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Abstract

In this paper, we introduce ELECTRA-style001
tasks (Clark et al., 2020b) to cross-lingual lan-002
guage model pre-training. Specifically, we003
present two pre-training tasks, namely multi-004
lingual replaced token detection, and transla-005
tion replaced token detection. Besides, we006
pretrain the model, named as XLM-E, on007
both multilingual and parallel corpora. Our008
model outperforms the baseline models on009
various cross-lingual understanding tasks with010
much less computation cost. Moreover, anal-011
ysis shows that XLM-E tends to obtain better012
cross-lingual transferability.013

1 Introduction014

It has become a de facto trend to use a pretrained015

language model (Devlin et al., 2019; Dong et al.,016

2019; Yang et al., 2019b; Bao et al., 2020) for017

downstream NLP tasks. These models are typically018

pretrained with masked language modeling objec-019

tives, which learn to generate the masked tokens of020

an input sentence. In addition to monolingual rep-021

resentations, the masked language modeling task is022

effective for learning cross-lingual representations.023

By only using multilingual corpora, such pretrained024

models perform well on zero-shot cross-lingual025

transfer (Devlin et al., 2019; Conneau et al., 2020),026

i.e., fine-tuning with English training data while di-027

rectly applying the model to other target languages.028

The cross-lingual transferability can be further im-029

proved by introducing external pre-training tasks030

using parallel corpus, such as translation language031

modeling (Conneau and Lample, 2019), and cross-032

lingual contrast (Chi et al., 2021b). However, pre-033

vious cross-lingual pre-training based on masked034

language modeling usually requires massive com-035

putation resources, rendering such models quite036

expensive. As shown in Figure 1, our proposed037

XLM-E achieves a huge speedup compared with038

well-tuned pretrained models.039
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Figure 1: The proposed XLM-E pre-training (red line)
achieves 130× speedup compared with an in-house pre-
trained XLM-R augmented with translation language
modeling (XLM-R + TLM; blue line), using the same
corpora and code base. The training steps are shown
in the brackets. We also present XLM-R (Conneau
et al., 2020), InfoXLM (Chi et al., 2021b), and XLM-
Align (Chi et al., 2021c). The compared models are all
in Base size.

In this paper, we introduce ELECTRA-style 040

tasks (Clark et al., 2020b) to cross-lingual language 041

model pre-training. Specifically, we present two 042

discriminative pre-training tasks, namely multilin- 043

gual replaced token detection, and translation re- 044

placed token detection. Rather than recovering 045

masked tokens, the model learns to distinguish the 046

replaced tokens in the corrupted input sequences. 047

The two tasks build input sequences by replac- 048

ing tokens in multilingual sentences, and transla- 049

tion pairs, respectively. We also describe the pre- 050

training algorithm of our model, XLM-E, which is 051

pretrained with the above two discriminative tasks. 052

It provides a more compute-efficient and sample- 053

efficient way for cross-lingual language model pre- 054

training. 055

We conduct extensive experiments on the 056

XTREME cross-lingual understanding benchmark 057
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to evaluate and analyze XLM-E. Over seven058

datasets, our model achieves competitive results059

with the baseline models, while only using 1% of060

the computation cost comparing to XLM-R. In ad-061

dition to the high computational efficiency, our062

model also shows the cross-lingual transferability063

that achieves a reasonably low transfer gap. We064

also show that the discriminative pre-training en-065

courages universal representations, making the text066

representations better aligned across different lan-067

guages.068

Our contributions are summarized as follows:069

• We explore ELECTRA-style tasks for cross-070

lingual language model pre-training, and pre-071

train XLM-E with both multilingual corpus072

and parallel data.073

• We demonstrate that XLM-E greatly reduces074

the computation cost of cross-lingual pre-075

training.076

• We show that discriminative pre-training077

tends to encourage better cross-lingual trans-078

ferability.079

2 Background: ELECTRA080

ELECTRA (Clark et al., 2020b) introduces the081

replaced token detection task for language model082

pre-training, with the goal of distinguishing real in-083

put tokens from corrupted tokens. That means the084

text encoders are pretrained as discriminators rather085

than generators, which is different from the previ-086

ous pretrained language models, such as BERT (De-087

vlin et al., 2019), that learn to predict the masked088

tokens.089

ELECTRA trains two Transformer (Vaswani090

et al., 2017) encoders, serving as generator and091

discriminator, respectively. The generator G is typ-092

ically a small BERT model trained with the masked093

language modeling (MLM; Devlin et al. 2019) task.094

Consider an input sentence x = {xi}ni=1 contain-095

ing n tokens. MLM first randomly selects a subset096

M ⊆ {1, . . . , n} as the positions to be masked,097

and construct the masked sentence xmasked by re-098

placing tokens inM with [MASK]. Then, the gen-099

erator predicts the probability distributions of the100

masked tokens pG(x|xmasked). The loss function101

of the generator G is:102

LG(x;θG) = −
∑
i∈M

log pG(xi|xmasked). (1)103

The discriminator D is trained with the replaced 104

token detection task. Specifically, the discrimina- 105

tor takes the corrupted sentences xcorrupt as input, 106

which is constructed by replacing the tokens inM 107

with the tokens sampled from the generator G: 108{
x

corrupt
i ∼ pG(xi|xmasked), i ∈M
x

corrupt
i = xi, i 6∈ M

(2) 109

Then, the discriminator predicts whether xcorrupt
i is 110

original or sampled from the generator. The loss 111

function of the discriminator D is 112

LD(x;θD) = −
n∑
i=1

log pD(zi|xcorrupt) (3) 113

where zi represents the label of whether xcorrupt
i is 114

the original token or the replaced one. The final 115

loss function of ELECTRA is the combined loss 116

of the generator and discriminator losses, LE = 117

LG + λLD. 118

Compared to generative pre-training, ELECTRA 119

uses more model parameters and training FLOPs 120

per step, because it contains a generator and a dis- 121

criminator during pre-training. However, only the 122

discriminator is used for fine-tuning on downstream 123

tasks, so the size of the final checkpoint is similar 124

to BERT-like models in practice. 125

3 Methods 126

Figure 2 shows an overview of the two discrimina- 127

tive tasks used for pre-training XLM-E. Similar to 128

ELECTRA described in Section 2, XLM-E has 129

two Transformer components, i.e., generator and 130

discriminator. The generator predicts the masked 131

tokens given the masked sentence or translation 132

pair, and the discriminator distinguishes whether 133

the tokens are replaced by the generator. 134

3.1 Pre-training Tasks 135

The pre-training tasks of XLM-E are multilingual 136

replaced token detection (MRTD), and translation 137

replaced token detection (TRTD). 138

Multilingual Replaced Token Detection The 139

multilingual replaced token detection task requires 140

the model to distinguish real input tokens from 141

corrupted multilingual sentences. Both the gener- 142

ator and the discriminator are shared across lan- 143

guages. The vocabulary is also shared for different 144

languages. The task is the same as in monolin- 145

gual ELECTRA pre-training (Section 2). The only 146
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Generator

<M> 好 世界 <M> Hello <M> .

你 ？ earth

Discriminator

Masked

Original 你好世界。

Replaced 你 好 世界 ？ Hello earth .

Yes Yes Yes No Yes No YesIs original?

(b) Translation replaced token detection (TRTD)

Hello world.

Generator

Attention <M> all need<M> <M>Masked

Original

Replaced

Is original?

(a) Multilingual replaced token detection (MRTD)

Attention is all you need.

is we ?

Attention is all needwe ?

Discriminator

Yes Yes Yes YesNo No

Figure 2: Overview of two pre-training tasks of XLM-E, i.e., multilingual replaced token detection, and trans-
lation replaced token detection. The generator predicts the masked tokens given a masked sentence or a masked
translation pair, and the discriminator distinguishes whether the tokens are replaced by the generator.

difference is that the input texts can be in various147

languages.148

We use uniform masking to produce the cor-149

rupted positions. We also tried span masking (Joshi150

et al., 2019; Bao et al., 2020) in our preliminary151

experiments. The results indicate that span mask-152

ing significantly weakens the generator’s prediction153

accuracy, which in turn harms pre-training.154

Translation Replaced Token Detection Paral-155

lel corpora are easily accessible and proved to be156

effective for learning cross-lingual language mod-157

els (Conneau and Lample, 2019; Chi et al., 2021b),158

while it is under-studied how to improve discrimi-159

native pre-training with parallel corpora. We intro-160

duce the translation replaced token detection task161

that aims to distinguish real input tokens from trans-162

lation pairs. Given an input translation pair, the163

generator predicts the masked tokens in both lan-164

guages. Consider an input translation pair (e,f).165

We construct the input sequence by concatenating166

the translation pair as a single sentence. The loss167

function of the generator G is:168

LG(e,f ;θG) =−
∑
i∈Me

log pG(ei| [e;f ]masked)169

−
∑
i∈Mf

log pG(fi| [e;f ]masked)170

where [; ] is the operator of concatenation, and171

Me,Mf stand for the randomly selected masked172

positions for e and f , respectively. This loss func-173

tion is identical to the translation language model-174

ing loss (TLM; Conneau and Lample 2019). The175

discriminator D learns to distinguish real input176

tokens from the corrupted translation pair. The177

corrupted translation pair (ecorrupt,f corrupt) is con-178

structed by replacing tokens with the tokens sam- 179

pled from G with the concatenated translation pair 180

as input. Formally, ecorrupt is constructed by 181{
e

corrupt
i ∼ pG(ei| [e;f ]masked), i ∈Me

e
corrupt
i = ei, i 6∈ Me

(4) 182

The same operation is also used to construct 183

f corrupt. Then, the loss function of the discrimi- 184

nator D can be written as 185

LD(e,f ;θD) = −
ne+nf∑
i=1

log pD(ri| [e;f ]corrupt)

(5)

186

where ri represents the label of whether the i-th 187

input token is the original one or the replaced one. 188

The final loss function of the translation replaced 189

token detection task is LG + λLD. 190

3.2 Pre-training XLM-E 191

The XLM-E model is jointly pretrained with the 192

masked language modeling, translation language 193

modeling, multilingual replaced token detection 194

and the translation replaced token detection tasks. 195

The overall training objective is to minimize 196

L = LMLM(x; θG) + LTLM(e,f ; θG) 197

+ λLMRTD(x; θD) + λLTRTD(e,f ; θD) 198

over large scale multilingual corpus X = {x} and 199

parallel corpus P = {(e,f)}. We jointly pretrain 200

the generator and the discriminator from scratch. 201

Following Clark et al. (2020b), we make the gener- 202

ator smaller to improve the pre-training efficiency. 203
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3.3 Gated Relative Position Bias204

We propose to use gated relative position bias in205

the self-attention mechanism. Given input tokens206

{xi}|x|i=1, let {hi}|x|i=1 denote their hidden states in207

Transformer. The self-attention outputs {h̃i}|x|i=1208

are computed via:209

qi,ki,vi = hiW
Q,hiW

K ,hiW
V (6)210

aij ∝ exp{qi · kj√
dk

+ ri−j} (7)211

h̃i =

|x|∑
j=1

aijvi (8)212

where ri−j represents gated relative position213

bias, each hi is linearly projected to a triple of214

query, key and value using parameter matrices215

WQ,WK ,WV ∈ Rdh×dk , respectively.216

Inspired by the gating mechanism of Gated Re-217

current Unit (GRU; Cho et al. 2014), we compute218

gated relative position bias ri−j via:219

g(update), g(reset) = σ(qi · u), σ(qi · v)220

r̃i−j = wg(reset)di−j221

ri−j = di−j + g(update)di−j + (1− g(update))r̃i−j222

where di−j is learnable relative position bias, the223

vectors u,v ∈ Rdk are parameters, σ is a sigmoid224

function, and w is a learnable value.225

Compared with relative position bias (Parikh226

et al., 2016; Raffel et al., 2020; Bao et al., 2020),227

the proposed gates take the content into considera-228

tion, which adaptively adjusts the relative position229

bias by conditioning on input tokens. Intuitively,230

the same distance between two tokens tends to play231

different roles in different languages.232

4 Experiments233

4.1 Setup234

Data We use the CC-100 (Conneau et al., 2020)235

dataset for the replaced token detection task. CC-236

100 contains texts in 100 languages collected from237

the CommonCrawl dump. We use parallel corpora238

for the translation replaced token detection task,239

including translation pairs in 100 languages col-240

lected from MultiUN (Ziemski et al., 2016), IIT241

Bombay (Kunchukuttan et al., 2018), OPUS (Tiede-242

mann, 2012), WikiMatrix (Schwenk et al., 2019),243

and CCAligned (El-Kishky et al., 2020).244

Following XLM (Conneau and Lample, 2019),245

we sample multilingual sentences to balance the246

language distribution. Formally, consider the pre- 247

training corpora in N languages with mj examples 248

for the j-th language. The probability of using an 249

example in the j-th language is 250

pj =
mα
j∑N

k=1m
α
k

(9) 251

The exponent α controls the distribution such that 252

a lower α increases the probability of sampling 253

examples from a low-resource language. In this 254

paper, we set α = 0.7. 255

Model We use a Base-size 12-layer Trans- 256

former (Vaswani et al., 2017) as the discrimina- 257

tor, with hidden size of 768, and FFN hidden 258

size of 3, 072. The generator is a 4-layer Trans- 259

former using the same hidden size as the discrim- 260

inator (Meng et al., 2021). See Appendix A for 261

more details of model hyperparameters. 262

Training We jointly pretrain the generator and 263

the discriminator of XLM-E from scratch, using 264

the Adam (Kingma and Ba, 2015) optimizer for 265

125K training steps. We use dynamic batching 266

of approximately 1M tokens for each pre-training 267

task. We set λ, the weight for the discriminator 268

objective to 50. The whole pre-training procedure 269

takes about 1.7 days on 64 Nvidia A100 GPU cards. 270

See Appendix B for more details of pre-training 271

hyperparameters. 272

4.2 Cross-lingual Understanding 273

We evaluate XLM-E on the XTREME (Hu et al., 274

2020b) benchmark, which is a multilingual multi- 275

task benchmark for evaluating cross-lingual un- 276

derstanding. The XTREME benchmark contains 277

seven cross-lingual understanding tasks, namely 278

part-of-speech tagging on the Universal Dependen- 279

cies v2.5 (Zeman et al., 2019), NER named en- 280

tity recognition on the Wikiann (Pan et al., 2017; 281

Rahimi et al., 2019) dataset, cross-lingual natu- 282

ral language inference on XNLI (Conneau et al., 283

2018), cross-lingual paraphrase adversaries from 284

word scrambling (PAWS-X; Yang et al. 2019a), and 285

cross-lingual question answering on MLQA (Lewis 286

et al., 2020), XQuAD (Artetxe et al., 2020), and 287

TyDiQA-GoldP (Clark et al., 2020a). 288

Baselines We compare our XLM-E model with 289

the cross-lingual language models pretrained 290

with multilingual text, i.e., Multilingual BERT 291

(MBERT; Devlin et al. 2019), MT5 (Xue et al., 292

2021), and XLM-R (Conneau et al., 2020), or 293
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Model Structured Prediction Question Answering Classification Avg
POS NER XQuAD MLQA TyDiQA XNLI PAWS-X

Metrics F1 F1 F1 / EM F1 / EM F1 / EM Acc. Acc.

Pre-training on multilingual corpus
MBERT (Hu et al., 2020b) 70.3 62.2 64.5 / 49.4 61.4 / 44.2 59.7 / 43.9 65.4 81.9 63.1
MT5 (Xue et al., 2021) - 55.7 67.0 / 49.0 64.6 / 45.0 57.2 / 41.2 75.4 86.4 -
XLM-R 75.6 61.8 71.9 / 56.4 65.1 / 47.2 55.4 / 38.3 75.0 84.9 66.4
XLM-E (w/o TRTD) 74.2 62.7 74.3 / 58.2 67.8 / 49.7 57.8 / 40.6 75.1 87.1 67.6

Pre-training on both multilingual corpus and parallel corpus
XLM (Hu et al., 2020b) 70.1 61.2 59.8 / 44.3 48.5 / 32.6 43.6 / 29.1 69.1 80.9 58.6
INFOXLM (Chi et al., 2021b) - - - / - 68.1 / 49.6 - / - 76.5 - -
XLM-ALIGN (Chi et al., 2021c) 76.0 63.7 74.7 / 59.0 68.1 / 49.8 62.1 / 44.8 76.2 86.8 68.9
XLM-E 75.6 63.5 76.2 / 60.2 68.3 / 49.8 62.4 / 45.7 76.6 88.3 69.3

Table 1: Evaluation results on XTREME cross-lingual understanding tasks. We consider the cross-lingual transfer
setting, where models are only fine-tuned on the English training data but evaluated on all target languages. The
compared models are all in Base size. Results of XLM-E and XLM-R are averaged over five runs.

pretrained with both multilingual text and par-294

allel corpora, i.e., XLM (Conneau and Lample,295

2019), INFOXLM (Chi et al., 2021b), and XLM-296

ALIGN (Chi et al., 2021c). The compared models297

are all in Base size. In what follows, models are298

considered as in Base size by default.299

Results We use the cross-lingual transfer setting300

for the evaluation on XTREME (Hu et al., 2020b),301

where the models are first fine-tuned with the En-302

glish training data and then evaluated on the tar-303

get languages. In Table 1, we report the accuracy,304

F1, or Exact-Match (EM) scores on the XTREME305

cross-lingual understanding tasks. The results are306

averaged over all target languages and five runs307

with different random seeds. We divide the pre-308

trained models into two categories, i.e., the models309

pretrained on multilingual corpora, and the mod-310

els pretrained on both multilingual corpora and311

parallel corpora. For the first setting, we pretrain312

XLM-E with only the multilingual replaced token313

detection task. From the results, it can be observed314

that XLM-E outperforms previous models on both315

settings, achieving the averaged scores of 67.6 and316

69.3, respectively. Compared to XLM-R, XLM-E317

(w/o TRTD) produces an absolute 1.2 improve-318

ment on average over the seven tasks. For the sec-319

ond setting, compared to XLM-ALIGN, XLM-E320

produces an absolute 0.4 improvement on average.321

XLM-E performs better on the question answering322

tasks and sentence classification tasks while pre-323

serving reasonable high F1 scores on structured pre-324

diction tasks. Despite the effectiveness of XLM-E,325

our model requires substantially lower computation326

cost than XLM-R and XLM-ALIGN. A detailed327

Model XNLI MLQA

XLM (reimplementation) 73.4 66.2 / 47.8
−TLM 70.6 64.0 / 46.0

XLM-E 76.6 68.3 / 49.8
−TRTD 75.1 67.8 / 49.7
−TRTD−Gated relative position bias 75.2 67.4 / 49.2

Table 2: Ablation studies of XLM-E. We studies the
effects of the main components of XLM-E, and com-
pare the models with XLM under the same pre-training
setup, including training steps, learning rate, etc.

efficiency analysis in presented in Section 4.5. 328

4.3 Ablation Studies 329

For a deeper insight to XLM-E, we conduct abla- 330

tion experiments where we first remove the TRTD 331

task and then remove the gated relative position 332

bias. Besides, we reimplement XLM that is 333

pretrained with the same pre-training setup with 334

XLM-E, i.e., using the same training steps, learn- 335

ing rate, etc. Table 2 shows the ablation results 336

on XNLI and MLQA. Removing TRTD weakens 337

the performance of XLM-E on both downstream 338

tasks. On this basis, the results on MLQA further 339

decline when removing the gated relative position 340

bias. This demonstrates that XLM-E benefits from 341

both TRTD and the gated relative position bias dur- 342

ing pre-training. Besides, XLM-E substantially 343

outperform XLM on both tasks. Notice that when 344

removing the two components from XLM-E, our 345

model only requires a multilingual corpus, but still 346

achieves better performance than XLM, which uses 347

an additional parallel corpus. 348
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Model Size Params XNLI MLQA

XLM-E Base 279M 76.6 68.3 / 49.8
XLM-E Large 840M 81.3 72.7 / 54.2
XLM-E XL 2.2B 83.7 76.2 / 57.9

XLM-R XL 3.5B 82.3 73.4 / 55.3
MT5 XL 3.7B 82.9 73.5 / 54.5

Table 3: Results of scaling-up the model size.

Model XTREME Params FLOPs

MBERT 63.1 167M 6.4e19
XLM-R 66.4 279M 9.6e21
INFOXLM* - 279M 9.6e21 + 1.7e20
XLM-ALIGN* 68.9 279M 9.6e21 + 9.6e19
XLM-E 69.3 279M 9.5e19
−TRTD 67.6 279M 6.3e19

Table 4: Comparison of the pre-training costs. The
models with ‘*’ are continue-trained from XLM-R
rather than pre-training from scratch.

4.4 Scaling-up Results349

Scaling-up model size has shown to improve per-350

formance on cross-lingual downstream tasks (Xue351

et al., 2021; Goyal et al., 2021). We study the scal-352

ability of XLM-E by pre-training XLM-E models353

using larger model sizes. We consider two larger354

model sizes in our experiments, namely Large and355

XL. Detailed model hyperparameters can be found356

in Appendix A. As present in Table 3, XLM-EXL357

achieves the best performance while using signifi-358

cantly fewer parameters than its counterparts. Be-359

sides, scaling-up the XLM-E model size consis-360

tently improves the results, demonstrating the ef-361

fectiveness of XLM-E for large-scale pre-training.362

4.5 Training Efficiency363

We present a comparison of the pre-training re-364

sources, to explore whether XLM-E provides a365

more compute-efficient and sample-efficient way366

for pre-training cross-lingual language models. Ta-367

ble 4 compares the XTREME average score, the368

number of parameters, and the pre-training com-369

putation cost. Notice that INFOXLM and XLM-370

ALIGN are continue-trained from XLM-R, so the371

total training FLOPs are accumulated over XLM-R.372

Table 4 shows that XLM-E substantially re-373

duces the computation cost for cross-lingual lan-374

guage model pre-training. Compared to XLM-R375

and XLM-ALIGN that use at least 9.6e21 training376

FLOPs, XLM-E only uses 9.5e19 training FLOPs377

in total while even achieving better XTREME per-378

formance than the two baseline models. For the set-379

Model Tatoeba-14 Tatoeba-36
en→ xx xx→ en en→ xx xx→ en

XLM-R 59.5 57.6 55.5 53.4
INFOXLM 80.6 77.8 68.6 67.3
XLM-E 74.4 72.3 65.0 62.3
−TRTD 55.8 55.1 46.4 44.6

Table 5: Average accuracy@1 scores for Tatoeba cross-
lingual sentence retrieval. The models are evaluated un-
der two settings with 14 and 36 of the parallel corpora
for evaluation, respectively.

ting of pre-training with only multilingual corpora, 380

XLM-E (w/o TRTD) also outperforms XLM-R us- 381

ing 6.3e19 FLOPs in total. This demonstrates the 382

compute-effectiveness of XLM-E, i.e., XLM-E as 383

a stronger cross-lingual language model requires 384

substantially less computation resource. 385

4.6 Cross-lingual Alignment 386

To explore whether discriminative pre-training im- 387

proves the resulting cross-lingual representations, 388

we evaluate our model on the sentence-level and 389

word-level alignment tasks, i.e., cross-lingual sen- 390

tence retrieval and word alignment. 391

We use the Tatoeba (Artetxe and Schwenk, 2019) 392

dataset for the cross-lingual sentence retrieval task, 393

the goal of which is to find translation pairs from 394

the corpora in different languages. Tatoeba con- 395

sists of English-centric parallel corpora covering 396

122 languages. Following Chi et al. (2021b) and 397

Hu et al. (2020b), we consider two settings where 398

we use 14 and 36 of the parallel corpora for eval- 399

uation, respectively. The sentence representations 400

are obtained by average pooling over hidden vec- 401

tors from a middle layer. Specifically, we use 402

layer-7 for XLM-R and layer-9 for XLM-E. Then, 403

the translation pairs are induced by the nearest 404

neighbor search using the cosine similarity. Ta- 405

ble 5 shows the average accuracy@1 scores under 406

the two settings of Tatoeba for both the xx→ en 407

and en → xx directions. XLM-E achieves 74.4 408

and 72.3 accuracy scores for Tatoeba-14, and 65.0 409

and 62.3 accuracy scores for Tatoeba-36, provid- 410

ing notable improvement over XLM-R. XLM-E 411

performs slightly worse than INFOXLM. We be- 412

lieve the cross-lingual contrast (Chi et al., 2021b) 413

task explicitly learns the sentence representations, 414

which makes INFOXLM more effective for the 415

cross-lingual sentence retrieval task. 416

For the word-level alignment, we use the word 417
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Model Alignment Error Rate ↓ Avgen-de en-fr en-hi en-ro

fast align 32.14 19.46 59.90 - -
XLM-R 17.74 7.54 37.79 27.49 22.64
XLM-ALIGN 16.63 6.61 33.98 26.97 21.05
XLM-E 16.49 6.19 30.20 24.41 19.32
−TRTD 17.87 6.29 35.02 30.22 22.35

Table 6: Alignment error rate scores (lower is better)
for the word alignment task on four language pairs. Re-
sults of the baseline models are from Chi et al. (2021c).
We use the optimal transport method to obtain the re-
sulting word alignments, where the sentence represen-
tations are from the 9-th layer of XLM-E.

alignment datasets from EuroParl1, WPT20032,418

and WPT20053, containing 1,244 translation pairs419

annotated with golden alignments. The pre-420

dicted alignments are evaluated by alignment error421

rate (AER; Och and Ney 2003):422

AER = 1− |A ∩ S|+ |A ∩ P |
|A|+ |S|

(10)423

where A,S, and P stand for the predicted align-424

ments, the annotated sure alignments, and the anno-425

tated possible alignments, respectively. In Table 6426

we compare XLM-E with baseline models, i.e.,427

fast align (Dyer et al., 2013), XLM-R, and XLM-428

ALIGN. The resulting word alignments are ob-429

tained by the optimal transport method (Chi et al.,430

2021c), where the sentence representations are431

from the 9-th layer of XLM-E. Over the four lan-432

guage pairs, XLM-E achieves lower AER scores433

than the baseline models, reducing the average434

AER from 21.05 to 19.32. It is worth mentioning435

that our model requires substantial lower compu-436

tation costs than the other cross-lingual pretrained437

language models to achieve such low AER scores.438

See the detailed training efficiency analysis in Sec-439

tion 4.5. It is worth mentioning that XLM-E shows440

notable improvements over XLM-E (w/o TRTD)441

on both tasks, demonstrating that the translation442

replaced token detection task is effective for cross-443

lingual alignment.444

4.7 Universal Layer Across Languages445

We evaluate the word-level and sentence-level446

representations over different layers to explore447

whether the XLM-E tasks encourage universal rep-448

resentations.449
1www-i6.informatik.rwth-aachen.de/

goldAlignment/
2web.eecs.umich.edu/˜mihalcea/wpt/
3web.eecs.umich.edu/˜mihalcea/wpt05/
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Figure 3: Evaluation results on Tatoeba cross-lingual
sentence retrieval over different layers. For each layer,
the accuracy score is averaged over all the 36 language
pairs in both the xx→ en and en→ xx directions.
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Figure 4: Evaluation results of cross-lingual word
alignment over different layers. Layer-0 stands for the
embedding layer.

As shown in Figure 3, we illustrate the accu- 450

racy@1 scores of XLM-E and XLM-R on Tatoeba 451

cross-lingual sentence retrieval, using sentence rep- 452

resentations from different layers. For each layer, 453

the final accuracy score is averaged over all the 454

36 language pairs in both the xx → en and en 455

→ xx directions. From the figure, it can be ob- 456

served that XLM-E achieves notably higher aver- 457

aged accuracy scores than XLM-R for the top lay- 458

ers. The results of XLM-E also show a parabolic 459

trend across layers, i.e., the accuracy continuously 460

increases before a specific layer and then continu- 461

ously drops. This trend is also found in other cross- 462

lingual language models such as XLM-R and XLM- 463

Align (Jalili Sabet et al., 2020; Chi et al., 2021c). 464

Different from XLM-R that achieves the highest 465

accuracy of 54.42 at layer-7, XLM-E pushes it to 466

layer-9, achieving an accuracy of 63.66. At layer- 467

10, XLM-R only obtains an accuracy of 43.34 while 468

XLM-E holds the accuracy score as high as 57.14. 469

Figure 4 shows the averaged alignment error rate 470

(AER) scores of XLM-E and XLM-R on the word 471

alignment task. We use the hidden vectors from 472
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Model XQuAD MLQA TyDiQA XNLI PAWS-X

MBERT 25.0 27.5 22.2 16.5 14.1
XLM-R 15.9 20.3 15.2 10.4 11.4
INFOXLM - 18.8 - 10.3 -
XLM-ALIGN 14.6 18.7 10.6 11.2 9.7
XLM-E 14.9 19.2 13.1 11.2 8.8
−TRTD 16.3 18.6 16.3 11.5 9.6

Table 7: The cross-lingual transfer gap scores on the
XTREME tasks. A lower transfer gap score indicates
better cross-lingual transferability. We use the EM
scores to compute the gap scores for the QA tasks.

different layers to perform word alignment, where473

layer-0 stands for the embedding layer. The final474

AER scores are averaged over the four test sets475

in different languages. Figure 4 shows a similar476

trend to that in Figure 3, where XLM-E not only477

provides substantial performance improvements478

over XLM-R, but also pushes the best-performance479

layer to a higher layer, i.e., the model obtains the480

best performance at layer-9 rather than a lower481

layer such as layer-7.482

On both tasks, XLM-E shows good perfor-483

mance for the top layers, even though both XLM-E484

and XLM-R use the Transformer (Vaswani et al.,485

2017) architecture. Compared to the masked lan-486

guage modeling task that encourages the top layers487

to be language-specific, discriminative pre-training488

makes XLM-E producing better-aligned text rep-489

resentations at the top layers. It indicates that the490

cross-lingual discriminative pre-training encour-491

ages universal representations inside the model.492

4.8 Cross-lingual Transfer Gap493

We analyze the cross-lingual transfer gap (Hu et al.,494

2020b) of the pretrained cross-lingual language495

models. The transfer gap score is the difference496

between performance on the English test set and497

the average performance on the test set in other498

languages. This score suggests how much end task499

knowledge has not been transferred to other lan-500

guages after fine-tuning. A lower gap score indi-501

cates better cross-lingual transferability. Table 7502

compares the cross-lingual transfer gap scores on503

five of the XTREME tasks. We notice that XLM-E504

obtains the lowest gap score only on PAWS-X.505

Nonetheless, it still achieves reasonably low gap506

scores on the other tasks with such low computation507

cost, demonstrating the cross-lingual transferability508

of XLM-E. We believe that it is more difficult to509

achieve the same low gap scores when the model510

obtains better performance.511

5 Related Work 512

Learning self-supervised tasks on large-scale mul- 513

tilingual texts has proven to be effective for pre- 514

training cross-lingual language models. Masked 515

language modeling (MLM; Devlin et al. 2019) is 516

typically used to learn cross-lingual encoders such 517

as multilingual BERT (mBERT; Devlin et al. 2019) 518

and XLM-R (Conneau et al., 2020). The cross- 519

lingual language models can be further improved 520

by introducing external pre-training tasks using 521

parallel corpora. XLM (Conneau and Lample, 522

2019) introduces the translation language model- 523

ing (TLM) task that predicts masked tokens from 524

concatenated translation pairs. ALM (Yang et al., 525

2020) utilizes translation pairs to construct code- 526

switched sequences as input. InfoXLM (Chi et al., 527

2021b) considers an input translation pair as cross- 528

lingual views of the same meaning, and proposes 529

a cross-lingual contrastive learning task. Several 530

pre-training tasks utilize the token-level alignments 531

in parallel data to improve cross-lingual language 532

models (Cao et al., 2020; Zhao et al., 2021; Hu 533

et al., 2020a; Chi et al., 2021c). 534

In addition, parallel data are also employed for 535

cross-lingual sequence-to-sequence pre-training. 536

XNLG (Chi et al., 2020) presents cross-lingual 537

masked language modeling and cross-lingual auto- 538

encoding for cross-lingual natural language gener- 539

ation, and achieves the cross-lingual transfer for 540

NLG tasks. VECO (Luo et al., 2020) utilizes cross- 541

attention MLM to pretrain a variable cross-lingual 542

language model for both NLU and NLG. mT6 (Chi 543

et al., 2021a) improves mT5 (Xue et al., 2021) by 544

learning the translation span corruption task on 545

parallel data. ∆LM (Ma et al., 2021) proposes to 546

align pretrained multilingual encoders to improve 547

cross-lingual sequence-to-sequence pre-training. 548

6 Conclusion 549

We introduce XLM-E, a cross-lingual language 550

model pretrained by ELECTRA-style tasks. 551

Specifically, we present two pre-training tasks, i.e., 552

multilingual replaced token detection, and trans- 553

lation replaced token detection. XLM-E outper- 554

forms baseline models on cross-lingual understand- 555

ing tasks although using much less computation 556

cost. In addition to improved performance and com- 557

putational efficiency, we also show that XLM-E 558

obtains the cross-lingual transferability with a rea- 559

sonably low transfer gap. 560
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Appendix847

A Model Hyperparameters848

Table 8 and Table 9 shows the model hyperparam-849

eters of XLM-E in the sizes of Base, Large, and850

XL. For the Base-size model, we use the same vo-851

cabulary with XLM-R (Conneau et al., 2020) that852

consists of 250K subwords tokenized by Sentence-853

Piece (Kudo and Richardson, 2018). For the mod-854

els in Large size and XL size, we use VoCap (Zheng855

et al., 2021) to allocate a 500K vocabulary for mod-856

els in Large size and XL size.857

Hyperparameters Base Large XL

Layers 4 6 8
Hidden size 768 1,024 1,536
FFN inner hidden size 3,072 4,096 6,144
Attention heads 12 16 24

Table 8: Model hyperparameters of XLM-E generators
in different sizes.

Hyperparameters Base Large XL

Layers 12 24 48
Hidden size 768 1,024 1,536
FFN inner hidden size 3,072 4,096 6,144
Attention heads 12 16 24

Table 9: Model hyperparameters of XLM-E discrimi-
nators in different sizes.

B Hyperparameters for Pre-Training858

As shown in Table 10, we present the hyperparam-859

eters for pre-training XLM-E. We use the batch860

size of 1M tokens for each pre-training task. In861

multilingual replaced token detection, a batch is862

constructed by 2,048 length-512 input sequences,863

while the input length is dynamically set as the864

length of the original translation pairs in translation865

replaced token detection.866

C Hyperparameters for Fine-Tuning867

In Table 11, we report the hyperparameters for fine-868

tuning XLM-E on the XTREME end tasks.869

Hyperparameters Value

Training steps 125K
Batch tokens per task 1M
Adam ε 1e-6
Adam β (0.9, 0.98)
Learning rate 5e-4
Learning rate schedule Linear
Warmup steps 10,000
Gradient clipping 2.0
Weight decay 0.01

Table 10: Hyperparameters used for pre-training
XLM-E.
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POS NER XQuAD MLQA TyDiQA XNLI PAWS-X

Batch size {8,16,32} 8 32 32 32 32 32
Learning rate {1,2,3}e-5 {5,...,9}e-6 {2,3,4}e-5 {2,3,4}e-5 {2,3,4}e-5 {5,...,8}e-6 {8,9,10,20}e-6
LR schedule Linear Linear Linear Linear Linear Linear Linear
Warmup 10% 10% 10% 10% 10% 12,500 steps 10%
Weight decay 0 0 0 0 0 0 0
Epochs 10 10 4 {2,3,4} {10,20,40} 10 10

Table 11: Hyperparameters used for fine-tuning on the XTREME end tasks.
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