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ABSTRACT

Estimating the individual treatment effect (ITE) requires covariate balance among
different treatment groups, and machine learning models have shown great
promise in learning a balanced representation of covariates. In contrast with bi-
nary treatments for which learning such a representation has been widely stud-
ied, the more practical yet complicated continuous treatment setting has remained
relatively under-explored. Adopting an information-theoretic approach, we intro-
duce a novel mutual information (MI)-based objective for continuous treatment
effect estimation. Leveraging variational approximation to optimize MI terms in
our objective, we propose a method called Adversarial CounterFactual Regres-
sion (ACFR). ACFR aligns the representation of covariates through an adversarial
game and predicts the potential outcomes using a contribution-constraining hy-
pothesis network. Comparison of ACFR against state-of-the-art methods on semi-
synthetic datasets demonstrates its superiority in individual-level metrics.

1 INTRODUCTION

Conducting Randomized Control Trial (RCT), the unconfounded source for computing the treat-
ment effect is expensive, time-consuming, and in many cases infeasible or unethical (Pearl, 2009)
(Yao et al., 2021). Alternatively, observational datasets in which the treatment assignment mecha-
nism is unknown, have been extensively used to estimate the causal treatment effect (Robins et al.,
1994) (Chipman et al., 2010) (Künzel et al., 2017). An observational dataset records units with
their covariates(X), their assigned treatment (T ), and their outcome after intervening (Y ). Under
the strong ignorability assumption (Rosenbaum & Rubin, 1983), the treatment effect is identifiable
from an observational dataset (Imbens & Wooldridge, 2009). Nonetheless, two main challenges
are associated with using these datasets. 1) In real-world observational datasets, we only observe
the outcome of a treatment that the unit received (factual outcome), and hence it is impossible to
access the ground-truth treatment effect on units. 2) There may exist some variables known as con-
founders that affect both treatment assignment and outcome. The existence of confounders leads to
selection bias among units (p(T ) ̸= p(T |X)), and implies covariate shift among treatment groups
(P (X) ̸= P (X|T )). Therefore, a model trained for predicting factual outcomes will not be as
accurate in the prediction of counterfactuals(Yao et al., 2021).

In recent years, many treatment effect estimation methods have been developed based on the notion
of deep representation learning (Bengio et al., 2013). Methods proposed for individual treatment
effect (ITE) estimation are mainly grounded in learning a balanced representation of the covari-
ates, i.e. a representation in which the covariate shift is reduced while the expressive power for
predicting the factual outcomes is preserved. From the theoretical viewpoint, the authors of Shalit
et al. (2017) provided a theorem that in the binary treatment setting (T ∈ {0, 1}), the counterfactual
outcome prediction error is bounded by the sum of the factual outcome prediction error and the
integral probability metric (IPM) distance of samples having received different treatments. Various
ITE estimation methods have been developed based on this theorem, resulting in models that align
the distributions through IPM distance in the representation space and predict the outcome from the
representation using hypothesis heads (one head for each treatment option)(Yao et al., 2018) (Has-
sanpour & Greiner, 2019a) (Hassanpour & Greiner, 2019b). We also focus on the individual effect
of treatments, but unlike the majority of the previous works, we consider continuous-valued treat-
ments (e.g. different dosages of a medication). Although it is a more general and practical setup,
extending the above framework from binary to continuous treatments is challenging. This is due to
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the infinite number of treatment options in the continuous setting, which makes it hard to extract a
balanced representation and also to maintain the influence of the treatment value on the predicted
outcome.

To be more specific, the covariate shift in the binary case is commonly decreased by minimizing a
distributional distance from the IPM class between the conditional distributions p(Z|T = 0) and
p(Z|T = 1). In the continuous case, recently Bellot et al. (2022) presented an upper bound on
the counterfactual error which consists of the factual error term plus an IPM distance term between
p(Z, T ) and p(Z)p(T ). Marginal distributions being unknown, the IPM term is approximated as
in Johansson et al. (2016), by computing the distance between a factual pair (zi, ti) and treatment-
permutated pairs (zi, tj)j ̸=i. However, the impact of this approximation is negligible in the entire
objective since the only difference between pairs is the scalar treatment value while the higher-
dimensional representation is the same (Hassanpour & Greiner, 2019a). Moreover, it is unclear how
the hypothesis model should consider the continuous treatment value when having separate hypoth-
esis heads as in the binary setting is not possible. Regarding the treatment as input without any
adjustment also creates the risk of overfitting the representation. Methods such as Varying Coef-
ficient Network (VCNet) (Nie et al., 2021) and Dose-Response Network (DRNet) (Schwab et al.,
2020) included the treatment value into the architecture of the hypothesis model to prevent overfit-
ting. However, this increases the number of parameters of the hypothesis network significantly, and
the best choice of how to involve the treatment is problem-dependent.

This paper investigates the problem of continuous individual treatment effect estimation1. Inspired
by the application of information theory to representation learning (Alemi et al., 2016)(Tishby &
Zaslavsky, 2015), we formulate the two goals of the balanced representation learning approach with
mutual information (MI) terms. Specifically, we propose to learn a latent representation Z of the
covariates X defined by a parametric encoder pϕ(z|x) that has the following two properties: 1) We
want to remove relevant information about the treatment T from the latent representation Z, i.e. we
aim to minimize the mutual information 2 between T and Z, I(T,Z;ϕ). 2) We want Z to contain
the necessary information about the outcome such that given the treatment T we can predict Y accu-
rately, i.e. we aim to maximize the mutual information of Z and Y given T , I(Z, Y |T ;ϕ). We pro-
pose a neural network model called Adversarial CounterFactual Regression (ACFR) that optimizes
the two terms jointly. ACFR consists of three sub-networks: the encoder pϕ(z|x) that extracts the
representation given the covariates, a treatment-predictor network that regresses the treatment given
the representation, and a hypothesis network that regresses the outcome given the representation and
treatment. Our model addresses two major challenges in the estimation of continuous treatments.
It reduces the selection bias of the representation through an adversarial game (Goodfellow et al.,
2014) between the encoder and the treatment-predictor, and it also maintains the influence of the
treatment in the hypothesis network by constraining the impact of the representation. Our experi-
mental comparison on TCGA and News datasets demonstrates that ACFR matches or outperforms
the state-of-the-art for the continuous ITE task. Our contributions are summarized in the following:

• We present a novel information-theoretic objective for continuous individual treatment ef-
fect estimation. The objective minimizes the selection bias as well as the factual outcome
error with two mutual information terms.

• Leveraging variational approximation, we optimize our proposed objective with a neural
network-based model called ACFR. ACFR takes the covariates of a unit and a continuous-
valued treatment as inputs and predicts the potential outcome.

• We evaluate the performance of ACFR and state-of-the-art methods on TCGA and News
datasets, and also analyze the robustness of ACFR to varying levels of selection bias.

2 PROBLEM STATEMENT

We assume a dataset of the form D = {xi, ti, yi}Ni=1, where xi ∈ X ⊆ Rd denotes the covariates
of the ith unit, ti ∈ [0, 1] is the continuous treatment that unit i received and yi ∈ Y ⊆ R denotes

1Continuous ITE estimation is also known as individual dose-response function estimation(Silva, 2016).
2Mutual information can capture non-linear dependency between two variables. For two variables

X and Y , I(X,Y ) is the KL-divergence between P (X,Y ) and P (X)P (Y ) defined as I(X,Y ) =∫
p(x, y) log( p(x,y)

p(x)p(y)
)dx dy
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the outcome of interest for unit i after receiving treatment ti. N is the total number of units and d
is the dimension size of covariates. We are interested to learn a machine learning model to predict
the causal quantity µ(x, t) = EY [Y (t)|X = x], which is the potential expected outcome under
treatment t for individual with covariates x. Note that, unlike binary ITE, the goal is to predict all
potential outcomes, and not the difference between them.3 Same as previous works, we rely on the
following assumptions to make treatment effect identifiable from an observational dataset.

Assumption a) Unconfoundedness (Rosenbaum & Rubin, 1983) ({Yt}t∈T ⊥⊥ T |X) which means
given covariates, treatment and potential outcomes are conditionally independent.

Assumption b) Overlap (Imbens, 2004) (P (T = t|X = x) > 0,∀t ∈ [0, 1],∀x ∈ X) which means
every unit receives an arbitrary treatment level t with a probability greater than zero.

Having the above assumptions, µ(x, t) can be rewritten as follows, and we are able to estimate it
using the observational dataset.

µ(x, t) = EY [Y (t)|X = x] = EY [Y |X = x, T = t]

To estimate the above term, we propose to learn a predictive model f : X × [0, 1]→ Y which takes
covariate and treatment and predicts the outcome. We report the performance of model f in terms
of the mean integrated square error (MISE) and the policy error (PE) metrics (Schwab et al., 2020).

3 METHOD

Figure 1: The underlying causal
structure of variables.

We assume the underlying causal structure of variables to be as
in Figure 1. The latent representation Z extracted via a para-
metric encoder pϕ(z|x) is assumed to be causally dependent to
covariate X , and to be conditionally independent of treatment T
and outcome Y given X , i.e. p(Z|X) = p(Z|X,T, Y ). As out-
lined earlier, the balanced representation learning approach aims
to extract a representation with minimum selection bias which
maintains necessary information for predicting the factual out-
comes. We measure the expressive power of the defined latent
representation in the prediction of the factual outcome with the
mutual information between Z and Y given T. We also measure
the selection bias of the representation with the mutual informa-
tion between Z and T . We aim to jointly maximize I(Z, Y |T ;ϕ) and minimize I(T,Z;ϕ) with
respect to encoder parameters ϕ as shown in Formula 1, where γ1 controls the trade-off between
two terms. We discuss the optimization of each MI term separately in the following.

max
ϕ

I(Z, Y |T ;ϕ)− γ1I(Z, T ;ϕ) (1)

3.1 SELECTION BIAS MINIMIZATION

As mentioned previously, to reduce the selection bias we want to minimize I(T ;Z) with respect to
encoder parameters ϕ. I(T,Z;ϕ) can be written as I(T,Z;ϕ) = H(T )−H(T |Z;ϕ), in which the
entropy of treatment H(T ) is independent from encoder parameterization. Therefore, we focus on
maximizing H(T |Z;ϕ) with respect to ϕ, defined as:

max
ϕ

H(T |Z) = max
ϕ

Ep(t,z)[− log p(t|z)] (2)

To maximize the right-hand side of equation 2, we need to compute p(t|z) which is determined
from the encoder and the underlying causal graph p(t|z) =

∫ p(x)p(t|x)p(z|x)
p(z) dx. But since it is

intractable, let qπ(t|z) be the variational distribution defined over the same space to approximate it.
qπ(t|z) is the ACFR’s treatment-predictor network that produces a distribution over the treatment
given the representation. From conditional entropy definition in Farnia & Tse (2016), we have:

H(T |Z) = inf
π

Ep(t,z)[− log qπ(t|z)] (3)

3In binary ITE, the goal is to estimate τ(x) = µ(x, 1)− µ(x, 0).
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It means to compute the conditional entropy we have to minimize the above negative log-likelihood
term with respect to π, and based on that the entropy maximization in equation 2 can be rewritten as
follows:

max
ϕ

H(T |Z) = max
ϕ

inf
π

Ep(t,z)[− log qπ(t|z)] (4)

Based on the causal graph in Figure 1, in which p(Z|X) = p(Z|X,T ), we can then incorporate
covariate X in the above equation, which results in equation 5.

max
ϕ

H(T |Z) = max
ϕ

inf
π

∫
p(x, t)pϕ(z|x)[− log qπ(t|z)] dz dx dt (5)

In words, to reduce the mutual information (equivalently to increase the conditional entropy) be-
tween treatment and latent representation, an encoder parameterized by ϕ and a treatment-predictor
parameterized by π should act adversarially against each other. Treatment-predictor attempts to
minimize the negative log-likelihood term in the right-hand side of equation 5 by predicting the
treatment accurately from Z, and the encoder attempts to maximize the term by excluding the infor-
mation about treatment from the representation Z. We employ a deterministic encoder z = gϕ(x)

4,
and we assume qπ(t|z) to be normal distribution N (fπ(z), σ

2) = N (fπ(gϕ(x)), σ
2) with fixed

variance σ2 and the mean is the output of the treatment-predictor network. Putting the probability
density function of qπ(t|z) in the right-hand side of equation 5, it will be:

max
ϕ

H(T |Z) = max
ϕ

inf
π

1

2σ2

∫
p(x, t)[(t− fπ(gϕ(x)))

2] dx dt+ log(σ
√
2Π) (6)

Then, by substituting joint distribution p(x, t) with the empirical data, and removing the constants
from the right-hand side of equation 6, we can obtain a minimax loss term Ladv between the encoder
and the treatment-predictor shown in Formula 7.

max
ϕ

inf
π

1

N
ΣN

i=1(ti − fπ(gϕ(xi)))
2︸ ︷︷ ︸

Ladv

(7)

Ladv is optimized by alternatingly fixing the parameters of one network and optimizing the loss
with respect to the parameters of the other one. Assuming that the treatment-predictor reaches its
optimum with respect to any fixed encoder parameter during the training, we can obtain a useful
property for our latent representation from the theoretical results of Wang et al. (2020): The global
maximum of Ladv is achieved if and only if E[T |Z] = E[T ]. It means the encoder is being optimized
toward extracting a representation where the expectation of conditional distribution p(T |Z) matches
the expectation of marginal distribution p(T ). This reduces the discrepancy between P (T |Z) and
P (T ), and thus decreases the selection bias of representation considerably.

Nonetheless, since the distributions themselves are not guaranteed to be aligned, we expect that some
amount of selection bias in the representation is not removed with the adversarial game. Without loss
of generality, treatment-predictive covariates can be classified into instrumental variables (treatment-
predictive only covariates) and confounders Hassanpour & Greiner (2019b). We expect that only the
information of instrumental variables to be removed and information of confounders remains in the
representation. The presence of the information related to confounders in the representation helps
factual outcome prediction but hurts covariate balancing and counterfactual prediction 5. In the next
section, we propose a loss term Lcon that allows the model to learn how to constrain the impact of
confounding factors such that results in the least factual performance drop.

3.2 FACTUAL ERROR MINIMIZATION

In this section, we view the prediction of outcome Y from representation Z and treatment T as
maximization of I(Y,Z|T ;ϕ). The conditional mutual information can be written as I(Y,Z|T ;ϕ) =
H(Y |T ) − H(Y |Z, T ;ϕ). Since the conditional entropy H(Y |T ) is independent of the choice of

4Given covariate x ∈ X encoder maps it to some point in representation space z ∈ Z with the probability
of one and to any other points with the probability of zero.

5This is a common downside of the balanced representation learning approach. Removing confounders
from the representation hurts performance on outcome prediction and its presence hurts the generalizability of
the model for counterfactual prediction.
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ϕ, maximizing I(Y, Z|T ;ϕ) is equivalent to minimizing H(Y |Z, T ;ϕ), i.e. the uncertainty about
outcome given representation and treatment.

min
ϕ

H(Y |Z, T ) = min
ϕ

Ep(z,t,y)[− log p(y|z, t)] (8)

p(y|z, t) =
∫ p(x,y,t)p(z|x)

p(z,t) dx in the above equation is fully determined from joint distribution and
our encoder, however, because it is intractable regard qθ(y|z, t) as a variational approximation to
p(y|z, t). The variational distribution qθ(y|z, t) is ACFR’s hypothesis network taking representation
and treatment as inputs and producing a distribution over the outcome. Leveraging the fact that
Kullback Leibler divergence between p(y|z, t) and its variational distribution is non-negative, we
have: Ep(z,t,y)[− log p(y|z, t)] ≤ Ep(z,t,y)[− log qθ(y|z, t)]. That means, we have an upper bound
for H(Y |Z, T ) and after incorporating X based on the assumption that p(Z|X) = p(Z|X,Y, T ),
the upper bound will be:

min
ϕ

H(Y |Z, T ) ≤ min
ϕ,θ

∫
p(z, t, y)[− log qθ(y|z, t)] dz dt dy (9.1)

= min
ϕ,θ

∫
p(x, t, y)pϕ(z|x)[− log qθ(y|z, t)] dx dz dt dy (9.2)

The upper bound (right-hand side of inequality 9.2) suggests that we can indirectly minimize
H(Y |Z, T ) by minimizing the negative log-likelihood of factual outcomes with respect to the en-
coder and hypothesis network parameters. As mentioned earlier, hypothesis network qθ(y|z, t)
needs to consider a particular role for treatment in order to predict the outcome accurately. Un-
like previous works that designed a special architecture for maintaining the treatment influence (Nie
et al., 2021) (Schwab et al., 2020), we give treatment and representation as inputs to the hypothesis
network and increase the treatment influence by constraining the representation impact. We add a
term to the upper bound which encourages the hypothesis network to keep the predicted outcome
distribution close to the original one even when the latent representation input has been perturbed
slightly by some noise ϵ. Adding negative log-likelihood term for the perturbed representation z+ ϵ
to the upper bound in9.2 (the negative log-likelihood for the original representation z) results in a
new upper bound for H(Y |Z, T ) shown in inequality 10. γ2 is a hyper-parameter to be tuned and
choosing ϵ will be discussed below.

min
ϕ

H(Y |Z, T ) ≤ min
θ,ϕ

∫
p(x, t, y)pϕ(z|x) [− log qθ(y|z, t)− γ2 log qθ(y|z + ϵ, t)] dz dx dt dy

(10)

As discussed in the previous section, confounding factors exist in the representation. Pearl (2011)
and Johansson et al. (2016) concluded that using the confounding features that are more associated
with the treatment than the outcome is not desirable. Therefore, it is beneficial to add noise to di-
mensions according to their association with the treatment. This encourages the hypothesis network
not only to increase treatment influence but also to rely on confounding factors as less as possible.
To identify confounding dimensions in the representation, we utilize the treatment-predictor net-
work because the association of a dimension with the treatment can be viewed as the contribution of
the dimension in this network. We apply a simple gradient-based attribution method proposed in Si-
monyan et al. (2013) on the treatment-predictor to obtain the contribution of dimensions. Therefore,
the noise ϵ for unit i is defined as ϵi = [ϵ1i , ..., ϵ

k
i ]

T = [N (0, C1
i ), ...,N (0, Ck

i )]
T . Ci is the contribu-

tion vector constructed by taking the absolute value of the gradient with respect to the representation
of the ith unit, and Cj

i shows the contribution of the jth dimension.

Similar to the previous section, we derive a mean squared error for each negative log-likelihood
term in the right-hand side of equation 10. We use the defined deterministic encoder gϕ(x), and
we assume qθ(y|z, t) to be normal distribution N (hθ(z, t), σ

2) = N (hθ(gϕ(x), t), σ
2) with fixed

variance σ2 and mean equals to the output of hypothesis network. Then, approximating p(x, t, y)
with empirical data, the right-hand side of inequality 10 turns into Formula 11 consisting of two loss
terms. Lfo and Lcom are MSE between the factual outcome and the predicted outcome, using the
original and the perturbed representation respectively. Also, ϵ is replaced with ϵi since the added
noise is computed for each unit exclusively.

min
ϕ,θ

1

N
ΣN

i=1(yi − hθ(gϕ(xi), ti))
2︸ ︷︷ ︸

Lfo

+γ2
1

N
ΣN

i=1(yi − hθ(gϕ(xi) + ϵi, ti))
2︸ ︷︷ ︸

Lcon

(11)
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3.3 ADVERSARIAL COUNTERFACTUAL REGRESSION

We discussed minimizing I(T ;Z) and maximizing I(Z, Y |T ) in previous sections. We want to
jointly optimize both terms, and thus we put the defined subnetworks together and propose Adver-
sarial CounterFactual Regression network (ACFR). ACFR is trained end-to-end and its architecture
is shown in Figure 2. Also, by substituting the mutual information terms in the objective 1 with the
losses derived in section 3.1 and 3.2, we obtain the following loss function for ACFR.

LACFR = min
ϕ,θ

max
π

Lfo + γ2Lcon − γ1Ladv (12)

Figure 2: The architecture of ACFR network.

ACFR pseudocode for optimizing the
loss function is shown in Algorithm 1.
The algorithm consists of three follow-
ing stages per iteration.

1) A batch of units is sampled ran-
domly, and the covariates of the batch
are mapped to the latent representation
using encoder gϕ.

2) For M times, Ladv loss for the en-
coded batch is computed and π is up-
dated. 6. Then, ϵ is constructed using the
backpropagated gradient of Ladv with
respect to z.

3) Perturbed representation z̃ is con-
structed using z and noise vector ϵ. All
three loss terms Lfo, Lcon, and Ladv are
computed and ϕ and θ are updated.7

Algorithm 1 ACFR: Adversarial Counterfactual Regression
Input: Factual samples (xi, ti, yi)

N
i=1, encoder network with initial parameter ϕ, treatment-predictor

network with initial parameters π, hypothesis network with initial parameters θ, batch size b, itera-
tion number I , internal loop size M , and hyper-parameters γ1 and γ2. The step sizes η1 and η2 are
obtained using Adam (Kingma & Ba, 2015).

1: for iter = 1 to I do
2: Sample a mini-batch B = {i1, i2, ..., ib} ⊂ {1, 2, ..., N}.
3: Encode mini-batch covariates into latent representation.

zB = gϕ(xB).
4: for m = 1 to M do
5: Computing Lt and updating π.

t̂B = fπ(zB) Ladv = 1
bΣi∈B(ti − t̂i)

2 π ← π − η1∇πLadv

6: end for
7: Constructing noise vector ϵB .
8: Computing Lfo, Lcon, Ladv and updating ϕ and θ.

z̃B = zB + ϵB ŷB = hθ(zB , tB) ỹB = hθ(z̃B , tB) t̂B = fπ(zB)
Lfo = 1

bΣi∈B(yi − ŷi)
2 Lcon = 1

bΣi∈B(yi − ỹi)
2 Ladv = 1

bΣi∈B(ti − t̂i)
2

[ϕ, θ]← [ϕ− η2∇ϕ(Lfo + γ2Lcon − γ1Ladv), θ − η2∇θ(Lfo + γ2Lcon)]
9: end for

Output: ϕ, θ for test phase.

6π is updated M times to ensure it reaches the possible optimum for a fixed ϕ as discussed in section 3.1
7Note that as discussed earlier ACFR minimizes minimax loss Ladv w.r.t π in the second stage while ϕ is

fixed, and maximizes it w.r.t. ϕ in the third stage while π is fixed.
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Table 1: Datasets and data generating functions.

Dataset #Samples #Covariates Treatment assignment Outcome function

TCGA 9659 4000 β =
2(α−1)vT

2 x

vT
3 x

+ 2− α

t = Beta(α, β)

y = 10(vT1 x+12vT2 xt− 12vT3 xt
2)

News 5000 3477 y = 10(vT1 x+ sin(
vT
2 x

vT
3 x

πt))

4 EXPERIMENTS

Treatment effect estimation methods have to be validated in predicting potential outcomes including
counterfactuals which are unavailable in real-world observational datasets. Inevitably, synthetic or
semi-synthetic datasets are commonly used since the treatment assignment mechanism and outcome
function are known and hence counterfactual outcomes can be generated. Note that this does not
change the fact that only factual outcomes are accessible during training and methods need to address
the selection bias. In this section, we discuss our experiment setting and evaluate the performance of
ACFR and state-of-the-art methods. The code is available at https://github.com/CTEErepo/ACFR.

4.1 EXPERIMENTAL SETUP

Semi-synthetic data generation: We used TCGA (Network et al., 2013) and News (Johansson
et al., 2016) semi-synthetic datasets (covariates are real-world data but treatment and outcome are
generated synthetically). TCGA dataset consists of gene expression measurements of the 4000 most
variable genes for 9659 cancer patients. The News dataset which was introduced as a benchmark in
Johansson et al. (2016) consists of 3477 word counts for 5000 randomly sampled news items from
the NY times corpus. For each dataset, we first normalized each covariate and then scaled every
sample to have a norm 1. We then split the datasets with 68/12/20 ratio into training, validation, and
test sets. We followed treatment and outcome generating process of Bica et al. (2020b), summarized
in Table 1. α in treatment function determines the selection bias level (α is set 2 in all experiments
unless otherwise stated), and v1, v2 and v3 are vectors that their elements are sampled from normal
distribution N (0, 1), and then became normalized. Using the functions in Table 1, we assigned the
treatment and factual outcome for all samples in the training and validation sets. All methods are
then trained on the training set, and the validation set has been used for hyperparameter selection.
Same as Bica et al. (2020b), potential outcomes for a unit are generated using the outcome function
given the unit’s covariates and 65 grids in the range [0, 1] as an approximation of the treatment range.

Baselines: We compare ACFR against Varying Coefficient Network (VCNet) (Nie et al., 2021),
Dose-Response Network (DRNet) (Schwab et al., 2020), two variants of counterfactual regression
(CFR) (Shalit et al., 2017), CFR-Wass and CFR-HSIC, and multi-layer perceptron (MLP). MLP
is a feed-forward network that simply takes covariates and continuous treatment and predicts the
outcome. It is included to indicate the difficulty level of the problem on each dataset. CFR-Wass
and CFR-HSIC originally proposed for binary treatments are adjusted to continuous treatments by
considering multiple hypothesis heads on top of the representation each corresponding to a treat-
ment range. The difference between adjusted CFRs and DRNet is that CFR-Wass and CFR-HSIC
reduce selection bias of the representation by Wasserstein (Villani, 2008) and Hilbert-Schmidt In-
dependence Criterion (HSIC) (Gretton et al., 2007) distributional distance respectively. In contrast,
DRNet does not reduce the selection bias but takes the treatment value as input of hypothesis heads.
The implementation details and the hyperparameter search space of methods are detailed in Ap-
pendix A.1.

Metrics: Having µ(x, t) as the ground-truth outcome of the unit with covariate x under treatment
t and f(x, t) as the predicted outcome, we report the performance of methods in terms of the two
following metrics defined in Schwab et al. (2020). The Mean Integrated Squared Error (MISE) is the
squared error of the predicted outcome averaged over all treatment values and all units. The Policy
Error (PE) measures the squared error of the estimated optimal policy averaged over all units.

MISE =
1

N
ΣN

i=1

∫ 1

0

[µ(xi, t)− f(xi, t)]
2dt PE8 =

1

N
ΣN

i=1[µ(xi, t
∗
i )− µ(xi, t̂

∗
i )]

2

8t∗i = argmaxt µ(xi, t) and t̂∗i = argmaxt f(xi, t).
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Figure 3: Performance of 4 methods with varying selection bias levels.

4.2 BASELINE COMPARISON

We performed two sets of experiments for potential outcome prediction, called out-of-sample pre-
diction and within-sample prediction. The out-of-sample experiment shows the ability of models
in predicting the potential outcomes for units in the held-out test set, and the within-sample experi-
ment shows the ability for units in the training set. For all baselines, we reported the mean and the
standard deviation of MISE and PE in the format of mean±std over 20 realizations of each dataset
in Table 2. In the out-of-sample setting, ACFR achieved the best MISE and PE on both datasets.
The same applies to the within-sample setting with the exception of MISE for the TCGA dataset on
which VCNet outperformed ACFR. The PE of our method on the TCGA dataset and its MISE on
the News dataset are significantly better than those of all contenders. We believe that ACFR outper-
formed VCNet in most of the scenarios because of the representation learning procedure of VCNet.
VCNet extracts its representation based on the sufficiency theorem of the generalized propensity
score (Hirano & Imbens, 2004) which holds for the average-level treatment effect but not for the
individual-level treatment effect. Shi et al. (2019) stated that the representation learned based on
this theorem does not necessarily lead to an accurate counterfactual predictor. Also, the superiority
of ACFR compared to the CFR variants indicates the benefits of the adversarial approach compared
to IPM metrics when balancing the representation for continuous treatments. Moreover, the num-
ber of parameters in the hypothesis network of ACFR is smaller than for all baselines. However, a
training iteration of ACFR is more time-consuming and requires more samples since it has to train
the treatment-predictor network as well.

Table 2: Results on News and TCGA datasets for out-of-sample and within-sample settings.

Out-of-sample Within-sample
Dataset Method MISE PE MISE PE

TCGA

MLP 4.12± 0.33 2.81± 0.17 3.37± 0.21 2.43± 0.18
VCNet 2.91± 0.34 1.49± 0.15 2.40±0.20 1.18± 0.15
DRNet 3.10± 0.28 2.43± 0.17 2.48± 0.24 1.82± 0.15

CFR-HSIC 3.02± 0.25 1.55± 0.18 2.41± 0.21 1.34± 0.12
CFR-Wass 3.01± 0.26 1.61± 0.19 2.45± 0.20 1.36± 0.13

ACFR 2.80±0.22 1.22±0.14 2.42± 0.17 1.04±0.08

News

MLP 2.31± 0.2 1.30± 0.02 2.46± 0.22 1.28± 0.02
VCNet 1.43± 0.12 0.19± 0.02 1.17± 0.07 0.16± 0.02
DRNet 2.17± 0.25 0.74± 0.09 1.99± 0.25 0.61± 0.07

CFR-HSIC 1.83± 0.21 0.65± 0.08 1.52± 0.31 0.51± 0.07
CFR-Wass 1.76± 0.21 0.62± 0.08 1.45± 0.22 0.52± 0.07

ACFR 1.22±0.12 0.17±0.01 0.92±0.10 0.16±0.01

4.3 SELECTION BIAS ROBUSTNESS

In this section, we study the robustness of 4 methods (ACFR, VCNet, DRNet, and CFR-Wass)
against selection bias. As mentioned earlier, the α parameter of Beta distribution in the treatment
generating function controls the amount of selection bias. As α increases the selection bias of the
observational dataset increases and consequently, we expect the error of methods to increase as
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well. As shown in Figure 3, ACFR has a consistent performance compared to the baselines on both
datasets, and its gap with the contenders at the strong selection bias level (α = 6) is significant.
In order to obtain a better understanding of the contribution of ACFR’s components in its robust
performance, we performed source of gain analysis. For each selection bias level, we compared the
error of the MLP network trained to minimize Lfo, ACFR network without contribution loss term
trained to minimize Lfo−γ1Ladv , and complete ACFR trained to minimize Lfo−γ1Ladv+γ2Lcon.
Figure 5 in Appendix A.3 indicates the contribution of each loss term to ACFR performance.

5 RELATED WORKS

Continous treatment effect estimation. Among the previous works that studied continuous treat-
ments, Varying Coefficient Network (VCNet) (Nie et al., 2021) and Dose-Response Network (DR-
Net) (Schwab et al., 2020) are the most related works to ours. VCNet was proposed for continuous
average treatment effect estimation and its main contribution is that instead of taking t as input, it
gives more influence to the value of the treatment through a dynamic neural network parameter-
ized by a spline basis of t. Despite substantially improving ADRF estimation on News and IHDP
datasets, VCNet is not as accurate in individual-level treatment effect estimation tasks. DRNet, pro-
posed to estimate the continuous ITE, discretizes treatment range into K intervals and employs a
hierarchical neural network with shared layers for all samples and specific head layers each shared
only among samples having received treatment within the same interval. Apart from the parame-
ter complexity that these methods introduce to the network, their performance might be domain-
dependent. For instance, under severe covariate shift among samples, some head layers in DRNet
may receive a limited number of samples which is not sufficient for training a neural network. Also,
the choice of the best spline functions in the VCNet architecture depends on the dataset, and the
authors did not discuss a systematic way for choosing them.

Adversarial balanced representation for treatment effect estimation. Learning a balanced rep-
resentation via an adversarial procedure has been studied for the categorical treatment effect es-
timation problem. Du et al. (2021) and Berrevoets (2020) employed a binary treatment-predictor
(classifier) to balance the distributions of treated and control groups in the latent space. Bica et al.
(2020a) extended the approach to multiple time-varying treatment setting and proved that the global
minimum of the proposed minimax game between encoder and treatment-predictor is achieved if
and only if distributions of treatment groups are aligned. Our work differs from previous adver-
sarially balanced methods. We considered continuous treatment which requires treatment-predictor
to regress the assigned treatment. We justified the adversarial balancing approach by the mutual
information minimization I(T,Z;ϕ) term between treatment and representation variables. Finally,
unlike the above-mentioned works, we provided the analysis of the adversarially balanced approach
with regard to the extent of selection bias removal and how ACFR deals with confounding variables.

The expanded related works can also be found in Appendix A.2.

6 DISCUSSION

This paper presented the method ACFR for predicting potential outcomes under a continuous-valued
treatment. Based on a novel information-theoretic objective for the continuous treatment effect es-
timation problem, ACFR learns a latent representation of the covariates that reduces the selection
bias and prevents the outcome prediction from overfitting to the representation. ACFR outperformed
the state-of-the-art methods on two semi-synthetic datasets, and its performance was shown to be
robust against varying levels of selection bias. This paper also suggests various directions for fu-
ture research to extend the ACFR framework and its applications. For instance, the adversarial
treatment-predictor can be designed to predict higher-order moments as well (e.g. variance), which
theoretically guarantees further selection bias reduction (Wang et al., 2020). Also, more sophisti-
cated attribution methods can be employed to obtain a better estimate of the association between
the latent dimensions and the assigned treatment. From the application perspective, ACFR can be
extended to consider other forms of treatment such as a tuple of a categorical treatment and its asso-
ciated continuous dosage(Schwab et al., 2020), which is achievable by having a treatment-predictor
for each treatment type.

9



Under review as a conference paper at ICLR 2023

REFERENCES

Alexander A. Alemi, Ian Fischer, Joshua V. Dillon, and Kevin Murphy. Deep variational information
bottleneck. 2016. doi: 10.48550/ARXIV.1612.00410. URL https://arxiv.org/abs/
1612.00410.

Alexis Bellot, Anish Dhir, and Giulia Prando. Generalization bounds and algorithms for estimat-
ing conditional average treatment effect of dosage, 2022. URL https://arxiv.org/abs/
2205.14692.

Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learning: A review and new
perspectives. IEEE transactions on pattern analysis and machine intelligence, 35(8):1798–1828,
2013.

Jeroen Berrevoets. Organite: Optimal transplant donor organ offering using an individual treatment
effect. In NeurIPS, 2020.

Ioana Bica, Ahmed M. Alaa, James Jordon, and Mihaela van der Schaar. Estimating counterfactual
treatment outcomes over time through adversarially balanced representations. 2020a. doi: 10.
48550/ARXIV.2002.04083. URL https://arxiv.org/abs/2002.04083.

Ioana Bica, James Jordon, and Mihaela van der Schaar. Estimating the effects of continuous-valued
interventions using generative adversarial networks, 2020b.

Hugh A. Chipman, Edward I. George, and Robert E. McCulloch. BART: Bayesian additive regres-
sion trees. The Annals of Applied Statistics, 4(1), mar 2010. doi: 10.1214/09-aoas285. URL
https://doi.org/10.1214%2F09-aoas285.

Xin Du, Lei Sun, Wouter Duivesteijn, Alexander Nikolaev, and Mykola Pechenizkiy. Adver-
sarial balancing-based representation learning for causal effect inference with observational
data. Data Mining and Knowledge Discovery, 35(4):1713–1738, may 2021. doi: 10.1007/
s10618-021-00759-3. URL https://doi.org/10.1007%2Fs10618-021-00759-3.

Farzan Farnia and David Tse. A minimax approach to supervised learning, 2016. URL https:
//arxiv.org/abs/1606.02206.

Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle, François
Laviolette, Mario Marchand, and Victor Lempitsky. Domain-adversarial training of neural net-
works. 2015. doi: 10.48550/ARXIV.1505.07818. URL https://arxiv.org/abs/1505.
07818.

Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial networks, 2014. URL https:
//arxiv.org/abs/1406.2661.

Arthur Gretton, Kenji Fukumizu, Choon Hui Teo, Le Song, Bernhard Schölkopf, and Alex Smola.
A kernel statistical test of independence. In NIPS, 2007.

Negar Hassanpour and Russ Greiner. Counterfactual regression with importance sampling weights.
pp. 5880–5887, 08 2019a. doi: 10.24963/ijcai.2019/815.

Negar Hassanpour and Russell Greiner. Learning disentangled representations for counterfactual
regression. In International Conference on Learning Representations, 2019b.

Keisuke Hirano and Guido W Imbens. The propensity score with continuous treatments. Applied
Bayesian modeling and causal inference from incomplete-data perspectives, 226164:73–84, 2004.

Guido W Imbens. Nonparametric estimation of average treatment effects under exogeneity: A
review. Review of Economics and statistics, 86(1):4–29, 2004.

Guido W. Imbens and Jeffrey M. Wooldridge. Recent developments in the econometrics of program
evaluation. Journal of Economic Literature, 47(1):5–86, March 2009. doi: 10.1257/jel.47.1.5.
URL https://www.aeaweb.org/articles?id=10.1257/jel.47.1.5.

10

https://arxiv.org/abs/1612.00410
https://arxiv.org/abs/1612.00410
https://arxiv.org/abs/2205.14692
https://arxiv.org/abs/2205.14692
https://arxiv.org/abs/2002.04083
https://doi.org/10.1214%2F09-aoas285
https://doi.org/10.1007%2Fs10618-021-00759-3
https://arxiv.org/abs/1606.02206
https://arxiv.org/abs/1606.02206
https://arxiv.org/abs/1505.07818
https://arxiv.org/abs/1505.07818
https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1406.2661
https://www.aeaweb.org/articles?id=10.1257/jel.47.1.5


Under review as a conference paper at ICLR 2023

Fredrik D. Johansson, Uri Shalit, and David Sontag. Learning representations for counterfactual
inference, 2016. URL https://arxiv.org/abs/1605.03661.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua
Bengio and Yann LeCun (eds.), 3rd International Conference on Learning Representations, ICLR
2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015. URL http:
//arxiv.org/abs/1412.6980.
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A APPENDIX

A.1 HYPERPARAMETERS AND IMPLEMENTATION DETAILS

We re-implemented DRNet because it considers a different form of treatment, a tuple consisting of
a categorical treatment and associated continuous dosage. Since we were interested in DRNet capa-
bility only in the continuous dosage setting, the same architecture was not applicable. The number
of hypothesis heads of this method is chosen from [5, 7, 10]. The CFRs are also re-implemented be-
cause they were originally proposed for the binary treatment setting. The hyperparameter balancing
the IPM loss and factual loss for CFRS is selected from [0.01, 0.05, 0.1, 0.5, 1, 5, 10] range. Also,
the number of hypothesis heads on top of the representation is chosen from [5, 7, 10].

We fine-tuned VCNet because its performance on the individual level is of important. VCNet
needs two parameters to construct its dynamic hypothesis network, called degree and knots. We
used [2, 3, 4] and [{1/3, 2/3}, {1/4, 2/4, 3/4}] ranges for degree and knots parameters respectively.
For the hyperparameter balancing the loss term of factual outcome prediction and the loss term of
propensity score density, we searched in [0.01, 0.05, 0.1, 0.5, 1, 5, 10] range. The number of output
nodes in its density network is also chosen from [10, 15, 30]. Note that, to ensure fairness the same
spline functions used in the architecture of VCNet are given to other methods as inputs. For example,
with the degree, = 2 and knots = [1/3, 2/3], the spline functions are [1, t, t2, (t−1/3)2, (t−2/3)2],
and these functions are also the input of the hypothesis heads of other methods.

The hyperparameters for ACFR’s adversarial loss Ladv and contribution loss Lcon are chosen from
[0.05, 0.1, 0.2, 0.5, 1, 5, 10] and [0.1, 0.2, 0.5] lists respectively. The hyperparameters shared among
all methods (e.g. learning rate, dropout) are tuned using the search ranges shown in the Table below.

Hyper-parameter search range

learning rate [5 ∗ 10−5, 10−4, 5 ∗ 10−4, 10−3, 5 ∗ 10−3, 10−2]
Batch size [32, 64, 128]
Dropout [0, 0.1, 0.2]

Maximum epoch [100, 300, 600]
L2 Regularization coefficient [10−4, 5 ∗ 10−4, 10−3]
Number of layers in encoder [1, 2, 3]

Number of layers in hypothesis [1, 2]
Number of nodes per layer [50, 100, 200]

Figure 4 shows the effect of two hyperparameters of ACFR loss function (γ1 and γ2) on the perfor-
mance. For both datasets, we can extract a pattern from this experiment. In the case that γ1 is very
small, Ladv loss does not sufficiently impact the network, and thus even instrumental variables may
remain in the representation space. Therefore, with more contribution of Lcon the model achieves
better performance. In the case that γ1 is large, the representation might lose the necessary infor-
mation for outcome prediction, and thus substantial impact of Lcon leads to worse performance.

A.2 EXPANDED RELATED WORKS

Adversarial Domain Adaptation. Adversarial domain adaptation approaches are established on the
assumption that a generalizable latent representation contains almost no discriminative information
about the domain of the samples (Zhuang et al., 2019). In the standard setting of transferring knowl-
edge from one (or multiple) source domain(s) to one (or multiple) target domain(s), studies such
as Ganin et al. (2015), encourage the encoder toward extracting a domain-invariant representation
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Figure 4: Effect of loss function hyperparameters on ACFR’s performance.

through an adversarial game between a domain-classifier and the encoder. Recently, continuously
indexed domain adaptation (CIDA) (Wang et al., 2020) generalized the setting to a possibly infinite
number of domains. i.e. domains that are indexed continuously, replacing the domain-classifier
with a domain-regressor that predicts the expected index of a domain given the representation. We
borrowed the idea of the adversarial game between feature extractor and treatment-regressor from
Wang et al. (2020) and applied it to a new problem in the context of counterfactual prediction.

A.3 SOURCE OF GAIN ANALYSIS
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Figure 5: Source of gain analysis in varying selection bias level.

13


	Introduction
	Problem Statement
	Method
	Selection Bias Minimization
	Factual Error Minimization
	Adversarial counterfactual regression

	Experiments
	Experimental Setup
	Baseline comparison
	Selection bias robustness

	Related Works
	Discussion
	Appendix
	Hyperparameters and Implementation details
	Expanded related works
	Source of gain analysis


