
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

DENSE2MOE: UNIFYING PRUNING AND UPCYCLING FOR EFFI-
CIENT LARGE LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

The Mixture of Experts (MoE) architecture has become a mainstream design in Large Language
Models (LLMs) for its ability to flexibly scale parameters while maintaining inference efficiency.
However, training MoE models from scratch remains prohibitively expensive due to their high com-
putational demands. Existing upcycling methods reduce costs by converting dense LLMs into MoEs
through layer duplication and fine-tuning, but introduce substantial redundancy. Layer-wise prun-
ing is commonly used to alleviate redundancy among the decoder layers of dense models, but it
inevitably incurs performance degradation. In this paper, we propose Dense2MoE, a novel approach
that unifies layer pruning and upcycling through a technique we term Layer-Fusion UpCycling(LF-
UC). Our method prunes highly redundant layers in an LLM while retaining their MLPs in the form
of MoE. In this way, tokens are routed through a subset of redundant MLP layers rather than all of
them. This design efficiently leverages open-source LLMs with low additional computational over-
head, enhancing model performance while reducing active parameters. Extensive experiments show
that Dense2MoE effectively pushes the Pareto frontier of efficiency versus performance toward a
more optimal region compared with the original seed models, and achieves a superior trade-off rel-
ative to alternative approaches.

(a) inter-layer similarity analysis (b) prune and expand

Figure 1: Overview of Dense2MoE. (a) inter-layer similarity analysis: we analyze the output similarity of each
decoder layer in the LLM and the similarity of inputs to each Multi-Layer Perceptron (MLP). (b) Pruning and Layer-
Fusion Upcycling (LF-UC): We prune the attention modules of layers identified as highly redundant based on the
aforementioned similarity metrics. Instead of discarding the MLPs from these pruned layers, we fuse them into the
MLP layers of the retained transformer blocks.

1 INTRODUCTION

The scaling law(Kaplan et al. (2020)) of large language models (LLMs) has established that as the model size and
training dataset size continue to increase, the model’s capabilities improve consistently. Consequently, a growing body
of open-source work(Yang et al. (2025); Touvron et al. (2023); Jung et al. (2010); Tripti R et al. (2025)) has focused

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

on developing models with larger parameter sizes. However, the continuous expansion of model scale imposes higher
requirements on hardware and poses challenges for deployment in resource-constrained hardware environments in
real-world scenarios.

To more fully leverage the knowledge stored in open-source models and reduce resource waste caused by model
retraining, many studies (Gromov et al. (2024); Yang et al. (2024); Ashkboos et al. (2024); Men et al. (2024); Song
et al. (2024); Kim et al. (2024); Chen et al. (2024)) have opted to prune large-parameter models. These techniques
remove redundant parameters or components in the model and can often ensure near-optimal performance in specific
task domains. Another approach is parameter expansion, which increases the model’s parameter count by extending
the number of model layers or adopting the Mixture of Experts (MoE)(Shazeer et al. (2017)) framework—typically
trading a small increase in active parameters for better model performance.

Nevertheless, existing methods have inherent limitations: Unstructured model pruning requires targeted operator op-
timization to accelerate sparse matrix computations, while structured pruning often leads to performance degradation
due to the loss of critical model parameters. Meanwhile, parameter expansion methods (Komatsuzaki et al. (2022);
Sukhbaatar et al. (2024); Wu et al. (2024)) increase the model’s total parameter count, which in turn causes a multi-
plicative growth in redundant parameters.

To balance model performance and efficiency, we propose Dense2MoE—a novel method that jointly combines model
pruning and parameter expansion. It enables open-source models to deliver better performance across diverse hardware
platforms at extremely low training costs. An overview of Dense2MoE is illustrated in Fig.1: First, we analyze
the output similarity between different decoder layers of the LLM and the similarity of outputs from self-attention
modules. Based on this analysis, we prune highly redundant layers while retaining their MLPs to serve as experts
within an MoE framework. Specifically, through our Layer-Fusion Upcycling (LF-UC) technique, we expand the
MLPs of the retained layers into MoE structures, incorporating the upcycled MLPs as additional experts. Finally, we
perform a small amount of finetuning to adapt the modified model structure and parameters.

(a) performence vs. active parameters (b) pareto frontier of throughput

Figure 2: Performance Comparison with the Seed Model and Alternative Methods. (a) performence vs. active
parameters mathematics, code, reasoning and general knowledge benchmarks, among different pruning methods and
parameter upcycling. (b) pareto frontier of throughput

Furthermore, most existing model pruning works evaluate accuracy based on metrics such as perplexity (PPL), vali-
dation loss, or benchmarks in general knowledge. In contrast, we comprehensively evaluate our Dense2MoE across
benchmarks spanning mathematics, code, and general knowledge domains. This multi-domain assessment fully vali-
dates the practical applicability of our method in real-world scenarios.

In summary, our key contributions are as follows:

• We propose a simple yet novel framework for leveraging open-source models, improving the Pareto frontier
of efficiency versus accuracy when compared with seed models. Dense2MoE achieved better performance
with fewer activated parameters.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

• We conduct comprehensive evaluations across benchmarks in general knowledge, code, and mathematics
domains. The results demonstrate that our method achieves an optimal balance among approaches focused
on model structured pruning and model expansion.

• We validate the scalability of our method across open-source models of different scales and model families.

2 METHOD

Dense2MoE adopt a prune-and-expand approach to reuse open-source models and transform them into MoE, aiming
to reduce active parameters while improving performanc. As illustrated in Fig.1. Our method can be summarized into
two key steps: (1) identify layers where both the decoder layer outputs and MLP inputs are similar; (2) retain the first
layer that meets the condition in (1), drop all subsequent layers, and retain their MLPs in the first layer as experts.
After these two steps, we perform fine-tuning on a small volume of data for the modified model.

2.1 PRELIMINARY

Forward Propagation in LLMs. Modern decoder-only large language models (LLMs), such as GPT, primarily stack
transformer blocks—composed of attention mechanisms and multi-layer perceptron (MLP) layers—along the depth
dimension. Specifically, the inter-layer information transmission in the transformer architecture is given by a residual
iteration equation

x(l+1) = x(l) + f(x(l), θ(l)) (1)

Where x(l) denotes the hidden state input to the i-th transformer block, and θ(l) represents the parameters of the i-th
layer. The i-th layer function f contributes a transformation of f(x, θ) to x(l), which consists of a multi-head attention
(MHA) layer and a MLP layer

f(x(l), θ(l)) = MHA(l)(x(l), θ
(l)
mha) + MLP(l)(h(l), θ

(l)
mlp) (2)

Where, h(l)denotes the input to the MLP

h(l) = x(l) + MHA(l)(x(l), θ
(l)
mha) (3)

Mixture of Experts (MoE). Mixture of Experts models expand the model parameter count by replacing the MLPs
in traditional Transformers with MoE layers. Owing to their sparse activation property, MoE models can typically
achieve better performance than dense models while activating fewer parameters.

Each MoE layer comprises a router which assigns the input token representation h(l) to N MLP experts via a router
network, parameterized by Wg ∈ Rdmodel×N . The output of the MoE layer is computed as the weighted sum of outputs
from the top-k experts with the highest probabilities assigned by the router. Denoting the set of selected top-k indices
as K

MLPl
MoE =

∑
i∈K

gi(h
(l)) ∗ MLP(i)(h(l))gi(h

(l)) = softmax(i)(h(l)Wg)

2.2 INTER-LAYER SIMILARITY ANALYSIS

Analyzing the similarity between transformer layers is crucial for our pruning-and-expansion method. We use cosine
similarity to measure the similarity between hidden states. The similarity between hidden state X1 and hidden state
X2 can be expressed as

s(X1,X2) =
X1 ·X2

∥X1∥ · ∥X2∥
(4)

and the distance d(h(l),h(l+n)) between the MLP input h(l) of the l-th layer and the MLP input h(l+n) of the l+n-th
layer.

s(h(l),h(l+n)) =
h(l) · h(l+n)

∥h(l)∥ · ∥h(l+n)∥
(5)

In this way, we obtain two distance lists SL = {s(x(l),x(l+n)) | l ∈ {0, 1, . . . , N − 2}, n ∈ {1, 2, . . . , N − 1}}
and SM = {s(h(l),h(l+n)) | l ∈ {0, 1, . . . , N − 2}, n ∈ {1, 2, . . . , N − 1}}. Similar to many previous works, we
hypothesize that layers with greater inter-layer output similarity s(x(l),x(l+n)) exhibit higher redundancy. However,
instead of pruning all components of these layers as prior methods did, we retain their MLPs—the components more

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Qwen2.5-0.5B Qwen2.5-1.5B Llama2-7B

N
or

m
al

iz
ed

M
L

P
in

pu
ts

im
ila

ri
ty

N
or

m
al

iz
ed

in
te

r-
la

ye
r

ou
tp

ut
si

m
ila

ri
ty

Figure 3: Normalized similarity comparison across different models.

critical to model performance. For layers with high MLP input similarity s(h(l),h(l+n)), we adopt a strategy of
sharing attention layers (Section 2.3).

We visualize SL and SM across all layers for Qwen2.5-0.5B, Qwen2.5-1.5B, and LLaMA2-7B. These similarity met-
rics serve as prior knowledge for our pruning-and-expansion approach. In Fig.3, the color of each grid cell represents
the distance between the hidden states of different layers. Layers with greater similarity exhibit relatively higher
redundancy. We perform pruning-and-expansion at appropriate positions with reference to these similarities.

2.3 PRUNING AND EXPANSION

After the detailed analysis in Section 2.2, we obtain a set of output similarities SL for each decoder layer and a set of
similarities SM for each MLP input. We consider that decoder layers with higher output similarity s(x(l),x(l+n)) have
higher redundancy, an idea that has also been confirmed by Gromov et al. (2024). Inspired by previous studies(He
et al. (2024)), where MLP layers serve as knowledge repositories and pruning MLP layers has a significant impact on
performance, while attention layers exhibit higher redundancy. We prune layers in SLthat have high values and also
show approximate MLP inputs (i.e., s(h(l),h(l+n))). By sharing the attention mechanism from previous layers, the
MLPs of redundant layers are retained as optional paths (Fig. 4).

Specifically, we sort SL in descending order and search for l∗ and n∗ in SL that satisfy s(h(l),h(l+n)) < δ, where δ
is a hyperparameter. We expand the parameters in the form of MoE: we replicate the MLP of layer l∗ N times to serve
as N experts, and replicate the MLPs from layer l∗ to l∗ + n∗ M times each, incorporating these n∗ ∗M experts into
layer l∗. That is,

x(l∗+n∗) = xl∗−1 + MHA(l∗)(x(l∗−1)) +

K∑
i=1

αi ∗ MLP(l∗)(h(l∗)) +

n∗∑
k=1

M∑
j=1

βj ∗ MLP(l∗+k)(h(l∗)) (6)

Evidently, our method prunes the attention layers from layer l∗ + 1 to l + n∗ and shares the hidden state h(l∗) of
the MLP input at layer l∗. Due to the multi-head and redundant nature of the attention mechanism, pruning attention
layers with high similarity does not result in significant performance degradationHe et al. (2024). Since we ensure the
condition s(h(l),h(l+n)) < δ during merging, the MLPs from layer l∗ + 1 to l + n∗, when serving as experts, can
restore the previous outputs as much as possible.

Our method decouples various structures within the main path of the LLM, enabling the model to learn and select
network structures via residual paths. This approach mitigates redundancy arising from the serial arrangement of
model layers and significantly enhances the scalability of the model’s parameter count through replication.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Figure 4: Tokens skip redundant layers through path selection.

3 EXPERIMENTS

We validated the Dense2MoE method on models of different scales across two open-source model families
(Qwen2.5Team (2024) and Llama2Touvron et al. (2023)), and compared it with prevalent model layer pruning and
upcycling approaches. For fairness, all methods were fine-tuned on a small-scale dataset of equal size, and their
performance was validated on benchmarks spanning multiple domains (mathematics, code, reasoning and general
knowledge).

3.1 SETUP

Considering the application scenarios of edge-side models, we conducted our experiments on Qwen2.5-0.5B(Team
(2024)). To verify the generality of our method, we further extended it to models of larger scales and different families
(Qwen2.5-1.5B(Team (2024)), Llama2-7B(Touvron et al. (2023))). Unless otherwise specified, our experimental set-
tings are as follows: the modified model was trained with Continual Pre-Training on a dataset of 180B tokens, using a
batch size corresponding to 40 million tokens. For the learning rate schedule, we implemented a warm-up phase from
0 to 1e-4 over 360 million tokens, followed by a cosine decay to 1e-5 after reaching the peak value.

In addition, we constructed a 225B-token dataset with the same composition to compare model performance under the
same training resource consumption as the upcycling approach.

We compared our model with several mainstream works on model layer pruning and parameter expansion across
multiple benchmarks. Specifically, for the general knowledge domain, we validated the superiority of our method
on C-Eval(Huang et al. (2023)), CMMLU(Li et al. (2023)), and MMLU(Hendrycks et al. (2020)). To compare the
mathematical and coding capabilities of different methods, we conducted evaluations on GSM8K(Liu et al. (2023)),
CMath(Wei et al. (2023)) (mathematics), HumanEval(Chen et al. (2021)) and MBPP(Austin et al. (2021)) (coding).
For assessing the model’s reasoning ability, we adopted BBH(Suzgun et al. (2022)) and ARC-Challenge(Clark et al.
(2018)).

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 1: Domain data sources and composition.
Domain Dataset Sampling ratio (%)

Math

OpenWebMath 12.0
Arxiv 14.0
Github 2.3

Code
Code 16.2
Synthetic Data 3.8

General Knowledge
Wikipedia 50.6
COIG 6.8
C4 2.6

3.2 DATASET DETAILS

Our dataset is primarily assembled from publicly available, open-source sources, which we meticulously cleaned,
normalized, and deduplicated to ensure high data quality. After processing, the dataset comprises approximately 180
billion tokens, which serve as the foundation for fine-tuning our models. To better align the Dense2MoE-modified
architecture with diverse downstream tasks, we carefully adjusted the proportions of data from different domains,
thereby enabling targeted re-adaptation of the model parameters. This approach ensures that each domain is adequately
represented during fine-tuning, improving both generalization and task-specific performance. A detailed breakdown
of the dataset composition, including the domain-specific proportions and token counts, is provided in Table1.

3.3 MAIN RESULTS

Compared with the seed model, Dense2MoE advances the Pareto frontier of performance versus throughput.
We measured throughput on a single NVIDIA A800 GPU (80GB HBM2e VRAM) with a batch size of 32, a prompt
length of 1023, and a maximum generation length of 256 tokens. As shown in Fig.2(b), under the same settings,
Dense2MoE achieves a superior efficiency-performance trade-off after pruning different numbers of decoder layers.
At comparable throughput, Dense2MoE delivers a 12.5% performance improvement (40.1 → 45).

Table 2: Performance comparison of different methods across various benchmarks

Method Activated Parameters Benchmarks
Avg.

CEVAL CMMLU MMLU GSM8K CMath HUMANEVAL MBPP BBH ARC-C

Qwen2.5-0.5B 0.5B 53.77 52.06 47.6 38.59 30.66 28.66 29.6 29.85 26.96 37.53
UIDL 0.39B 43.63 45.28 36.1 26.54 30.5 27.44 21.8 27.5 23.29 32.35

LLM-Pruner 0.4B 42.87 44.79 37.2 34.7 34.59 24.13 22.6 26.43 24.5 32.42
LLM-Streamline 0.4B 45.75 45.94 47.62 34.17 28.51 25.63 20.76 29.2 26.34 33.67

Dense2MoE 0.4B 59.68 57.8 44.7 43.37 43 36.59 41 33.79 24.57 42.72

Compared with related pruning and upcycling methods, Dense2MoE achieves superior performance across
multiple benchmarks. We conducted a comprehensive evaluation using 9 benchmarks covering general knowledge,
mathematics, code, and reasoning. As shown in Table 2, after training on 270B tokens, Dense2MoE activates only 80%
of the seed model’s parameters while improving average performance by more than 7 percentage points. Furthermore,
under the same training FLOPs, Dense2MoE outperforms upcycling methods with larger parameter counts (Table3).

Table 3: Performance comparison between Dense2MoE and Upcycling under equal FLOPs

Method Activated Parameters Trained Tokens Avg. Acc

Upcycling 0.5B 180B 46.24
Dense2MoE 0.4B 225B 48.17

Generalization and scalability analysis. To validate the generality and scalability of our method, we extend
Dense2MoE to models of different families and sizes, including LLaMA2-7B and Qwen2.5-1.5B. The results are

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

presented in Table 4. After fine-tuning Dense2MoE using only 180B tokens, it outperforms Qwen2.5-0.5B by 3.04
percentage points and LLaMA2-7B by 11.16 percentage points, demonstrating that our model remains effective as
model scale increases and can be extended to other open-source model families.

Table 4: Performance comparison of different methods across various benchmarks

LLM Model Activated Parameters Benchmarks
Avg.

CEVAL CMMLU MMLU GSM8K CMath HUMANEVAL MBPP BBH ARC-C

Qwen2.5
Dense 1.5B 68.72 67.82 61.1 49 63.99 35.98 46 39.73 64.42 55.19
Ours 1.2B 72.51 70.5 55.5 51.67 63.31 52.44 53.2 42.73 62.2 58.23

Llama2
Dense 7B 30.99 32.75 45.8 22.83 16.6 12.8 21.6 39.36 27.8 27.84
Ours 5.7B 59.43 51.2 39.8 34.82 24.8 32.5 29.94 36.43 42.1 39

3.4 ABLATION STUDIES

Layer-Fusion Upcycling (LF-UC) outperforms the naive combination of redundant layer pruning and upcy-
cling. In Table5, we compare our LF-UC with a baseline approach that prunes layers based on inter-layer similarity as
the redundancy criterion, then simply duplicates and expands the retained layers’ MLPs into MoEs through upcycling.
Experimental results demonstrate that our method achieves superior performance, confirming that Dense2MoE better
preserves LLM’s original capabilities while eliminating redundancy.

Table 5: Performance comparison of different methods across various benchmarks

Method
Benchmarks

Avg.
CEVAL CMMLU MMLU GSM8K CMath HUMANEVAL MBPP BBH ARC-C

Prune+Upcycling 53.72 54.92 41.8 39.67 38.06 36.58 37.8 26.73 27.05 39.59
Prune+Layer-Fusion Upcycling 59.68 57.8 44.7 43.37 43 36.59 41 33.79 24.57 42.72

4 ANALYSIS

4.1 SCALING ANALYSIS OF THE NUMBER OF PRUNED LAYERS

We empirically searched for the impact of the number of pruned layers on model performance, as shown in Figure 5.
We pruned the top-k redundant layers(k = 1, 3, 5, 7, 9, ...) and expanded the parameters via Layer-Fusion Upcycling
(LF-UC). The results demonstrate that Dense2MoE effectively mitigates pruning-induced performance degradation
when the number of pruned layers is within a certain range (k ≤ 8). However, when the number of pruned layers
exceeds a threshold, the performance of Dense2MoE degrades rapidly, as the negative impact of layer-wise pruning
becomes the dominant factor.

4.2 SCALING ANALYSIS OF THE NUMBER OF EXPERTS

We scaled the total number of experts per layer. Under the top-1 gating setting, model performance improves sharply
as the number of experts increases, but the improvement slows when the number of experts reaches a certain point,
limited by the scale of training data and active parameters. Thus, for Dense2MoE at the Qwen2.5-0.5B scale, we chose
a configuration with a total of N=6 experts and pruning the top-5 redundant layers.

5 RELATED WORK

The Mixture of Experts (MoE) framework has emerged as a dominant paradigm for scaling large language models
(LLMs) while balancing computational efficiency, addressing the limitations of dense models where parameter growth
linearly increases inference costs. By decomposing the model into specialized ”expert” sub-modules and a routing
mechanism that activates only a subset of experts per token, MoE achieves parameter sparsity without sacrificing
capacity.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Figure 5: Scaling Analysis of Layers and Experts

However, the computational cost of training MoE models from scratch remains prohibitive, prompting research into
efficiently leveraging open-source models for resource reuse. Model pruning is a straightforward approach that calcu-
lates similarity between weights, considers dimensionality reduction, and evaluates parameter activation frequency to
eliminate redundancy. Unstructured pruning maintains performance while sparsifying the model but creates irregular
parameter patterns that often require operator-level customization and optimization. In contrast, structured pruning
ensures parameter regularity and better compatibility but risks significant performance degradation by removing entire
neurons or layers, as it deletes larger, potentially more critical components.

Upcycling methods extend dense model parameters by reusing attention mechanisms and replicating MLPs, cost-
effectively improving performance under equivalent activated parameter constraints. However, this approach increases
the redundancy already present in LLMs.

Our Dense2MoE integrates layer-wise pruning with upcycling through our proposed Layer-Fusion Upcycling (LF-UC)
technique, removing redundant LLM layers while preserving their more critical MLP components. This approach en-
ables Dense2MoE to achieve a superior balance between performance and efficiency compared to standalone pruning
or upcycling methods.

6 CONCLUSION

In this work, we propose Dense2MoE, a novel framework that jointly combines layer-wise pruning and parameter
upcycling to enhance both efficiency and performance of large language models. By leveraging the Layer-Fusion
Upcycling (LF-UC) technique, Dense2MoE identifies and removes redundant layers while repurposing valuable MLP
parameters as additional experts in an MoE structure, achieving a balance between parameter efficiency and model
capacity. Comprehensive evaluations across multiple domains, including mathematics, code, and general knowledge,
demonstrate that Dense2MoE consistently outperforms approaches relying solely on pruning or parameter expansion.
Moreover, the method generalizes effectively across different model families and scales, enabling practical deployment
on diverse hardware with minimal training costs.

Dense2MoE highlights a synergistic strategy for optimizing open-source models, paving the way for further explo-
ration of expert activation, attention upcycling, and integration with other compression techniques to maximize effi-
ciency without compromising performance.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

REFERENCES

Saleh Ashkboos, Maximilian L Croci, Marcelo Gennari do Nascimento, Torsten Hoefler, and James Hensman.
Slicegpt: Compress large language models by deleting rows and columns. arXiv preprint arXiv:2401.15024, 2024.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan, Ellen Jiang,
Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language models. arXiv preprint
arXiv:2108.07732, 2021.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared Kaplan, Harri Ed-
wards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large language models trained on code.
arXiv preprint arXiv:2107.03374, 2021.

Xiaodong Chen, Yuxuan Hu, Jing Zhang, Yanling Wang, Cuiping Li, and Hong Chen. Streamlining redundant layers
to compress large language models. arXiv preprint arXiv:2403.19135, 2024.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and Oyvind Tafjord.
Think you have solved question answering? try arc, the ai2 reasoning challenge. arXiv preprint arXiv:1803.05457,
2018.

Andrey Gromov, Kushal Tirumala, Hassan Shapourian, Paolo Glorioso, and Daniel A Roberts. The unreasonable
ineffectiveness of the deeper layers. arXiv preprint arXiv:2403.17887, 2024.

Shwai He, Guoheng Sun, Zheyu Shen, and Ang Li. What matters in transformers? not all attention is needed. arXiv
preprint arXiv:2406.15786, 2024.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob Steinhardt. Mea-
suring massive multitask language understanding. arXiv preprint arXiv:2009.03300, 2020.

Yuzhen Huang, Yuzhuo Bai, Zhihao Zhu, Junlei Zhang, Jinghan Zhang, Tangjun Su, Junteng Liu, Chuancheng Lv,
Yikai Zhang, Yao Fu, et al. C-eval: A multi-level multi-discipline chinese evaluation suite for foundation models.
Advances in Neural Information Processing Systems, 36:62991–63010, 2023.

Gueyoung Jung, Matti A Hiltunen, Kaustubh R Joshi, Richard D Schlichting, and Calton Pu. Mistral: Dynamically
managing power, performance, and adaptation cost in cloud infrastructures. In 2010 IEEE 30th International Con-
ference on Distributed Computing Systems, pp. 62–73. IEEE, 2010.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott Gray, Alec Rad-
ford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models. arXiv preprint arXiv:2001.08361,
2020.

Bo-Kyeong Kim, Geonmin Kim, Tae-Ho Kim, Thibault Castells, Shinkook Choi, Junho Shin, and Hyoung-Kyu Song.
Shortened llama: A simple depth pruning for large language models. arXiv preprint arXiv:2402.02834, 11:1, 2024.

Aran Komatsuzaki, Joan Puigcerver, James Lee-Thorp, Carlos Riquelme Ruiz, Basil Mustafa, Joshua Ainslie, Yi Tay,
Mostafa Dehghani, and Neil Houlsby. Sparse upcycling: Training mixture-of-experts from dense checkpoints. arXiv
preprint arXiv:2212.05055, 2022.

Haonan Li, Yixuan Zhang, Fajri Koto, Yifei Yang, Hai Zhao, Yeyun Gong, Nan Duan, and Timothy Baldwin. Cmmlu:
Measuring massive multitask language understanding in chinese. arXiv preprint arXiv:2306.09212, 2023.

Bingbin Liu, Sebastien Bubeck, Ronen Eldan, Janardhan Kulkarni, Yuanzhi Li, Anh Nguyen, Rachel Ward, and
Yi Zhang. Tinygsm: achieving¿ 80% on gsm8k with small language models. arXiv preprint arXiv:2312.09241,
2023.

Xin Men, Mingyu Xu, Qingyu Zhang, Bingning Wang, Hongyu Lin, Yaojie Lu, Xianpei Han, and Weipeng Chen.
Shortgpt: Layers in large language models are more redundant than you expect. arXiv preprint arXiv:2403.03853,
2024.

N Shazeer, A Mirhoseini, K Maziarz, A Davis, Q Le, G Hinton, and J Dean. The sparsely-gated mixture-of-experts
layer. Outrageously large neural networks, 2, 2017.

Jiwon Song, Kyungseok Oh, Taesu Kim, Hyungjun Kim, Yulhwa Kim, and Jae-Joon Kim. Sleb: Streamlining llms
through redundancy verification and elimination of transformer blocks. arXiv preprint arXiv:2402.09025, 2024.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Sainbayar Sukhbaatar, Olga Golovneva, Vasu Sharma, Hu Xu, Xi Victoria Lin, Baptiste Rozière, Jacob Kahn, Daniel
Li, Wen-tau Yih, Jason Weston, et al. Branch-train-mix: Mixing expert llms into a mixture-of-experts llm. arXiv
preprint arXiv:2403.07816, 2024.

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Sebastian Gehrmann, Yi Tay, Hyung Won Chung, Aakanksha
Chowdhery, Quoc V Le, Ed H Chi, Denny Zhou, et al. Challenging big-bench tasks and whether chain-of-thought
can solve them. arXiv preprint arXiv:2210.09261, 2022.

Qwen Team. Qwen2.5 technical report. arXiv preprint arXiv:2412.15115, 2024.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov,
Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation and fine-tuned chat models.
arXiv preprint arXiv:2307.09288, 2023.

Kulkarni Tripti R, P Chethan, Singh Arun Vikas, and S Monisha S. Deepseek open-source ai. International Journal
of Trend in Scientific Research and Development, 9(3):555–560, 2025.

Tianwen Wei, Jian Luan, Wei Liu, Shuang Dong, and Bin Wang. Cmath: Can your language model pass chinese
elementary school math test? arXiv preprint arXiv:2306.16636, 2023.

Chengyue Wu, Yukang Gan, Yixiao Ge, Zeyu Lu, Jiahao Wang, Ye Feng, Ying Shan, and Ping Luo. Llama pro:
Progressive llama with block expansion. arXiv preprint arXiv:2401.02415, 2024.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Gao, Chengen
Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint arXiv:2505.09388, 2025.

Yifei Yang, Zouying Cao, and Hai Zhao. Laco: Large language model pruning via layer collapse. arXiv preprint
arXiv:2402.11187, 2024.

10


	Introduction
	Method
	Preliminary
	Inter-Layer Similarity Analysis
	Pruning and expansion

	Experiments
	Setup
	Dataset Details
	Main Results
	Ablation Studies

	Analysis
	Scaling Analysis of the Number of Pruned Layers
	Scaling Analysis of the Number of Experts

	Related Work
	Conclusion

