Inference Time We consider two deployment regimes: (i) a pessimistic setting that regenerates
the adapted codebook for every mini-batch (upper bound on cost), and (ii) a cached setting that

adapts the codebook once per target rate K and reuses it thereafter (realistic case).

Table 8: Inference time per epoch on CelebA (test set) when regenerating per mini-batch.

Method K Inference time per epoch (s)
VQ-VAE (K = 64) - 1.86 £0.10
VQ-VAE (K = 256) - 1.91+0.12
VQ-VAE (K = 1024) - 1.86 £ 0.09
Model-based RAQ (K = 256) 64 1.98 +0.09

RAQ (K = 256) 64 3.05 +0.11
Model-based RAQ (K = 256) 1024 70.91 +11.82

RAQ (K = 256) 1024 33.21£0.27

One-time Codebook Adaptation Latency To reflect practical use, we additionally measure the

one-time latency to adapt and cache a codebook for a given K; subsequent batches reuse this code-
book at no extra cost. The added latency is on the order of 10-140 ms.

Table 9: One-time adaptation latency per target rate (cached at inference).

K Latency (ms)

64 9.67 £10.34
128 18.08 £9.32
256 36.00 £ 9.49
512 71.63 £10.99
1024 143.94 +£12.63

Summary Table 8] should be interpreted as an upper bound (regenerateEEer—batch). In realistic

deployments (adapting once per K and caching) the extra latency (Table [9) is negligible, while a
single RAQ model still replaces multiple fixed-rate VQs in storage and operational complexity.

A.3 ADDITIONAL EXPERIMENTS
A.3.1 STAGE-2 COMPATIBILITY WITH AUTOREGRESSIVE PRIORS

In our end-to-end setups, the stage-2 VQ model is an autoregressive Transformer prior trained on
sequences of VQ code indices produced by the stage-1 VQ encoder. Rather than refining pixels
directly, it models the distribution of latent token sequences and generates new index sequences that
the VQ decoder then maps back to images. This factorization enables us to pair RAQ-adapted latents
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with a fixed stage-2 prior across multiple target rates K without the need for retraining separate
stage-1 models.

RAQ-VAE denotes a standard VQ-VAE whose stage-1 quantizer is augmented with our Seq2Seq
codebook adaptation module. RAQGAN analogously augments a stage-1 VQGAN (generator and
discriminator) with the same RAQ module, leaving the adversarial training pipeline unchanged.

RAQ-VAE with PixelCNN First, we evaluated the performance of unconditional image genera-
tion by combining the trained Stage-1 autoencoders (VQ-VAE and RAQ-VAE) with a Pixel CNN
decoder that was trained on the Fashion-MNIST dataset. For each codebook size, we generated
10,000 samples via categorical sampling with a temperature of 1.0, and reported both the Inception
Score (IS) and the Fréchet Inception Distance (FID), which are the most widely adopted metrics for
generative modelling.

Table 10: Evaluation of unconditional image generation. PixelCNN with stage-1 VQ-VAE encoder
(top) and single stage-1 RAQ-VAE encoder (bottom).

Method K FID| ISt
VQ-VAE (K=256) + PixelCONN -  48.88 4.04
VQ-VAE (K=128) + PixelCNN  — 5346 3.95
VQ-VAE (K=64) + PixelCNN - 5369 3.95
VQ-VAE (K=32) + PixelCONN - 5458 4.14

VQ-VAE (K=16) + PixelCNN - 58.53 392

256  47.96 4.09

128 5081 4.08

RAQ (K =64) + Pixel CNN 64 5124 4.06
32 5243 398

16 5847 3.96

As shown in Table[I0] RAQ-VAE combined with PixelCNN achieves competitive, and in some cases
slightly improved, FID and IS values across all tested codebook sizes compared to baseline VQ-
VAE. This demonstrates that the expressivity of the RAQ-adapted latent variables is well preserved
for synthesis purposes.

VQ-VAE (K = K)
+ PixelCNN

+ Pixel CONN 113 me=e
)|~ o T WE ]
Figure 4: Unconditional samples with a PixelCNN prior. Top: VQ-VAE baselines (K =K). Bottom:
one RAQ-VAE (K=64) with K.

Qualitatively, both fixed-rate VQ-VAE and the single RAQ-VAE produce diverse, coherent samples

across the rates. RAQ maintains comparable visual fidelity while varying K without retraining the
stage-1 model.

RAQGAN with Transformer Next, to further evaluate conditional image generation, we in-
tegrated VQGAN and RAQGAN stage-1 models with a transformer-based autoregressive prior
(minGPT) on the Oxford Flowers102 dataset. We fine-tuned each model (with pretrained encoder,
generator, and discriminator) on the Flowers102 train dataset across various codebook sizes and
generated 6149 half-conditional test samples.
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Table 11: Evaluation of conditional image generation (temperature 1.0, top-k sampling of k£ = 100).
MinGPT with stage-1 VQGAN generator (fop) and single stage-1 RAQGAN generator (bottom).

Method K FID |
VQGAN (K=1024) + minGPT - 35.67
VQGAN (K=512) + minGPT - 40.13
VQGAN (K=256) + minGPT - 38.47

1024 34.00
RAQ (K=512) + minGPT 512 3347

256 3547

In Table [T1] the results demonstrate that RAQGAN can be effectively combined with an autore-
gressive transformer prior, yielding performance on par with or superior to standard VQGAN-based
models. Furthermore, our results demonstrate that a single RAQ-based model can flexibly support
a wide range of adapted codebook sizes with consistently strong generative quality, unlike conven-
tional VQGAN-Transformer approaches that require training separate VQGANSs for each bitrate or
target rate. Notably, RAQ-adapted latents remain fully compatible with stage-2 autoregressive mod-
els, allowing seamless end-to-end synthesis at arbitrary rates. This property is especially beneficial
in practical deployment scenarios, where resource constraints or bandwidth conditions may change
dynamically, as it enables flexible adaptation to different rates without retraining or model switching.

K = 256 K =512 K = 1024

VQGAN (K = K)
+ Transformer

RAQGAN (K = 512)
+ Transformer

Figure 5: Conditional samples with Transformer (minGPT) on Flowers102 dataset. Top: VQGAN
baselines (K =K). Bottom: one RAQGAN (K=512) with K.

Qualitatively, both VQGAN and the single RAQGAN yield diverse, class-consistent samples. RAQ-
GAN maintains comparable visual quality while varying K without retraining the stage-1 model.

Across both priors, these small-scale studies suggest that RAQ-adapted latent variables are compat-

ible with stage-2 VQ models over a range of K and can be paired with off-the-shelf priors without
additional stage-1 retraining. While a broader evaluation is left to future work, the evidence here
supports straightforward end-to-end use of one stage-1 model under changing bitrate constraints.

A.3.2 EFFECTIVENESS OF CROSS-FORCING

We performed an ablation study to analyze the impact of our cross-forcing training strategy on
the stability and fidelity of codebook generation. Using a base RAQ model with an original
codebook size K = 128 on the CelebA dataset, we compared two variants: (1) RAQ-w/o-
CF without cross-forcing, and (2) RAQ-w/-CF with cross-forcing. Table @ shows the recon-
struction metrics (MSE, PSNR, rFID, and SSIM) for different adapted codebook sizes K &
{32,64, 128,256,512, 1024, 2048}. We find that RAQ-w/-CF gives significantly better performance
than RAQ-w/o-CF when K > K, leading to up to 4.9% improvement in rFID and noticeable gains in
PSNR and SSIM. In contrast, for smaller or equal codebook sizes (K < K), RAQ-w-CF sometimes
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Table 12: Reconstruction performance of RAQ (K = 128) with or without cross-forcing on the
CelebA test dataset

Method K MSE (x10%) |  PSNR? fFID | SSIM 1

2048 (1) 1.618+0.016  27.91+0.04  22.64+0.76  0.8810+0.0013

1024 (1) 1.794+0.027  27.47+0.07 24.67+0.80  0.8710+0.0016

512 () 2.042+0.021  26.90£0.05  26.90+0.04  0.8589+0.0044

RAQ-w/-CF 256 (1) 2.412+0.101  26.18+0.18  30.81+1.59  0.8391+£0.0125
128 (-) 2.801£0.039  25.53+0.06  36.30*£1.12  0.8209£0.0072

64 (}) 3.895+£0.095  24.10+0.11  47.63£5.82  0.7892+0.0067

32 5.357+0.630  22.74+£0.54  62.39+3.76  0.7414+0.0304

2048 (1) 1.661£0.056  27.80+£0.14  23.584+0.26  0.8789+0.0030

1024 (1) 1.815£0.050  27.42+0.12  25.46+0.26  0.8705+0.0024

512(1) 2.068+£0.059  26.85+0.12  27.81+0.42  0.8567£0.0046

RAQ-w/o-CF 256 (1) 2.449+0.052  26.12+0.09  32.32+1.20  0.8407+0.0031
128 (-) 2.779+0.015  25.57+0.02  36.08+0.98  0.8261+0.0019

64 (}) 3.860+0.237  24.15£0.26  45.13+2.79  0.7942+0.0154

32() 6.289+£0.709  22.04+0.47 72.85+£16.69 0.7338+0.0225

underperforms its counterpart by a small margin. We hypothesize that cross-forcing is specifically
designed to stabilize the generation of larger adapted codebooks (up to twice the original size),
which can result in a slight tradeoff when quantizing at or below the baseline codebook size.

A.3.3 SEQ2SEQ MODEL SI1ZE

Regarding the sensitivity of our RAQ to the Seq2Seq model size, we conducted additional exper-
iments. Using our RAQ framework applied to a VQ-VAE-2 (Razavi et al.| |2019) baseline on the
CelebA (128x128) dataset with an original codebook size of K = 256, we compared two configu-
rations:

* RAQ with 2 LSTM layers: This configuration uses approximately 528K parameters in
the Seq2Seq model (about 10.78% of the total model parameters).

* RAQ with 4 LSTM layers: Here, the Seq2Seq model’s parameter count increases to
approximately 1.06M (about 19.63% of the total model parameters).

Table 13: RAQ performance with different layer configurations on varying codebook sizes. We con-
trolled all other variables over four random seeds (only values significantly outside the confidence
interval are bolded).

Method K PSNR LPIPS Perplexity (%)
2048 33.26 0.1097 22.71
1024 3277 0.1171 23.41

512 3224 0.1256 26.10
256 31.33 0.1439 26.18
128  30.39 0.1663 30.21
64 2876 0.2009 37.89

2048 33.16 0.1052 22.53
1024 3276 0.1107 24.28
512 32.17 0.1192 26.54
256 3149 0.1325 25.05
128  30.40 0.1548 31.36
64 2779 0.2162 3545

RAQ, 2 layers

RAQ, 4 layers

The results show that increasing the LSTM layers from 2 to 4 yields only marginal improvements
(e.g., a slight improvement in LPIPS) despite nearly doubling the parameter count. These findings
indicate that our compact LSTM-based design achieves an appropriate balance between computa-
tional efficiency and performance within our current framework. We also note that if the baseline
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VQ model were considerably larger (for example, using a ViT-based encoder/decoder), the relative
impact of the Seq2Seq model’s size might be reduced, and exploring larger architectures could be
more promising.

A.3.4 CODEBOOK SIZE SWITCHING WITHIN A SEQUENCE

To evaluate the stability of our RAQ scheme when switching between codebook sizes within a se-
quence, we conducted additional experiments on the Kodak dataset. We used a VQ-VAE-2 model
trained with RAQ (original codebook size K = 256) on ImageNet (256 x256) and varied the adapted
codebook sizes for both the bottom- and top-level latent maps during inference. Table [T4] summa-
rizes the PSNR, SSIM, and LPIPS metrics under all combinations of bottom- and top-level codebook
sizes.

Table 14: Performance when switching between codebook sizes for top and bottom latent codes on
Kodak dataset). The input to the model is 768x512 images of Kodak dataset that is compressed to
quantized latent maps of size 192x 128 and 96 x 64 for the bottom and top levels, respectively.

Bottom K Top K PSNR SSIM  LPIPS
4096 4096 3024 0.9739 0.10698

4096 1024 30.21 0.9735 0.10850
1024 4096  29.80 0.9706 0.11491
1024 1024 29.78 0.9701 0.11628
1024 256 29.70  0.9691 0.11930
256 1024 29.00 0.9639 0.13077
256 256 28.96 0.9631 0.13298
256 64 28.79  0.9607 0.13941

64 256 2798 09528 0.15973

64 64 27.85 0.9506 0.16575

These results confirm that switching codebook sizes within a latent sequence does not degrade re-
construction stability. Prior work reports that the top-level code captures global structure while the
bottom-level code encodes local details (Razavi et al., |2019); our findings further reveal that the
bottom-level codebook size exerts a stronger influence on reconstruction quality.

A.3.5 MODEL-BASED RAQ

Rate Reduction As analyzed in Section RAQ generally outperforms model-based RAQ, but
some rate-reduction results on CIFAR10 show that model-based RAQ performs much more sta-
bly than in the codebook increasing task. This indicates that simply clustering codebook vectors,
without additional neural models like Seq2Seq, can achieve remarkable performance. In Table T3]
the performance via codebook clustering was evaluated with different original/adapted codebook
sizes K: 1024 / K: 512, 256, 128 on CIFARI10 and K: 2048 / K: 1024, 512, 256, 128 on
CelebA. The conventional VQ-VAE preserved as many codebooks in the original codebook as in
the adapted codebook, while randomly codebook-selected VQ-VAE results remained meaningless.
Model-based RAQ adopted this baseline VQ-VAE model and performed clustering on the adapted
codebook. Model-based RAQ shows a substantial performance difference in terms of reconstructed
image distortion and codebook usage compared to randomly codebook-selected VQ-VAE. Even
when evaluating absolute performance, it is intuitive that online codebook representation via model-
based RAQ provides some performance guarantees.

Rate Expansion In our proposed RAQ scenario, increasing the codebook size beyond the base size
is a more demanding and crucial task than reducing it. The crucial step in building RAQ is to achieve
higher rates from a fixed model architecture and compression rate, ensuring usability. Therefore,
the codebook increasing task was the main challenge. The Seq2Seq decoding algorithm based on
cross-forcing is designed with this intention. In Figure [2} the codebook generation performance
was evaluated with different original/adapted codebook sizes K: 64, 128 / K: 64, 128, 256, 512,

1024 on CIFARI10 and K: 128, 256 / K: 128, 256, 512, 1024, 2048 on CelebA datasets. RAQ
outperforms model-based RAQ in the rate-increasing task and partially outperforms conventional

22



Under review as a conference paper at ICLR 2026

Table 15: Reconstruction performances of model-based RAQ for rate-reduction task according to
adapted codebook size K.

~ CIFAR10 (K = 1024)
Method K | psNR+ FIDJ Perplexity

| 25.48 51.90 708.60

512 24.35 63.67 289.29
VQ-VAE (random select) 256 22.81 78.00 111.77

VQ-VAE (baseline model)

128 20.87 93.57 48.87

512 24.62 55.78 285.68
Model-based RAQ 256 23.81 62.53 134.54

128 23.07 69.45 7317

~ CelebA (K = 2048)

Method K | pSNRT (FID|  Perplexity 1
VQ-VAE (baseline model) | - | 2826 22.89 273.47
1024 24.02 38.92 103.50
VQ-VAE (random select) 512 18.99 71.64 49.59
256 23.54 115.12 27.86
1024 26.40 31.37 102.36
Model-based RAQ 512 25.24 39.07 53.45
256 24.36 45.54 32.86

o- VQ-VAE-2 (K = K)
—%=RAQ (K = 256)
—e—Model-based RAQ (K = 256)

PSNR (dB)

26 o7 28 29 sz Pl 26 o7 28 29 ~210 Pl 26 o7 28 29 N210 Pl
Codebook Size (K) Codebook Size (K) Codebook Size (K)

Figure 6: Reconstruction performance at different rates (adapted codebook sizes) evaluated on
CelebA (64 x 64) test set. In the graph, the black VQ-VAE-2s (Razavi et al.| 2019) are separate
models trained on each codebook size, while the RAQs are one model per line.

VQ-VAE trained on the same codebook size (K = K). This effect is particularly pronounced
on CelebA. However, increasing the difference between the original and adapted codebook sizes
leads to a degradation of RAQ performance. This effect is more dramatic for model-based RAQ
due to its algorithmic limitations, making its performance less stable at high rates. Improving the
performance of model-based RAQ, such as modifying the initialization of the codebook vector,
remains a limitation.

A.3.6 QUANTITATIVE RESULTS
VQ-VAE In Table|16|and (17, we present additional quantitative results for the reconstruction on

CIFAR10 and CelebA datasets. The error indicates a 95.45% confidence interval based on 4 runs
with different training seeds.

VQ-VAE-2 Figure [f] shows the reconstruction performance using VQ-VAE-2 as the baseline
model.
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Table 16: Reconstruction performance on CIFAR10 dataset. The 95.45% confidence interval is
provided based on 4 runs with different training seeds.

Method Bit ljate Codebook Usability Distortion Perceptual Similarity
K Usage Perplexity PSNR rFID SSIM

VQ-VAE (K = K) 1024 972.66+2.97 708.60+7.04 25.48+0.02 51.9040.51 0.8648+0.0005
VQ-VAE (K = K) 512 507.52+£0.51 377.08+£5.92 24.9440.01 56.65+0.91 0.8490+0.0003
VQ-VAE (K = K) 256 256+0 204.43+4.36 24.434+0.02 61.40+0.78 0.831040.0006
VQ-VAE (K = K) 128 128+0 106.44+1.54 23.8540.01 66.70+1.12 0.8096+0.0009
VQ-VAE (K = K) 64 6410 55.64+0.27 23.2440.01 74.00+1.64  0.784940.0009
VQ-VAE (K = K) 32 3240 29.25+0.13 22.53+0.02 81.68+1.01 0.7545+0.0009
VQ-VAE (K = K) 16 160 15.01£0.21 21.7640.01 89.75+0.83 0.7156+0.0024
1024 972.66£2.97 708.60+7.04 25.48+0.02 51.90+0.51 0.8648+0.0005
512 498.38+1.85 289.29+16.67  24.35%0.11 63.67+2.49 0.8305+0.0056
VQ-VAE 256 253.01£0.66 111.77£21.53  22.81+£0.38 78.00£5.07 0.782240.0100
(K =1024) 128 127.34+0.33 48.87£11.31 20.87+0.73 93.57£9.87 0.7254+£0.0235
(random select) 64 6410 24.31£5.26 19.464+0.98  109.90+14.20  0.6720+0.0309
32 3240 13.50+1.45 17.76+1.12  126.57£15.89  0.610240.0350
1024 979.16£3.72 738.48+7.39 25.18+0.03 54.65+0.99 0.8520=£0.0007
512 507.47+0.85 387.18+£6.87 24.8240.02 57.57+0.95 0.841740.0005
256 256+0 207.78+12.13  24.34+0.02 61.76+1.22 0.827440.0008
RAQ (K = 128) 128 12840 107.77£0.58 23.91+0.0 65.37+0.68 0.8132+0.0011
64 6410 55.59+1.81 22.87+0.04 77.49+2.39 0.7770+0.0036
32 3240 27.77£2.03 21.85+0.15 89.38+£4.33 0.7356+0.0064
16 160 14.84+0.74 20.82+0.09 98.93+4.64  0.6918+0.0033
1024 744.36+18.74 395.23+£2.77 24.15+0.03 63.88+1.26 0.8213+0.0014
512 430.06+11.58 256.23+7.50  24.04+0.03 64.74+0.96 0.8177+0.0012
Model-based RAQ 256 244.61+£3.13 185.02+3.31 23.93+0.01 65.65+1.12 0.8139£0.0010
(K =128) 128 12840 106.44+1.54 23.8540.01 66.70+1.12 0.8096+0.0009
64 640 49.55+1.29 22.85+0.55 72.61£0.77 0.7780+0.0013
32 3240 25.65+0.76 21.88+0.75 82.12+£1.74  0.7405+0.0046
16 16+0 13.7940.06 20.89+0.04 95.03+0.34  0.697240.0010
1024 972.144+6.49 725.55+10.90  25.04+0.01 55.34+1.48 0.8487+0.0012
512 506.38+1.23 382.43+10.58  24.70+0.02 57.91£1.42 0.838740.0011
256 255.52+0.48 196.17+9.95 24.25+0.02 61.96£1.00  0.8245+0.0012
RAQ (K = 64) 128 128+0 109.65+3.50  23.7140.01 66.89+1.07 0.8071£0.0014
64 64+0 56.31+0.46 23.23+0.01 71.17£1.17 0.7897+0.0013
32 3240 29.62+0.66 21.84+0.09 90.04+1.44  0.7350+0.0038
16 160 15.11£0.67 20.794+0.18  104.86+£5.91  0.6918+0.0084
1024 706.20£115.18  345.50£107.06  23.65+0.13 70.30£2.02 0.801340.0051
512 428.39+12.29 231.41£14.64  23.55+0.04 71.01£1.38 0.7988+0.0005
Model-based RAQ 256 233.75+4.63 140.1942.82 23.3940.05 71.72+1.43 0.7935+0.0012
(K =64) 128 125.07£1.58 101.16£16.04  23.3240.05 72.68+1.47 0.790140.0008
64 64+0 55.64+0.27 23.24+0.01 74.00£1.64  0.784940.0009
32 3240 26.21£0.95 22.07+0.13 81.61£2.26 0.7569+0.0014
16 160 13.59+0.85 20.88+0.23 92.84+3.30  0.7004+0.0063
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Table 17: Reconstruction performance on CelebA dataset. The 95.45% confidence interval is
provided based on 4 runs with different training seeds.

Method Bit Rate Codebook Usability Distortion Perceptual Similarity
K Usage Perplexity PSNR rFID SSIM

VQ-VAE (K = f() 20438 779.07+8.35 273.47+6.86 28.26+0.03 22.8940.71 0.8890+0.0027
VQ-VAE (K = I?) 1024 456.86+£3.53 160.35+£2.73 27.734+0.05 26.67+1.43 0.8763+0.0029
VQ-VAE (K = I~() 512 259.59+3.99 95.09+1.28 27.1140.01 29.774+0.95 0.8636+0.0022
VQ-VAE (K = I~() 256 144.44+2.49 57.86+0.91 26.464+0.03 31.53+1.01 0.8481+0.0009
VQ-VAE (K = f() 128 80.2640.99 34.9840.39 25.724+0.04 36.2540.98 0.8279+0.0027
VQ-VAE (K = I?) 64 44.94+1.03 20.04+0.37 24.784+0.03 41.22+0.77 0.7986+0.0037
VQ-VAE (K = f() 32 25.48+0.69 12.69+0.31 23.76+0.06 46.56+£1.97 0.7660+0.0032
2048 779.07£8.35 273.47+6.86 28.261+0.03 22.8940.71 0.8890+0.0027
VQ-VAE 1024 384.31+£6.76 103.50+3.28 24.02+1.10 38.9243.27 0.7963+0.0201
(K = 2048) 512 210.69+9.23 49.5944.54 18.994+1.40 71.644+8.27 0.7037+0.0221
(random select) 256 115.33+7.73 27.86+3.39 16.33+0.61 115.12£11.93  0.6353+0.0173
2048 885.53+6.76 347.99+5.17 27.96+0.14 23.02+0.33 0.8858+0.0033
1024 490.86+4.98 187.33+10.37  27.51+£0.13 25.084+0.23 0.8758+0.0036
512 275.84+1.72 104.61£5.00  26.954+0.086 27.96+0.49 0.8637+0.0045
RAQ (K = 256) 256 144.79+1.21 52.63+0.28 26.29+0.054 32.3440.86 0.8463+0.0030
128 80.214+4.27 32.2343.87 25.134+0.26 39.674+2.29 0.8162+0.0071
64 42.93+1.61 20.85+1.22 24.0940.21 51.574+6.66 0.7912+0.0094
32 22.76+1.57 12.32+0.91 22.6240.27 69.651+9.49 0.7479+0.0129
2048 704.17+£108.04  117.53£33.57  26.54£0.10 30.344+1.39 0.8507+0.0041
1024 460.77426.98 134.48+11.26  26.59+0.06 30.49+1.10 0.8509+0.0021
512 279.53+9.48 100.64+8.94 26.40+0.08 30.9540.98 0.8488+0.0017
Model-based RAQ 256 144.44+2.49 57.86+0.91 26.461+0.03 31.53+1.01 0.8481+0.0009
(K = 256) 128 75.31+3.09 25.05+1.95 24.4440.25 38.95+2.91 0.7890+0.0141
64 41.66+1.22 14.7340.56 22.854+0.36 48.96+1.13 0.7391£0.0192
32 22.964+0.90 10.1640.95 21.814+0.45 62.464+0.00 0.7077+0.0195
2048 891.13+7.11 345.25+5.15 27.9140.04 22.6440.76 0.8810£0.0013
1024 490.15+14.39 176.71+£6.19 27.4740.07 24.67+0.80 0.8710£0.0016
512 272.60+2.08 96.871+2.68 26.9010.05 26.90+0.04 0.8589+0.0044
RAQ (K =128) 256 152.65+2.45 60.904+2.18 26.184+0.18 30.81+1.59 0.8391£0.0125
128 79.17+0.93 31.3640.77 25.5340.06 36.30+1.12 0.8209+0.0072
64 42.71+1.66 19.78+2.31 24.1040.11 47.63+5.82 0.7892+0.0067
32 22.424+1.92 11.43+£2.14 22.7440.54 62.39+3.76 0.7414+0.0304
2048 350.02+£100.57  64.87+21.22 22.774+0.78 52.37+£10.94  0.7463+0.0347
1024 432.15445.80  102.79+17.34  25.57+0.19 35.62+1.46 0.8296+0.0062
512 262.78+29.47 75.634+12.04 25.504+0.29 36.821+0.73 0.8265+0.0026
Model-based RAQ 256 153.16+5.46 53.22+4.62 25.424+0.28 36.78+1.27 0.8285+0.0022
(K =128) 128 80.264+0.99 34.984+0.39 25.7240.04 36.25+0.98 0.8279+0.0027
64 41.88+0.72 16.704+0.43 23.631+0.16 47.09+4.09 0.7736+£0.0080
32 23.314+0.89 9.56+0.77 21.644+0.13 64.85+6.92 0.7037+0.0102
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Original
image

RAQ, baseline model: VQ-VAE, K = 512

Figure 7: Qualitative comparison on ImageNet (256 x 256) at different compression rates. Top
row: Fixed-rate VQ-VAEs trained separately at each rate. Middle row: A single VQ-VAE (K =
4096) with randomly selected codebooks. Bottom row: Our RAQ with VQ-VAE (K = 512) with
adapting the codebook size.

A.3.7 ADDITIONAL QUALITATIVE RESULTS

For our qualitative evaluation, We first compare a single RAQ-based model against multiple VQ-
VAE:s trained at different rates (0.1458 bpp to 0.25 bpp) on ImageNet (256 x 256). As illustrated
in Figure [7] each fixed-rate VQ-VAE (top row) shows a progressive decline in image quality as
the rate decreases, consistent with the quantitative evaluation. Unlike RAQ-based reconstruction,
randomly selecting codebooks from a single VQ-VAE trained at K = 4096 (middle row) results
in color distortions and inconsistent hues, especially at 0.1667 bpp. Despite retaining the basic
structure, the mismatched usage of codebooks still produces unnatural appearances. By contrast,
our RAQ-based VQ-VAE (bottom row), trained at a low-rate base codebook of 0.1875 bpp (roughly
K = 512), effectively preserves high-level semantic features and color fidelity using only a single
model. Notably, it recovers finer details (e.g., the cat’s whiskers) far better than models relying on
randomly selected codebooks. Although image quality declines slightly at the lowest bpp, largely
due to the limited capacity of the baseline VQ-VAE, this issue can be mitigated by using more
advanced VQ architectures or refining training procedures. Training RAQ with a smaller original
codebook size K can also help reduce performance degradation at lower rates.

We conducted additional experiments using the VQ-VAE-2 model (Razavi et al [2019) with an
original codebook size of K = 512. To enhance perceptual quality, we incorporated the LPIPS loss
(Zhang et al 2018) into the training objective and trained the model on the ImageNet dataset at
a resolution of 256 x 256. The reconstruction task involved reconstructing 24 high-quality images
from the Kodak dataset (Kodak},[1993), each with a resolution of 768 x512. For codebook adaptation,

we adjusted the codebook size to K € {4096,1024, 256,64} using our RAQ framework. The
qualitative results are illustrated in Figure [§] Contrary to Figure [7] where reducing the codebook
size in a less complex VQ-VAE model led to noticeable performance degradation, our RAQ-based
VQ-VAE-2 demonstrated robust performance across various codebook sizes. Specifically, even as
the codebook size decreased, the RAQ-based VQ-VAE-2 model effectively preserved image quality
at higher resolutions. These results indicate that increasing the model complexity and refining the
training methodology significantly enhance the RAQ framework’s ability to adapt codebook rates
without compromising reconstruction fidelity.
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PSNR / MS-SSIM / LPIPS 31.115/0.9787/ 0.0881 30.396/0.9742/0.1015 29.301/0.9658 /0.1277 27.515/0.9489/0.2042

Figure 8: Reconstructed images for Kodak (Kodak, |1993) dataset at different rates.
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