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ABSTRACT

In recent years, the development of large-scale vision-language models has re-
sulted in significant advancements in image generation and editing, producing
results that can often deceive the naked eye. However, despite their convincing
appearance, these generated images remain susceptible to detection by forgery
detectors due to various artefacts. The goal of image anti-forensics is to eliminate
such artefacts, ensuring that manipulated images successfully evade detection and
enhance their overall quality. Existing image anti-forensics methods primarily
focus on rectifying artefacts at the feature level, often overlooking the authen-
ticity of the manipulated regions. To address this limitation, we propose a two-
phase approach. In the first phase, we introduce GUIded Diffusive rEfinement
(GUIDE), a zero-shot learning-based image refinement module aimed at recon-
structing details from unaltered regions. In the second phase, we introduce an
artefact removal algorithm to eliminate artefacts from the reconstructed “forged
regions”. We validate the effectiveness of our proposed method across multiple
image forgery datasets, and comprehensive ablation studies further affirm the ef-
ficacy of each component of our approach. The code will be made available upon
acceptance.

1 INTRODUCTION

As digital media continues to evolve, image manipulation has become increasingly prevalent, offer-
ing creative possibilities while simultaneously introducing critical risks to information integrity and
public trust (Ahmad & Khursheed (2021), Singh & Kumar (2024)). Common manipulation tech-
niques, including splicing (Kumari & Garg (2024)), copy-move (Abd Warif et al. (2016)), and in-
painting (Quan et al. (2024)), often leave detectable traces, particularly in the form of high-frequency
artefacts that emerge due to inconsistencies in texture or visual features (Mejri et al. (2021), Wang
et al. (2022), Zeng & Pun (2024)). The primary goal of image forensics is to detect such manip-
ulations by identifying anomalies and tracing the altered regions within an image. Conversely, the
field of image anti-forensics has developed as a countermeasure, aiming to conceal these traces
and improve the visual quality of tampered images, thereby challenging the capabilities of forensic
detectors.

Despite the advancements in image anti-forensics, the task remains inherently difficult. Manipu-
lated regions frequently lack any natural correlation with the original content, differentiating this
task from conventional image optimisation problems. Conventional methods relying on explicit
mathematical models, such as those used for degradation restoration, are often inadequate (Kawar
et al. (2022), Li et al. (2022), Yue et al. (2024)). As a result, recent efforts have shifted towards
generating realistic details at the feature level and removing forgery traces using generative models,
particularly Generative Adversarial Networks (GANs) and trace modelling techniques (Chen et al.
(2020), Wesselkamp et al. (2022)). However, these methods typically focus on specific trace types
or artefacts, limiting their effectiveness due to dependencies on the underlying forensic models.

Recently, diffusion models have gained significant attraction in image refinement tasks, offering an
alternative approach for generating high-quality details in manipulated or degraded images. Notably,
methods such as DR2 (Wang et al. (2023)) and DDRM (Kawar et al. (2022)) have successfully ap-

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Figure 1: Illustrative representation of the diffusion-based anti-forensics method. We hypothesise
the existence of a shared image space that encompasses the authentic regions of a tampered image,
which forensic detectors would classify as ”real”. The blue dashed line represents the stepwise
diffusion process. In Diff-cfg, a guidance term is employed during the diffusion process, which
gradually pulls the refined image back towards the tampered image space, limiting its effectiveness
against more robust detectors. In contrast, GUIDE uses only the authentic regions of the tampered
image as guidance, improving its ability to evade detection.

plied diffusion models to super-resolution and degradation recovery tasks, underscoring the potential
of this approach. Diffusion models operate by learning a denoising process, mapping images—both
real and manipulated—into a noise domain before iteratively refining them towards their original
state. This process provides a unique opportunity to improve anti-forensic methods by directing the
denoising process towards a space that represents real, unmanipulated images.

Inspired by these advances, Tailanián et al. (2024) pioneered the use of guided diffusion models in
image anti-forensics with their Diff-cfg model, which effectively balances trace removal with content
preservation through a guided denoising process. Building upon this foundation, we propose a novel
two-stage image anti-forensics framework that leverages guided diffusion refinement to address the
limitations of existing methods.

In the first stage of our approach, we introduce GUIded Diffusive rEfinement (GUIDE), a zero-
shot diffusion model that uses low-frequency information from tampered regions to eliminate high-
frequency artefacts. By incorporating the unique features of authentic regions, this model enhances
the overall realism of the manipulated image. As shown in Fig. 1, the motivation behind this work
lies in the existence of a real image space, which encompasses the authentic content of a tampered
image and the low-frequency components of the semantic information in the tampered regions. In
other words, we “reconstruct” the degraded details from this real image space. In the second stage,
we propose a texture refinement module to further smooth the visual output and remove residual
artefacts. Unlike prior approaches, which are often biased towards the manipulated content, our
method projects the denoising process directly into a hypothesised real image space, improving the
model’s ability to generalise across diverse forensic detectors.

Our contributions are summarised as follows:

• We introduce a zero-shot diffusion-based refinement method that fully exploits the infor-
mation from authentic regions of tampered images.

• We propose a two-stage refinement framework that achieves state-of-the-art performance
across various forensic detection benchmarks.
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• We conduct an in-depth exploration of the trade-off between effective image anti-forensics
and overall image quality.

2 RELATED WORK

In this section, we first provide an overview of two fields closely related to our work: image forensics
and image anti-forensics. We then conclude with a brief introduction to the backbone of our method:
Denoising Diffusion Probabilistic Models (DDPM).

2.1 IMAGE FORENSICS

Image forensics focuses on designing frameworks to effectively detect manipulated images, which
primarily involve splicing, copy-move, and inpainting techniques. Common characteristics of tam-
pered images utilised in image forensics include RGB values, noise patterns, and frequency artefacts
(Wang et al. (2022)).

Conventional image forensics approaches revolve around feature modelling. Some methods aim
to handcraft specific features using advanced deep learning techniques. For instance, Cozzolino
& Verdoliva (2020) applied a CNN architecture to extract a noiseprint specific to the camera type.
Other methods treat forgery traces as learnable, black-box features. Bappy et al. (2019) employed
an LSTM backbone to analyse the relationship between manipulated and authentic blocks within an
image. Similarly, Wu et al. (2019) divided the image forensics task into two stages: a forgery trace
extractor and a local anomaly detector, which significantly improved detection performance.

Recent advancements in image forensics have shifted towards multi-modal forgery trace identifica-
tion, presenting new challenges for developing generalisable anti-forensics techniques. For exam-
ple, TruFor (Guillaro et al. (2023)) introduced an innovative encoder-decoder architecture that fuses
RGB and Noiseprint++ modalities, enabling effective detection of image manipulation. Triaridis &
Mezaris (2024) further extended this multi-modality fusion approach by incorporating SRM filters
and BayarConv2D for feature extraction.

High-frequency traces have also garnered significant attention. Several studies have leveraged high-
frequency noise for image forensics. Li & Huang (2019) utilised HPFCN, a high-pass fully convolu-
tional network, to detect deep inpainted regions by extracting image residuals with a high-pass filter
and exposing inpainting artefacts. Additionally, Liu et al. (2024) combined high-frequency traces
with semantic information to accurately localise tampered regions.

2.2 IMAGE ANTI-FORENSICS

Image anti-forensics methods aim to deceive image forensics by removing identifiable traces left
after manipulation.

Earlier anti-forensics approaches focus on task-specific feature extraction and corresponding refine-
ment (Böhme & Kirchner (2012)). Conventional techniques typically involve forgery trace suppres-
sion and the addition of authentic image traces. The former destroys detectable structures, while
the latter restores or synthesises authentic features. For example, Stamm & Liu (2008) utilised a
combination of a median filter and additive Gaussian noise to deceive image-camera classifiers, ex-
emplifying structure destruction techniques. In terms of adding authentic traces, Tahir & Bal (2024)
revisited these methods, confirming that they still performed effectively against state-of-the-art im-
age forensics techniques.

The advent of deep learning introduced more effective anti-forensics methods, incorporating learn-
able features. Contemporary anti-forensics research primarily focuses on refining GAN-generated
images, as these methods provide more challenging adversarial samples for image generators.
Distribution-based attacks have shown promising results by minimising the distance between the
manipulated and authentic image spaces. Hou et al. (2023) highlighted that GAN images leave
statistical and frequency traces, proposing StatAttack, which applies adversarial blur, noise, and
exposure adjustments while using an MMD loss propagation module to reduce the distributional
differences between GAN and real images. Wu et al. (2024) separated high-frequency and low-
frequency components, refining the low-frequency regions with blurring and the high-frequency
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regions with universal imitation attacks, effectively masking residual traces. Studies like Chen et al.
(2020) have also focused on specific trace types, such as camera traces, and developed loss functions
to minimise them.

Although the aforementioned methods have shown promising results in image anti-forensics tasks,
they often fall short of deceiving the human eye, even when they successfully evade forensic de-
tection. Therefore, in this paper, we focus on enhancing the perceived “authenticity” of tampered
regions—ensuring that visual discrepancies are imperceptible to the human eye—while effectively
removing forensic artefacts from the image.

2.3 DIFFUSION

Diffusion has shown impressive capabilities in a wide range of image restoration tasks, including
image super-resolution (Wang et al. (2024)), deraining (Wei et al. (2023)) and inpainting (Corneanu
et al. (2024)). DR2 (Wang et al. (2023)) uses ILVR-style (Choi et al. (2021)) conditional denoising to
generate super-resolution face images. Zheng et al. (2024) proposes Self-Adaptive Reality-Guided
Diffusion to iteratively sample images during the latent diffusion process, employing low-resolution
ground truth as realistic guidance to remove perceptual artefacts.

DDPM (Ho et al. (2020)) is basically an u-net model that learns how to gradually denoise from white
Gaussian noises towards a realistic image. To train such a model, images are decayed stepwise with
known parameters. The forward sampling process is expressed as

q(xt|xt−1) = N (xt;
√

1− βtxt−1, βtI) (1)

Such sampling process continues for T steps. A substitution

ᾱt =

t∏
i=1

(1− βi) (2)

enables efficient direct acquirement of the sampled image from original input at step t. That is,

q(xt|x0) = N (xt;
√
ᾱtx0, (1− ᾱt)βtI) (3)

The reverse sampling process

p(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)) (4)

is to be learned. Ho et al. (2020) stated that the predicted mean can be expressed as

µθ(xt, t) =
1

√
αt

(xt −
βt√
1− ᾱt

ϵθ(xt, t)) (5)

The denoising function ϵθ(xt, t) is obtained through the minimization of objective function

L = Et,x0,ϵ∥ϵ− ϵθ(xt, t)∥2 (6)

Using a u-net structure. We assume that there physically exists a “real” image that contains both the
content from the untampered region and that tampered part.

On tampered image anti-forensics, Tailanián et al. (2024) proposes guided diffusion to purify tam-
pered traces, adding a term st in the denoising process in Equation (4) to control the extent of
proximity between real and tampered image at the denoising step t.

p(xt−1|xt) = N (xt−1;µθ(xt, t)− stΣθ(xt, t)∇xt
D(xt, x0),Σθ(xt, t)) (7)

where D is a similarity measure between the input image and sample at step t. The guiding term st
is expressed as

st = s

√
1− ᾱt√
ᾱt

(8)

which is in negative correlation with step t, the rationale being greater guidance is needed at large
t for better content preservation, while at small t, guidance should be less for better forgery trace
removal. However, the rich information contained in the realistic region is often overseen. Inspired
by RePaint (Lugmayr et al. (2022)), which employs pretrained diffusion model and exploits existing
regions to inpaint missing parts, we propose GUIDE to make full use of information in authentic
regions of tampered images.
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Figure 2: A schematic illustration of the proposed method is shown. Following the extraction of a
localisation mask from the victim detector, an iterative diffusive refinement process is initiated, mak-
ing full use of the authentic content delineated by the mask. Subsequently, the Texture Refinement
Module (TRM) is employed to eliminate any residual artefacts.

3 APPROACH

To address the challenge of preserving the visual authenticity of tampered regions in existing anti-
forensics algorithms, we propose a two-step refinement framework, as depicted in Fig. 2. Our
approach involves two primary stages: generating realistic content using the GUIDE model and
removing forgery artefacts via the Texture Refinement Module (TRM). Initially, the attacked de-
tector produces a localisation map to identify the tampered regions. GUIDE then eliminates high-
frequency artefacts, and TRM subsequently refines the image by addressing texture inconsistencies.

Rather than guiding the image towards the tampered image itself, which risks reverting the diffused
image back into the tampered domain, in this paper, we rely entirely on the diffusion model’s ca-
pability to generate authentic content by using only the low-frequency components as guidance.

Mask obtaining. We leverage information from the authentic regions to fix the tampered regions.
First, a localisation mask m, generated by the victim detector D, is obtained to identify the tam-
pered regions. In their study on perceptual artefact removal, Zhang et al. (2023) demonstrated that
localising perceptual artefacts at a fine-grained level, rather than addressing the entire edited region,
can improve performance. We hypothesise that forgery traces can be treated similarly. The use of
this mask, instead of a ground truth mask, is based on the rationale that correctly identified regions
contain the majority of artefacts, while misidentified areas highlight weaknesses in image foren-
sics, offering additional information for refinement. Furthermore, we aim for the model to function
effectively in scenarios where a ground truth mask is unavailable.

Realistic guidance. We initialise the denoising process from step T , which controls the extent of
refinement in the manipulated region—the longer the time span, the more steps are taken to fuse
authentic content with the manipulated area. In Equation (4), we modify the term xt in p(xt−1|xt)
during the reverse sampling process. At step t, we combine the authentic component with the
diffusion-refined manipulated region as follows:

xt−1 = (1−m)⊙ xreal
t−1 +m⊙ (LF (xreal

t−1) +HF (xrefined
t−1 )) (9)

5
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where xreal
t−1 denotes the sampled image from the input image, and xrefined

t−1 denotes the refined image
from diffusion at step t. Specifically,

xreal
t−1 =

√
¯αt−1x0 + (1− ¯αt−1)ϵ (10)

is derived from Equation (3) and

xrefined
t−1 =

1
√
αt

(xt −
βt√
1− ᾱt

ϵθ(xt, t)) + σtz (11)

where z ∼ N (0, I) if t > 1, otherwise z = 0, derived from Equation (5). Through this process, we
iteratively leverage information from realistic regions and utilise the low-frequency components as
guidance to generate authentic high-frequency details.

The low-frequency component is obtained by:

LF (xreal
t−1) = ΦN (xreal

t−1) (12)

where ΦN (·) denotes a low-pass filter controlled by the parameter N . A higher value of N results
in a lower boundary for the low-pass filter, thereby preserving less content (Wang et al. (2023)). The
high-frequency component is then obtained by subtracting the low-frequency part from the image:

HF (xrefined
t−1 ) = (I − ΦN )(xrefined

t−1 ) (13)

Resampling. Inspired by RePaint (Lugmayr et al. (2022)), we periodically introduce the noise-
adding process during denoising. This process is controlled by two hyper-parameters: jump length
j, which denotes the frequency of resampling, and resampling times u, which governs the number
of repetitions in one epoch of refinement. In this way, the authentic content of the tampered images
is repeatedly sampled to assimilate the tampered regions, facilitating better recovery of harmonised
high-frequency components. Forward mixing enables full exploitation of the real regions, resulting
in improved performance for image anti-forensics. A scenario where j = 1 and u = U is illustrated
in Algorithm 1. Through iterative refinement, the algorithm ultimately produces a refined input x0.

Algorithm 1: Guided Diffusive Refinement
Input : tampered image x0, localization map generated by victim detector m
Output: refined image xrefined

1 xt ∼ N (0, I);
2 for t = T, ..., 1 do
3 for u = 1, ..., U do
4 ϵ ∼ N (0, I) if t > 1, else ϵ = 0
5 xreal

t−1 =
√
ᾱtx0 + (1− ᾱt)ϵ

6 LF (xreal
t−1) = ΦN (xreal

t−1)
7 z ∼ N (0, I) if t > 1, else z = 0
8 xrefined

t−1 = 1√
αt
(xt − βt√

1−ᾱt
ϵθ(xt, t)) + σtz

9 HF (xrefined
t−1 ) = (I − ΦN )(xrefined

t−1 )

xt−1 = (1−m)⊙ xreal
t−1 +m⊙ (LF (xreal

t−1) +HF (xrefined
t−1 ))

10 end
11 if u < U and t > 1 then
12 xt ∼ N (

√
1− βt−1xt−1, βt−1I)

13 end
14 end
15 xrefined = fTRM(x0)

16 return xrefined

Texture Refinement Module. As authentic traces are added, tampered trace removal is applied
to address the possibility that the diffusion model may not completely eliminate camera-specific
noiseprints. This limitation arises because the pretrained diffusion model, based on ImageNet, may
not specialise in generating equipment-specific details. However, such traces are heavily exploited
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by detectors like TruFor (Guillaro et al. (2023)). To mitigate this, we incorporate the Texture Re-
finement Module (TRM) to erase artefacts such as noise patterns, which enhances the overall per-
formance of our model:

xrefined = fTRM (x0) (14)

Specifically, we combined FBCNN and Blur & Sharp method to form the Texture Refinement Mod-
ule (TRM). The JPEG artefact removal method FBCNN (Jiang et al. (2021)) is capable of improving
image quality and has demonstrated impressive performance in evading noise-based detection meth-
ods. Meanwhile, the Blur & Sharp method smooth local textures by applying a custom-designed
Gaussian blurring kernel and sharpening kernel across the entire image. As described in Tahir & Bal
(2024), the blurring kernel A and sharpening kernel B are defined as follows:

A =


1 4 7 4 1
4 16 26 16 4
7 26 41 26 7
4 16 26 16 4
1 4 7 4 1

 , B =

(
0 −1 0
−1 5 −1
0 −1 0

)
,

The Blur & Sharp process eliminate abrupt peaks and troughs within the image, further harmon-
ising the overall textures. We conducted extensive experiments to evaluate whether the two-step
refinement scheme provides satisfactory results. The effectiveness of our pipeline is rooted in its
integration of prior image forensics methods: the construction of authentic traces using GUIDE and
the removal of detectable traces through TRM.

4 EXPERIMENTS

Victim Detector. We selected six representative forensic methods for our evaluation. The selected
forensic techniques include: SPAN (Hu et al. (2020)), MVSS-Net (Chen et al. (2021)), IF-OSN
(Wu et al. (2022)), TruFor (Guillaro et al. (2023)), MMFusion-IML (Triaridis & Mezaris (2024)),
and EITLNet (Guo et al. (2024))—each exploiting different types of forgery traces, to evaluate the
performance of our model. We utilised AUC and F1 scores as localisation metrics, where lower
values indicate better anti-forensics performance. The taxonomy of the victim detectors is provided
in Table 1 of the supplementary material.

Dataset and Comparison Methods. Experiments were conducted on three datasets: CASIAv2
(Dong et al. (2013)), COVERAGE (Wen et al. (2016)), and IMD2020 (Novozamsky et al. (2020)).
Additional anti-forensics methods for comparison include Diff-cf and Diff-cfg (Tailanián et al.
(2024)), FBCNN (Jiang et al. (2021)), Blur & Sharp, and Downsize & Upsize (Tahir & Bal (2024)).

Implementation Details. For the application of the pre-trained 256 × 256 diffusion model, we
centre-cropped all manipulated images and moved those with cropped tampered areas to the authen-
tic test set. We set a default jump length of j = 10 and resampling times of u = 10, as adopted by
RePaint. The GUIDE model was executed on eight NVIDIA GeForce RTX 4090 GPUs. Given the
image size constraint of 256 × 256, the low-pass filter factor N can only take integer factors that
exactly divide 256, such as 2, 4, 8, 16, 32, etc. We selected a low-pass filter factor of N = 8 to
reconstruct the maximum amount of detail while preserving the semantic content within the image.
Further rationale for the selection of the time step T and filter factor N can be found in Section 6.

4.1 RESULTS

Anti-forensics performance. We analyse the image forensics performance as presented in Table 1.
When considering the diffusion-based refinement module alone, GUIDE demonstrates superior per-
formance compared to both Diff-cf and Diff-cfg in most scenarios, highlighting the effectiveness of
authentic content guidance over complete image guidance. Fig. 3 showcases GUIDE’s ability to
generate authentic high-frequency components within manipulated images. Additionally, Fig. 2 in
supplementary material illustrates that GUIDE produces authentic details that are consistent with
the utilised authentic content, further supporting its efficacy in image anti-forensics.

7
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Table 1: Performance comparison of the proposed method and other approaches across different
datasets and forensic methods. Best is marked with red and second best is marked with blue. Lower
metric values indicate better performance for anti-forensics.

Image Forensics Metrics(▼)

detector TruFor MVSS-Net IF-OSN SPAN MMFusion-IML EITLNet

dataset Anti-forensics AUC F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC F1

C
A

SI
A

v2

Original 0.8828 0.9798 0.8244 0.7209 0.8643 0.4812 0.7966 0.2739 0.8875 0.7358 0.7768 0.4217

O
th

er
s

Diff-cf 0.8367 0.9716 0.7905 0.6978 0.8200 0.3872 0.7635 0.2414 0.8393 0.6266 0.6848 0.2383

Diff-cfg 0.8453 0.9710 0.7886 0.7017 0.8200 0.3872 0.7635 0.2414 0.8526 0.7827 0.6950 0.2533

FBCNN 0.7952 0.9520 0.8830 0.7490 0.7376 0.2936 0.7338 0.2202 0.8177 0.5517 0.7123 0.3343

Downsize & Upsize 0.5800 0.9697 0.8159 0.7121 0.8320 0.3964 0.6371 0.1810 0.7031 0.5258 0.8214 0.4480

Blur & Sharp 0.5427 0.9644 0.8585 0.7359 0.8299 0.3857 0.6816 0.1820 0.6042 0.4655 0.7996 0.4204

O
ur

s

TRM 0.5653 0.9546 0.8408 0.7312 0.7553 0.2773 0.6748 0.1811 0.5621 0.3446 0.7432 0.2665

GUIDE, T=250 0.8082 0.9727 0.7557 0.6685 0.8621 0.4459 0.7381 0.2053 0.8454 0.6425 0.7553 0.3775

GUIDE, T=1000 0.7796 0.9692 0.7669 0.6863 0.8432 0.4121 0.7473 0.2131 0.8132 0.5967 0.7371 0.3476

GUIDE+TRM, T=250 0.6008 0.9572 0.8108 0.7103 0.7651 0.2721 0.6907 0.1815 0.6069 0.3901 0.7672 0.2797

GUIDE+TRM, T=1000 0.5717 0.9552 0.8238 0.7195 0.7492 0.2589 0.6783 0.1813 0.5668 0.3395 0.7631 0.2782

C
O

V
E

R
A

G
E

Original 0.6747 0.9362 0.7337 0.2529 0.7147 0.1256 0.7958 0.2769 0.5398 0.3241 0.7409 0.2584

O
th

er
s

Diff-cf 0.6164 0.9363 0.5808 0.2521 0.6913 0.1083 0.7086 0.2349 0.5398 0.3241 0.7409 0.2584

Diff-cfg 0.6687 0.9297 0.6376 0.2510 0.6955 0.1293 0.7164 0.2419 0.4864 0.2680 0.7225 0.2258

FBCNN 0.6239 0.9264 0.5642 0.2493 0.6963 0.1638 0.6961 0.2302 0.5143 0.2465 0.7029 0.2326

Downsize & Upsize 0.6193 0.9289 0.6450 0.2517 0.7267 0.1615 0.6443 0.2233 0.5264 0.2574 0.6868 0.1028

Blur & Sharp 0.6757 0.9332 0.5873 0.2506 0.7264 0.1323 0.6825 0.2220 0.5047 0.2608 0.7132 0.1489

O
ur

s

TRM 0.6811 0.9323 0.4588 0.2446 0.7191 0.1322 0.6740 0.2234 0.5410 0.2327 0.7046 0.1541

GUIDE, T=250 0.6718 0.9377 0.7151 0.2521 0.7114 0.1287 0.7681 0.2443 0.5181 0.2991 0.7293 0.2457

GUIDE, T=1000 0.6699 0.9352 0.7239 0.2529 0.7064 0.1487 0.7633 0.2468 0.5029 0.2985 0.7178 0.2504

GUIDE+TRM, T=250 0.6871 0.9358 0.4269 0.2424 0.7225 0.1191 0.6868 0.2235 0.5180 0.2399 0.7014 0.1535

GUIDE+TRM, T=1000 0.6762 0.9367 0.4431 0.2424 0.7248 0.1292 0.6865 0.2235 0.5201 0.2441 0.7025 0.1553

IM
D

20
20

Original 0.7261 0.9021 0.6708 0.5129 0.8030 0.4001 0.7282 0.3712 0.8591 0.7202 0.7845 0.4780

O
th

er
s

Diff-cf 0.5681 0.8833 0.5671 0.4837 0.7446 0.2892 0.6991 0.3266 0.7589 0.6198 0.6739 0.2851

Diff-cfg 0.6296 0.8928 0.5751 0.4864 0.7538 0.3319 0.6935 0.3283 0.8090 0.6492 0.6901 0.3731

FBCNN 0.6381 0.8792 0.6879 0.5187 0.7041 0.2986 0.6880 0.3258 0.8001 0.6053 0.6822 0.3748

Downsize & Upsize 0.6034 0.8915 0.6153 0.5000 0.7707 0.3060 0.6396 0.3201 0.8088 0.6627 0.7628 0.4189

Blur & Sharp 0.5138 0.8840 0.6381 0.5105 0.7802 0.2854 0.7165 0.3212 0.7328 0.6243 0.7567 0.3817

O
ur

s

TRM 0.5430 0.8688 0.5217 0.4730 0.7210 0.2390 0.7110 0.3218 0.7301 0.5378 0.6946 0.2646

GUIDE, T=250 0.7009 0.9000 0.5546 0.4783 0.8160 0.4040 0.6965 0.3249 0.8376 0.6677 0.8003 0.4747

GUIDE, T=1000 0.6389 0.8912 0.5890 0.4914 0.7948 0.3804 0.6949 0.3279 0.8126 0.6539 0.7666 0.4253

GUIDE+TRM, T=250 0.5415 0.8691 0.4514 0.4428 0.7285 0.2332 0.6595 0.2200 0.7218 0.5218 0.6595 0.2200

GUIDE+TRM, T=1000 0.5321 0.8676 0.4698 0.4491 0.7156 0.2329 0.6766 0.2447 0.7215 0.5190 0.6766 0.2447

We further evaluate the performance of the TRM module. Although it does not achieve the high-
est performance individually, TRM exhibits balanced anti-forensics capabilities across all detectors
when compared to other anti-forensics methods, providing a significant boost to GUIDE. Overall,
the combination of GUIDE and TRM performed best on the IMD2020 dataset, achieving state-of-
the-art results across nearly all metrics and detectors. Notably, we observe complementary effects
between GUIDE and TRM, particularly with SPAN, where the F1 score of IF-OSN experienced
a sharp decline of over 10% compared to when GUIDE or TRM was used alone. As illustrated
in Fig. 2 in the supplementary material, the combination of GUIDE and TRM effectively deceives
detectors, almost completely eliminating identifiable forgery traces in the selected images.

While our method demonstrates significant improvements in many cases, there are instances where
it does not achieve state-of-the-art performance. Part of this ineffectiveness can be attributed to the
varying attention areas across different detectors; not all detectors produce the same localisation
results as TruFor, which leads to GUIDE refining only limited regions. Additionally, when the
manipulated area is particularly large, the available authentic information may be insufficient for
GUIDE to completely refine the image.

Image quality performance. As shown in Table 2, Diff-cf yields superior non-reference image
quality results compared to GUIDE, as it employs fewer steps in its diffusion process, thereby main-
taining a higher level of harmony. In contrast, GUIDE achieves near-optimal non-reference metrics
and performs well on reference-quality results, demonstrating strong quality and content preserva-
tion. This effectiveness is attributed to GUIDE’s direct utilisation of authentic content from the
tampered image while refining only the identified manipulated areas.

Meanwhile, the Blur & Sharp, Downsize & Upsize methods result in a greater loss of image con-
tent. This occurs because these two operations function similarly to a universal averaging unit that
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Table 2: Image Quality Assessments. Best is marked with red and second best is marked with blue.
Image Quality Metrics

metric type None reference Reference
dataset manipulators BRISQUE(▼) NIQE(▼) PSNR(▲) SSIM(▲) LPIPS(▼)

C
A

SI
A

v2

Original 26.576 7.1071 - - -

O
th

er
s

Diff-cf 25.157 6.9604 31.55 0.8934 0.0954
Diff-cfg 27.454 7.6469 32.03 0.9200 0.0790
FBCNN 28.960 7.9883 32.43 0.9207 0.1063

Downsize & Upsize 35.716 8.9123 32.34 0.8837 0.1340
Blur & Sharp 37.664 8.6606 32.29 0.9026 0.1252

O
ur

s
TRM 37.664 8.6617 31.36 0.8596 0.1555

GUIDE, T=250 25.384 6.9892 40.64 0.9413 0.0422
GUIDE, T=1000 25.481 6.8946 40.60 0.9396 0.0398

GUIDE+TRM, T=250 37.822 8.5121 31.14 0.8150 0.1813
GUIDE+TRM, T =1000 37.734 8.5404 31.13 0.8140 0.1793

C
O

V
E

R
A

G
E

Original 22.191 6.2504 - - -

O
th

er
s

Diff-cf 19.919 6.0650 34.24 0.9183 0.0758
Diff-cfg 27.436 6.7780 35.16 0.9449 0.0611
FBCNN 36.989 7.9773 36.13 0.9541 0.0721

Downsize & Upsize 35.104 6.6755 34.98 0.9413 0.0909
Blur & Sharp 40.625 8.7229 34.41 0.9406 0.0806

O
ur

s

TRM 42.089 9.2147 33.50 0.9143 0.1060
GUIDE, T=250 24.596 6.4091 43.76 0.9751 0.0226
GUIDE, T=1000 24.199 6.3252 43.79 0.9742 0.0211

GUIDE+TRM, T=250 42.061 9.3113 33.29 0.8984 0.1193
GUIDE+TRM, T=1000 42.035 9.2313 33.29 0.8976 0.1178

IM
D

20
20

Original 21.972 5.6132 - - -

O
th

er
s

Diff-cf 18.830 5.5026 33.73 0.8867 0.1215
Diff-cfg 24.208 5.8482 34.48 0.9167 0.0996
FBCNN 33.006 7.0256 36.07 0.9383 0.1012

Downsize & Upsize 33.389 6.6117 37.21 0.9478 0.0743
Blur & Sharp 32.226 7.7208 36.48 0.9468 0.0775

O
ur

s

TRM 34.258 8.2967 34.61 0.9085 0.1130
GUIDE, T=250 24.272 5.9897 40.13 0.9369 0.0644
GUIDE, T=1000 23.334 5.7986 40.05 0.9339 0.0624

GUIDE+TRM, T=250 35.073 8.5930 33.78 0.8618 0.1554
GUIDE+TRM, T=1000 34.978 8.4760 33.75 0.8594 0.1539

Figure 3: Spectrograms of authentic image, tampered image, and GUIDE images. Manipulated
images leaves high frequency artefacts, while GUIDE has strong capability of constructing authentic
high frequency component for manipulated images.

lowers image resolution, significantly modifying individual pixel values. While the overall structure
remains intact, local details experience considerable degradation. As illustrated in Fig. 3 of the sup-
plementary material, these two methods cause the images to appear blurrier. Consequently, although
forgery traces are removed more effectively with the combination of GUIDE and TRM, this comes
at the cost of a more pronounced loss in image quality compared to GUIDE used alone.

4.2 ABLATION STUDY

In this section, we selected a sample of 108 images from the IMD2020 dataset to investigate how the
number of steps T affects the anti-forensics performance of GUIDE+TRM. As illustrated in Fig. 4,
T has varying effects across different detectors.
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Figure 4: Comparison of anti-forensics performance on different detectors regarding different T .
Best performance is spotted at different initiation steps T , 200, 600 and 200, respectively.

Figure 5: Comparison of anti-forensics performance on different detectors regarding different N .
Overall, less low-frequency content kept enables a greater amount of high-frequency detail gener-
ated, leading to more effective anti-forensics.

Figure 6: Standardized image quality
metrics at different N .

We compared AUC, F1, and IoU metrics for EITLNet,
IF-OSN, and MMFusion-IML. The results demonstrate
that the relationship between the metrics and T is not
monotonous but rather dynamically changing. In the se-
lected sample, the best overall performance on EITL-
Net is observed at T = 200, while for IF-OSN, it is at
T = 800, and for MMFusion-IML, it is at T = 200. This
indicates that the extent of GUIDE refinement produces
different complementary effects with TRM across vari-
ous image forensics methods. Thus, we select a shorter
T = 250 and longer T = 1000 for a more comprehensive
experiment. Additionally, Fig. 5 reveals that maintaining

less of the original low-frequency content leads to improved anti-forensics performance. However,
as shown in Fig.6, this reduction results in a significant loss of image quality due to decreased seman-
tic information. Therefore, to strike a balance between preserving semantic content and optimising
image forensics performance, we select N = 8.

5 CONCLUSION

In this paper, we presented a novel two-stage approach to image anti-forensics, addressing the chal-
lenges posed by high-frequency artefacts in manipulated images. Our method, GUIDE, leverages
zero-shot learning through diffusion-based refinement, effectively restoring details by exploiting
low-frequency information from authentic regions. Additionally, we introduced a texture refinement
module to remove residual artefacts, enhancing the overall anti-forensics performance. Extensive ex-
periments on multiple forensic datasets confirm the effectiveness of our approach, surpassing exist-
ing methods, particularly in terms of balancing forgery trace removal with content preservation. Our
findings demonstrate the potential of diffusion models to advance the field of image anti-forensics,
offering a robust solution for evading forensic detectors while maintaining visual authenticity.
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