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Abstract
Finetuning can cause spurious correlations to arise
between non-essential features and the target la-
bels, but benchmarks to study these effects involve
contrived settings and narrow tasks. In contrast,
we consider spurious correlations in multi-modal
Large Vision Language Models (LVLMs) pre-
trained on extensive and diverse datasets without
explicit task supervision. We develop a bench-
mark by sourcing GPT-4o errors on real-world
visual-question-answering (VQA) benchmarks,
then curating a subset through LVLM-human an-
notation and synthetic counterfactual evaluation
to identify errors caused by spurious correlations.
This process yields SpuriVerse, a novel bench-
mark comprised of 124 distinct types of spurious
correlations extracted from real-world datasets,
each containing 1 realistic and 10 synthetic VQA
samples for a total of 1364 multiple choice ques-
tions. We evaluate 15 open and closed-source
LVLMs on SpuriVerse, finding that even state-
of-the-art closed-source models struggle signif-
icantly, achieving at best only 37.1% accuracy.
Fine-tuning on synthetic examples that emphasize
the spurious correlation improves performance
to 78.40%, suggesting that training on diverse
spurious patterns generalizes to unseen situations:
models appear to learn to avoid ”shortcuts” and
attend to the overall image context.

1. Introduction
Real-world data frequently contains spurious correlations
—- patterns predictive of the target during training but irrele-
vant to the true label (Leino et al., 2018). For example, in
ImageNet, butterflies often appear with flowers (Singla &
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Feizi, 2021), while the Waterbirds dataset was constructed
to have waterbird images commonly appear on water back-
grounds (Sagawa et al., 2019). Models trained on such data
may learn to rely on these spurious features (backgrounds,
co-occurring objects, texture, etc.), leading to errors when
the correlations no longer hold. An example of such errors
is a landbird incorrectly classified as a waterbird simply
due to its water background (Sagawa et al., 2019). This
phenomenon is especially problematic in critical domains
such as medicine, where models trained to detect pneumonia
might rely on unrelated features (e.g., metal tokens) rather
than genuine disease indicators (Zech et al., 2018).

In traditional supervised training where a model is finetuned
for a downstream application, spurious correlation arises
from the association between spurious features and target
labels captured by the model through standard loss min-
imization (Sagawa et al., 2019; Kirichenko et al., 2022).
In the regime of pre-training Large Vision-Language Mod-
els (LVLMs), not only are the training data more diverse
and extensive, but the objective is no longer predicting a
task-specific target label. In this generalized regime, we
hypothesize that correlations between spurious features and
target concepts can still persist and compromise LVLMs’
performance. However, modern LVLMs’ evaluation suites
do not examine whether zero-shot LVLMs rely on spurious
features to make incorrect predictions, where fine-tuning
for a particular target label is not available. In this work,
we provide a benchmark to evaluate an LVLM’s sus-
ceptibility to spurious correlations in generalized set-
tings. In particular, we are interested in spurious correla-
tions that appear outside of contrived tasks where the cor-
relation is a result of non-representative training data such
as Gender-to-BlondHair in CelebA (Liu et al., 2015)
and Background-to-BirdType in WaterBirds (Sagawa
et al., 2019). Instead of contrived spurious correlations, we
focus on situations where a model may overrely on a domi-
nant correlation that is not necessarily irrelevant but is not
generally reliable (Figure 1).

We address two important challenges: (1) Existing bench-
marks often study spurious correlations by collecting a train-
ing set with an imbalanced distribution across spurious fea-
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tures and target labels (Sagawa et al., 2019; Lynch et al.,
2023; Joshi et al., 2023; Li et al., 2023b; Arjovsky et al.,
2019). These benchmarks are particularly useful for investi-
gating whether a model learns spurious correlations when
trained on a skewed distribution. However, when evaluat-
ing pre-trained LVLMs, curating an imbalanced dataset is
ineffective due to distribution shifts. (2) The presence of
spurious correlations often relies on annotations of spurious
features and target label. For example, in CelebA (Liu et al.,
2015), the comprehensive list of annotated face attributes
allows one to recognize a strong correlation between gen-
der and hair color in the training set. Observing that the
trained model achieves low accuracy on non-blond males
then confirms that the spurious correlation is captured by
the model. However, this approach only applies to a specific
target label identified beforehand. While one may consider
annotating an extensive list of potential spurious features,
and examining correlation among all possible pairs, it is
still impractical to annotate them on LVLM’s web-scale
pre-training data.

Instead of guessing the candidates for spurious features, we
choose a bottom-up approach, described in Figure 2: we
(1) identify errors of a strong LVLM on real-world visual-
question-answering (VQA) benchmarks; (2) derive a subset
of errors attributable to spurious correlations via human-
LVLM collaboration; then (3) validate these derived samples
by evaluating multiple LVLMs on synthetic counterfactual
examples with and without the spurious features. A signif-
icant accuracy drop when spurious feature(s) are present
indicates the model’s reliance on spurious correlation. This
process yields SpuriVerse, a novel multimodal benchmark
comprised of 124 distinct spurious correlations extracted
from real-world datasets (Li et al., 2024b; Schwenk et al.,
2022; Li et al., 2023a; 2024a), each containing 11 VQA
samples—1 from the original dataset, referred to as the an-
chor and 10 synthetic examples, generated as part of the
validation process, referred to as the spurious group—for
a total of 1364 multiple choice questions involving visual
understanding. SpuriVerse affords evaluation of the sus-
ceptibility of LVLMs to diverse spurious correlations in a
generalized setting. Moreover, this diversity enables inves-
tigation of whether models can learn to ignore spurious
correlations as a meta-skill to generalize to unseen situa-
tions.

We evaluate on 15 LVLMs, finding that even state-of-the-
art closed-source models such as Qwen-VL-Max struggle
significantly, achieving only 37.10% accuracy. No prompt-
based methods such as as Chain-of-Thought (Wei et al.,
2022) effectively mitigates the vulnerability. However, fine-
tuning on a subset of SpuriVerse’s anchor and evaluating on
the held-out set of anchor, improves accuracy from 35.20%
to 45.60% on previously unseen (not fine-tuned) spurious
correlations for Qwen-2.5-VL-7b-Instruct. Furthermore, we

boost the performance to 78.40% by fine-tuning the same
model on the spurious group counterparts of the original
training subset, where the held-out set is still previously
unseen spurious correlations. These results suggest that
models can learn a general meta-skill to avoid being dis-
tracted by a dominant correlation and pay more attention
to the overall scene. However, we also observe a trade-off
in overall performance (14% on Qwen-2.5-VL-7b-Instruct),
suggesting that models rely on these ”shortcuts” to deliver
their performance.

Our contributions are three-fold: (1) introducing a first spu-
rious correlation benchmark centering diverse, natural, gen-
eral Q&A settings suitable for frontier LVLMs, (2) demon-
strating that fine-tuning models on a diverse set of images
emphasizing a spurious correlation improves accuracy on
examples with unseen spurious features, and (3) revealing a
trade-off between performance on samples with and with-
out spurious features. These findings suggest a relationship
between spurious features and visual understanding: when
models are penalized for taking shortcuts, performance suf-
fers.

2. SpuriVerse
2.1. Motivation

In the task-oriented setting, spurious correlations arise from
non-representative correlations between features and tar-
get labels in the training data. While spurious correlations
surely exist in large-scale and diverse pre-training data, it
is impractical to identify a representative set of specific cor-
relations and use them for mitigation. We instead adopt
a data-driven approach, using existing LVLM benchmarks
that assess a variety of model capabilities, then identify
which errors are attributable to spurious correlations.

2.2. Curation Pipeline

Step 1: Select a challenging set. We start with the
error set of a strong model, GPT-4o, on a collection
of commonly used multi-modal multiple-choice question-
answering benchmarks, including SEEDBench (Li et al.,
2023a), SEEDBench2 (Li et al., 2024a), NaturalBench (Li
et al., 2024b), and AOKVQA (Schwenk et al., 2022). This
process produces 11225 samples in the error set from 55911
total samples.

Step 2: Two-stage verification. Given these challenging
samples, we first prompt GPT-4o to examine whether the
error can be attributed to spurious correlation and, if so, to
propose the candidate spurious features. This process results
in 1717 samples being VLM Accepted. Human annotators
then review each sample to 1) validate that the error can be
attributed to spurious correlation and 2) refine the proposed
spurious features if necessary. This process produces 194
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Figure 1. SpuriVerse consists of 124 distinct spurious correlations, each of which is comprised of 1 original example and 10 synthetic
images. Both original and synthetic images share the same multiple-choice question. Each image contains a feature that is spuriously
correlated with one of the choices, causing the model to make an error.

samples being Human Accepted.

Step 3: Generate counterfactual scene descriptions. To
verify that the error is attributable to the identified spuri-
ous attribute, we generate counterfactual images based on
the question and answer that does not include the spurious
feature. For example, a person holding an umbrella may
mislead the model into incorrectly guessing the weather is
rainy despite visible sunlight; we seek images for which the
answer is ”sunny” both with and without an umbrella.

Specifically, for each image-question-answer triple (i, q, a),
we prompt an LLM to generate a core group description
(CGD) and a spurious group description (SGD). For both
the CGD and the SGD, the prompt includes the question q
and the answer a, but for the SGD, the model is instructed
explicitly to include the spurious attribute. The specific
prompt can be found in the Appendix. The result is that for
each sample (i, q, a) there are two associated scene descrip-
tions dspurious

i and dcore
i .

Step 4: Generate Synthetic Images. We use the pairs
of scene descriptions from Step 3 to generate a set of 10
core images (the core group) and 10 spurious images (the
spurious group) using Stable Diffusion (Podell et al., 2023).

We employ human verification to ensure that the generated
images are faithful to the scene descriptions with the appro-
priate spurious and core features, where core features means
features associated with the correct answer. We manually
edit the scene descriptions to improve their faithfulness if
applicable. At this point, each sample si has two sets of
images, Gspurious

i and Gcore
i , where the size of each group is

10.

Step 5: Verify by Core vs. Spurious. Since the spurious
feature was removed, we expect that performance on the
counterfactual core group should be higher than that of the
spurious group. To validate this assumption, we measure
accuracy on both groups and only retain those samples that
exhibit at least a 30% difference in accuracy in at least one
of GPT-4o, Gemini 2.0 Flash, or Qwen-VL-Max.

Concretely, let Acc(f,G, s) be a function that represents the
accuracy of model f on a group of images G associated with
sample s. The selected samples for a particular model f are
Sanchor,f : {si|Acc(f,Gcore

i , si)−Acc(f,Gspurious
i , si) ≥ ϵ}.

Aggregating on the set F yields the final anchor set
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Figure 2. Curating SpuriVerse consists of 5 steps: (1) Derive errors from GPT-4o on a set of multi-modal multiple choice question
benchmarks. (2) Two-stage Verification: (a) Prompt GPT-4o to identify errors attributable to spurious correlation and report the candidate
spurious feature, and (b) Human verify the attribution and refine the spurious features if necessary. (3) Prompt GPT-4o to generate two
scene descriptions based on the correct answer, one with and one without the spurious feature. (4) Generate 10 synthetic images for each
description in pairs using Stable Diffusion, forming spurious and core groups for each sample. (5) Evaluate multiple LVLMs on both
groups, and select those samples for which the accuracy difference is at least 30% for any model.

Sanchor =
⋃
f∈F

Sanchor,f =
{
si

∣∣
max
f∈F

[
Acc(f,Gcore

i , si)−Acc(f,Gspurious
i , si)

]
≥ ϵ

}
2.3. Categories of spurious correlations

As discussed in prior work (Geirhos et al., 2020), spurious
correlations can be grouped into several high-level cate-
gories. To systematically understand the types of spurious
correlations commonly found in real-world datasets, we pre-
sented all 124 identified correlations to GPT-4.5, requesting
that it categorize each one. We manually reviewed each cate-
gory label for correctness. Table 1 shows the categories, and
Figure 3 shows the proportion of each category of spurious
correlations in SpuriVerse.

3. Experiments
In this section, we first present a comprehensive evaluation
of 14 recent LVLMs on SpuriVerse. We then show that
prompting methods are ineffective in correcting spurious

correlations. However, we demonstrate that simply finetun-
ing on a diverse set of spurious correlations helps generalize
to unseen spurious correlations. Lastly, by increasing the
proportion of spurious correlation samples in the finetuning
set, we observe an increase in the model’s accuracy on held-
out spurious correlations, and a trade-off in the accuracy on
the non-spurious samples.

3.1. Evaluation of SOTA LVLMs on SpuriVerse

We evaluate SpuriVerse on 15 recent LVLMs, including
GPT-4o, GPT-4o-mini, o4-mini, o3, Gemini 2.0 Flash,
Gemini 1.5 Pro, Claude 3.7 Sonnet, Qwen-VL-Max,
Qwen-VL-Pro, Qwen2.5-vl-7b-instruct, Qwen2.5-vl-32b-
instruct, Llama-3.2-11B-vision-instruct, Llama-3.2-90B-
vision-instruct, LLaVA-v1.6 7b and LLaVA-v1.5. We
present results on the anchor set (124 samples), their cor-
responding spurious groups (124 x 10 samples), and non-
spurious samples drawn randomly from the source bench-
marks (1240, same benchmark distribution as the anchor
set).

Table 2 shows that all LVLMs perform worse than ran-
dom guess on the anchor set. Two open-source mod-
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Category Description Example

Object co-occurrences Model incorrectly predicts based on com-
monly associated objects appearing together.

Misclassifying a person as skiing when
they’re walking with ski poles.

Contextual cues Model mispredicts based on background con-
text rather than the main subject itself.

Misclassifying a person as wet because
they’re near a lake.

Visual predominance Model misclassifies due to focusing on the
most visually dominant object in the scene.

Misclassifying someone sitting in the
corner due to a figure jumping centrally.

Physical properties Model confuses items based on their texture,
material, or other physical attributes.

Misclassifying a scarf as a stuffed toy.

Visual resemblance Model mistakes an object for another because
they look visually similar.

Misclassifying a mannequin as a real
person.

Spatial relationships Model misinterprets actions or interactions
based on object positions or orientations.

Misclassifying someone as kicking an-
other due to proximity of their legs.

Table 1. Categories of spurious correlations identified in SpuriVerse.

els, Llama-3.2-11B-vision-instruct and Qwen2.5-vl-32b-
instruct achieve the highest accuracy of 37.9%, lower than
random guess by 3.2%. The LVLMs perform slightly better
on the spurious group, with o4-mini achieving the high-
est accuracy of 51.45%, outperforming random guess by
10.75%. The increase in accuracy is expected because the
spurious group is synthesized based on attributes extracted
from the anchors, which inherently leads to a decrease in
complexity. All LVLMs perform significantly better on
non-spurious samples. The accuracy gap between the an-
chor set and non-spurious samples ranges from 35.16% to
67.42%. The accuracy gap between the spurious groups
and non-spurious samples ranges from 30.57% to 50.16%.
These results demonstrate that a) the spurious samples are
challenging for all models, and that b) the difficulty is at-
tributable to the presence of the spurious attribute.

In addition, Figure 4 shows the accuracies of select models
per category. Overall, LVLMs tend to perform better on
Spatial relationships and Visual resemblance. The espe-
cially high accuracy of Llama-3.2-11b and Llama-3.2-90b
on Spatial relationships is likely because only 2 spurious
correlations fall under this category. For the other four cat-
egories (Contextural cues, Object co-occurrence, Physical
properties, Visual predominance), all models obtain less
than 50% accuracy.

3.2. Effectiveness of prompting methods on spurious
correlation

We explore two prompting methods for correcting spuri-
ous correlations. One method we evaluated is Chain-of-
Thought (Wei et al., 2022), which asks the model to first give
its reasoning step by step, then give a final answer. Further,

we designed a prompt strategy specifically for correcting
spurious correlations, which we term spurious-aware. Spuri-
ous aware instructs the model to be aware that there may be
spurious features in the image, asks them to first describe the
potential spurious features, then make a prediction without
relying on the spurious features. We evaluated on GPT-4o,
Llama-3.2-11B-vision-instruct, and Qwen2.5-vl-7b-instruct
on the anchor set, spurious groups, and non-spurious sam-
ples, same as the main evaluation.

As shown in Table 3, Chain-of-Thought shows insignifi-
cant improvements on both anchor set and spurious groups
for all three models, while Spurious Aware shows moder-
ate improvements. However, even the best combination of
Qwen2.5-vl-7b-instruct and Spurious Aware achieves only
51.61% on the anchor set, merely 10.91% above random
guess. These results suggest that prompting alone is unlikely
to provide a general solution to the problem.

3.3. Finetuning generalizes to unseen spurious
correlation

Can a diverse set of spurious correlations be used to help
the model generalize to unseen spurious correlations? We
explore this question by finetuning on subsets of SpuriVerse
and test on the held-out spurious correlations. We divided
both the anchor set and the spurious groups into train/val/test
sets according to the ratio of 70/10/20. We finetuned Llama-
3.2-11B-vision-instruct and Qwen2.5-vl-7b-instruct on the
train and val sets of anchors and spurious groups, respec-
tively, and evaluated on the test sets. As a baseline, we also
considered the “non-spurious set”, which was previously
used to evaluate LVLMs. Similarly, the non-spurious set is
further split according to the ratio of 70/10/20.
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Model Anchor (%) Spurious (%) Non-spurious (%) ∆NS-A(%) ∆NS-S(%)

Open-Source Models
llama-3.2-11b 37.90 42.58 73.06 35.16 30.48
llama-3.2-90b 31.45 38.06 78.23 46.78 40.17
qwen-2.5-7b 33.87 42.82 79.76 45.89 36.94
qwen-2.5-32b 37.90 42.42 77.58 39.68 35.16
llava-1.5 20.97 24.60 64.03 43.06 39.43
llava-1.6 15.32 31.53 72.58 57.26 41.05

Closed-Source Models
qwen-vl-max 37.10 42.90 78.79 41.69 35.89
qwen-vl-plus 29.84 31.69 72.74 42.90 41.05
gpt-4o 15.32 47.02 82.74 67.42 35.72
gpt-4o-mini 21.77 23.39 73.55 51.78 50.16
gemini-1.5-pro 23.39 34.35 76.85 53.46 42.50
gemini-2.0-flash 20.16 34.60 80.56 60.40 45.96
claude-3.7-sonnet 27.42 37.42 78.79 51.37 41.37
o4-mini 33.06 51.45 82.02 48.96 30.57
o3 29.03 50.00 85.48 56.45 35.48

Random 40.70 40.70 40.70 0.00 0.00

Table 2. Performance on SpuriVerse. We report the performance of 15 recent LVLMs on SpuriVerse. All LVLMs perform worse than
random guess on the anchor set. Even the best model achieves the highest accuracy of 37.9%, lagging behind random guess by 3.2%.
The LVLMs perform poorly on spurious group as well, with the best model o4-mini achieving 51.45%, outperforming random guess by
merely 10.75%. As a point of comparison, the LVLMs all perform significantly better on non-spurious samples. (∆NS-A: Non-spurious -
Anchor, ∆NS-S: Non-spurious - Spurious).

Table 4 shows that finetuning on the anchor set improves
performance on held-out anchors and spurious samples
for both models. For example, finetuning Llama-3.2-11B-
vision-instruct increases accuracy from 41.60% to 59.20%
on anchors, and from 39.20% to 60.48% on spurious sam-
ples. On the other hand, finetuning on non-spurious samples
shows only slight improvement for Llama-3.2-11B-vision-
instruct and and slight performance decline for Qwen2.5-vl-
7b-instruct. In particular, Llama-3.2-11B-vision-instruct’s
accuracy increases to 48.80% on anchors, and 51.36% on
spurious samples, while Qwen2.5-vl-7b-instruct’s accuracy
decreases from 35.20% to 34.40% on anchors, and from
41.92% to 38.24% on spurious samples.

While finetuning on the original anchor set improves perfor-
mance, finetuning on synthetically generated spurious sam-
ples produces substantially greater improvements. Llama-
3.2-11B-vision-instruct improves from 41.60% to 80.00%
on anchors and from 39.20% to 79.12% on spurious sam-
ples. This suggests that synthetic examples, which allow us
to increase the training size, are effective for generalizing
to unseen spurious correlations. However, we observe that

the dramatic increase in the model’s accuracy on spurious
correlations comes at the cost of accuracy on non-spurious
samples. In particular, Llama-3.2-11B-vision-instruct’s ac-
curacy drops from 73.44% to 56.80% when finetuned on
spurious samples. Its accuracy drops 66.48% when fine-
tuned on anchors.

To balance the trade-off between accuracies on spurious and
non-spurious samples, we consider finetuning on a “Mixed
set”, which is simply a concatenation of Spurious and Non-
spurious samples. In comparison to finetuning on spuri-
ous samples only, finetuning on the Mixed set greatly im-
proves models’ accuracies on non-spurious samples, while
trading-off some performance on the anchor set and spuri-
ous samples. Specifically, finetuning on mixed improves
Llama-3.2-11B-vision-instruct’s accuracy from 41.6% to
71.2% on anchors, and 39.2% to 68.88% on spurious groups,
lagging behind finetuning on spurious groups by 8.8% on
anchors, and 10.24% on spurious groups, while improving
from 56.80% to 64.72% on non-spurious samples.
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Model Prompt Strategy Anchor (%) Spurious (%) Non-spurious (%)

GPT-4o
Direct Prompting 16.13 42.90 80.48
Chain of Thought 25.00 48.39 77.74
Spurious Aware 41.94 58.06 78.55

Llama-3.2-11b
Direct Prompting 35.48 29.84 69.60
Chain of Thought 33.06 38.23 70.48
Spurious Aware 50.00 52.50 69.35

Qwen-2.5-7b
Direct Prompting 37.90 41.77 70.24
Chain of Thought 37.90 48.79 74.68
Spurious Aware 51.61 56.94 72.18

Table 3. Effectiveness of prompting strategies. Chain of Thought shows insignificant improvement, while Spurious Aware moderately
improves over Direct Prompting.

Finetune Setup Anchor Spurious Non-spurious
llama qwen llama qwen llama qwen

Anchor 59.207.76 45.606.97 60.483.02 45.126.79 66.483.69 81.362.91
Spurious 80.009.12 78.403.20 79.125.52 75.606.20 56.802.10 67.203.65
Non-spurious 48.806.40 34.404.08 51.362.70 38.246.95 71.202.16 79.842.38
Mixed 71.203.92 64.806.40 68.887.75 64.649.54 64.721.09 74.482.56
No finetuning 41.606.50 35.202.99 39.203.29 41.926.00 73.443.36 81.201.84

Table 4. Finetuning generalizes to unseen spurious correlations. When models are finetuned on the anchor set, their performance
improves on both held-out anchors and spurious samples. Finetuning directly on spurious samples further boosts accuracy for both models.
Compared to finetuning solely on spurious samples, finetuning on the Mixed set significantly enhances performance on non-spurious
samples, albeit with some trade-off in accuracy on the anchor set and spurious groups.

3.4. Trade-off between accuracies on spurious and
non-spurious samples

We investigate the trade-off between accuracies on spuri-
ous and non-spurious samples further by controlling the
proportion of spurious samples in the finetuning set. We
focus on the spurious group as it demonstrates significant
improvement as well as a significant trade-off in table 4. We
split the spurious group into train/test with a ratio of 80/20.
Then, for the train set, we keep a fraction of the set, and
replace the others with random samples from the source
benchmarks. We vary the fraction from {0%, 20%, 40%,
60%, 80%, 100%}. Then, the train set is further split into
87.5/12.5. So that the final train/val/test follows the ratio
of 70/10/20, while keeping the distribution of train and val
set the same. All splits and removals are performed on the
type of spurious correlation rather than individual samples
to ensure we are measuring generalization to unseen cases.

Figure 6 shows that, as the number of spurious correla-
tions increases, both Llama-3.2-11B-vision-instruct and
Qwen2.5-vl-7b-instruct’s accuracies increase on both the an-
chor set and the spurious groups, suggesting that diversity of
spurious correlation can indeed improve generalization. Fur-

ther, both models’ accuracy decreases on the non-spurious
samples, suggesting that the models may rely on ”shortcuts”
to achieve high performance.

4. Related Work
Benchmarks for Spurious Correlation Benchmarks for
studying spurious correlation in a classification setting are
common (Arjovsky et al., 2019; Joshi et al., 2023; Li et al.,
2023b; Koh et al., 2021; Lynch et al., 2023; Ye et al., 2024;
Zech et al., 2018). Two popular vision benchmarks are Wa-
terbirds (Sagawa et al., 2019) and CelebA (Liu et al., 2015).
Waterbirds is a dataset of a water/land bird superimposed
on either a water or land background. The model learns to
rely on the background during training, and therefore makes
mistakes when the background is swapped. CelebA con-
tains images of celebrities’ faces, and is known for its strong
correlation between gender and hair color. Two popular lan-
guage benchmarks are MultiNLI (Williams et al., 2018) and
CivilComments-WILDS (Koh et al., 2021). In MultiNLI,
the task is to classify whether the second sentence is entailed
by, neutral with, or contradicts the first sentence. The dataset
contains a strong correlation between negation words and
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Figure 3. Overview of SpuriVerse

Figure 4. Accuracies of LVLMs per category
Figure 5. Categories of spurious correlations. Visual predom-
inance and Object co-occurrence make up 37.1% and 33.1% of
SpuriVerse, respectively. Only 2 spurious correlations fall under
Spatial relationships. LVLMs tend to do better on Visual resem-
blance and Spatial relationships, achieving more than 50% accu-
racy, and achieve less than 50% accuracy on all other categories.

contradictions. CivilComments-WILDS is a dataset of on-
line comments. The goal is to predict whether a comment is
toxic, and it is correlated with the mention of certain demo-
graphic identities(e.g., male, female). These datasets focus
on one task and contain only a few spuriously correlated
attributes. Recent work introduces several synthetic datasets
with multiple spurious correlations (Lynch et al., 2023; Joshi
et al., 2023; Li et al., 2023b). For example, UrbanCars is

Figure 6. Accuracy-robustness trade-off. As the number of spu-
rious correlations increases, both models’ accuracies increase on
the anchor set and spurious groups, while decreasing on the non-
spurious samples.

a dataset of urban and country cars, with both background
and co-occurring objects as spurious attributes (Li et al.,
2023b). However, the number of spurious correlations and
tasks in these benchmarks is still limited. These benchmarks
emphasize a narrow task with foreknowledge of group and
feature labels; we consider whether pretrained LVLMs are
susceptible to spurious correlations in general settings.

Work most closely related to ours is MMSpuBench (Ye et al.,
2024), a Visual Question Answering (VQA) benchmark
that asks a model to choose which feature is best used to
identify an object in an image. The choices include three
spurious and one core feature. However, the faithfulness
of the response is unclear: the model may still be using
the core attribute to correctly identify the object despite
selecting a spurious feature as its response. SpuriVerse
shows that existing LVLMs make mistakes attributable to
spurious correlations, achieving at best 37.9%.

Methods for Mitigating Spurious Correlation Previous
approaches for mitigating spurious correlations typically re-
quire foreknowledge of correlated attributes (Sagawa et al.,
2019; Sohoni et al., 2020; Zhang et al., 2022; Liu et al., 2021;
Kirichenko et al., 2022). Group DRO explicitly optimizes
model performance on worst-case groups identified by spu-
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rious attributes (Sagawa et al., 2019). Just-Train-Twice (Liu
et al., 2021) and variants rely on two-stage pipelines where
initial models identify errors or minority groups, which
subsequently inform reweighting during retraining. Recent
methods, like Concept Correction (Yang et al., 2024), uti-
lize out-of-distribution examples to infer spurious attributes
without requiring explicit labels. However, these methods
generally assume a task-specific finetuning setting, limit-
ing applicability to off-the-shelf LVLM deployments like
ChatGPT. In contrast, we show that finetuning on diverse
examples can generalize to unseen situations.

Benchmarks for LVLMs The recent proliferation of
benchmarks for LVLMs (Fu et al., 2024; Yue et al., 2024;
Yao et al., 2025; Wen et al., 2023; Saikh et al., 2022; Liu
et al., 2024; Schwenk et al., 2022; Li et al., 2023a; 2024a)
focuses extensively on assessing capabilities in perception,
reasoning, and knowledge across diverse domains. Concur-
rently, specialized benchmarks target critical LVLM short-
comings, such as hallucinations (Guan et al., 2024). Our
work uniquely investigates another fundamental vulnerabil-
ity: susceptibility to generalized spurious correlations.

5. Societal Impacts
While our work serves as a new spurious correlation bench-
mark for LVLMs, it is not to be used as a bullet-proof shield
to claim that ”a model with good accuracy on SpuriVerse
can be free from all potential spurious correlation attacks,”
and thus reduce the efforts in improving the robustness of
these models. As we also release the scene descriptions for
the spurious group generation, malicious users can poten-
tially design attacks more easily to generate harmful images
while maintaining their usefulness to improve robustness
against spurious correlation evaluated on SpuriVerse, caus-
ing a false promise of ”better” models. In our work, we
demonstrate the possibility of generalizing to unseen spuri-
ous correlations when finetuning on a diverse set of spurious
correlations. We hope SpuriVerse can help foster more fu-
ture work in this direction. We believe that SpuriVerse pro-
vides valuable insights into LVLMs’ robustness to common
spurious correlations when used properly.

6. Conclusion
We introduce SpuriVerse, a benchmark for evaluating the
susceptibility of large vision-language models to spurious
correlations in real-world VQA tasks. By identifying and
validating 124 distinct spurious patterns, SpuriVerse enables
targeted evaluation of model behavior in the presence of
dominant but unreliable correlations. Experiments across
15 LVLMs show that even state-of-the-art models frequently
rely on such correlations. Fine-tuning on synthetic examples
improves generalization to previously unseen spurious pat-

terns, suggesting that models can learn to attend to broader
scene context. However, this improvement comes with a
trade-off in overall performance, indicating that models may
fundamentally rely on ”shortcut” correlations. SpuriVerse
supports future research on methods to promote robust scene
understanding and reduce dependence on spurious cues.
The limitations and societal impacts are discussed in the
Appendix.
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A. You can have an appendix here.
You can have as much text here as you want. The main body must be at most 8 pages long. For the final version, one more
page can be added. If you want, you can use an appendix like this one.

The \onecolumn command above can be kept in place if you prefer a one-column appendix, or can be removed if you
prefer a two-column appendix. Apart from this possible change, the style (font size, spacing, margins, page numbering, etc.)
should be kept the same as the main body.

B. SpuriVerse Details
B.1. Prompts used for Dataset Curation

In this section, we include the prompts used for each step in the pipeline.

Step 1: Select a challenging set. The following template was used to prompt GPT-4o to find the error set on each source
benchmark.

(System Prompt)

You will be given an image, and a multiple choice question regarding the
image. You will provide your answer as one of the options (A), (B), (C),
or (D). You will answer correctly. You will not use any fullstops or
punctuation. You will not explain your answer or write words before or after
the answer. Only the answer itself will you respond with.

(User Prompt)

<Image/>
Question: {sample[‘question’]}
Options:
(A) {sample[‘A’]}
(B) {sample[‘B’]}
(C) {sample[‘C’]}
(D) {sample[‘D’]}
Please select the correct answer from the options above.

Step 2: Two-stage verification. The following prompt was used to determine whether a sample falls into VLM Accepted
subset.

(System Prompt)

You are a helpful assistant to determine if a model’s error is caused
primarily by spurious correlations, patterns that can often be used to
predict the target, but are not actually causal.

(User Prompt)

<Image/>
Given this image, a Large Multi-modal Model was asked, sample[’question’],
and given the choices:
(A) {sample[‘A’]}
(B) {sample[‘B’]}
(C) {sample[‘C’]}
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(D) {sample[‘D’]}
The model chose {prediction} and the correct answer is {answer}. The error
is most likely due to spurious correlation. List the top two spurious
attributes that the model may have used to predict the wrong answer
{prediction}.

Step 3: Generate counterfactual scene descriptions. The following prompt was used to generate the pairs of counterfactual
scene descriptions. Specifically, the goal is to first construct a description that enables the question-answer pair to hold in
the scene description. Then, generate a spurious counterpart by extending the previous description to contain the spurious
attributes provided.

<Image/>
You are given the following:
question: {question}
answer: {answer}
spurious attribute: {attributes}

Based on the question and the answer, generate a description of a scene such
that when the question is asked, the answer is {answer}. Keep the description
to one short sentence.

Write another one sentence description that includes the spurious attribute
while maintaining the same context.

Return the response in JSON format with the two keys: "positive" and
"negative" where "positive" describes the scene with the spurious attribute
and "negative" describes the scene without the spurious attribute.

Step 5: Verify by Core vs. Spurious. The same prompt in Step 1 was used to evaluate GPT-4o, Gemini 2.0 Flash, and
Qwen-VL-Max on Human Accepted subset.

B.2. Annotation Interface for Dataset Curation

Figure 9 displays the interface for refining spurious attributes and image descriptions. In step 1, the interface displays the
image and question from the error set. In addition, it also displays GPT-4o’s prediction and the ground truth answer. In step
2, annotators can view the prefetched spurious attributes by clicking on From store or generate new spurious attributes by
clickong on Run. The annotators can then refine the spurious attributes in the text box. In step 3, annotators can click on Run
and generate image descriptions for both spurious and core groups based on the spurious attributes extracted in Step 2. In
step 4, the images for spurious and core groups can be generated based on the descriptions in step 3. Annotators can go back
to step 3 and refine the descriptions if the images generated are not faithful. In step 5, annotators can take a peek at models’
evaluations on one image for spurious group and one image for core group.

B.3. Prompt used for Category Identification

<spurious examples.csv/>

You are given a list of examples that a model answers incorrectly due to
spurious correlation. For each row, a model makes an error due to the
correlation between the spurious attribute (spuriousAttr) and the prediction.
If the prediction is ‘Yes’ or ‘No’, refer to the question for context.

Determine the spurious correlation for each row. Then create a taxonomy
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based on the spurious correlations.

B.4. Dataset Cost

We used Stable Diffusion to generate the synthetic images for verifying the spurious correlations, and the spurious groups
also make up part of the dataset. In our curation pipeline, 194 samples were being selected after the human-VLM verfication
step. We thus generated 194× 2× 10 = 3880 images using Stable Diffusion Ultra. Since generating each image costs 8
credits, and each credit costs $0.01, the total cost is 3880× 8× 0.01 = 310.4dollars.

C. Experiments
C.1. Prompts used for Main results

We used the following prompt:

(System Prompt)

You will be given an image, and a multiple choice question regarding the
image. You will provide your answer as one of the options (A), (B), (C),
or (D). You will answer correctly. You will not use any fullstops or
punctuation. You will not explain your answer or write words before or after
the answer. Only the answer itself will you respond with.

(User Prompt)

<Image/>
Question: {sample[‘question’]}
Options:
(A) {sample[‘A’]}
(B) {sample[‘B’]}
(C) {sample[‘C’]}
(D) {sample[‘D’]}
Please select the correct answer from the options above.

C.2. Prompts used for Prompting strategies

We kept the user prompt the same as Main Results. For Chain-of-thought, we used the following system
prompt:

(System Prompt)

You will be given an image, and a multiple choice question regarding the
image. Think step by step and give a final answer. You will include one
of the choices (A), (B), (C), or (D) in your final answer.

For Spurious Aware, we used the following sytem prompt:

(System Prompt)

You will be given an image, and a multiple choice question regarding the
image. Be aware that there may be some spurious features in the image that
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associate with some of the options. Describe the potential spurious features.
Then give a answer without using the spurious features. You will include one
of the choices (A), (B), (C), or (D) in your final answer.

C.3. Models

We evaluate SpuriVerse on 15 recent LVLMs, including GPT-4o (OpenAI, 2023), GPT-4o-mini (OpenAI, 2023), o4-
mini (OpenAI, 2023), o3 (OpenAI, 2023), Gemini 2.0 Flash (DeepMind, 2024), Gemini 1.5 Pro (DeepMind, 2024), Claude
3.7 Sonnet (Anthropic, 2024), Qwen-VL-Max (Cloud, 2025), Qwen-VL-Pro (Cloud, 2025), Qwen2.5-vl-7b-instruct (Team,
2025), Qwen2.5-vl-32b-instruct (Team, 2025), Llama-3.2-11B-vision-instruct (Grattafiori et al., 2024), Llama-3.2-90B-
vision-instruct (Grattafiori et al., 2024), LLaVA-v1.6 7b (Liu et al., 2023a) and LLaVA-v1.5 (Liu et al., 2023b).

We used OpenAI API (OpenAI, 2023) for making requests to GPT-4o, GPT-4o-mini, o4-mini, o3. We used Gemini
API (DeepMind, 2024) for making requests to Gemini 2.0 Flash, Gemini 1.5 Pro. We used Anthropic API (Anthropic,
2024) for making requests to Claude 3.7 Sonnet. We used Qwen API (Cloud, 2025) for making requests to Qwen-VL-Max,
Qwen-VL-Pro. We accessed Qwen2.5-vl-7b-instruct, Qwen2.5-vl-32b-instruct, Llama-3.2-11B-vision-instruct, Llama-3.2-
90B-vision-instruct via Unsloth AI (Daniel Han & team, 2023). We accessed LLaVA-v1.6 7b and LLaVA-v1.5 via Hugging
Face (Wolf et al., 2020).

Hyperparameters During evaluation, for the reasoning models (o3 and o4-mini), we set max tokens to 3000. For all
other models, we set max tokens to 300. All the open-sourced models are 4-bit quantized during evaluation.

Versions For GPT-4o, we used version “gpt-4o-2024-08-06”. For GPT-4o-mini, we used version “gpt-4o-mini-2024-07-
18”. For Claude 3.7 Sonnet, we used version “claude-3-7-sonnet-20250219”.

C.4. Finetuning details

We divided both the anchor set and the spurious groups into train/val/test sets according to the ratio of 70/10/20. We
finetuned Llama-3.2-11B-vision-instruct and Qwen2.5-vl-7b-instruct on the train and val sets of anchors and spurious
groups, respectively, and evaluated on the test sets. As a baseline, we also considered the “non-spurious set”, which was
sampled randomly from the source benchmarks. The samples are drawn with the same benchmark distribution as the anchor
set. Similarly, the non-spurious set is further split according to the ratio of 70/10/20. We also finetuned on the “Mixed set”,
which was the concatenation of spurious groups and the “non-spurious set”.

All finetuning results were measured across 5 seeds, where each seed corresponds to a different split of the data.

We finetuned both Llama-3.2-11B-vision-instruct and Qwen2.5-vl-7b-instruct using unsloth (Daniel Han & team, 2023).

We used the following hyperparameters for both models:

finetune vision layers=True,
finetune language layers=True,
finetune attention modules=True,
finetune mlp modules=True,
r=16,
lora alpha=16,
lora dropout=0,
bias="none",
random state=3407,
use rslora=False,
loftq config=None

We used the following SFT configuration for both models:
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per device train batch size=2,
gradient accumulation steps=4,
warmup steps=5,
num train epochs=10,
learning rate=2e-4,
logging steps=1,
optim="adamw 8bit",
weight decay=0.01,
lr scheduler type="linear",
seed=3407,
remove unused columns=False,
dataset text field="",
dataset kwargs={"skip prepare dataset": True},
dataset num proc=4,
max seq length=2048,
eval strategy="epoch",
load best model at end=True,
save strategy="best",
metric for best model="eval loss",
greater is better=False,
save total limit=2,

We used the following instruction format during finetuning:

<Image/>
Question: sample[‘question’]
Options:
(A) sample[‘A’]
(B) sample[‘B’]
(C) sample[‘C’]
(D) sample[‘D’]
Please select the correct answer from the options above.

C.5. Robustness-accuracy Tradeoff

The procedure to replace spurious samples with non-spurious samples is described in Algorithm C.5. Particularly, we use
the anchor set Sanchor as the reference to decide the distribution of the source benchmarks in the training set. If a sample si
in Sanchor is determined to use non-spurious samples, then we randomly sample 10 images from the source benchmark si
originates from. Otherwise, we use the original spurious group images Gi of size 10.

As a toy example, suppose Sanchor = {s1, s2, s3, s4, s5}. Let {s1, s2, s3, s4} be the training split at first, and each
of them comes from a distinct benchmark we use. Let the second split between spurious and non-spurious yields
Strain, spurious = {s1, s2},Strain, non-spurious = {s3, s4} with r = 50%. Then, the next step will yield a training set of 40
samples, consisting of 20 samples from G1, G2, 10 samples drawn from the source benchmark of s3, and 10 samples
drawn from the source benchmark of s4. With this training set S ′train, we then do a train-val split with a fraction of 87.5%
and 12.5%. Input: anchor set Sanchor Input: spurious fraction r Input: spurious group samples G Gi is a set of 10
samples using synthetic images for si ∈ Sanchor Input: benchmark samples B Bi is the set of all samples from the i-th
benchmark Let b(s) be the source benchmark of a sample s Strain,Stest ← random split(Sanchor, fraction=[0.8,
0.2]) Strain, spurious,Strain, non-spurious ← random split(Strain, fraction=[r, 1 − r]) S ′train ← {} si ∈ Strain, spurious
add Gi to S ′train si ∈ Strain, non-spurious j ← b(si) Ssi,Bj ∼ Bj where |Ssi,Bj | = 10 Draw 10 random samples from the
source benchmark add Ssi,Bj

to S ′train S ′′train,S ′′val ← random split(S ′train, fraction=[0.875, 0.125]) fraction to
make train/val/test split 70/10/20 w.r.t. Sanchor Output: S ′′train,S ′′val,Stest
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C.6. Compute Resources

The experiments were conducted on a 4xNVIDIA H100, where the GPU memory is 4x95830MB. The CPU architecture is
x86 64, and there are 64 CPUs.

For the finetuning experiments, since both the Llama-3.2-11B-vision-instruct and Qwen2.5-vl-7b-instruct are 4-bit quantized
and optimized with UnslothAI, approximately 12GB of GPU memory is sufficient for finetuning. Finetuning each model on
spurious groups/non-spurious groups for 10 epochs takes about 3 hours on a single H100. Overall, the total compute time is
num setups(3)× num models(2)× num seeds(5)× duration(3) = 90hours. For the accuracy-robustness trade-off
experiment, the total compute time is num setups(6)× num models(2)× num seeds(5)× duration(3) = 180hours.
In this case, the setup refers to the proportion of the spurious samples.

Finetuning on the anchor set takes approximately 0.5 hour, since the anchor set is a much smaller set. Hence the total
compute time is num setups(3)× num models(2)× num seeds(5)× duration(0.5) = 15hours.

For the main results, running Llama-3.2-90B-Vision-Instruct for inference takes about 45 GB GPU memory, and running
Qwen2.5-vl-32b-instruct takes about 24 GB GPU memory. All the other open-source models can be run under 12 GB of
GPU memory. Evaluation of each non-reasoning model takes about 0.5 hour on spurious and non-spurious samples. Hence,
the total compute time is num setups(2)× num models(13)× duration(0.5) = 13hours. Evaluation of the reasoning
models (o3 and o4-mini) takes about 10 hours. Hence, the total compute time is num setups(2) × num models(2) ×
duration(10) = 40hours.

Evaluating on the anchor set takes about 0.05 hours for the non-reasoning models, and 1 hour for the reasoning models. Hence,
the total compute time for non-reasoning models is num setups(2)× num models(13)× duration(0.05) = 1.3hours,
and the total compute time for reasoning models is num setups(2)× num models(2)× duration(1) = 4hours.

The full research project does not require more compute than the experiments reported in the paper.

D. Limitations
Curation Bias. Two forms of bias can exist in our curation pipeline. First, we use GPT-4o as the single strong model in the
early steps of the curation pipeline. This procedure can limit us to spurious correlations closer to its training distribution.
However, our last counterfactual verification attempts to mitigate this potential bias. Secondly, the human annotations were
done by two contributors on the team with agreement. There can be annotation variance when it comes to other annotators.

Sample Format. In the collection of existing benchmarks, we only use multiple-choice question-answering benchmarks
because they limit the output space compared to open-generation format, allowing easier investigation into why a model
makes an incorrect prediction over the correct answer. Indeed, spurious correlation can exist when the spurious features
appear and the model outputs a correlated concept in open generation. We believe that extending to open-generation
format would require another layer of evaluation that captures the concepts/objects in generated outputs, either through
LLM-as-a-judge or human annotations. As there are ongoing efforts in this layer of complexity and its potential biases, we
leave this extension in format for future work.

E. Licenses
The anchor set of SpuriVerse is collected from AOKVQA (Schwenk et al., 2022), SEEDBench (Li et al., 2023a), SEED-
Bench2 (Li et al., 2024a), NaturalBench (Li et al., 2024b).

The license or terms of use for each dataset and model is provided in the following:

Datasets:
AOKVQA: Apache-2.0.
SEEDBench: Attribution-NonCommercial 4.0 International.
SEEDBench2: Attribution-NonCommercial 4.0 International.
NaturalBench: Apache-2.0.

Models: GPT-4o: OpenAI’s Term of Use and Business Terms
GPT-4o-mini: OpenAI’s Term of Use and Business Terms
o4-mini: OpenAI’s Term of Use and Business Terms
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o3: OpenAI’s Term of Use and Business Terms
Gemini 2.0 Flash: Google’s API Terms of Service
Gemini 1.5 Pro: Google’s API Terms of Service
Claude 3.7 Sonnet: Anthropic’s Terms of Service
Qwen-VL-Max: Alibaba Cloud’s Terms of Service
Qwen-VL-Pro: Alibaba Cloud’s Terms of Service
Qwen2.5-vl-7b-instruct: Apache-2.0
Qwen2.5-vl-32b-instruct: Apache-2.0
Llama-3.2-11B-vision-instruct: Llama 3.2 Community License
Llama-3.2-90B-vision-instruct: Llama 3.2 Community License
LLaVA-v1.6 7b: LLAMA 2 Community License
LLaVA-v1.5: LLAMA 2 Community License
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Figure 7. Step 1
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Figure 8. Steps 2-5

Figure 9. Annotation interface for refining spurious attributes and image descriptions. The curation pipeline consists of 5 steps: Step 1
displays the image and question from the error set. Step 2 allows annotators to view extracted spurious attributes by clicking on From store
or generating new spurious attributes by clicking on Run. Annotators can edit the spurious attributes. Step 3 generates image descriptions
based on the extracted or edited spurious attributes. Step 4 then generates images for spurious and core groups. Annotators can go back to
step 3 and refine the description if the images generated are not faithful. Step 5 allows annotators to take a peek at models’ evaluations on
a few images (One for each group).
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