Uncertainty-aware Physics-informed Neural Networks
for Robust CARS-to-Raman Signal Reconstruction

Aishwarya Venkataramanan Sai Karthikeya Vemuri Adithya Ashok Chalain Valapil

Joachim Denzler
Computer Vision Group, Friedrich Schiller University Jena, Germany

Abstract

Coherent anti-Stokes Raman scattering (CARS) spectroscopy is a powerful and
rapid technique widely used in medicine, material science, and chemical analyses.
However, its effectiveness is hindered by the presence of a non-resonant background
that interferes with and distorts the true Raman signal. Deep learning methods
have been employed to reconstruct the true Raman spectrum from measured CARS
data using labeled datasets. A more recent development integrates the domain
knowledge of Kramers-Kronig relationships and smoothness constraints in the form
of physics-informed loss functions. However, these deterministic models lack the
ability to quantify uncertainty, an essential feature for reliable deployment in high-
stakes scientific and biomedical applications. In this work, we evaluate and compare
various uncertainty quantification (UQ) techniques within the context of CARS-
to-Raman signal reconstruction. Furthermore, we demonstrate that incorporating
physics-informed constraints into these models improves their calibration, offering
a promising path toward more trustworthy CARS data analysis.

1 Introduction

Coherent anti-Stokes Raman scattering (CARS) spectroscopy has emerged as an important technique
in chemistry, physics, and biomedical imaging due to its high-speed, label-free detection of molecular
vibrations [1} [2]. Its ability to provide rapid chemical contrast makes it particularly attractive for
live-cell imaging and real-time diagnostics. However, a fundamental limitation of CARS is the
presence of a strong non-resonant background (NRB), which interferes with the resonant Raman
response, distorting both the spectral shape and intensity. This reduces the spectral interpretability
and imaging contrast [3]].

To address this challenge, recent works use deep learning to learn the mappings from the NRB-
contaminated CARS spectra to the underlying true Raman spectra. One promising direction is the
use of physics-informed neural networks (PINNs) [4} 15 |6l [7]], which embed physical constraints
directly into the learning process. Recently, a model named RamPINN was developed by integrating
known physical relationships between signal components. It is shown to reconstruct Raman spectra
that are both data-consistent and physically plausible, improving the separation of resonant and non-
resonant components even under challenging measurement conditions [7]]. Nevertheless, RamPINN is
deterministic in nature and does not account for model uncertainty. This is an increasingly important
consideration when deploying machine learning models in domains where decisions have significant
consequences, such as in biomedical diagnostics or materials characterization [8}, 9].

In this study, we explore the integration of uncertainty quantification (UQ) methods with PINNs
for CARS-to-Raman signal reconstruction. To this end, we systematically evaluate the prominent
UQ strategies: Monte Carlo Dropout [8], Bayesian Neural Networks (BNNs) [[10} [11], Deep En-
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sembles [12]], and Neural Processes (NPs) [13]. The results indicate that incorporating physical
knowledge consistently improves reconstruction accuracy across the UQ methods and yields better
confidence calibration.

2 Physics-Informed Learning

2.1 General Setup

Physics-informed learning integrates neural networks with governing physical laws to embed domain
knowledge directly into the training process [5, [14]]. The goal is to obtain models that not only fit
observed data but also satisfy underlying physical constraints.

Let = be the input, g the prediction within the domain €2, and fy a neural network parameterized by 6.
A known operator D encodes the physical constraint:

D(g,z) =0, =z, (1)

where D is typically a differential or integral operator [S]]. To enforce this constraint during training,
a physics loss term is defined to penalize violations:

Lony = ﬁ /Q ID(fa(e), u(a), )2 di @

where u(z) represents any additional known functions or auxiliary variables required by the constraint.
The total training objective combines the physics loss with a standard data-fitting term (e.g., mean
squared error):

Etotal = )\data . ﬁdata + /\phy : Ephy- 3)

Here, Agata and Appy control the relative weights of the data and physics components [[15} (6} [16].

2.2 Kramers—Kronig and Smoothness Constraints

Following RamPINN([7], let 2 denote the measured CARS spectrum, and § = (Yraman, Unrs) the
predicted Raman and NRB components from fy(z). These components are related through the
Kramers—Kronig (KK) relations [[17} 18} [19} 20 [7].

Kramers—Kronig Regularization. From the causality principle, the real and imaginary parts of
the CARS response are related through the Hilbert transform. Accordingly, the Raman component
should correspond to the imaginary part of the Hilbert transform of the CARS signal after removing
the non-resonant background (NRB) [7]:

LKk = |Jraman — S [H (z — QNRB)H2 ) 4)
where 7(-) denotes the differentiable Hilbert transform.

NRB Smoothness Regularization. The NRB component is expected to be broad and smooth [21,
22, 123]]. To enforce this, we penalize sharp variations:

Esmooth = |VQNRB‘2 . (5)

Final Loss. The final objective combines the data fidelity term with both regularization terms:
Ctolal = /\data Edata + Akk Lxx + /\smooth Esmootha (6)

where Agaa, AKK, and Agmooth control the relative contributions of each component.

3 Uncertainty Quantification

Unlike deterministic approaches, UQ enables models to express predictive confidence, providing a
principled measure of reliability. In this work, we evaluate six Bayesian and ensemble-based UQ
methods: Gaussian Processes (GP) [24], Bayesian Neural Networks (Full BNN), Partial BNNs [[L1]],
Monte Carlo Dropout (MC-Dropout)[8]], Deep Ensembles[12]], and Distance-informed Neural Pro-
cesses (DNP) [[13]. Among these, GP serves as a non-neural baseline and is a probabilistic model



with closed-form uncertainty estimates. The remaining methods are neural network-based. BNNs
place Gaussian distributions over the network weights and use variational inference to approximate
the full posterior. However, these methods are typically not scalable to large or deep networks due
to the high computational cost of posterior approximation. Partial BNNs reduce this complexity by
applying the Bayesian treatment to only the final layer of the model, offering a trade-off between
scalability and uncertainty quality. MC-Dropout approximates Bayesian inference by performing
multiple stochastic forward passes at test time, utilizing dropout, which makes it computationally
efficient and easy to implement. Deep Ensembles train multiple independently initialized models
and combine their predictions to estimate uncertainty. Finally, DNP extends Neural Processes by
incorporating input-dependent uncertainty through distance-aware mechanisms, enabling flexible and
structured uncertainty modeling.

To investigate the impact of physics-informed inductive biases on uncertainty estimates, we train each
neural network-based model both with and without the physics-based loss described in
In this setup, the data loss term Lg,, corresponds to the standard objective traditionally used to train
the respective UQ model. The physics-informed training extends this baseline by incorporating
additional constraints: Kramers-Kronig consistency loss Lk and the NRB smoothness 108s Lgmooth
to embed domain knowledge into the learning process.

4 Experiments and Results

4.1 Experimental Setup

Synthetic spectra generation. We generate 2000 CARS-Raman spectral pairs for our experiments.
The spectral synthesis [25] and specific parameters for generation are as in [26]. The synthetic Raman
spectra with N peaks are modeled using a Lorentzian function as shown in Here, A is
the amplitude, €2 is the normalized resonance frequency, + is the linewidth and w is the normalized
Raman shift:

al A
(3) — e U 7
X (w) ;Qn_w_m. (7)

A polynomial or sigmoid function is used to replicate the NRB as shown in Here, by, bo
control the steepness while ¢, co determine the position of inflection points in the sigmoid function.
Variables a, b, ¢, d, e are the coefficients of polynomial function:

1 1 . .
(3) N TtePie—en) * Tyehz(w—ca) (Sigmoid)
X () {aw4 +bw? + cw? + dw + e (Polynomial) * ®)

This background along with some random noise € is added over the Raman spectra to generate CARS
spectra:

T — v (3) 2 9
CARS (w) Xr (w) + Xnrb (w) +e. ( )

Real spectra. We use six homogeneous sample spectra in our experiments. They are measured on
broadband CARS and Spontaneous Raman setups, and are publicly available from the work [27, 28]

Training and Evaluation. For synthetic experiments, we randomly split the generated dataset
into 80% for training and 20% for evaluation. For real-world experiments, we adopt a zero-shot
evaluation protocol, where the models trained on the synthetic dataset and directly evaluated on real
CARS-Raman measurements without any fine-tuning. The neural network backbone follows a 1D
ResNet-style architecture consisting of four residual blocks [29]]. These shared features are then
passed to two separate 1 x 1 convolutional heads for predicting the resonant Raman component and
the NRB. We train all models in PyTorch [30] using the Adam optimizer [31] with a learning rate
of 1073, The weight terms for the loss function are Agy, = 10, Akx = 1 and Agpootn = 10. The
MC-Dropout results were computed using 50 stochastic forward passes, while the deep ensemble
results were obtained from an ensemble of 5 independently trained models.

For quantitative evaluation, we use the log-likelihood (LL) and expected calibration error (ECE) [32].
LL measures how well the predicted probability distribution explains the observed data, with higher
values indicating more reliable uncertainty modeling. ECE quantifies the deviation between predicted
confidence intervals and actual coverage. A lower value of ECE indicates a better performance.



Table 1: Comparison of uncertainty quantification methods on a synthetic dataset, evaluated with and
without physics. Results are averaged over 10 runs.

Method Without Physics With Physics
LL (1) ECE (}) LL (1) ECE (/)
GP 1.115+£0.017  0.20240.004

MC-Dropout  -1.164+0.013  0.213+0.015 -2.0894+0.053  0.278+0.012
Deep Ensemble  -1.1024+0.015  0.215+0.005  0.119+£0.023  0.145+0.006
Full BNN 1.189+0.046  0.076+0.003 1.274:+0.076  0.049+0.004
Partial BNN 0.731£0.012  0.280+£0.003  0.762+0.004  0.23440.007
DNP 1.1754£0.021  0.11440.003  1.1884+0.017  0.10440.005

Table 2: Comparison of uncertainty quantification methods on a real dataset, evaluated with and
without physics. Results are averaged over 10 runs.

Method Without Physics With Physics
GP 0.685+0.164  0.087+0.049

MC-Dropout  -3.089+0.530 0.2784+0.012 -3.530 £0.598  0.2424+0.009
Deep Ensemble  -2.5674+0.436  0.255+0.021 -2.016+£0.418  0.208+0.012
Full BNN 0.685+0.231 0.172+£0.041  0.716+0.263  0.160+0.076
Partial BNN 0.497+0.172  0.227+0.021  0.5654+0.188  0.21540.027
DNP 0.914+0.185 0.168+0.062  1.014+0.144  0.131+0.064

4.2 Synthetic data experiments

[Table T|presents the quantitative comparison of various UQ methods on the synthetic dataset, evaluated
both with and without physics-based constraint. Among all methods, the Full BNN achieves the
best performance in both settings. It obtains the highest LL and lowest ECE, indicating accurate and
well-calibrated predictive uncertainties. The DNP model performs competitively, closely matching
the Full BNN. The incorporation of physics-based loss consistently improves performance across
most neural-based models. These results suggest that physics-informed training improves both the
predictive performance of the models and calibration of uncertainty estimates for neural network-
based approaches. The qualitative results are provided in[Figure I|in[Appendix Al

4.3 Real-world experiments

summarizes the performance of the UQ baselines on the real CARS-Raman dataset under
zero-shot setting. DNP achieves the best overall performance, yielding the highest LL and lowest
ECE both with and without physics-based regularization. This strong performance can be attributed
to DNP’s meta-learning architecture, which is explicitly designed to enable fast adaptation and
generalization across tasks. Full BNN also performs competitively, showing strong LL scores and
improved calibration when physics-informed loss terms are included. Similar to the observation from
the experiments on synthetic dataset, incorporating physics improves both metrics for most models.
This suggests that domain knowledge can help reduce overconfidence and improve generalization
even in zero-shot scenarios. Qualitative results are provided in [Figure 2]in [Appendix Al

5 Conclusion

In this study, we conducted a systematic evaluation of UQ methods for CARS-to-Raman signal
reconstruction. Experiments on synthetic and real datasets show that embedding domain knowledge
via physics consistently improves reconstruction accuracy and uncertainty calibration. Among
the evaluated UQ methods, Full BNNs and Distance-informed Neural Processes achieved the best
overall performance, with physics-informed training yielding higher log-likelihood scores and lower
calibration errors. More broadly, these results demonstrate that integrating physical priors not only
improves signal fidelity but also enhances the reliability and interpretability of uncertainty estimates.
Future work will explore scaling these approaches to broader spectral ranges, multi-modal imaging,
and active learning frameworks that leverage uncertainty estimates for adaptive data acquisition.
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A Qualitative Evaluation

We qualitatively assess the impact of physics-informed constraints on the Full BNN and DNP models.
Figure T|illustrates their performance on a representative sample from the synthetic dataset, while
Figure 2|presents results on the real dataset.

In the synthetic case (Figure I)), all models closely reproduce the ground-truth Raman spectra and
effectively suppress the non-resonant background. Incorporating the physics constraint further
reduces reconstruction errors. The models, however, exhibit distinct uncertainty behaviors: the Full
BNN shows broadly distributed uncertainty across the spectrum, whereas the DNP yields smoother,
more localized estimates concentrated in low-signal-to-noise regions.

For the real dataset (Figure 2)), both methods generalize well in a zero-shot setting, with the DNP
maintaining more consistent uncertainty calibration. Consistent with the synthetic results, applying
the physics constraint again leads to lower reconstruction errors and improved reliability.
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Figure 1: Synthetic dataset results. Reconstructions from the Full BNN and DNP models without
(top) and with (bottom) the physics constraint.
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Figure 2: Real dataset results. Zero-shot reconstructions from the Full BNN and DNP models
without (top) and with (bottom) the physics constraint.
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