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ABSTRACT

In the mode connectivity literature, it is widely accepted that there are common
circumstances in which two neural networks, trained similarly on the same data,
will maintain loss when interpolated in the weight space. In particular, transfer
learning is presumed to ensure the necessary conditions for linear mode connectivity
across training runs. In contrast to existing results from image classification, we
find that among text classifiers (trained on MNLI, QQP, and CoLA), some pairs of
finetuned models have large barriers of increasing loss on the linear paths between
them. On each task, we find distinct clusters of models which are linearly connected
on the test loss surface, but are disconnected from models outside the cluster—
models that occupy separate basins on the surface. By measuring performance
on specially-crafted diagnostic datasets, we find that these clusters correspond to
different generalization strategies. For example, on MNLI, one cluster behaves
like a bag of words model under domain shift, while another cluster uses syntactic
heuristics. Our work demonstrates how the geometry of the loss surface can guide
models towards different heuristic functions in standard finetuning settings.

1 INTRODUCTION

Recent work on the geometry of loss landscapes has repeatedly demonstrated a tendency for fully
trained models to fall into a single linearly-connected basin of the loss surface across different
training runs (Entezari et al., 2021; Frankle et al., 2020; Neyshabur et al., 2020). This observation
has been presented as a fundamental inductive bias of SGD (Ainsworth et al., 2022), and linear
mode connectivity (LMC) has been linked to in-domain generalization behavior (Frankle et al., 2020;
Neyshabur et al., 2020). However, these results have relied exclusively on a single task: image
classification. In fact, methods relying on assumptions of LMC can fail when applied outside of
image classification tasks (Wortsman et al., 2022), but other settings such as NLP nonetheless remain
neglected in the mode connectivity literature.

In this work, we study LMC in several text classification tasks, repeatedly finding counterexamples
where multiple basins are accessible during training by varying data order and classifier head
initialization. Furthermore, we link a model’s basin membership to a real consequence: behavior
under distribution shift.

In NLP, generalization behavior is often described by precise rules and heuristics, as when a language
model observes a plural subject noun and thus prefers the following verb to be pluralized (the
dogs play rather than plays). We can measure a model’s adherence to a particular rule through
the use of diagnostic or challenge sets. Previous studies of model behavior on out-of-distribution
(OOD) linguistic structures show that identically trained finetuned models can exhibit variation in
their generalization to diagnostic sets (McCoy et al., 2020; Zhou et al., 2020). For example, many
models perform well on in-domain (ID) data, but diagnostic sets reveal that some of them deploy
generalization strategies that fail to incorporate position information (McCoy et al., 2019) or are
otherwise brittle.

These different generalization behaviors have never been linked to the geometry of the loss surface.
In order to explore how barriers in the loss surface expose a model’s generalization strategy, we
will consider a variety of text classification tasks. We focus on Natural Language Inference (NLI;
Williams et al., 2018; Consortium et al., 1996), as well as paraphrase and grammatical acceptability

1



Published as a conference paper at ICLR 2023

tasks. Using standard finetuning methods, we find that in all three tasks, models that perform similarly
on the same diagnostic sets are linearly connected without barriers on the ID loss surface, but they
tend to be disconnected from models with different generalization behavior.

Our code and models are public.1 Our main contributions are:

• In contrast with existing work in computer vision (Neyshabur et al., 2020), we find that transfer
learning can lead to different basins over different finetuning runs (Section 3). We develop a metric
for model similarity based on LMC, the convexity gap (Section 4), and an accompanying method
for clustering models into basins (Section 4.1).

• We align the basins to specific generalization behaviors (Section 4). In NLI (Section 2.1), they
correspond to a preference for either syntactic or lexical overlap heuristics. On a paraphrase task
(Section 2.2), they split on behavior under word order permutation. On a linguistic acceptability
task, they reveal the ability to classify unseen linguistic phenomena (Appendix A).

• We find that basins trap a portion of finetuning runs, which become increasingly disconnected from
the other models as they train (Section 4.2). Connections between models in the early stages of
training may thus predict final heuristics.

2 IDENTIFYING GENERALIZATION STRATEGIES

Finetuning on standard GLUE (Wang et al., 2018) datasets often leads to models that perform similarly
on in-domain (ID) test sets (Sellam et al., 2021). In this paper, to evaluate the functional differences
between these models, we will measure generalization to OOD domains. We therefore study the
variation of performance on existing diagnostic datasets. We call models with poor performance on
the diagnostic set heuristic models while those with high performance are generalizing models. We
study three tasks with diagnostic sets: NLI, paraphrase, and grammaticality (the latter in Appendix A).

All models are initialized from bert-base-uncased 2 with a linear classification head and
trained with Google’s original trainer.3 The only difference between models trained on a particular
dataset is the random seed which determines both the initialization of the linear classification head
and the data order; we do not deliberately introduce preferences for different generalization strategies.

2.1 NATURAL LANGUAGE INFERENCE

NLI is a common testbed for NLP models. This binary classification task poses a challenge in
modeling both syntax and semantics. The input to an NLI model is a pair of sentences such as:
{Premise: The dog scared the cat. Hypothesis: The cat was scared by the dog.} Here, the label is
positive or entailment, because the hypothesis can be inferred from the premise. If the hypothesis
were, “The dog was scared by the cat”, the label would be negative or non-entailment. We use the
MNLI (Williams et al., 2018) corpus, and inspect losses on the ID “matched” validation set.

NLI models often “cheat” by relying on heuristics, such as overlap between individual lexical items
or between syntactic constituents shared by the premise and hypothesis. If a model relies on lexical
overlap, both the entailed and non-entailed examples above might be given positive labels, because all
three sentences contain “scared”, “dog”, and “cat”. McCoy et al. (2019) responded to these shortcuts
by creating HANS, a diagnostic set of sentence pairs that violate such heuristics:

• Lexical overlap (HANS-LO): Entails any hypothesis containing the same words as the premise.
• Subsequence: Entails any hypothesis containing contiguous sequences of words from the premise.
• Constituent: Entails any hypothesis containing syntactic subtrees from the premise.

Unless otherwise specified, we use the non-entailing HANS subsets for measuring reliance on
heuristics, so higher accuracy on HANS-LO indicates less reliance on lexical overlap heuristics.

1Code: https://github.com/aNOnWhyMooS/connectivity; Models: https:
//huggingface.co/connectivity

2https://storage.googleapis.com/bert_models/2018_10_18/uncased_L-12_
H-768_A-12.zip

3https://github.com/google-research/bert QQP models are trained with Google’s recom-
mended default hyperparameters (details in Appendix F). MNLI models are those provided by McCoy et al.
(2020).
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(a) MNLI (top) and HANS-LO (bottom) loss variation during linear interpolation.
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(b) MNLI (top) and HANS-LO (bottom) accuracy variation during linear interpolation.

Figure 1: [Loss surface on the line joining pairs of models trained on MNLI.] Performance during
linear interpolation between pairs of models taken from the 5 best (gen.) and 5 worst (heur.) in
HANS-LO accuracy. Heuristic models tend to be poorly connected to generalizing models, although
they are well connected to each other. N indicates number of model pairs. Position on the x-axis
indicates the value of α during interpolation.

2.2 PARAPHRASE

Quora Question Pairs (QQP; Wang et al., 2017) is a common paraphrase corpus containing 400k
pairs of questions, annotated with a binary value to indicate whether they are duplicates. We use
the PAWS-QQP (Zhang et al., 2019) diagnostic set to identify different generalization behaviors.
PAWS-QQP contains QQP sentences that have been permuted to potentially create different meanings.
In other words, they are pairs that may violate a lexical overlap heuristic.

3 LINEAR MODE CONNECTIVITY

Models discovered by SGD are generally connected by paths over which the loss is main-
tained (Draxler et al., 2019; Garipov et al., 2018), but if we limit such paths to be linear, con-
nectivity is no longer guaranteed. We may still find, however, that two parameter settings θA and
θB , which achieve equal loss, can be connected by linear interpolation (Nagarajan and Kolter, 2019;
Goodfellow et al., 2015) without any increase in loss. In other words, loss L(θα;Xtrain, Ytrain) ≤
L(θA;Xtrain, Ytrain) and L(θα;Xtrain, Ytrain) ≤ L(θB ;Xtrain, Ytrain) in each parameter setting θα de-
fined by any scalar 0 ≤ α ≤ 1:

θα = αθA + (1− α)θB (1)

Frankle et al. (2020) characterized LMC between models initialized from a single pruned network,
finding that the trained models achieved the same performance as the entire un-pruned network only
when they were linearly connected across different SGD seeds. Their results suggest that performance
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Figure 2: Loss surfaces on the unique plane through 3 models. Colorscale indicates the MNLI
matched validation set loss surface, on planes passing through various kinds of finetuned MNLI
models. The points G0...2 and H0...2 denote the generalizing and heuristic models respectively. The
planes are plotted with a scale where 1 unit is the same as the length of the bottom edge of the triangle
formed by the three points defining the plane. For example, the plane containing points G0, G1, G2

is plotted with the scale 1 unit = len(G0G1), in both X and Y directions.

is closely tied to the LMC of the models in question. This implied result is further supported by
Entezari et al. (2021), which found a larger barrier between models when they exhibited higher test
error. Neyshabur et al. (2020) even suggested that LMC is a crucial component of transfer learning,
finding that models initialized from the same pretrained model are linearly connected, whereas models
trained from scratch exhibit barriers even when initialized from the same random weights.

Our results complicate the narrative around LMC (Fig. 1(a)). While we find that models with
high performance on OOD data were indeed linearly connected to each other, models with low
performance were also linearly connected to each other. It seems that the heuristic and generalizing
models occupy two different linear basins, with barriers in the ID loss surface between models in
each of these two basins.

HANS performance during interpolation: It is clear from Fig. 1(a) that, when interpolating
between heuristic models, OOD HANS-LO loss significantly improves further from the end points.
This finding implies that the heuristic basin does contain models that have better generalization than
those found by SGD. In contrast, the generalizing basin shows only a slight improvement in OOD
loss during interpolation, even though the improvement in ID test loss is more substantial than in the
heuristic basin. However, we can see from Fig. 1(b) that low losses on interpolated models do not
always translate to consistently higher accuracy, although interpolated models that fall on barriers
of elevated test loss do lead to lower ID accuracy. These results suggest a substantial divergence in
model calibration between interpolations of different heuristics.

Connections over 2 dimensions: To understand the loss topography better, we present planar views
of three models using as in Benton et al. (2021). In the plane covering the heuristic and generalizing
models, a large central barrier intrudes on the connecting edge between heuristic and generalizing
models (Fig. 2). On the other hand, the planes passing through only heuristic or only generalizing
models each occupy planes that exhibit a smaller central barrier. Visibly, this barrier is smallest for the
perimeter composed of generalizing models and largest for the mixed perimeter. These topographies
motivate the following notion of an ϵ-convex basin.

3.1 CONVEX BASINS

Inspired by Entezari et al. (2021), we define our notion of a basin in order to formalize types of
behavior during linear interpolation. In contrast to their work, however, our goal is not to identify a
largely stable region (the bottom of a basin). Instead, we are interested in whether a set of models are
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Figure 3: Using features of the ID loss landscape to predict reliance of MNLI models on lexical
overlap heuristics. Least squares fit shown. (a) HANS-LO accuracy vs difference between distances
from the centroids c1, c2 of the CG-based clusters. (b) HANS-LO accuracy vs ϵ-sharpness.

connected to the same low-loss points by linear paths of non-increasing loss, thus sharing optima that
may be accessible by SGD. This motivation yields the following definition.

For resolution ϵ ≥ 0, we define an ϵ-convex basin as a convex set S, such that, for any set of points
w1, w2, ..., wk ∈ S and any set of coefficients α1 . . . αn ≥ 0 where

∑
k αk = 1, a relaxed form of

Jensen’s inequality holds:

L(
n∑

k=1

αkwk) ≤ ϵ+

n∑
k=1

αkL(wk) (2)

In particular, we say that a set of trained models θ1, .., θn form an ϵ-convex basin if the region inside
their convex hull is an ϵ-convex basin. In the case where ϵ = 0, we can equivalently claim that the
behavior of L in the region is convex.

This definition satisfies our stated motivation because any two points within an ϵ-convex basin are
connected linearly with monotonically (within ϵ) decaying loss to the same minima within that
basin. While such a linear path does not strictly describe a typical SGD optimization trajectory,
such linear interpolations are frequently used to analyze optimization behaviors like module criti-
cality (Neyshabur et al., 2020; Chatterji et al., 2020). One justification of this practice is that much
of the oscillation and complexity of the training trajectory is constrained to short directions of the
solution manifold (Jastrzebski et al., 2020; Xing et al., 2018; Ma et al., 2022), while large scale views
of the landscape describe smoother and more linear trajectories (Goodfellow et al., 2015; Fort and
Jastrzebski, 2019). We use this definition of ϵ-convexity to describe linearly connected points as
existing in the same basin. However, pairwise non-increasing linear connections are a necessary but
not sufficient condition for all convex combinations to be non-increasing, as seen in Fig. 2.

4 THE CONVEXITY GAP

One possibility we argue against is that the increasing loss between models with different heuristics
is actually an effect of sharper minima in the heuristic case. There is a significant body of work
on the controversial (Dinh et al., 2017; Kaur et al., 2022) association between wider minima and
generalization in models (Li et al., 2018; Keskar et al., 2017; Hochreiter and Schmidhuber, 1997).
Prior work shows that minima forced to memorize a training set without generalizing on a test set
exist in very sharp basins (Huang et al., 2020), but these basins are discovered only by directly
pessimizing on the test set while optimizing on the train set. It is less clear whether width is predictive
of generalization across models trained conventionally.

We do not find that sharpness is a good predictor of the quality of a model’s generalization strategy
(Fig. 3(b)). On the contrary, we find that the basin in which a model sits is far more predictive of
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Figure 4: Color indicates CG distance (on ID MNLI validation loss) between the x- and y-axis NLI
models. Models are sorted by increasing performance on (a) HANS-LO. (b) HANS-constituent.

generalization behavior than optimum width is. To identify these discrete basins, we define a metric
based on linear mode connectivity, the convexity gap (CG), and use it to perform spectral clustering.

Entezari et al. (2021) define a barrier’s height BH on a linear path from θ1 to θ2 as:
BH(θ1, θ2) = sup

α
[L(αθ1 + (1− α)θ2)− (αL(θ1) + (1− α)L(θ2))] α ∈ [0, 1] (3)

We define the convexity gap on a linear path from θ1 to θ2 as the maximum possible barrier height on
any sub-segment of the linear path joining θ1 and θ2. Mathematically,

CG(θ1, θ2) = sup
γ,β

BH(γθ1 + (1− γ)θ2, βθ1 + (1− β)θ2) γ, β ∈ [0, 1] (4)

Under this definition, an ϵ-convex basin has a convexity gap of at most ϵ within the basin (proof in
Appendix B). In Appendix I, we compare our metric to area under the curve (AUC) and BH. These
alternatives exhibit weaker clusters, though Euclidean distance has similar behavior to CG.

4.1 CLUSTERING

The basins that form from this distance metric are visible based on connected sets of models in the
distance heatmap (Fig. 4(a)). To quantify basin membership into a prediction of HANS performance,
we perform spectral clustering, with the distances between points defined as CG-distance on the
ID loss surface. Using the difference between distances from each cluster centroid ∥w − c1∥ and
∥w − c2∥4, we see a significantly larger correlation with HANS performance (Fig. 3(a)), compared
to a baseline of the model’s ϵ-sharpness (Fig. 3(b)). Furthermore, a linear regression model offers
significantly better performance based on spectral clustering membership than sharpness.5

In Fig. 4(b), we see the heuristic that defines the larger cluster: constituent overlap. Models that
perform well on constituent overlap diagnostic sets tend to fall in the basin containing models biased
towards lexical overlap. This behavior characterizes the two basins: the larger basin is syntax-aware
(tending to acquire heuristics that require awareness of constituent structure), while the smaller basin
is syntax-unaware (acquiring heuristics that rely only on unordered sets of words).6

Distributions of the clusters: We find (Fig. 5) that CG-based cluster membership accounts for
some of the heavy tail of performance on HANS-LO, supporting the claim that the convex basins on
the loss surface differentiate generalization strategies. However, the distribution of ID performance
also differs significantly between clusters, so we may choose to relate basin membership to ID
behavior instead of OOD. We discuss this alternative framing further in Appendix H.

4Here, w, c1, c2 are in spectral embedding space.
5The connection between cluster membership and generalization performance is continuous. That is, those

members of the generalizing cluster which are closer to the cluster boundary behave a little more like heuristic
models than the other models in that cluster do.

6We reject an alternative hypothesis, that the relevant difference is an awareness of word position rather than
syntax, because reliance on subsequence overlap is poorly predicted by basin membership (Appendix C).
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Figure 5: Histogram of accuracy scores of the MNLI models. Cluster that relies on lexical overlap
heuristics is in orange; cluster that generalizes to HANS-LO is blue.
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membership is highly predictive of PAWS-QQP performance. Least squares fit shown.

QQP: On QQP, we also find distinct clusters of linearly connected models (Fig. 6(a)). As in NLI,
we find that cluster membership predicts generalization on PAWS-QQP (Fig. 6(b)).

4.2 GENERALIZATION BASINS TRAP TRAINING TRAJECTORIES

At this point we have aligned basins with particular generalization behaviors, but it is possible that
the heuristic models just need to train for longer to switch to the generalizing basin. We find that this
is not the case (Fig. 7). Heuristic models that fall closer to the cluster boundary may drift towards the
larger cluster later in training. However, models that are more central to the cluster actually become
increasingly solidified in their cluster membership later in training.

These results have two important implications. First, they confirm that these basins constitute distinct
local minima which can trap optimization trajectories. Additionally, our findings suggest that early
on in training, we can detect whether a final model will follow a particular heuristic. The latter
conclusion is crucial for any future work towards practical methods of directing or detecting desirable
generalization strategies during training (Jastrzebski et al., 2021).

5 RELATED WORK

Connectivity of the Loss Landscape: Draxler et al. (2019) and Garipov et al. (2018) demonstrated
that pairs of trained models are generally connected to each other by nonlinear paths of constant train
and test loss. Garipov et al. (2018) and, later, Fort and Jastrzebski (2019) conceptualized these paths
as high dimensional volumes connecting entire sets of solutions. Goodfellow et al. (2015) explored
linear connections between model pairs by interpolating between them, while Entezari et al. (2021)
and Ainsworth et al. (2022) suggested that in general, models that seem linearly disconnected may
be connected after permuting their neurons. Our work explores models that are linearly connected
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Figure 7: Movement between clusters during finetuning on QQP. Three checkpoints(15000, 25000
and end of training(34110) steps of training) for each model are considered. The arrows point from
one checkpoint, to next checkpoint of the same model. Clustering uses the CG metric on the QQP
validation loss surface. Heuristic models near the cluster boundary move towards the generalizing
cluster, but central models in both clusters move closer to their respective centroids.

without permutation, and is most closely linked with Neyshabur et al. (2020), which found that
models initialized from a shared pretrained checkpoint are connected. Frankle et al. (2020) also found
that pruned initial weights can lead to trained models that interpolate with low loss, if the pruned
model generalizes well. These results, unlike ours, all focus on image classification. Wortsman et al.
(2022) considers a similar setting to ours by finetuning with a linear classifier head, and develops
weight ensembles that depend on assumptions of LMC. They find that such ensembling methods are
effective in image classification settings, but less so in text classification.

Generalization: Diagnostic challenge sets are a common method for evaluating generalization
behavior in a number of modalities. Imagenet has a number of corresponding diagnostic sets, from
naturally-hard examples (Koh et al., 2021; Hendrycks et al., 2021) to perturbed images (Hendrycks
and Dietterich, 2019) to sketched renderings of objects (Wang et al., 2019). In NLP, diagnostic sets
frequently focus on compositionality and grammatical behavior such as inflection agreement (Kim
et al., 2019; Sennrich, 2017). Diagnostic sets in NLP can be based on natural adversarial data (Gulor-
dava et al., 2018; Linzen et al., 2016), constructed by perturbations and rephrases (Sanchez et al.,
2018; Glockner et al., 2018), or generated artificially from templates (Rudinger et al., 2018; Zhao
et al., 2018). NLI models in particular often fail on diagnostic sets with permuted word order (Kim
et al., 2018; Naik et al., 2018; McCoy et al., 2019), exposing a lack of syntactic behavior. Because
we focus on text classification, we are able to interpret behavior on available rule-based diagnostic
datasets in order to differentiate between the mechanical heuristics used by different models.

Function Diversity: Initializing from a single pretrained model can produce a range of in-domain
generalization behaviors (Devlin et al., 2019; Phang et al., 2020; Sellam et al., 2021; Mosbach et al.,
2021). However, variation on performance in diagnostic sets is even more substantial, whether
those sets include tests of social biases (Sellam et al., 2021) or unusual paraphrases (McCoy et al.,
2020; Zhou et al., 2020). Benton et al. (2021) found that a wide variety of decision boundaries were
expressed within a low-loss volume, and Somepalli et al. (2022) further found that there is diversity in
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boundaries during OOD generalization, observed when inputs are far off the data manifold. Our work
contributes to the literature on how diverse functions can have similar loss by linking sets of identically
trained models to different OOD generalization behavior. We also expand beyond visualizing decision
boundaries by focusing on how basins align with specific mechanistic interpretable strategies.

6 DISCUSSION AND FUTURE WORK

Our results stand in stark contrast to findings in image classification. Once neuron alignment7 is
accounted for, the linear mode connectivity literature (Entezari et al., 2021; Wortsman et al., 2022;
Frankle et al., 2020; Ainsworth et al., 2022; Neyshabur et al., 2020) points overwhelmingly to the
claim that SGD consistently finds the same basin in every training run. There are several reasons to
be skeptical about the generality of this view outside of image classification. First, image classifiers
may not rely much on global structure, instead shallowly composing local textures and curves
together (Olah et al., 2018). In contrast, accurate syntactic parses are applied globally, as a single tree
consistently describes the composition of meaning across a sentence. Second, existing results are in
settings that are well-established to be nearly linear early in training (Nakkiran et al., 2019). Early
basin selection may thus occur in a nearly convex optimization space, explaining why different runs
consistently find the same basin. However, future work might dig further into image classification,
exploring whether it is possible to identify different basins that avoid particular spurious correlations.

Within NLP, we have many more challenge sets for detecting spurious correlations (Warstadt et al.,
2020). Beyond classification, sequence-to-sequence tasks also provide challenge sets (Kim and
Linzen, 2020). In language modeling, we can consider biases towards subject-verb number agreement
or syntactic tests (Linzen et al., 2016; Gulordava et al., 2018; Ravfogel et al., 2019). While we
identify three tasks with discrete basins, MNLI and QQP have a similar format (a binary label on the
relationship between two sentences) and CoLA outlier models are extremely rare. A greater diversity
of tasks could reveal how consistently basins align with the generalization strategies explored in
existing diagnostic sets, or even identify more faithful distinctions between basin behaviors.

Future research may also focus on evaluating the strength and nature of the prior distribution over
basins. Transfer learning priors range from the high entropy distribution provided by training from
scratch to those pretrained models which seem to consistently select a single basin (Neyshabur et al.,
2020). Possible influences on basin selection, and therefore on generalization strategies, may include
length of pretraining (Warstadt et al., 2020, see Appendix J), data scheduling, and architecture
selection (Somepalli et al., 2022). The strength of a prior towards particular basins may be not
only linked to training procedure (Appendix K), but also related to the availability of features in the
pretrained representations (Lovering et al., 2021; Hermann and Lampinen, 2020; Shah et al., 2020).
This aspect of transfer learning is a particularly ripe area for theoretical work in optimization.

Another future direction is to detect early in training whether a basin has a desirable generalization
strategy. For example, can we predict if a Transformer will use position information or act like a
bag-of-words model? It is promising that CG on training loss is predictive of OOD generalization
(Appendix G), so measurements can be directly on the training set. Furthermore, a model tends to
stay in the same cluster late in training (Section 4.2), so final heuristics may be predicted early.

The split between generalization strategies can potentially explain results from the bimodality of
CoLA models (Mosbach et al., 2021) to wide variance on NLI diagnostic sets McCoy et al. (2020).
Because weight averaging can find parameter settings that fall on a barrier, we may even explain why
weight averaging, which tends to perform well on vision tasks, fails in text classifiers (Wortsman et al.,
2022). Future work that distinguishes generalization strategy basins could improve the performance
of such weight ensembling methods.

7 CONCLUSIONS

In one view of transfer learning, a pretrained model may select a prior over generalization strategies
by favoring a particular basin. Neyshabur et al. (2020) found that models initialized from the same

7We used the methods of Ainsworth et al. (2022) to align neurons within each head across different training
runs, finding alignment without any permutation. Therefore, our basins are likely to be separate even under
neuron permutation (though there may be permutations we did not find), in contrast to their findings on CIFAR.
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pretrained weights are linearly connected, suggesting that basin selection is a key component of
transfer learning. By considering performance on NLP tasks instead of image classification, we find
that a pretrained model may not commit exclusively to a single basin, but instead favor a small set
of them. Furthermore, we find that linear connectivity can indicate shared generalization strategies
under domain shift, as evidenced by results on NLI, paraphrase, and linguistic acceptability tasks.
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A LINGUISTIC ACCEPTABILITY

The Corpus of Linguistic Acceptability (CoLA; Warstadt et al., 2018) is a set of acceptable and
unacceptable English sentences collected from the linguistics literature. Linguistics has a longstanding
practice of studying minimal changes that render sentences ungrammatical; one CoLA example
is the pair of sentences “Betsy buttered the toast” (acceptable) and “Betsy buttered at the toast”
(unacceptable).

CoLA includes an ID val/test set, where the examples are taken from the same linguistics papers
that the training set uses. However, it also includes an OOD diagnostic val/test set. The diagnostic
sets are taken from a different set of linguistics papers, so in order for a model to perform well on
CoLA-OOD, it must transfer a general ability to recognize unacceptable English sentences, rather
than simply learning the set of acceptability rules described in the ID sources.

A.1 EXPERIMENTAL DETAILS

We found that default settings on the HuggingFace (Wolf et al., 2020) training script8 resulted in
more pronounced barriers between models, compared to the Google script we used for NLI and
QQP.9 Because our goal is to study the relationship between barriers and generalization, we therefore
chose to use Huggingface for our CoLA analysis. Like in our other experiments, we kept the default
hyperparameters, which differ slightly from the Google script. The CoLA models were trained for
6 epochs with a learning rate of 2 × 10−5, a batch size of 32 samples, and no weight decay. This
script uses the AdamW(Loshchilov and Hutter, 2017) optimizer too, with a linear learning rate decay
schedule but no warm-up.

A.2 CLUSTERING
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Figure 8: Results from CG (over CoLA in-domain validation loss) for CoLA models. (a) CG
heatmap on CoLA models, sorted by OOD validation. (b) A scatter-plot of cluster membership versus
performance on CoLA-OOD validation set.

In CoLA, there are very few barriers between finetuned models. A single model out of the 48
finetuned accounted for all substantial interpolation convexity gaps (Fig. 8(a)), thus forming its own
one-point cluster when using CG as a distance metric for spectral clustering. This outlier model
outperformed all others on OOD generalization (Fig. 8(b)), suggesting that CoLA is another task
where models with different generalization behavior are disconnected.

8https://github.com/huggingface/transformers/blob/main/examples/flax/
text-classification/run_flax_glue.py

9The major difference between scripts appears to be the lack of different initializations of classification head
between huggingface runs. That is, different data order is the only source of SGD noise in HuggingFace runs.
However, it is likely that the presence or absence of a second cluster during the sweep is due to random chance,
given that we see only a single model out of 48 falling into the outlier cluster in these results.
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B THEORETICAL RESULT ON CONVEXITY GAPS

Theorem 1. An ϵ-basin will have CG(w1, w2) ≤ ϵ for every pair of models w1, w2 on its surface.

Proof. Recall the definition of convexity gap as the maximum value of the barrier height of any
segment θ1, θ2 along the interpolation between w1 and w2 from Equation 4:

CG(w1, w2) = sup
γ,β

BH(γw1 + (1− γ)w2, βw1 + (1− β)w2) γ, β ∈ [0, 1] (5)

As we are in an ϵ-basin, the defining inequality from Equation 2 holds ∀θ1, θ2 ∈ ϵ−convex basin :

L(
n∑

k=1

αkθk) ≤ ϵ+

n∑
k=1

αkL(θk) (6)

Applying this for n = 2:

L(α1θ1 + (1− α1)θ2)− (α1L(θ1) + (1− α1)L(θ2)) ≤ ϵ ∀θ1, θ2 ∈ ϵ-basin (7)

Hence the supremum of the quantity on LHS is also ≤ ϵ. Seeing the definition of BH from Equation 3,
we immediately see that:

BH(θ1, θ2) ≤ ϵ ∀θ1, θ2 ∈ ϵ-basin (8)

As CG is the supremum of BH over elements within the ϵ−convex basin only, we have:

CG(w1, w2) ≤ ϵ ∀w1, w2 ∈ ϵ-basin (9)

C HANS PERFORMANCE ON SUBSEQUENCE HEURISTICS

Models that perform poorly on subsequence heuristics tend to fall in the bag-of-words basin. However,
the clusters are less pronounced than for either constituent or lexical overlap heuristics (Fig. 9).
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D FLEXIBLE MODE CONNECTIVITY

While our results strongly suggest that linear mode connectivity breaks down between heuristic
and generalizing models, they should nonetheless be connected, at least by a nonlinear path of
constant training loss (Draxler et al., 2019; Benton et al., 2021). We consider the behavior of HANS
generalization along this path, which maintains near-constant ID loss. These paths were easy to
identify with Riemannian curves and segmented lines (Garipov et al., 2018), and exhibited poor
HANS-LO generalization the further along the path the parameters fall, as shown in Fig. 10.

The results here show an inversion of the pattern exhibited on HANS-LO loss in the linear interpolation
case: whereas Fig. 1(a) shows heuristic-to-generalizing connections to exhibit peaks in ID loss but no
corresponding spikes in OOD loss, here we find constant-loss paths which exhibit peaks in HANS-LO
loss. It appears that gradient descent finds generalizing models in spite of the fact that they exist in a
constant-loss multidimensional volume which exhibits a wealth of heuristic models.
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Figure 10: Loss along the segmented curve (after 6 subepochs) between a heuristic and generalizing
NLI model. 1 sub-epoch is equivalent to ∼ 120 training steps with a batch size of 128, and a learning
rate of 8× 10−5.

E CORRELATIONS BETWEEN PERFORMANCE ON HANS SUBSETS

As provided in Fig. 11, performance on HANS-LO non-entailing, which reflects an aversion to
the lexical overlap heuristic, is positively correlated with ID accuracy. However, in the case of
HANS-constituent a model that successfully averts the constituent overlap heuristic is likely to
perform poorly ID and on most diagnostic sets. We therefore conjecture that models which avoid
constituent overlap heuristics are likely failing to acquire syntax, rather than effectively acquiring
better generalization strategies.

Performance on the subsequence heuristic diagnostic set is positively correlated with performance on
both LO and constituent heuristic diagnostic sets, as it includes aspects of both other heuristics. For
every diagnostic set heuristic, performance on the non-entailing subset (i.e., examples that violate the
heuristic) is negatively correlated with performance on the entailing subset (i.e., examples that adhere
to the heuristic).
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F EXPERIMENTAL DETAILS

F.1 FINETUNING THE MODELS

The QQP models were trained for 3 epochs, with a learning rate of 2 × 10−5, a batch size of 32
samples and a weight decay of 0.01 from the bert-base-uncased10 pre-trained checkpoint
using the google script.11 This script uses the AdamW (Loshchilov and Hutter, 2017) optimizer
with a warm-up during the first 10% of the training followed by a linear schedule for weight decay.
Because these hyperparameters are the recommended defaults for BERT training, they were also used
by McCoy et al. (2020) to train the MNLI model set we analyze.

F.2 INTERPOLATIONS

In order to evaluate the interpolation between a pair of models, we sample a random set of 512
samples from the target dataset and then test each of the interpolated models on this same sample. For
an interpolation between two fine-tuned models θ1 and θ2, we evaluate the models with interpolation
coefficients α (Eqn 1) at intervals of 1

10 on the line joining θ1 and θ2. The resulting plots are shown
in Fig. 1(a) and Fig. 1(b). We calculate the convexity gap CG(θ1, θ2) is using the loss values of
these interpolated models.

10https://storage.googleapis.com/bert_models/2018_10_18/uncased_L-12_
H-768_A-12.zip

11https://github.com/google-research/bert
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In order to gauge the effect of number of samples, we repeated interpolation experiments on MNLI
using only 256 samples (instead of 512). Using a smaller sample reduced the magnitude of correlation
coefficient in Fig. 3(a) to ρ = −0.65, but the cluster assignments remain the same.

F.3 MODEL EVALUATIONS

When evaluating the performance of a finetuned model (e.g., to sort the models on the linear
connectivity heatmaps, or to select the top and bottom 5 models for Fig. 1(a) and Fig. 1(b)), we use
the whole dataset available. These include the entirety of:

• All non-entailing samples of a given heuristic from the test split of HANS.
• The dev and test split of PAWS-QQP.
• The entire QQP and MNLI validation sets.

As Feather-BERTs have been finetuned on MNLI, to evaluate them on HANS tasks, we would need
to convert the logits for the three MNLI classes (entailment, neutral, contradiction)
to logits for the two HANS classes(entailing and non-entailing). We convert these la-
bels by taking the logit for non-entailing class as the maximum of the logits of the MNLI
contradiction and neutral classes, and taking the logit for entailing class of HANS as
the logit of entailing class of MNLI.

F.4 COMPUTING SHARPNESS

For calculating ϵ-sharpness of a model, we use the definition of Keskar et al. (2017):

ϕx,f (ϵ, A) :=
maxy∈Cϵ(f(x+Ay))− f(x)

1 + f(x)
× 100 (10)

where f is the loss function, x ∈ Rn are the original parameters of the model, A ∈ Rn×p is a matrix
that restricts the calculation of ϵ−sharpness to a subspace of the parameter space, and

Cϵ = {z ∈ Rp : −ϵ(|(A+x)i|+ 1) ≤ zi ≤ ϵ(|(A+x)i|+ 1)∀i ∈ [p]} (11)

Following the defaults in Keskar et al. (2017), we take A as In×n. Using 32768 samples from MNLI
validation matched, we evaluate the initial loss f(x). We use the same samples to compute
the maximum loss maxy∈Cϵ f(x+Ay), using an SGD optimizer with a learning rate of 8× 10−5, a
batch size of 32, and accumulating gradient over 4 batches. In order to compute maximum loss, we
perform a total of 8192 gradient updates, each followed by clamping of the weights within Cϵ. We set
ϵ to 1× 10−5.

F.4.1 COMPUTATIONAL RESOURCES

Finetuning 100 QQP models cost around 500 GPU-hours and 48 CoLA models cost around 10 GPU-
hours. Each 100× 100 interpolation and evaluation consumed 114 GPU hours; these were performed
for both QQP (at three stages during finetuning, for Fig. 7) and MNLI. The 48 × 48 interpolation
for CoLA cost about 28 GPU-hours. The experiments add up to a total cost of approximately 994
GPU-hours on a mix of NVIDIA RTX8000 and V100 nodes.

G TRAINING LOSS

Even without any validation or test set to analyze, we can use the training set alone to make
predictions about a model’s generalization strategies. Fig. 12 shows a strong relation between training
loss convexity gaps and performance on HANS-LO. Future work can develop methods for predicting
generalization early based entirely on training behavior.

H IN-DOMAIN GENERALIZATION

It is well known that OOD generalization is strongly correlated with ID performance in general
(Miller et al., 2021). Let us therefore consider the skeptical position that basin membership does not
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Figure 12: Relationship between CG on the MNLI training loss surface and accuracy on the HANS-
LO diagnostic set.

train test f µC1
σC1

µC2
σC2

µC1
−µC2

σC1

µC1
−maxw∈C2

f(w)

σC1

MNLI MNLI acc 0.844 0.002 0.839 0.002 2.50 1.00
MNLI HANS-LO acc 0.301 0.110 0.096 0.033 1.86 1.30
QQP QQP F1 0.879 0.001 0.872 0.002 7.00 5.00
QQP PAWS-QQP F1 0.436 0.005 0.424 0.004 2.40 0.60
CoLA CoLA ID MCC 0.601 0.017 0.600 N/A 0.06 0.06
CoLA CoLA OOD MCC 0.537 0.015 0.576 N/A -2.60 -2.60

Table 1: Cluster mean, standard deviation, and distribution overlap for all tasks on both ID and OOD
performance under metric f . C1 is the larger cluster on each task. On CoLA, C2 contains only a
single model.

directly relate to OOD generalization strategies, but instead OOD performance is mediating the effect
of general model quality in-domain. While ID (on MNLI) and OOD (on HANS) performance are
certainly positively correlated (Appendix E), we find that all 12 of the models in the syntax-unaware
cluster fall at least 1.3 standard deviations below the mean of the syntax-aware cluster’s performance
on HANS-LO (Table 1), and only 1 standard deviation below the mean on MNLI validation. The
partitions are also less clear in the ID metrics (Fig. 13) compared to lexical overlap. Therefore,
considered as a binary class, basin membership is more predictive of OOD behavior than of ID on
NLI. Furthermore, the fact that performance on HANS-constituent is negatively correlated with ID
performance (Appendix E) makes it clear that the underlying difference between these clusters is
syntax-awareness, not overall model quality.

CoLA presents even stronger evidence for interpreting basin membership as related to OOD gener-
alization over ID. The single outlier model falling outside of the main basin is a full 2.6 standard
deviations outside the mean on OOD performance, but only 0.6 on ID performance.

However, we should not dismiss the relationship between ID accuracy and cluster membership.
Compared to the diagnostic set PAWS, the ID validation set is more predictive of CG on QQP
(Fig. 14). In both MNLI and QQP, the relationship between ID and centroid distance also seems more
linear than OOD. Based on these findings, the human-defined heuristics of the PAWS dataset may not
be the correct characterization of the difference in generalization behaviors between different basins.
We leave the discovery of better characterizations of difference in strategy between basins to future
work.

One caveat is the fact that ID evaluation and ID convexity gap measurements are performed on the
same validation set, because the test sets are not public for these datasets. Therefore, ID performance
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Figure 14: Relationship between CG on the QQP in-domain validation loss surface and QQP in-
domain validation accuracy.

is exposed during the clustering process, casting some doubt on alignment between the clusters and
ID performance.

I ALTERNATIVE BARRIER MEASUREMENTS

In Fig. 15 we show NLI model clustering using the original barrier height metric (Equation 3) from
Entezari et al. (2021). We can see that the Pearson’s correlation coefficient is −0.49, which is far
lower in magnitude than correlation in the CG-metric space.

We also show the results for another metric, viz. area under the interpolation curve (AUC), in Fig. 16.
Although this shows the same Pearson’s correlation coefficient, the clusters are much less crisp in the
heatmap. In order to compute AUC, we first subtract the lowest point on the curve from all points,
and then compute the area under the shifted curve.

Finally, we consider the effect of Euclidean distance (Fig. 18 and 17). The clustering effect is
extremely strong and predictive of generalization behavior. It is worth considering the possibility
that basins trap the models in a way that forces them to have larger Euclidean distances, but those
Euclidean distances are the property that most determines the generalization strategy of the model.
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J ROBERTA RESULTS

BERT shows consistent clustering behavior, consistently aligned with generalization performance,
across each text classification task measured. RoBERTa (Liu et al., 2019) uses the same architecture
but trained longer and with slightly different objective and hyperparameters. Despite this similarity,
RoBERTa shows significantly better generalization on HANS-LO (Fig. 19(b)) and does not exhibit
clear clustering behavior (Fig. 19(a)). These results suggest that the simple basin selection behavior
we observe in BERT may indicate that a model can still benefit from longer periods of pretraining.
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(a) Heatmap of CG for finetuned RoBERTa models,
sorted by HANS-LO performance. No significant
clustering effects are visible, but the scale of barriers
is similar to that among the heavily clustered BERT
models.
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dicating the respective models found in each of the
two clusters formed by k-means clustering on the
CG spectral space.

Figure 19: CG results on a set of MNLI models finetuned from RoBERTa.

K RELATION TO FINETUNING DYNAMICS

Kumar et al. (2022) analytically proved that finetuning creates a distorting effect by rescaling existing
features rather than learning new features. To remedy this distortion, they proposed that rather
than finetuning the entire network at once, we first train the linear classifier head in isolation and
then finetune the rest of the network. This procedure is called linear probing then full fine-tuning
(LP-FT). We find that LP-FT reduces the range of convexity gaps, and accompanying clustering
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(a) Heatmap of CG for BERT MNLI models trained
by LP-FT, sorted by HANS-constituent performance.
This approach dramatically reduces the non convex-
ity of interpolation, compared to full finetuning.
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(b) Histogram on HANS-LO performance for LP-
FT BERT models, with blue and orange indicating
the respective models found in each of the two clus-
ters formed by k-means clustering on the CG spec-
tral space.

Figure 20: CG results on a set of MNLI models, initialized from BERT, that have been trained by
LP-FT (Kumar et al., 2022).

effects, between models (Fig. 20(a)). This change is accompanied by a slight shift in the distribution
of behavior on HANS-LO (Fig. 20(b)).

These findings are to be expected, as training the linear layer with the rest of the model frozen is a
convex optimization problem, and therefore each training run should be settling into the same basin
to start. These results imply that avoiding certain basins may be part of the advantage of LP-FT
over traditional finetuning. Although the resulting models still contain a slight outlier, the strong
multi-cluster behavior is no longer evident. It also presents a potential disadvantage of LP-FT for
ensembling, however, as the resulting models are more homogenous and therefore ensembling can
provide limited benefits.

L THE RELATIONSHIP BETWEEN EUCLIDEAN DISTANCE AND CG
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Figure 21: Relationship between Euclidean distance and CG. Line of best fit shown separately for
connections between and within basin clusters found in the validation loss CG distance space. (a)
MNLI models (b) QQP models

One extreme possibility is that these are not distinct basins, but instead that every model falls on the
perimeter of a single radially symmetric barrier where every cross section is a nearly identical shape.
The CG would then be determined entirely by Euclidean distance. Although clearly loss surface
geometry causes Euclidean distances to emerge rather than vice versa, we also see from Fig. 21 that
the relationship between these two metrics is different within vs between basin clusters. Although
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Figure 22: [Loss surface on the line joining pairs of models trained on MNLI.] Performance
during linear interpolation between pairs of models taken from the 5 best (gen.) and 5 worst (heur.) in
HANS-LO accuracy and 5 average models (middle). Overall the trend is towards better connectivity
as the model size increases.

there is no stark division between connections within and between basins, in general Euclidean
distance is more responsive to (i.e., has a greater slope with respect to) the size of the barrier within
clusters. Therefore placement of a model within a basin might determine Euclidean distance in a
different manner than placement with respect to other basins.

M SCALING LAWS OF LINEAR MODE CONNECTIVITY

We explore the effect of model size on linear connectivity of finetuned models in Figure 22. As the
scale increases we see the loss landscape changes from one of complete disconnectivity(Figure 22(a))
to one of complete connectivty(Figure 22(d)). This is in line with the results of Ainsworth et al.
(2022), which show increasing connectivity for wider ResNet models.

We can also observe that the region closer to the finetuned models becomes low-loss(Figure 22(b))
first, and only as we increase the scale further, does the non-convexity disappears and the region
between models become low-loss too. It is as though the basins in which the finetuned models land
get progressively closer to each other with increasing model size.

25


