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ABSTRACT

Most existing knowledge distillation approaches for DETR-based detectors de-
pend on query matching between teacher and student models, typically utilizing
Hungarian matching algorithms, which are inefficient and time consuming. To
mitigate these limitations, we propose an effective and efficient distillation frame-
work that obviates the need for matching. Specifically, we introduce a novel active
sampling and alignment strategy tailored for matching-free knowledge distillation.
In our approach, the output from both the teacher and student models queries are
regarded as representations of their corresponding output distributions. Then, with
appropriate sampling points, we concurrently sample from both distributions and
then enforce consistency between the sampled outcomes, thereby aligning the dis-
tribution between teacher and student. For the sampling procedure, we devise a
simple but effective attention-based sampling module, complemented by a dedi-
cated learning strategy for effective distribution sampling. Additionally, for the
selection of sampling points during distillation, we propose a prior-guided point
sampling approach that more accurately captures the teacher’s output distribution,
enhancing alignment with the student’s distribution. Extensive experiments con-
ducted across multiple datasets and baseline detectors validate that our method
substantially enhances the performance of the student model. Compared to the
DETR-Distill, our approach achieves superior performance while accelerating the
distillation training process by 3.8 times. The code is available in the supplemen-
tary materials and will be publicly released upon acceptance of this paper.

1 INTRODUCTION

In recent years, DETR-based methods (Carion et al., 2020; Zhu et al., 2020; Dai et al., 2021; Zhang
et al., 2022; Roh et al., 2021) have demonstrated considerable potential in tasks such as object de-
tection. DETR innovatively introduces the Transformer (Vaswani et al., 2017; Dosovitskiy et al.,
2020) architecture into object detection, eliminating the reliance on traditional anchor boxes and
post-processing steps (Redmon et al., 2016; Girshick, 2015). This approach not only streamlines the
object detection pipeline but also achieves performance comparable to, or even surpassing, conven-
tional methods on benchmark datasets such as COCO (Lin et al., 2014).

Despite the remarkable performance of DETR-based detectors, their high computational cost poses
significant challenges for deployment in real-time applications. Knowledge distillation (KD) (Hin-
ton et al., 2015) emerges as an effective model compression technique, optimizing the training of a
student model by minimizing the discrepancy between its outputs and those of a high-performing
teacher model (e.g., through temperature-scaled softmax distributions). This process enables the
transfer of knowledge from a large, high-performance teacher model to a smaller student model,
thereby achieving a balance between performance and efficiency in the student model’s detection
results.

Recent studies have investigated the application of knowledge distillation (KD) techniques to DETR-
based detection frameworks. Since DETR formulates object detection as a set prediction task by
employing object queries to represent potential targets, the distillation process typically involves
aligning query-level predictions between teacher and student models. However, this procedure is
computationally expensive and time-consuming. Specifically, DETR often requires a large number
of queries (e.g., 300), and the matching operation—commonly performed via bipartite matching al-
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Figure 1: Comparison between matching-based methods and active sampling methods. Matching-
based methods require the computation of a cost matrix between points, followed by the estab-
lishment of correspondences based on the matrix. These steps are often time-consuming, and the
computational cost becomes even more pronounced when the number of points to be matched is
large. In contrast, active sampling methods do not require the computation of a cost matrix, making
them more convenient and efficient.

gorithms such as the Hungarian method on CPUs—introduces substantial overhead, thereby limiting
training efficiency. For example, experiments with Deformable DETR (Zhu et al., 2020) demonstrate
that the matching step alone accounts for a significant portion of the overall training time. To miti-
gate these limitations, several strategies have been proposed. DETRDistill (Chang et al., 2023), for
instance, introduces a Query-prior Assignment mechanism that incorporates the teacher’s queries
as an additional prior for the student. This design encourages the student to generate predictions
conditioned on the teacher’s stable bipartite matching outcomes, thereby circumventing the need for
redundant matching with the teacher’s outputs. Empirical results suggest that this approach acceler-
ates convergence and enhances the student’s performance. Similarly, KD DETR (Wang et al., 2024)
adopts dedicated object queries that disentangle detection from distillation, ensuring consistent su-
pervision between teacher and student models while avoiding explicit feature alignment through
matching. Despite their merits, these methods remain limited. Relying directly on the teacher’s
bipartite matching outcomes may be suboptimal, as discrepancies in feature distributions between
teacher and student can undermine the quality of transferred knowledge. Ablation studies in DE-
TRDistill further indicate that the Query-prior Assignment strategy yields only marginal gains (e.g.,
+0.4 AP), suggesting that such straightforward alignment may be insufficient for effective optimiza-
tion. In the case of KD DETR, additional query points are required to enable the distillation process,
which increases the model’s complexity. Moreover, this approach may suffer from the issue of in-
consistent predictions at identical query points, which can arise from feature discrepancies between
the teacher and student models.

To address the limitations of existing knowledge distillation approaches for DETR-based detectors,
we propose a novel framework that eliminates the reliance on inefficient and time-consuming Hun-
garian matching. Specifically, we introduce an active sampling and alignment method designed to
achieve query distribution alignment between teacher and student models without explicit matching.
The key idea is to approximate distribution alignment indirectly by enforcing consistency between
sampled outcomes derived under a tailored sampling strategy. To this end, we treat the query outputs
of both teacher and student models as representations of their respective prediction distributions and
design a lightweight yet effective module that performs sampling directly from these outputs. By
jointly sampling from both models and aligning the resulting samples, the student distribution is
guided toward that of the teacher. Furthermore, during distillation, we propose a prior-based sam-
pling scheme, which enhances the representativeness of selected sampling points and strengthens
distribution alignment, ultimately improving the effectiveness of knowledge transfer. Extensive ex-
perimental results demonstrate that our method not only substantially reduces the complexity of the
distillation process but also improves the performance of the distilled model, exhibiting significant
advantages over previous approaches. We believe our work will bring insights into the related fields.

The main contributions of this paper can be summarized as follows:
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• This study introduces a novel distillation method for DETR-based models, which lever-
ages active sampling and alignment to perform knowledge transferring, eliminating costly
matching operations and yielding substantial gains in efficiency and performance.

• We propose an effective sampling module specifically tailored to the prediction space of
query-based detectors. The module projects the prediction outputs of individual queries
into a high-dimensional representation space, wherein the query outputs can be more ef-
fectively sampled due to enhanced separability.

• During distillation, we further propose a prior-based sampling strategy that selects sampling
points capable of better preserving the distributional characteristics of the teacher model,
thereby leading to more effective alignment between teacher and student distributions.

• Extensive experiments conducted on multiple datasets and several popular DETR-based
detectors validate the effectiveness of our proposed method. The results show that our
approach achieves highly competitive performance and efficiency compared to existing
methods.

2 RELATED WORKS

DETR based Detection

The Transformer architecture has demonstrated remarkable success in natural language processing
tasks, prompting researchers to explore its application to vision tasks. The seminal work, Detection
Transformer (DETR), introduced an end-to-end Transformer-based object detector that eliminates
the need for post-processing steps. Unlike traditional object detection methods, DETR reformulates
object detection as a set prediction problem, optimized via bipartite matching. However, DETR-
based methods suffer from challenges such as slow convergence, which has spurred a series of sub-
sequent improvements aimed at addressing these limitations. Deformable DETR (Zhu et al., 2020)
enhances DETR by introducing a deformable attention module that generates reference points for
query elements. Each reference point attends to a limited set of positions on the feature map, reduc-
ing interference from background noise and irrelevant regions. This focused attention mechanism
accelerates convergence by prioritizing target regions. Conditional DETR (Meng et al., 2021) fur-
ther improves convergence by incorporating additional prior information into the decoder’s object
queries. It decouples contextual and positional features within the queries and generates positional
features based on spatial locations, thereby reducing the reliance on global content in cross-attention
mechanisms and expediting optimization. Building upon Conditional DETR, DAB-DETR (Liu
et al., 2022) integrates width and height information into positional features to model objects at
varying scales more effectively. Anchor DETR employs predefined anchor points as initial query
representations, providing a stable starting point that mitigates instability caused by random ini-
tialization during early training. By encoding anchor points into object queries through multiple
patterns, Anchor DETR (Wang et al., 2022) enhances adaptability to complex scenes, further accel-
erating convergence. Additionally, it introduces row-column decoupled attention to reduce memory
costs. DN-DETR (Li et al., 2022) proposes a denoising-based approach by introducing noisy query
samples and training the model to predict denoised queries. This query denoising task accelerates
training by enhancing optimization stability. Furthermore, DN-DETR incorporates a group-based
one-to-many label assignment strategy to increase supervisory signals, thereby improving conver-
gence speed. Similarly, H-DETR (Jia et al., 2023) enhances supervision by introducing multiple
positive queries as decoder inputs, strengthening target supervision and further accelerating conver-
gence.

Several recent studies have focused on improving the efficiency of Transformer-based object detec-
tion methods. Sparse DETR (Roh et al., 2021) enhances computational efficiency by sparsifying the
encoder’s computations, thereby reducing training costs and accelerating convergence. By leverag-
ing sparse encoder outputs, the decoder can still effectively perform object queries and predictions
while maintaining detection performance with minimal degradation. Efficient DETR (Yao et al.,
2021) proposes the integration of a Region Proposal Network (RPN) to generate object queries, ini-
tializing them with dense priors. This approach improves convergence speed and, due to the higher
quality of initial queries, allows for the use of fewer decoder layers, resulting in reduced computa-
tional complexity and faster inference. PnP DETR (Wang et al., 2021) introduces a Poll and Pool
(PnP) sampling module designed to selectively extract critical information from feature maps before
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feeding them into the Transformer encoder. This selective processing reduces unnecessary com-
putations, enhancing overall efficiency. The DINO series (Zhang et al., 2022) builds upon these
advancements by incorporating novel techniques and scaling up both model and dataset sizes to
further unlock the potential of DETR-based architectures, achieving improved performance while
maintaining computational feasibility.

Knowledge distillation

Given the focus of this paper on improving knowledge distillation algorithms for DETR-based ob-
ject detection, this section reviews relevant works on knowledge distillation under the DETR frame-
work. As mentioned above, unlike traditional CNN-based object detectors, which rely on spatial
feature map alignment for distillation, DETR represents a paradigm shift in object detection by re-
formulating it as a set prediction problem using a Transformer encoder-decoder architecture. The
learnable and permutation-invariant nature of object queries in DETR introduces a lack of consistent
distillation points between teacher and student models, posing significant challenges for knowledge
distillation in this context. KD-DETR (Zhang et al., 2022) addresses the alignment issue by intro-
ducing a set of non-learnable, shared ”probing queries” that serve as consistent distillation points
between the teacher and student models. By decoupling the detection and distillation tasks, KD-
DETR establishes a general paradigm for DETR distillation. Similarly, DETRDistill (Chang et al.,
2023)leverages DETR’s native Hungarian matching algorithm to align predictions between teacher
and student models. It first identifies optimal one-to-one correspondences between their prediction
sets and then applies a response-based distillation loss to the matched pairs. Additionally, DE-
TRDistill incorporates an object-aware feature distillation method to enhance the student’s learn-
ing of object-centric features. OD-DETR (Wu et al., 2024) focuses on stabilizing and accelerating
DETR’s notoriously slow training through knowledge distillation. It employs an online distillation
strategy where a teacher model, constructed via exponential moving average (EMA), guides the stu-
dent. Specifically, OD-DETR transfers the teacher’s learned query-to-ground-truth box matching
relationships and even initial object queries to the student, significantly improving distillation effi-
ciency without introducing additional parameters. CLoCKDistill (Lan & Tian, 2025) introduces a
Query-to-Feature (Q2F) module that aligns teacher model queries with specific locations on the en-
coder’s feature map, enabling effective distillation on the feature map to transfer precise positional
and contextual knowledge. Knowledge Distillation via Query Selection (Liu et al., 2024) observes
that many queries correspond to background regions, introducing noise if distilled directly. To miti-
gate this, it proposes distilling only queries matched to positive samples by the teacher, thus filtering
low-quality supervision and improving both efficiency and accuracy. D3ETR (Chen et al., 2022)
focuses on knowledge transfer within the decoder. It proposes multi-layer decoder distillation, re-
quiring the student to mimic not only the teacher’s final predictions but also the refinement process
at each decoder step. To this end, D3ETR designs an attention-matrix-based alignment mechanism
to address query misalignment across layers, significantly accelerating the student model’s conver-
gence. However, the aforementioned methods still exhibit certain limitations. For instance, some
rely on additional queries or involve complex distillation strategies, which lack simplicity and effi-
ciency, thereby constraining their practicality in real-world applications.

3 METHOD

3.1 PROBLEM FORMULATION

In the DETR-base object detection framework, the feature encoder processes the image input to
produce a feature representation Z, while the decoder takes input Z and N learnable object queries
Q ∈ RNobj×D, processing them through an M -layer Transformer network to generate the model’s
output:

Q′ = Decoder(Q,Z), Q′ ∈ RNobj×D. (1)

For each object query Q′
i, a feed-forward network (FFN) is applied to predicts object bounding

boxes and class probabilities:

B̂i = FFNb(Q
′
i), Ĉi = FFNc(Q

′), (2)

where B̂ = {b̂0, b̂1, . . . , b̂N−1}, b̂i ∈ RN×4 represents bounding box coordinates (center, width,
height), and Ĉ = {ĉ0, ĉ1, . . . , ĉN−1}, ĉi ∈ RN×(C+1) denotes class probabilities. During training,
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Figure 2: The flowchart of our proposed distillation framework based on active sampling alignment.
For the teacher model predictions, including bounding boxes (BBOX) and classifications (CLS), are
concatenated and subsequently processed through an MLP to generate queries and keys. These are
then input into the ASM model, which outputs the single-head attention weights and the weighted
sum of values. The attention weights are constrained to the diagonal of the matrix to ensure that each
query has a high similarity score only with itself, allowing for precise sampling at specific locations.
For distillation, the query from the teacher model is used as the sampling point, and sample results
are generated from the student’s outputs. A distillation loss is applied to align the sampling results
from both the teacher’s and student’s predictions.

label assignment is formulated as the problem of minimizing the matching cost between model
predictions and ground-truth (GT) annotations, yielding a bipartite matching through the Hungarian
algorithm. The optimal matching is defined as:

σ̂ = argmin
σ

N∑
i=1

Lmatch(yi, ŷσi), (3)

where σ denotes a permutation of N elements and σ̂ represents the optimal assignment. Each
ground-truth instance is denoted as yi = (ci, bi), where ci corresponds to the target class (which
may be ∅) and bi is the ground-truth bounding box. The pairwise matching cost Lmatch is defined
as:

Lmatch(yi, ŷσi
) = Lcls(ci, ĉσi

) + 1{ci ̸=∅}Lbbox(bi, b̂σi
), (4)

where Lcls and Lbbox denote the classification and bounding-box regression losses, respectively.
Queries matched to ground-truth objects are treated as positive samples, while unmatched queries
are supervised as negative samples. The overall detection loss is expressed as:

Ldet(y, ŷσ̂) =

N∑
i=1

Lmatch(yi, ŷσi
), (5)

In the context of knowledge distillation, where teacher and student models are involved. Conven-
tional distillation methods typically require matching the teacher and student predictions before
performing distillation, treating the teacher’s outputs as pseudo-ground-truths. The distillation loss
can be written as:

Ldistillation =

N∑
i=1

Lmatch(ŷ
tea
i , ŷstuσi

), (6)

The above fromulation establishes a relationship between the teacher’s and student’s predictions,
guiding the student to approximate the teacher’s outputs. However, this process has several limita-
tions. First, the large number of queries in DETR models renders the matching process computa-
tionally expensive. Second, the teacher and student models may have different numbers of queries,
making Hungarian matching ill-suited to handle such disparities, potentially leading to ignored or
forced matches that reduce effective knowledge transfer. Finally, DETR’s object queries are ego-
centric, initialized and optimized independently for each model, resulting in no fixed spatial or
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semantic correspondence between teacher and student queries. While Hungarian matching attempts
to establish one-to-one correspondences based on matching costs, it cannot ensure strict cross-model
consistency, particularly for redundant negative queries.

To address these challenges, we propose a novel approach that leverages active sampling and align-
ment to eliminate the need for inefficient and time-consuming matching operations, which also
demonstrates significant advantages in both efficiency and performance. For the teacher’s output
distribution Ωtea and the student’s output distribution Ωstu, we select appropriate sampling points
P = {p0, p1, ...,m− 1} in the prediction space and then sample from both distributions:

Ŝtea = Sampling(Ωtea, P ), Ŝstu = Sampling(Ωstu, P ), (7)

Ŝtea and Ŝstu ∈ Rm×(4+c+1), we then enforce consistency between the sampling results to align the
student’s output distribution with the teacher’s:

Ldistillation = D(Ŝtea, Ŝstu), (8)

where D(, ) is a distance measurement function to measure the distance between two inputs.

3.2 ACTIVE SAMPLING

Unlike traditional CNN-based models, which produce spatially continuous features Outcnn ∈
RH×W×D, DETR-based methods generate outputs that depend on discrete, permutation-invariant
queries. This property renders most traditional CNN sampling techniques, which rely on spatial
correspondence, inapplicable. To overcome the challenge of aligning distributions over unordered
outputs, we exploit the order-agnostic nature of the attention mechanism in Transformers to facil-
itate distribution alignment. We first provide a review of the attention mechanism computation in
Transformers.

The attention mechanism operates on a set of vectors: queries Q ∈ Rn×dk , keys K ∈ Rm×dk ,
and values V ∈ Rm×dv , where n and m denote the sequence lengths of queries and key-value pairs,
respectively, and dk and dv represent the dimensionalities of the keys and values, respectively. These
vectors are typically obtained through linear transformations of the input sequence. The attention
scores are computed as the dot product between queries and keys, measuring their similarity. For
scaled dot-product attention, the score is calculated as:

score =
QKT

√
dk

∈ Rn×m, (9)

where
√
dk is a scaling factor to prevent large values in high dimensions. The attention scores are

then normalized using the softmax function to obtain attention weights:

W = softmax (score) . (10)

Finally, the attention weights are used to compute a weighted sum of the value vectors, producing
the final output:

Attention(Q,K, V ) = W ∗ V. (11)

From the above attention output, we observe that when the weight distribution is highly concen-
trated, resembling a Dirac delta distribution:

wi =

{
1 if i = j,

0 otherwise,
(12)

Then the attention procedure transforms into a sampling operation from the set of values V =
{v0, v1, . . . , vn−1}. Notably, this sampling process is independent of the order of items in the set.

Building on the above observation, we propose employing an order-agnostic sampling mechanism
to align the output distributions of teacher and student models in DETR-based detector knowledge
distillation. Specifically, we interpret the query operation in attention as a sampling process over the
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Figure 3: This figure provides a conceptual illustration contrasting Hard Sampling with Soft Sam-
pling mechanism. On the left, Hard Sampling is depicted as a discrete selection process, utilizing a
(sub)permutation matrix to enforce a strict one-to-one mapping where each input query is matched
to a single, distinct point on the target manifold. In contrast, our Soft Sampling approach, shown on
the right, transforms this into a differentiable and probabilistic process. It employs a non-negative
matrix to synthesize a new representation as a weighted average of all available target points. This
allows each input query to create a blended, ”soft” sample that incorporates rich information from
the entire set, rather than being limited to a single hard choice.

key space, where the query vector functions as the sampling point. Given the teacher model’s output
Ŷtea = {ŷtea0 , ŷtea1 , . . . , ŷteaN−1} and the student model’s output Ŷstu = {ŷstu0 , ŷstu1 , . . . , ŷstuN−1}, which
correspond to the distributional Ωtea and Ωstu, respectively. Our objective is to sample the outputs
from both the student and teacher at the same position pi. Based on the above discussion, the
sampling process can be reformulated as an attention operation. Without loss of generality, we
illustrate the sampling process using the teacher model as an example:

wi = softmax
(
pi Q

T
tea√

dk

)
∈ Rn×m, (13)

Attention(Q,K, V ) = wi ∗ Ŷtea. (14)

Notably, each sampling point pi should lie within the same distributional space as the outputs of
the model. In the following subsection, we will provide a detailed description of the selection of
sampling points pi. In practice, the weight distribution wi does not necessarily conform to a Dirac
delta distribution. Consequently, the sampling process becomes a weighted selection over the entire
space, a procedure that we refer to as soft sampling in this work.

3.3 KEY COMPONENT IN KNOWLEDGE DISTILLATION

With the module designed in the preceding subsection, we are able to actively sample the unordered
outputs of both the teacher and student models. Knowledge distillation can then be performed
according to Equations (7) and (8). In what follows, we present a detailed discussion of several
critical factors that influence the distillation process, namely the sampling points selection, single-
head attention, and distillation temperature setting in knowledge distillation.

Sampling Points Selection. Previous matching-based studies have demonstrated that the selection
of positive and negative samples plays a crucial role in distillation. Analogously, in our active sam-
pling and alignment approach, the choice of sampling points is equally critical. For a sampling point
pi to be effective, it must first lie within the output distribution space of the model to ensure the va-
lidity of the sampled outcomes. Furthermore, the distribution of the selected sampling points should
closely approximate that of the teacher model, as this alignment enhances the representativeness of
the sampled results with respect to the teacher’s distribution. Lastly, the sampling points should be
computationally feasible to obtain. Based by this analysis, in our experiments, we adopt the teacher
model’s query outputs directly as the sampling points.

Single-Head Attention. In standard Transformer architectures, input features are typically parti-
tioned into m groups, with each group independently executing the attention operation described
in Equations (9–11). The outputs of these groups are subsequently concatenated to produce the

7
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final output, a procedure commonly referred to as multi-head attention. This mechanism enables
the model to concurrently capture diverse aspects of the input sequence, such as semantic and syn-
tactic information, thereby enhancing the flexibility and representational capacity of the attention
operation. However, in the context of this work, where the objective is to select specific outputs at
precise locations within the distribution space, the multi-head attention mechanism is suboptimal.
Consequently, we employ a single-head attention mechanism to ensure that, during each sampling
iteration, every sampling point corresponds to a unique output within the distribution space.

Distillation Temperature. As discussed in Section 3.2, the weight w in the sampling module tends
to yield highly concentrated distributions. In practice, however, we observe that such concentration
can impede distillation efficiency, since multiple student queries may predominantly align with a
single teacher query. To address this issue, we introduce a temperature coefficient to soften the
weights during the distillation process:

wi = Softmax
(
piQ

T
tea√
dk

/T

)
, (15)

where T denotes the distillation temperature, which smooths the weight distribution, enabling more
distributed query alignments and improving the distillation process.

3.4 OVERALL LOSS

The distillation training process is supervised by multiple loss, which are described in detail below.

Sampling Loss: For training the sampling module, we introduce a regularization loss on the sam-
pling weights W , Specifically, for the sampling process si = sampling(Ω, ŷi), we aim to encourage
the sampling weight wi to approach 1 while all other weights approach 0. To this end, we design an
entropy-based regularization loss to supervise the weight distribution:

Lsampling = −
m−1∑
i=0

log(Wii). (16)

The above loss is designed to ensure that the weights can be concentrated on specific areas in the
distribution space during sampling.

Distillation Loss: The distillation involves losses for both bounding box (bbox) and classification
(cls) predictions. For the bounding box distillation, we employ the L1 loss to enforce consistency
between the student and teacher models. For classification prediction distillation, we employ the
Kullback-Leibler (KL) divergence to align the student’s class probabilities with those of the teacher:

Ldistill = Lbbox
distill + Lcls

distill

= λbboxLL1(S
bbox
stu , Sbbox

tea ) + λclsLkl(S
cls
stu, S

cls
tea),

(17)

where Sbbox
stu and Sbbox

tea represent the student and teacher bounding box predictions, Scls
stu and Scls

stu
denote the teacher and student class probability distributions, and λbbox and λcls are the loss coeffi-
cient to balance the contribution LL1(, ) and Lcls(, ).

Overall Loss: The overall loss function for the training process is a weighted combination of the
DETR training loss and the distillation-specific losses:

Ltotal = Ldetr + Lsampling + Ldistill. (18)

4 EXPERIMENTS

4.1 SETUP

Datasets This study employs the demanding large-scale MS COCO benchmark, with train2017
(118K images) applied for training and val2017 (5K images) for validation. Evaluation is per-
formed using the standard COCO-style metric, specifically average precision (mAP). The mAP is
the average AP over 10 different IoU thresholds and across all 80 classes.

8
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Table 1: Performance Comparison of Different Detectors and Settings on COCO Dataset.
Detector Setting Epoch AP AP50 AP75 APS APM APL

AdaMixer

Teacher 12 45.3 64.6 49.2 27.3 48.3 61.9
Student 12 42.3 61.2 45.6 25.3 44.8 58.2
FGD 12 40.7 (-1.6) 59.3 43.4 23.4 43.3 55.8
MGD 12 42.3 (+0.0) 61.3 45.5 24.5 45.0 58.9
FitNet 12 42.9 (+0.6) 61.7 46.2 24.7 45.8 59.4
LD 12 41.4 (-0.7) 60.4 44.7 23.6 44.2 57.6
DETRDistill 12 44.7 (+2.4) 62.9 48.2 26.7 47.6 61.0
Ours 12 45.2 (+2.9) 63.4 49.1 27.5 48.4 61.9

Deformable DETR

Teacher 50 44.8 64.1 48.9 26.5 48.3 59.6
Student 50 44.1 63.2 47.9 27.0 47.4 58.3
FGD 50 44.1 (+0.0) 63.1 48.0 25.9 47.7 58.8
MGD 50 44.0 (-0.1) 63.1 48.0 25.9 47.3 58.6
FitNet 50 44.9 (+0.8) 64.3 48.9 27.2 48.4 59.6
LD 50 43.7 (-0.4) 62.4 47.2 25.3 46.8 58.8
DETRDistill 50 46.6 (+2.5) 65.6 50.7 28.5 50.0 60.4
Ours 50 47.0 (+3.0) 66.5 51.1 29.0 51.2 60.2

Table 2: Per-Sample training latency comparison. ∗ indicates the setting used to achieve the perfor-
mance reported in the original work. † is the setting we used to achieve the performance reported in
this work.

Method Configuration Latency (ms)↓
Base Student - 193

Distill with DETRDistill

6 Layers∗ 335∗(+142)
5 Layers 322
3 Layers 281
1 Layer 236

Distill with Ours 2 Layers† 230†(+37)
1 Layer 221

DETR Models This investigation evaluates three distinct DETR-based detection frameworks: De-
formable DETR, and AdaMixer. These models were selected owing to their representative architec-
tural designs and demonstrated superior performance. In the context of the ablation study, AdaMixer
was adopted as the baseline for experimental analysis and parameter tuning, attributed to its facile
training procedure and expedited convergence characteristics.

Implementation Details All models are trained on 4 NVIDIA V100 GPUs. Unless otherwise spec-
ified, we train the teacher model for 1× schedule (12 epochs) or 50 epochs using ResNet-101 as the
backbone with Adam optimizer, and train the student model with the same learning schedule using
ResNet-50 as the backbone, following each baseline’s settings.

4.2 MAIN RESULTS

We conduct experiments on multiple baselines to assess the effectiveness of our proposed matching-
free DETR distillation for object detection tasks, including FGD (Yang et al., 2022), MGD (Yang
et al., 2022), FitNet (Romero et al., 2014), LD (Zheng et al., 2022), and DETRDistill (Chang et al.,
2023). To ensure a fair comparison with previous work, we select two base detectors (AdaMixer
and Deformable-DETR) and followed their official experiments setting unless otherwise specified.
As detailed in Table 4, our method consistently enhances performance in all settings. In detail,
with AdaMixer (Gao et al., 2022), our approach yields a 2.9 mAP gain, elevating the student’s
performance to nearly match the teacher model. When using Deformable-DETRZhu et al. (2020),
we achieve a 3.0 mAP gain, surpassing all other listed distillation baselines.
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Table 3: Performance Comparison of Different Distillation Methods on COCO Dataset
Multi-head attention (nums=8) One-head attention
AP APS APM APL AP APS APM APL
46.2 28.4 50.0 59.8 47.0 29.0 51.2 60.2

Table 4: An ablation study on the effect of distillation temperature on final performance.
Distillations AP APS APM APL

Baseline 25.4 11.2 28.5 37.1
+ours (T=1) 26.3 9.7 28.9 40.3
+ours (T=2) 26.9 10.7 29.6 39.5
+ours (T=4) 28.5 11.8 31.8 41.3
+ours (T=8) 26.8 10.5 30.1 39.7

4.3 COMPUTATIONAL COST

In addition to the performance improvements detailed in our main results, we also evaluate the
computational efficiency of our proposed method. A key aspect of a practical distillation framework
is ensuring that training process does not incur significant computational overhead. To this end,
we measure and compare the training latency of our approach against the DETRDistill applied in
different number of layers. The results are presented in Table 2. The base student model training has
an initial latency of 193 ms. As shown, the DETRDistill method introduces a considerable latency
increase, which grows substantially from 236 ms with one layer to 335 ms with six layers. In
contrast, our configuration adds a training latency of only 37 ms, making it approximately 3.8 times
faster than it in the official DETRDistill setting. Furthermore, our model shows better scalability,
with only a minor increase to 230 ms for a two-layer setup. This analysis demonstrates that our
matching-free distillation not only achieves the strong mAP performance reported in Table 4 but
does so with a lower computational cost, making it a more efficient and practical solution.

4.4 ABLATION STUDY

We conducted an experimental analysis on the number of heads in the attention module of the ASM
module. It can be observed that using the conventional multi-head attention mechanism actually
leads to a performance decline. This is because, in our case, the attention operation is used for the
sampling process, and multiple heads complicate the computation of the sampling weights, ulti-
mately affecting performance.

Parameter Anaysis: We conducted an ablation study to investigate the effect of distillation tem-
perature on final performance, with the results presented in Table 4. It can be observed that the
distillation performance reaches its optimal point when the temperature coefficient is equal to 4.
Additionally, distillation performance decreases on both sides of this value.

5 CONCLUSION

This work presents a novel, matching-free knowledge distillation strategy for DETR-based detec-
tors, overcoming the significant computational bottleneck of query matching in existing methods.
Our core contribution is a prior-driven, learnable sampling mechanism that implicitly aligns student
and teacher queries, completely sidestepping the need for direct, costly matching. We believe this
approach is a leap towards truly matching-free supervision for Detection Transformers. By elimi-
nating this cumbersome step, our method not only accelerates the training process but also offers
new insights to the community, paving the way for more efficient and practical deployment of state-
of-the-art object detection models.
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A APPENDIX

B APPENDIX

B.1 ANNOUNCEMENT FOR LLM TOOL USAGE IN THIS PAPER

We employed a large language model (Google’s Gemini) as a general-purpose writing assistance
tool during the final stages of manuscript preparation. The precise role of the LLM was confined to
language enhancement, which included refining sentence structure, improving clarity, and checking
for grammatical and typographical errors. All suggestions provided by the LLM were critically re-
viewed, and the authors made the final decisions on all textual modifications. We affirm that no part
of the core research, including the ideation, methodology, and interpretation of results, was gener-
ated by the LLM. All authors have reviewed the final manuscript and assume complete responsibility
for its content and scientific integrity.

B.2 REPRODUCIBILITY STATEMENT

To support the verification and extension of our research, we have made our source code available
in the supplementary materials. The successful reproduction of our results can be guided by the
”Setup” section within the main body of the paper.
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