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ABSTRACT

The primary objective of learning methods is generalization. Classic generalization
bounds, which rely on VC-dimension or Rademacher complexity, are uniformly
applicable to all networks in the hypothesis space. On the other hand, algorithm-
dependent generalization bounds, like stability bounds, address more practical
scenarios and provide generalization conditions for neural networks trained using
SGD. However, these bounds often rely on strict assumptions, such as the NTK
hypothesis or convexity of the empirical loss, which are typically not met by neural
networks. Furthermore, uniform generalization bounds fail to explain the significant
attribute that over-parameterized models in deep learning exhibit nice generalizabil-
ity. In order to establish generalizability under less stringent assumptions, which
can also account for the effective generalizability of over-parameterized models,
this paper investigates the generalizability of neural networks that minimize empir-
ical risk. A lower bound for accuracy is established based on the expressiveness of
these networks, which indicates that with an adequate large number of training sam-
ples and network sizes, these networks can generalize effectively. Additionally, we
provide a lower bound necessary for generalization, demonstrating that, for certain
data distributions, the quantity of training data required to ensure generalization
exceeds the network size needed to represent the corresponding data distribution.
Finally, we provide theoretical insights into several phenomena in deep learning,
including robust generalization, importance of over-parameterization networks,
and effects of loss functions.

1 INTRODUCTION

Understanding the mechanisms behind the nice generalization ability of deep neural networks remains
a fundamental challenge problem in deep learning theory. By generalization, it means that neural
networks trained on finite data give high predict accuracy on unseen data. The generalization bound
serves as a critical theoretical framework for evaluating the generalizability of learning algorithms.
Let F be a network, L a loss function, and D the data distribution. For a hypothesis space H
and any F ∈ H, with probability 1 − δ of dataset Dtr selected i.i.d. from D, we have the classic

generalization bound |E(x,y)∼D[L(F(x), y)]−E(x,y)∈Dtr
[L(F(x), y)]| < 2

ρRadDtr
(H)+

√
ln 1/δ
2|Dtr| )

(Mohri et al., 2018), where RadDtr (H) is the Radermacher Complexity of H under dataset Dtr and ρ

is a constant. If we take L(F(x), y) = I(F̂(x) = y) where F̂(x) is the classification result of F(x),
then it becomes the accuracy of the network F over D or population accuracy. There exist similar
generalization bounds using VC-dimension (Mohri et al., 2018).

The above-mentioned generalization bounds are satisfied for all networks in the hypothesis space. In
practice, the generalizability of the networks trained by gradient descent is desirable. For that purpose,
algorithmic-dependent generalization bounds are derived. It is shown that if the data satisfy the NTK
condition, the two-layer networks have a small generalization risk after training (Jacot et al., 2018; Ji
& Telgarsky, 2019). Stability generalization bounds are also obtained (Hardt et al., 2016; Wang &
Ma, 2022) by assuming the convexity and Lipschitz properties of the loss function. Unfortunately,
most of these algorithmic-dependent generalization bounds make strong and unrealistic assumptions
about the training procedure. For example, the NTK condition is used to reduce the training to a
convex optimization (Ji & Telgarsky, 2019) and strong smoothness and convexity of the empirical
loss are used to measure the effect in each training epoch (Hardt et al., 2016). Moreover, uniform
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generalization bounds fail to explain the significant attribute that over-parameterized models in deep
learning exhibit nice generalizability (Belkin et al., 2019; Bartlett et al., 2021), because ****

In order to give generalization conditions under more relaxed assumptions, and to provide more
specific conditions for generalization to account for the nice generalizability of over-parameterized
models, we will study the generalization of networks that minimize the empirical risk, that is, the
network F ∈ M = argminG∈H

∑
(x,y)∈Dtr

L(G(x), y). The approach is reasonable because most
practical training will lead to a very small value of the empirical risk and the trained networks can be
considered to minimize the empirical risk. So our main research objective is: the generalization of
the networks that minimize the empirical risk without requiring strong assumptions.

In this paper, we consider two-layer networks, like many previous works (Ba et al., 2020; Luo &
Yang, 2020; Ji & Telgarsky, 2019; Zeng & Lam, 2022). From the perspective of expressive ability,
we show that when the number of training data and the size of network are large enough, the network
has generalizability. We further found that the sample complexity and the size of the network depend
only on the cost required for the network to express such a distribution. As shown below.
Theorem 1.1 (Informal, Section 4). Let distribution D satisfy the requirement that a two-layer
network with width W can reach accuracy 1 in this distribution, then if Dtr is selected i.i.d. from the
distribution and with more than Ω(W 2) elements, then with high probability, any network in M and
with width more than Ω(W ) has high accuracy.

From this result, we can determine the exact amount of training data and the size of the network that
can ensure generalizability. We also consider the lower bound required to have generalizability. For
some data distribution, to ensure the generalizability of network which minimizes the empirical risk,
the required number of data must be greater than the size of neural networks required to express such
a distribution. As shown below.
Theorem 1.2 (Informal, Section 5). For some data distribution, if the width required for a two-layer
network with ReLU activation function to express such distribution is at least W , then for a dataset
with fewer than O(W ) elements, the network that minimizes the empirical risk for such dataset may
have poor generalization.

Finally, while networks that minimize the empirical risk exhibit good generalization, numerous
classical experimental results indicate that these networks encounter several problems such as robust
and so on. Therefore we provide some interpretability for these problems based on our theoretical
results. Let Dtr be a dataset and F ∈ M. Then, three phenomena of deep learning are discussed with
our theoretical results.

Robustness Generalization. (Section 6.1) It is shown that robust memorizing a dataset Dtr is more
difficult than memorizing Dtr (Park et al., 2021; Li et al., 2022; Yu et al., 2024). We further show
that when robust memorizing Dtr is much more difficult than Dtr, then the robustness accuracy of F
over D has an upper bound and may be low.

Importance of over-parameterization. (Section 6.2) It is recognized that over-parameterized
networks have nice generalizaility (Belkin et al., 2019; Bartlett et al., 2021). In this regard, we show
that when the network is large enough, a small empirical loss leads to high test accuracy. In contrast,
when the network F is not large enough, there exist networks that achieve good generalization but
cannot be found by minimizing the empirical risk.

Loss function. (Section 6.3) We show that for some loss function, generalization may not be achieved.
If the loss function reached its minimum value or is a strictly decreasing concave function, F may
have poor generalization.

2 RELATED WORK

Generalization bound. Generalization bound is the central issue of learning theory and has been
studied extensively (Valle-Pérez & A. Louis, 2022).

The algorithm-independent generalization bounds usually depend on the VC-dimension or the
Rademacher complexity (Mohri et al., 2018). In Harvey et al. (2017); Bartlett et al. (2019); Yang
et al. (2023), V C-dimension has been accurate calculated in terms of width, depth, and number of
parameters, hence use it into generalization bounds. In Wei & Ma (2019); Arora et al. (2018); Li et al.
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(2018), some tighter generalization bound of networks was given based on Radermacher complexity.
Consider the network structure, the generalization bound can be further precise calculated,Long &
Sedghi (2019); Ledent et al. (2021); Li et al. (2018) gave the generalization bound of CNN, Vardi
et al. (2022) gave the sample complexity of small networks, Brutzkus & Globerson (2021) studied
the generalization bound of maxpooling networks, Trauger & Tewari (2024); Li et al. (2023) gave the
generalization bound of transformers; Ma et al. (2018); Luo & Yang (2020); Ba et al. (2020) studied
the two-layer network in many situations. Under the assumption of the network, Neyshabur et al.
(2017); Barron & Klusowski (2018); Dziugaite & Roy (2017); Bartlett et al. (2017); Valle-Pérez &
A. Louis (2022) gave the upper bounds of the generalization error. By using the PAC methods, Alquier
et al. (2024); Hellström et al. (2023) gave the generalization bound. Some negative conclusions
Nagarajan & Kolter (2019) have been giving for this type of generalization bound.

Algorithm-dependent generalization bounds were established in the algorithmic stability setting, and
we can measure generalizability through the stability of algorithms (Bousquet & Elisseeff, 2002;
Elisseeff et al., 2005; Shalev-Shwartz et al., 2010). For gradient descent of network, under some
assumptions, Hardt et al. (2016); Wang & Ma (2022); Kuzborskij & Lampert (2018); Lei (2023);
Bassily et al. (2020) gave the stability bound of networks, for small networks such as two-layer
network, under some assumptions, Ji & Telgarsky (2019); Taheri & Thrampoulidis (2024); Li et al.
(2020) gave the generalization of networks. For some other training methods, there were also some
analysis of stability and generalization, as in Farnia & Ozdaglar (2021); Xing et al. (2021); Xiao
et al. (2022); Wang et al. (2024); Allen-Zhu & Li (2022), the adversarial training was considered;
in Regatti et al. (2019); Sun et al. (2023), the Asynchronous SGD was considered. However, these
previous algorithmic-dependent generalization bounds always impose strong assumptions on the
training process or dataset.

Neural Network Interpretability. Interpretability is dedicated to providing reasonable explanations
for phenomena that occur in neural networks. As said in Zhang et al. (2021): Interpretability is
not always needed, but it is important for some prediction systems that are required to be highly
reliable because an error may cause catastrophic results. For adversarial samples, it was shown that
for certain data distributions and network, there must be trade off between accuracy and adversarial
accuracy Shafahi et al. (2019); Bastounis et al. (2021). In (Yu et al., 2023), it was proven that a
small perturbation of the network parameters will lead to low robustness. In (Allen-Zhu & Li, 2022),
it was shown that the generation of adversarial samples after training is due to dense mixtures in
the hidden weights. In (Yu et al., 2024; Li et al., 2022), it was shown that ensuring generalization
requires more parameters. For overfitting, it was shown that long term training can lead to a decrease
in generalization (Xiao et al., 2022; Xing et al., 2021). In (Roelofs et al., 2019), comprehensive
analysis of overfitting is given. In (Belkin et al., 2019; Bartlett et al., 2021), the importance of
over-parameterized interpolation networks are talking, and in Arora et al. (2019); Cao & Gu (2019);
Ji & Telgarsky (2020), the training and generalization of DNNs in the over-parameterized regime
were studied. In this paper, we explain these phenomena from the perspective of the expressive ability
of networks.

3 NOTATION

In this paper, for any A ∈ R, O(A) means the value not more than cA for some c > 0, Ω(A) means
the value not less than cA for some c > 0.

3.1 NEURAL NETWORK

In this paper, we consider two-layer neural network F : Rn → R which can be writen as:

F (x) =
∑W

i=1 aiσ(Wix+ bi) + c,

where σ is the activation function, Wi ∈ R1×n is the transition matrix, bi ∈ R is the bias part, W
is the width of the network, and ai, c ∈ R. Denote Hσ

W (n) to be the set of all two layer neural
networks with input dimension n, width W , activation function σ, and all parameters are in [−1, 1].
To simplify the notation, we denote HReLU

W (n) by HW (n) when using the ReLU activation function.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3.2 DATA DISTRIBUTION

In this paper, we consider binary classification problems. To avoid extreme cases, we focus primarily
on the distribution defined below. And in this article, we will mainly focus on this kind of distribution.
Definition 3.1. For n ∈ Z+, D(n) is the set of distributions D ∈ [0, 1]n × {−1, 1} which have a
positive separation bound: inf(x1,y1),(x2,y2)∼D and y1 ̸=y2

||x1 − x2||2 > 0.

The accuracy of a network F on a distribution D is defined as

AD(F) = P(x,y)∼D(Sgn(F(x)) = y),

where Sgn is the sign function. We use Dtr ∼ DN to mean that Dtr is a dataset of N samples drawn
i.i.d. according to D.

3.3 MINIMUM EMPIRICAL RISK

Consider the loss function L(F(x), y) = ln(1 + e−F(x)y), which is the crossentropy of binary
classification problem. For a dataset Dtr ⊂ [0, 1]n × {−1, 1} and a hypothesis space Hσ

W (n). To
learn the features of the data in Dtr, a traditional method is empirical risk minimization (ERM),
which minimizes the value of loss function on dataset

∑
(x,y)∈Dtr

L(F(x), y) of the network F .

Under this motivation, in this paper, we mainly consider the networks F ∈ Hσ
W (n) that can minimize

the empirical risk, that is, networks in

Mσ
W (Dtr, n) = argmin

G∈Hσ
W (n)

∑
(x,y)∈Dtr

L(G(x), y). (1)

It should be noted that such networks exist in most cases, as shown below.
Proposition 3.2. Let Dtr ⊂ [0, 1]n×{−1, 1} and σ be a continuous function. Then for any W ∈ Z+,
there must exist a F ∈ Hσ

W (n) such that F ∈ Mσ
W (Dtr, n).

Proof. Consider the empirical risk as a function of network parameters. Let ai, bi, c,Wi be the param-
eters of F . Then empirical risk

∑
(x,y)∈Dtr

L(F(x), y) =
∑

(x,y)∈Dtr
ln e−y(

∑W
i=1 aiσ(Wix+bi)+c).

Since σ is a continuous function,
∑

(x,y)∈Dtr
L(F(x), y) is a continuous function about ai, bi, c and

Wi, and the domain of definition of parameters is [−1, 1]Wg , where Wg = W (n + 2) + 1 is the
number of parameters of F . The proposition now comes from the fact that continuous functions have
reachable upper and lower bounds on closed domain.

4 GENERALIZABILITY BASED ON NEURAL NETWORK EXPRESSIVE ABILITY

In this section, we demonstrate that based on the expressive ability of neural networks, the generaliza-
tion of network which minimizes the empirical risk can be estimated. Specifically, in Section 4.1, we
establish the relationship between expressive ability and generalizability. In Section 4.2, we extend
our conclusion to local minima. In Section 4.3, we compare our generalization bounds with previous
algorithm-independent and algorithm-dependent bounds, showcasing the superiority of our bound.

4.1 A LOWER BOUND FOR ACCURACY BASED ON THE EXPRESSIVE ABILITY

We first define the expressive ability of neural networks to classify data distribution.
Definition 4.1. We say that a distribution D over [0, 1]n × {−1, 1} can be expressed by Hσ

W with
confidence c, if there exists an F ∈ Hσ

W such that

P(x,y)∼D(yF(x) ≥ c) = 1.

For any distribution D ∈ D(n), we can always find some activation function σ, such that D can be
expressed by Hσ

W (n) with confidence c for some W and c. Therefore, this definition is reasonable.
For example, if σ = ReLU, according to the universal approximation theorem of neural networks
(Cybenko, 1989), any D ∈ D(n) can be represented by a network with ReLU as activation function,
as shown by the following proposition. The proof is given in Appendix A.
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Proposition 4.2. For any distribution D ∈ D(n), there exist W ∈ N+ and c > 0 such that D can be
expressed by HW (n) with the confidence c.

With such a definition, we have the following relationship between expressive ability and generaliza-
tion ability. The proof is given in Appendix B.

Theorem 4.3. Let σ be a continuous function with Lipschitz constant Lp, W0 ≥ 2, n ∈ N+, c ∈ R+.
If D ∈ D(n) can be expressed by Hσ

W0
with the confidence c, then for any W ≥ W0 + 1, N ∈ N+,

δ ∈ (0, 1), with probability at least 1 − δ of Dtr ∼ DN , the following bound stands for any
F ∈ Mσ

W (Dtr, n):

AD(F) ≥ 1−O(
W0

cW
+

nLp(W0 + c)
√
log(4n)

c
√
N

+

√
ln(2/δ)

N
).

Proof Idea. There are two main steps in the proof. The first step tries to estimate the minimum
value of the empirical risk, which mainly uses the assumption: D can be expressed by Hσ

W0
with

confidence c. The minimum value is based on W0, c,W . Then, use such the minimum value to
estimate the performance of the network on the dataset. In the second step, we can use the result in
the first step and the classic generalization bound to estimate the performance of the network across
the entire distribution and get the result. The core idea of this step is that the minimum value of
empirical risk does not depend on N , but the Radermacher complexity will reduce when increasing
N , so when N is large enough, the performance of networks in distribution and datasets is similar.

This result shows that increasing N and W leads to a better test accuracy. It is reasonable that more
data make better generalization and a larger network makes better generalization, which also confirms
the observation about the nice generalization ability of over-parameterized networks. This differs
from classical algorithm-independent generalization bounds, which lack this advantageous property.
Since the values of N and W to ensure generalization are only influenced by the size required for the
network to express the data distribution, we can infer the following corollary.

Corollary 4.4. With probability 1 − δ of Dtr ∼ DN , it holds AD(F) ≥ 1 − ϵ for any F ∈
Mσ

W (Dtr, n), when W ≥ Ω(W0/(cϵ)) and N ≥ Ω(
Lp(W0+c)n

√
log(4n)

cϵ )2 +Ω( ln(2/δ)ϵ2 ).

The above bounds of N and W depend only on constants about expressive ability W0, c, Lipschitz
constant Lp and ϵ, δ, which shows that as long as there are enough samples and enough large network
size based on the expressive ability, the neural network that minimizes the empirical risk will have
generalization ability.
Remark 4.5. For deep networks, we can show that if the depth and width of the network and the
number of data exceed a distribution-dependent threshold, then with high probability, the network
minimizing the empirical risk can ensure generalization, as demonstrated in Appendix K. However,
due to the complexity of deep networks, accurately determining the required depth, width, and data
volume remains a challenge.

4.2 GENERALIZATION FOR LOCAL OPTIMAL POINT

In practice, it is often challenging to accurately find the network parameters that minimize the
empirical risk, but instead parameters are find which locally minimize the empirical risk. In this
section, we show that for networks with such parameters, if the value of the empirical risk is small,
its generalization can also be guaranteed. We define such a set of networks.

Definition 4.6. For any q ≥ 1 and dataset Dtr, we say F ∈ Hσ
W (n) is a q-approximation of minimize

empirical risk if

∑
(x,y)∈Dtr

L(F(x), y) ≤ q min
f∈Hσ

W (n)

∑
(x,y)∈Dtr

L(f(x), y).

For all q-approximation networks, we have the following result. The proof is in Appendix C.

Proposition 4.7. Let σ be a continuous function with Lipschitz constant Lp, W0 ≥ 2, n ∈ N+, c ∈
R+. If D ∈ D(n) can be expressed by Hσ

W0
with confidence c, then for any W ≥ W0 + 1, N ∈ N+,

5
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q ≥ 1 and δ ∈ (0, 1), with probability at least 1− δ of Dtr ∼ DN , we have

AD(F) ≥ 1−O(
qW0

cW
+

nLp(W0 + c)
√
log(4n)

c
√
N

+

√
ln(2/δ)

N
),

for any q-approximation F ∈ Hσ
W (n) to minimize the empirical risk.

The theorem demonstrates that if a local optimal point is a q-approximation to minimize the empirical
risk, then we can obtain similar conclusions as Theorem 4.3.

4.3 COMPARISON WITH CLASSICAL CONCLUSIONS

In this section, we compare our generalization bounds with previous ones. Compared to algorithm-
independent generalization bounds, our bound performs better when the data size is not significantly
larger than the network size. Compared to algorithm-dependent generalization bounds, our bound
does not require overly strong assumptions as prerequisites.

Compare with the algorithm-independent generalization bound. When the scale of the network
is bounded, a general generalization bound can be calculated by the VC dimension.
Theorem 4.8 (P.217 of (Mohri et al., 2018), Informal). Let Dtr ∼ DN be the training set. For the
hypothesis space H = {Sgn(F(x)) ∥F(x) : Rn → R} and δ ∈ R+, with probability at least 1− δ,
for any Sgn(F(x)) ∈ H, we have

|AD(Sgn(F))− E(x,y)∈Dtr
[I(Sgn(F(x)) = y)]| ≤ O(

√
VC(H)+ln(1/δ)

N ) (2)

Theorem 4.3 provides the number of data and the size of the network that is required to ensure
generalization. These bounds mainly depend on the distribution, but not on the hypothesis space.
Theorem 4.8 demonstrates the relationship between the number of data and the size of the network
to ensure generalization, which points out that when the number of data is much more than the
VC-dimension of the network hypothesis space, generalization can be ensured. Considering that the
VC-dimension can be calculated by the size of the network (Bartlett et al., 2019), Theorem 4.8 means
that to ensure generalization, the number of data must be greater than the size of the network, this is
contradictory to over-parameterized. So, when the data volume is not significantly larger than the
network size, Theorem 4.3 demonstrates superior performance.

Compare with the algorithm-dependent generalization bound. In the study of algorithm-
dependent generalization bound, some works derive generalization bounds based on gradient descent
and corresponding strong assumptions, which we do not utilize.
Theorem 4.9 (Ji & Telgarsky (2019)). Let ϵ ∈ (0, 1), δ ∈ (0, 1/4) and distribution D over [0, 1]n
satisfy the NTK conditions with constant γ, and λ and M defined as

λ =

√
2 ln(4n/δ) + ln(4/ϵ)

γ/4
,M =

4096λ2

γ6
,

If the two-layer network with width W > M and training step η ≤ 1, with probability 1 − 4δ of
Dtr ∼ DN and training initiation point, after at most 2λ2

ηϵ times gradient descent on Dtr, for the
trained network F , it holds

AD(F) ≥ 1− 2ϵ− 16

√
2 ln(4N/δ) + ln(4/ϵ)

γ2
√
N

− 6

√
ln(2/δ)

N
.

Theorem 4.3 only requires that the distribution with positive separation can be fitted by the network,
and it stands for any distribution D ∈ D(n) as mentioned in Proposition 4.2. But Theorem 4.9
requires NTK conditions for distribution. These conditions can make the training approach to a
convex optimization, which is an overly strong condition.

5 LOWER BOUND FOR SAMPLE COMPLEXITY BASED ON EXPRESSIVE ABILITY

In this section, on the other hand, we consider the lower bound of data complexity necessary for
generalization.

6
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5.1 UPPER BOUND FOR ACCURACY WITHOUT ENOUGH DATA

This section illustrates that in the worst-case scenario, the minimum number of data points needed to
guarantee accuracy is constrained by the VC-dimension of the smallest hypothesis space necessary to
represent a distribution. We give a definition first.
Definition 5.1. For a hypothesis space H ⊂ Rn → R, VC(H) is the maximum number of data in
[0, 1]n that H can shatter. Precisely, there exist VC(H) samples {xi}VC(H)

i=1 ⊂ [0, 1]n, such that for

any {yi}VC(H)
i=1 ∈ {−1, 1}, there is an F ∈ H such that Sgn(F(xi)) = yi for all i ∈ [VC(H)]. But

there do not exist VC(H) + 1 such samples.

We have the following theorem. The proof is in Appendix D.
Theorem 5.2. For any n,W,W0 ∈ N+ and activation function σ, there is a D ∈ D(n) such that

(1) There is an F ∈ Hσ
W0

(n) such that AD(F) = 1;

(2) For any given ϵ, δ ∈ (0, 1), if N ≤ VC(Hσ
W0

(n))(1 − 4ϵ − δ), then with probability 1 − δ of
Dtr ∼ DN , we have AD(F) < 1− ϵ for some F ∈ Mσ

W (Dtr, n).

This conclusion indicates that for distributions that require networks with width W0 to express, some
of them requires at least Ω(VC(Hσ

W0
(n))) data to ensure generalization. It is worth mentioning that

this conclusion is true for any given W in the theorem. It is easy to see that a larger W0 makes
VC(Hσ

W0
(n)) larger, so as the cost of expression increases, generalization becomes difficult. However,

it is difficult to accurately calculate VC(Hσ
W0

(n)) for some given σ. If we focus on ReLU networks,
by the result in (Bartlett et al., 2019), we have
Corollary 5.3. For any given n,W,W0 ∈ N+, there is a D ∈ D(n) such that:

(1) There is an F ∈ HW0
(n) such that AD(F) = 1;

(2) For any given ϵ, δ ∈ (0, 1), if N ≤ O(nW0(1 − 4ϵ − δ)), then for all Dtr ∼ DN , it holds
AD(F) < 1− ϵ for some F ∈ Mσ

W (Dtr, n).

Besides, for any distribution, we can show that if the parameters required to express a distribution
tend to infinity, the required number of data to ensure the generalization for such distribution must
also tend infinity. As shown in the following theorem. The proof is in Appendix E.
Theorem 5.4. Suppose D ∈ D(n), W0 ≥ 2n+1, and AD(F) ≤ 1− ϵ for any ϵ and F ∈ HW0

(n).

If N ≤ W
1

n+1

0 (n+ 1)/e, then for any Dtr ∼ DN and W ∈ N+, there is an F ∈ MW (Dtr, n) such
that AD(F) ≤ 1− ϵ.

However, since the Theorem 5.4 is correct for all distributions and dataset, it can only provide a
relatively loose bound. If the distribution is given, we can calculate the relationship between the
minimum number of data required and the minimum required number of parameters to fit it, as shown
in the following section.

5.2 APPROPRIATE NETWORK MODEL HELPS WITH GENERALIZATION

As mentioned in the above sections, expressive ability and generalization ability are closely related.
Section 4.1 demonstrates that simpler expressions facilitate generalization; Section 5 reveals that, in
the worst-case scenario, the amount of data required to guarantee generalization approximates the
VC-dim of the hypothesis space that can express the distribution.

Therefore, for a given distribution, selecting an appropriate network model which can fit the distri-
bution easily may help to facilitate better expression with fewer data and network size, ultimately
leading to improved generalization. In this paper, focusing on two-layer networks, we illustrate that
selecting an appropriate activation function for the neural network according to the target distribution
enhances generalization.

To better explain this conclusion, let us examine the following distribution.
Definition 5.5. Let Dn ∈ [0, 1]n × {−1, 1} be a distribution defined as: Dn is defined on
{( i

n1, I(i))}
n
i=1 where 1 is the all one weight in Rn, I(x) = 1 if x is odd and I(x) = −1 if x

is even, annd the probability of each point is the same.
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ReLU networks need Ω(n) widths to express this distribution and require Ω(n) data to ensure
generalization. The proof is given in Appendix F.

Proposition 5.6. (1) For any n, ADn
(F) < 1 for any F ∈ HW (n) when W < n/2;

(2) If N ≤ δn where δ ∈ (0, 1), then for all Dtr ∼ DN
n and W ∈ N+, it holds AD(F) ≤ 0.5 + 2δ

for some F ∈ MW (Dtr, n).

But if we use the activation function σ(x) = sin(πx), the networks only need O(1) widths to express
such a distribution and require fewer data to ensure generalization. The proof is given in Appendix G.

Proposition 5.7. (1) For any n, Dn can be expressed by Hσ
1 (n) with confidence 1;

(2) For any W ≥ 2, n > 2, δ ∈ (0, 1) and N ≥ 4 ln(δ/2)
ln(0.5+1/n) , with probability 1− δ of Dtr ∼ DN

n , it
holds AD(F) = 1 for all F ∈ Mσ

W (Dtr, n).

As shown in the above example, using σ(x) = sin(πx) as activation function only requires
O(ln(δ/2)) samples and O(1) widths to ensure generalization, but ReLU networks require at least
Ω(n) samples and widths to ensure generalization. This demonstrates the crucial role of selecting the
appropriate network model.
Remark 5.8. It is worth mentioning that for some very simple distributions like the Bernoulli
distribution, the performance of various activation functions is similar, so we cannot provide a general
conclusion for any distribution.

6 EXPLANATION OF SOME PHENOMENA IN DEEP NEURAL NETWORK

Although networks minimizing empirical risk are good for generalization, many classic experimental
results have shown that the networks still have problems. In this section, we will provide explanations
for some classic experimental results based on our theoretical results.

6.1 WHY DO GENERAL NETWORKS LACK ROBUSTNESS?

Experiments show that using ERM to train a network can easily lead to low robustness accuracy
(Szegedy, 2013). In this section, we provide some explanations for this fact.

The robustness accuracy of network F under distribution D and robust radius ϵ is defined as

RobD,ϵ(F) = P(x,y)∼D(I(F̂(x′) = y),∀x′ ∈ B(x, ϵ) ∩ [0, 1]n).

The robustness accuracy requires not only correctness on the samples but also correctness within a
neighborhood of the sample. We introduce a notation.

Definition 6.1. For a dataset D = {(xi, yi)}Ni=1 and an ϵ > 0, define

R(D, ϵ) = {Dr ∥Dr = D ∪ {(xi + ϵi, yi)}Ni=1, for some ||ϵi|| ≤ ϵ}}.

It is easy to see that R(D, ϵ) contains all the sets formed by adding a perturbation with budget ϵ
to D. In the above section, we mainly discussed the network expression ability in distribution. On
the other hand, there are also some studies on the network expression ability on dataset such as
memorization. Moreover, previous studies (Park et al., 2021; Li et al., 2022; Yu et al., 2024) have
shown that robustly memorizing a dataset may be much more difficult than memorizing a dataset. So,
for a given hypothesis space H that can express a normal data set well, it may not be able to express
the dataset after disturbance. In this case, in order to minimize the empirical risk, the network will
prioritize simple features that are easy to fit, but will ignore the complex robust features, which leads
to low robustness. As shown in the following theorem. The proof is given in Appendix H.

Theorem 6.2. Let D ∈ D(n) and Lp be the Lipschitz constant of activation function σ. If N0,W0 ∈
N+ and ϵ, δ, c0, c1 > 0 satisfy that with probability 1− δ of Dtr ∼ DN0 , we have

(1) there exists an F ∈ Hσ
W0

(n) such that yF(x) ≥ c0 for all (x, y) ∈ Dtr;

(2) there exists a Dr ∈ R(Dtr, ϵ), such that
∑

(x,y)∈Dr

yF(x)
|Dr| ≤ c1 for any F ∈ Hσ

W0
(n).

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Then, for any W ≥ W0 + 1, with probability 1−O(δ) of Dtr ∼ DN0 and F ∈ Mσ
W (Dtr, n), there

are RobD,ϵ(F) ≤ 1− Ω( c0−2c1
LpW0n

− c1
LpW0n

(W0

W + 1
W0

)−
√

ln(n/δ)
N0

).

This theorem states that if the dataset after adding perturbations becomes more difficult to fit, the
network may have a low robustness generalization. Please note that although the conclusion is directly
unrelated to ϵ, because c1 is related to ϵ, ϵ also affects the conclusion.
Remark 6.3. Conditions (1) and (2) required in the theorem are reasonable. It is obvious that as ϵ
increases, c1 will decrease, and when ϵ is large enough, we have c0 >> c1 ≈ 0. Hence, in some
situation, a small ϵ is also enough to make c0 >> c1, such as the example given in the proof of
Theorem 4.3 in (Li et al., 2022).

6.2 IMPORTANCE OF OVER-PARAMETERIZED NETWORKS

In the above section, we mainly consider F ∈ MW (Dtr, n). But what we really need is F ∈
argmax
G∈HW (n)

AD(G). By Theorem 4.3, it is easy to show that when number of data and size of network

are large enough, generalization of F ∈ MW (Dtr, n) and F ∈ argmax
f∈HW (n)

AD(f) are close, as shown

below.
Corollary 6.4. Following Theorem 4.3, for all F1 ∈ MW (Dtr, n) and F2 ∈ argmax

f∈HW (n)

AD(f), we

have AD(F2)−AD(F1) ≤ O(W0

cW +
nLp(W0+c)

√
log(4n)

c
√
N

+
√

ln(2/δ)
N ).

Proof. Since 1 ≥ AD(F2) ≥ AD(F1), we have AD(F2)−AD(F1) ≤ 1−AD(F1), and by Theorem
4.3, we obtain the result.

The above corollary shows that if the size of the network is large enough, the gap will be small. In
the following, we point out that for some distribution D, if the size of network is too small, even with
enough data, it may lead to a large gap of AD(F2)−AD(F1). This emphasizes the importance of
over-parameterization, as shown in the following. The proof is given in the Appendix I.
Proposition 6.5. For some distribution D ∈ D(n), there is a W0 > 0, such that

(1) There exists an F ∈ HW0
(n) such that AD(F) ≥ 0.99;

(2) For any δ > 0, if N ≥ Ω(n2 ln(n/δ)), with probability 1 − O(δ) of Dtr ∼ DN , we have
AD(F) ≤ 0.6 for all F ∈ MW0

(Dtr, n).
Remark 6.6. 0.99 can be changed to any real number in (0, 1) and 0.6 can be changed to any real
number in (0.5, 1), and the result is still correct.

It is obvious that according to Corollary 6.4, a large width does not make (2) in Proposition 6.5 true.
So, the above conclusion indicates that for some distributions, when the network structure is not
large enough, even if there are some networks that have good generalization, they cannot be found by
minimizing the empirical loss. The distribution we are mainly considering here is the distribution
with some special outliers. In order to fit these special outliers, the small network may have to reduce
some generalization. It is worth mentioning that this is not true for all distributions, so we cannot
draw conclusions for all distributions.

6.3 THE IMPACT OF LOSS FUNCTION

In order to ensure generalizability of the network after empirical risk minimization, it is necessary to
choose an appropriate loss function because minimizing some types of loss function is not good for
generalization. In the previous sections, we mainly discussed the crossentropy loss function. In this
section, we point out that not all loss functions can reach conclusions similar to Theorem 4.3.
Definition 6.7. We say that the loss function Lb : R2 → R is bad if (1) or (2) is valid.

(1) There exist x−1, x1 ∈ R such that Lb(x−1,−1) = minx∈R Lb(x,−1) and Lb(x1, 1) =
minx∈R Lb(x, 1).

(2) Lb(F(x), y) = ϕ(yF(x)), where ϕ is a strictly decreasing concave function.

9
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Condition (1) in the definition means that the loss function can reach its minimum value and condition
(2) means that the loss function is a concave function. For example, some common loss functions
like the MSE loss function LMSE(F(x), y) = ||F(x)− y||2, or Lq(F(x), y) = −yF(x) are all bad
loss functions.

For such bad loss functions, we have:

Theorem 6.8. For any n and bad loss function Lb, there is a distribution D ∈ D(n), such that for
any N ≥ 0, there is a W0 ≥ 0, such that if W ≥ W0, then with probability 0.99 of Dtr ∼ DN , we
have AD(F) ≤ 0.5 for some F ∈ argminG∈HW (n)

∑
(x,y)∈Dtr

Lb(G(x), y).

This theorem means that to ensure generalizability, it is important to choose the appropriate loss
function. The proof is given in the Appendix J.

7 CONCLUSION

In this paper, we mainly give a lower bound for the accuracy of the neural networks that minimize the
empirical risk, which implies that as long as there exist enough training data and the network is large
enough, generalization can be achieved. The data and network sizes required only depend on the size
required for the network to represent the target data distribution. Furthermore, we show that if the
scale required for the network to represent a data distribution increases, the amount of data required
to achieve generalization on that distribution will also inevitably increase. Finally, the results are used
to explain some phenomena that occur in deep learning.

Limitation and future work. Although considering 2 layer networks is quite common in theoretical
analysis of deep learning, it is still desirable to extend the result to deep neural networks. Preliminary
results for deep neural networks are given in Appendix K, which need to be further studied. A more
accurate estimate of the cost required to represent a given data distribution is needed to guide data
selection.
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A PROOF OF PROPOSITION 4.2

A function σ is sigmoidal if limitx→−∞σ(x) = 0 and limitx→∞σ(x) = 1. Then, we have
Theorem A.1 (Theorem 1 in Cybenko (1989)). For any continuous sigmoidal activation function σ,
ϵ ∈ (0, 1) and continuous function f : [0, 1]n → R, there exist W ≥ 0 and F ∈ Hσ

W (n) such that
|f(x)− F (x)| ≤ ϵ.

We prove Proposition 4.2 by using the above Theorem.

Proof. It is easy to see that σ(x) = ReLU(x+ 1)− ReLU(x) is a continuous sigmoidal activation
function.

Denote Zσ
W (n) as the set of all two-layer neural networks with input dimension n, width W , and

activation function σ. For simplicity, ZW (n) means ZReLU
W (n).

Firstly, it is easy to see that Zσ
W (n) ⊂ Z2W (n) for any W ∈ N+.

Then, because D has a positive separation distance with different label, there is a continuous function
f such that: f(x) = 1 if x has label 1 in distribution D; f(x) = −1 if x has label -1 in distribution
D.

Finally, by Theorem A.1, there exist a W and a F ∈ Zσ
W (n) such that |F(x)− f(x)| ≤ 0.1 for all

x ∈ [0, 1]n. Thus, F ∈ Zσ
W (n) ⊂ Z2W (n) and P(x,y)∼D(yF(x) ≥ 0.9) = 1.

Let the maximum of the absolute value of parameters of F be A. If A ≤ 1, then F is what we want.
If A > 1, then let FA be a network whose parameter is corresponding parameter of F divided by
A, so FA = F/A2. Hence, there are FA ∈ H2W (n) and P(x,y)∼D(yF(x) ≥ 0.9/A2) = 1. The
proposition is proved.

B PROOF OF THEOREM 4.3

B.1 PREPARATORY WORK

We give some definitions of the hypothesis space.
Definition B.1. For a network F : Rn → R and an a > 0, let F−a,a(x) = min{max{−a,F(x)}, a},
that is, clamp F in [−a, a]. Then for any hypothesis space H, let H−a,a = {F−a,a∥F ∈ H}.

We define the Radermacher complexity.
Definition B.2. For a hypothesis space H and dataset D, the Radermacher complexity of H under
dataset D is:

RadH(D) = E
(qi)

|D|
i=1

[
sup
F∈H

∑
xi∈D qiF(xi)

|D|

]
where qi satisfies that P (qi = 1) = P (qi = −1) = 0.5 and qi are i.i.d.

Here are some results about the Radermacher complexity:
Lemma B.3. For any hypothesis space H, let H+a = {F + a∥F ∈ H}, where a ∈ R. Then for any
hypothesis space H, a ∈ R and dataset D, there are RadH(D) = RadH+a(D).

Let the L1,∞ norm of a matrix W be the maximum value of the L1 norm for each row of the matrix
W .
Lemma B.4. Let Fn,d,(Li),(ci) : Rn → R be a network with d hidden layers, Li Lipschitz-continuous
activation function for i-th activation function, and the output layer does not contain an activation
function. Let wi be the i-th transition matrix and bi be the i-th bias vector. Then the L1,∞ norm of wi

plus the L1,∞ norm of bi is not more than ci.

Let Hn,d,(Li),(ci) = {Fn,d,(Li),(ci)}. Then when Li ≥ 1, ci ≥ 1, for any {xi}Ni=1 ⊂ [0, 1]n, there
are:

RadHn,d,(Li),(ci)
({xi}Ni=1) ≤

Πd
i=1LiΠ

d+1
i=1 ci√

N
(
√

(d+ 3) log(4) +
√

2 log(2n)).

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

This lemma is an obvious corollary of Theorem 1 in (Wen et al., 2021). By the above two lemmas we
can calculate the Radermacher complexity of Hσ

W (n)−a,a.

Lemma B.5. Let σ be a Lp Lipschitz-continuous activation function and Lp ≥ 1, and let H =
{F (x, y) : F (x, y) = yF(x),F(x) ∈ Hσ

W (n)−a,a} where a > 0 is given in Definition B.1. Then
for any S = {(xi, yi)}Ni=1 ⊂ [0, 1]n × {−1, 1}, there are

RadH(S) ≤ 2Lp(n+ 1)(W + 1 + a)√
N

(
√
5 log(4) +

√
2 log(2n)).

Proof. First, there are RadH(S) = RadH({(xi, yi)}Ni=1) =

E(qi)Ni=1
[supf∈Hσ

W (n)−a,a

∑N
i=1 qiyif(xi)

|D| ]. Taking into account the definition of qi in def-

inition B.2, there are RadH({(xi, yi)}Ni=1) = E(qi)Ni=1
[supf∈Hσ

W (n)−a,a

∑N
i=1 qif(xi)

|D| ] =

RadHσ
W (n)−a,a

({xi}Ni=1).

So, we just need to calculate RadHσ
W (n)−a,a

({xi}Ni=1).

First, for any function f and a > 0, k ∈ N+, we have

f−a,a(x)
= ReLU(f(x) + a)− ReLU(f(x)− a)− a

=
∑k

i=1(ReLU(f(x)/k + a/k)− ReLU(f(x)/k − a/k))− a

On the other hand, let H+a = {f + a∥f ∈ Hσ
W (n)−a,a}. Then for any F ∈ H+a, there are

F = f−a,a(x) + a for some f ∈ Hσ
W (n). Then by the above form of expression, take k = [W/2],

F and write it as a network with:

(1): Depth 3. Because f has depth 2, after adding a ReLU activation function, it was depth 3.

(2): The first layer has an Lp Lipschitz-continuous activation function; the second layer has a 1
Lipschitz-continuous activation function, that is, ReLU.

(3): The L1,∞ norm of the three transition matrices plus bias vectors are n+ 1, W+1+a
[W/2] and 2[W/2].

So, by Lemmas B.4 and B.3, there are RadH+a
({xi}Ni=1) = RadHσ

W (n)−a,a
({xi}Ni=1) =

2Lp(n+1)(W+1+a)√
N

(
√
5 log(4) +

√
2 log(2n)). The theorem is proved.

Another important Theorem is required.

Theorem B.6 (Theorem in Mohri et al. (2018)). Let H = {F : Rn → [−a, a]}, and D be a
distribution, then with probability 1− δ of Dtr ∼ DN , there are:

|Ex∼D[F (x)]−
∑

x∈Dtr

F (x)

N
| ≤ 2RadH(Dtr) + 6a

√
ln(2/δ)

2N
,

for any F ∈ H .

We give a simple lemma:

Lemma B.7. (1): When 0 < x ≤ e, there are ln(1 + x) ≥ x/(e+ 1).

(2): When x > 0, there are xe−x ≤ 1/e.

Proof. For (1): Consider f(x) = ln(1+x)−x/(e+1), there are f ′(x) = 1/(1+x)−1/(1+e) ≥ 0,
so f(x) ≥ f(0) = 0, which means that ln(1 + x)− x/(e+ 1) ≥ 0.

For (2): Consider f(x) = xe−x, there are f ′(x) = e−x(1− x), it is easy to see that f ′(x) become
positive then negative when x from 0 to ∞, and f ′(1) = 0, so f(x) ≤ f(1) = 1/e.
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B.2 PROOF OF THEOREM 4.3

Proof. Let Dtr ∼ DN and F be a network in Mσ
W (Dtr, n). We prove Theorem 4.3 in four parts:

Part one: There are
∑

(x,y)∈Dtr
L(F(x), y) ≤ N ln(1 + e−c[ W

W0+1 ]).

Because D can be expressed by Hσ
W0

(n) with confidence c, so there is a network F0 =∑W0

i=1 aiσ(Wix + bi) + c1 such that yF(x) ≥ c for all (x, y) ∼ D. Moreover, we can write such
network as: F0 =

∑W0+1
i=1 aiσ(Wix+ bi), where aW0+1 = Sgn(c1), WW0+1 = 0, bW0+1 = |c1|.

Now, we consider the following network in Hσ
W (n):

FW =

(W0+1)[ W
W0+1 ]∑

i=1

ai%(W0+1)σ(Wi%(W0+1)x+ bi%(W0+1)),

Here, we stipulate that i%(W0 + 1) = W0 + 1 when W0 + 1|i. Then we have FW (x) =
[ W
W0+1 ]F0(x) and FW (x) ∈ Hσ

W (n). Moreover, there are yFW (x) = y[ W
W0+1 ]F0(x) ≥

[ W
W0+1 ]c for all (x, y) ∼ D, so

∑
(x,y)∈Dtr

L(FW (x), y) ≤ N ln(1 + e−c[ W
W0+1 ]). So

for any F ∈ argminf∈Hσ
W (n)

∑
(x,y)∈Dtr

L(f(x), y), there are
∑

(x,y)∈Dtr
L(F(x), y) ≤∑

(x,y)∈Dtr
L(FW (x), y) ≤ N ln(1 + e−c[ W

W0+1 ]).

Part Two: Let k = [ W
W0+1 ], by the assumption in Theorem, there is k ≥ 1. We show that there are

|{(x, y) : (x, y) ∈ Dtr, yF(x) ≤ kc/2}| ≤ Ne−kc/2+2.

Let S = {(x, y) : (x, y) ∈ Dtr, yF(x) ≤ kc/2}, then according to part one, there are: |S| ln(1 +
e−kc/2) ≤

∑
(x,y)∈S L(F(x), y) ≤

∑
(x,y)∈Dtr

L(F(x), y) ≤ N ln 1 + e−kc ≤ Ne−kc. So, there
are |S| ln 1 + e−kc/2 ≤ Ne−kc.

By Lemma B.7, there are |S|e−kc/2/(e+ 1) ≤ |S| ln 1 + e−kc/2 ≤ Ne−kc, so |S| ≤ Ne−kc/2(e+
1) < Ne−kc/2+2.

Part Three: By Definition B.1, let network g = F−kc/2,kc/2, we show that, with high probability,
E(x,y)∼Dyg(x) has a lower bound.

Firstly, by part two, there are
∑

(x,y)∈Dtr
yg(x) ≥ N(kc(1 − e−kc/2+2)/2 − kce−kc/2+2/2) =

Nkc(1− 2e−kc/2+2)/2.

Then, let H = {yF(x) : F(x) ∈ Hσ
W (n)−kc/2,kc/2}, by Lemma B.5, there are RadH(Dtr) ≤

2(n+1)(W+1+kc/2)Lp√
N

(
√

5 log(4) +
√
2 log(2n)), RadH(Dtr) is defined in definition B.2.

So, considering that yg(x) ∈ H and by Theorem B.6, with probability 1− δ of Dtr, there are

E(x,y)∼Dyg(x)

≥ 1
N

∑
(x,y)∈Dtr

yg(x)− 2Rad([Hσ
W (n)]−kc/2,kc)− 3kc

√
ln(2/δ)
2N

≥ kc(1− 2e−kc/2+2)/2− 2(n+1)Lp(W+1+kc/2)√
N

(
√
5 log(4) +

√
2 log(2n))− 3kc

√
ln(2/δ)
2N .

Part Four: Now, we prove Theorem 4.3.

Firstly, there are AD(g) = P(x,y)∼D(yg(x) > 0) ≥ E(x,y)∼D[yg(x)]/(kc/2), we use |g(x)| ≤ kc/2
in here. So, by part three, with probability of Dtr, there are

AD(g) ≥ 1−2e−kc/2+2− 4(n+ 1)Lp(W + 1 + kc/2)√
Nkc

(
√
5 log(4)+

√
2 log(2n))−6

√
ln(2/δ)

2N
.

By Lemma B.7 and k = [W/(W0+1)] ≥ W
2W0

which is because [W/(W0+1)] = k ≥ 1 and W0 ≥ 2,

there are 2e−kc/2+2 ≤ 4e
kc = 4e

c[ W
W0+1 ]

≤ 8eW0

Wc ; and it is easy to see that 4(n+1)Lp(W+1+kc/2)√
Nkc

≤
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4(n+1)WLp(2+kc/2W )√
Nkc

≤ 8nWLp(2+c/2W0)√
N [W/(W0+1)]c

≤ 8nLp(4W0+c)√
Nc

, the last inequality uses [W/(W0+1)] ≥
W
2W0

.

The last step uses k = [W/(W0+1)] ≥ W
2W0

. And
√

5 log(4)+
√

2 log(2n) ≤ (
√
5+

√
2)
√
log(4n).

So there are:

AD(g) ≥ 1− 8eW0

Wc
−

8nLp(1 + 4W0

c )
√
N

(
√
5 +

√
2)
√

log(4n)− 6

√
ln(2/δ)

2N
.

Lastly, because AD(g) = AD(F), there are AD(F) ≥ 1−O(W0

Wc +
nLp(W0+c)

√
log(4n)√

Nc
+
√

ln(2/δ)
N ).

The theorem is proved.

C PROOF OF PROPOSITION 4.7

The proof is similar to the proof of Theorem 4.3, so we just follow the proof of Theorem 4.3.

Proof. Let Dtr ∼ DN , F be a network in Mσ
W (Dtr, n), and Fq be a network which is a q-

approximation of minimization empirical risk.

We prove the Theorem 4.7 in four parts:

Part one: There are
∑

(x,y)∈Dtr
L(F(x), y) ≤ N ln(1 + e−c[ W

W0+1 ]). This is as same as in Part one
in the proof of Theorem 4.3

Part Two: Let k = [ W
W0+1 ] ≥ 1, there are |{(x, y) : (x, y) ∈ Dtr, yFq(x) ≤ kc/2}| ≤

qNe−kc/2+2.

Let S = {(x, y) : (x, y) ∈ Dtr, yFq(x) ≤ kc/2}, then according to part one, there are: |S| ln(1 +
e−kc/2) ≤

∑
(x,y)∈S L(Fq(x), y) ≤ q

∑
(x,y)∈Dtr

L(F(x), y) ≤ qN ln 1 + e−kc ≤ qNe−kc. So,
there are |S| ln 1 + e−kc/2 ≤ qNe−kc.

By Lemma B.7, there are |S|e−kc/2/(e+1) ≤ |S| ln 1+e−kc/2 ≤ qNe−kc, so |S| ≤ qNe−kc/2(e+
1) < qNe−kc/2+2.

Part Three: By definition B.1, let network g = (Fq)−kc/2,kc/2, we show that, with high probability,
E(x,y)∼Dyg(x) has a lower bound.

Firstly, by part two, there are
∑

(x,y)∈Dtr
yg(x) ≥ N(kc(1− qe−kc/2+2)/2− qkce−kc/2+2/2) =

Nkc(1− 2qe−kc/2+2)/2.

So, with probability 1− δ of Dtr, there are

E(x,y)∼Dyg(x)

≥ 1
N

∑
(x,y)∈Dtr

yg(x)− 2Rad([Hσ
W (n)]−kc/2,kc)− 3kc

√
ln(2/δ)
2N

≥ kc(1− 2qe−kc/2+2)/2− 2(n+1)Lp(W+1+kc/2)√
N

(
√
5 log(4) +

√
2 log(2n))− 3kc

√
ln(2/δ)
2N

Part Four: Now, we prove Proposition 4.7.

Firstly, there are AD(g) = P(x,y)∼D(yg(x) > 0) ≥ E(x,y)∼D[yg(x)]/(kc/2). So, by part three,
with 1− δ probability of Dtr, there are

AD(g) ≥ 1−2qe−kc/2+2− 4(n+ 1)Lp(W + 1 + kc/2)√
Nkc

(
√

5 log(4)+
√

2 log(2n))−6

√
ln(2/δ)

2N
.
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Then, similar as part four in proof of Theorem 4.3, there are

AD(g) ≥ 1− 8qeW0

Wc
−

8nLp(1 + 4W0

c )
√
N

(
√
5 +

√
2)
√
log(4n)− 6

√
ln(2/δ)

2N
,

which is what we want.

D PROOF OF THEOREM 5.2

Proof. Assume that Theorem 5.2 is wrong, then there exist n, W and W0 such that

For a given ϵ, δ ∈ (0, 1), if D ∈ D(n) and N ≥ VC(Hσ
W0

(n))(1− 4ϵ− δ), with probability 1− δ of
Dtr, we have AD(F) ≥ 1− ϵ for all F ∈ argminf∈HW (n)

∑
(x,y)∈Dtr

L(f(x), y).

We will derive contradictions on the basis of this conclusion.

Part 1: Find some points and values.

For a simple expression, let k = VC(Hσ
W0

(n)), and {ui}ki=1 be k points that can be shattered by
VC(Hσ

W0
(n)). Let q = VC(Hσ

W0
(n))(1− 4ϵ− δ).

Now, we consider the following types of distribution D:

(c1): D is a distribution in D(n) and P(x,y)∼D(x ∈ {ui}ki=1) = 1.

(c2): P(x,y)∼D(x = ui) = P(x,y)∼D(x = uj) = 1/k for any i, j ∈ [k].

Let S be the set that contains all such distributions, and it is easy to see that for any D ∈ S, it can be
expressed by Hσ

W0
(n).

Part 2: Some definition.

Moreover, for D ∈ S, we define S(D) as the following set:

Z ∈ S(D) if and only if Z ∈ [k]q is a vector satisfying: Define D(Z) as D(Z) = {(uzi , yzi)}
q
i=1,

then AD(F) ≥ 1−ϵ for all F ∈ argminf∈HW (n)

∑
(x,y)∈DZ

L(f(x), y), where zi is the i-th weight
of Z and yzi is the label of uzi in distribution D.

It is easy to see that if we i.i.d. select q samples in distribution D to form a dataset Dtr, then by c2,
with probability 1, Dtr only contain the samples (uj , yj) where j ∈ [k].

Now for any Dtr selected from D, we construct a vector in [k]q as follows: the index of i-th selected
samples as the i-th component of the vector. Then each selection situation corresponds to a vector in
[k]q which is constructed as before. Then by the definition of S(D), we have AD(F) ≥ 1 − ϵ for
all F ∈ argminf∈HW (n)

∑
(x,y)∈Dtr

L(f(x), y) if and only if the corresponding vector of Dtr is in
S(D).

By the above result and by the assumption at the beginning of the proof, for any D ∈ S we have
|S(D)|

qk
≥ 1− δ.

Part 3: Prove the Theorem.

Let Ss be a subset of S, and Ss = {Di1,i2,...,ik}ij∈{−1,1},j∈[k] ⊂ S, where the distribution Di1,i2,...,ik

satisfies the label of uj is ij , where j ∈ [k].

We will show that there exists at least one D ⊂ Ss, such that |S(D)| < (1− δ)qk, which is contrary
to the inequality |S(D)|

qk
≥ 1 − δ as shown in the above. To prove that, we only need to prove that∑

D∈Ss
|S(D)| < (1− δ)2kqk, use |Ss| = 2k here.

To prove that, for any vector Z ∈ [k]q , we estimate how many D ∈ Ss make Z included in S(D).

Part 3.1, situation of a given vector Z and a given distribution D.

For a Z = (zi)
q
i=1 and D such that Z ∈ S(D), let len(Z) = {c ∈ [k] : ∃i, c = zi}. We consider the

distributions in Ss that satisfy the following condition: for i ∈ len(Z), the label of ui is equal to the
label of ui in D. Obviously, we have 2k−|len(Z)| distributions that can satisfy the above condition in
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Ss. Let such distributions make up a set Sss(D, Z). Now, we estimate how many distributions Ds in
Sss(D, Z) satisfy Z ∈ S(Ds).

It is easy to see that if Ds ∈ Sss(D, Z) such that there are more than [2kϵ] of i ∈ [k], Ds and
D have different labels of ui, then min{AD(F), ADs(F)} < 1 − ϵ for any F . So considering
AD(F) ≥ 1− ϵ for all F ∈ argminf∈HW (n)

∑
(x,y)∈DZ

L(f(x), y), by the above result, such kind

of Ds is at most
∑[2kϵ]

i=0 Ci
k−|len(Z)|. So, we have that: There are at most

∑[2kϵ]
i=0 Ci

k−|len(Z)| numbers
of distributions Ds in Sss(D, Z) satisfy Z ∈ S(Ds).

Part 3.2, for any vector Z and distribution D.

For any distribution D ∈ Ss, let y(D)i be the label of ui in distribution D.

Firstly, for a given Z, we have at most 2|len(Z)| different Sss(D, Z) for D ∈ DS . Because when
D1 and D2 satisfy y(D1)i = y(D2)i for any i ∈ len(Z), we have Dss(D1, Z) = Dss(D2, Z),
and 2|len(Z)| situations of label of ui where i ∈ len(Z), so there exist at most 2|len(Z)| different
Sss(D, Z).

Then, by part 3.1, for an Sss(D, Z), at most
∑[2kϵ]

i=0 Ci
k−|len(Z)| of Ds ∈ Sss(D, Z) satisfies

Z ∈ S(Ds). So by the above result and consider that Ds = ∪D∈DsSss(D, Z), at most
2|len(Z)| ∑[2kϵ]

i=0 Ci
k−|len(Z)| number of Ds ∈ Ss such that Z ∈ S(Ds).

And there exist qk different Z, so
∑

D∈Ss
|S(D)| =

∑
Z

∑
D∈Ss

I(Z ∈ S(D)) ≤∑
Z 2|len(Z)| ∑[2kϵ]

i=0 Ci
k−|len(Z)| ≤

∑
Z 2k(1 − δ) = qk2k(1 − δ). For the last inequality, we

use
∑[2kϵ]

i=0 Ci
k−|len(Z)| < 2k−|len(Z)|(1− δ), which can be shown by |len(Z)| ≤ q ≤ k(1− 4ϵ− δ)

and Lemma D.1.

This is what we want. we proved the Theorem.

A required lemma is given.

Lemma D.1. If ϵ, δ ∈ (0, 1) and k, x ∈ Z+ satisfy that: x ≤ k(1−2ϵ− δ), then 2x(
∑[kϵ]

j=0 C
j
k−x) <

2k(1− δ).

Proof. We have

2x(
∑[kϵ]

j=0 C
j
k−x) ≤ 2x2k−x [kϵ]

k−x ≤ 2k kϵ
k−x < 2k(1− δ).

The first inequality sign uses
∑m

j=0 C
m
n ≤ m2n/n where m ≤ n/2, and by x ≤ k(1− 2ϵ− δ), so

[kϵ] ≤ (k − x)/2. The third inequality sign uses the fact x ≤ k(1− 2ϵ− δ).

E PROOF OF THEOREM 5.4

We give the proof of Theorem 5.4.

Proof. Let Dtr ∼ DN and Dtr = {(xi, yi)}Ni=1.

For any given W , let F be a network in Mσ
W (Dtr, n), and F =

∑W
i=1 aiReLU(Wix+ bi) + c.

Then, we consider another network Ff which is constructed in the following way:

(1): For a v ∈ {−1, 1}N , we say i ∈ Sv if: ReLU(Wixj + bi) ≥ 0 for all j such that vj = 1;
ReLU(Wixj + bi) < 0 for all j such that vj = −1.

(2): For any v ∈ {−1, 1}N , if Sv ̸= ϕ, let Pv =
∑

i∈Sv
aiWi/|Sv| and Qv =

∑
i∈Sv

aibi/|Sv|.

(3): Define Ff as: Ff (x) =
∑

v∈{−1,1}N ,Sv ̸=ϕ

∑|Sv|
i=1 ReLU(Pvx+Qv) + c.

Then we have the following result:
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(r1): Ff ∈ argminf∈Hσ
W (n)

∑
(x,y)∈Dtr

L(f(x), y).

Firstly, it is easy to see that each parameter of Ff is in [−1, 1], because for any v, ||Pv||∞ =

||
∑

i∈Sv

aiWi

|Sv| ||∞ ≤
∑

i∈Sv

||aiWi||∞
|Sv| ≤ |Sv| 1

|Sv| = 1, and ||Qv||∞ = ||
∑

i∈Sv

aibi
|Sv| ||∞ ≤∑

i∈Sv

||aibi||∞
|Sv| ≤ |Sv| 1

|Sv| = 1.

Then, Ff has width W , because for each i, there is only one v such that i ∈ Sv, so∑
v∈{−1,1}N ,Sv ̸=ϕ

∑|Sv|
i=1 1 = W , which implies that Ff has width W .

Finally, there are Ff (xi) = F(xi) for all (xi, yi) ∈ Dtr. We just need to show that for x1, others are
similar.

There are F(x1) =
∑W

i=1 aiReLU(Wix1 + bi) + c =
∑

i∈[W ],Wix1+bi≥0 ai(Wix1 + bi) +

c. Hence, letting V 1 = {v : v ∈ {−1, 1}N , v1 = 1}, then there is Ff (x1) =∑
v∈{−1,1}N ,Sv ̸=ϕ

∑|Sv|
i=1 ReLU(Pvx1 +Qv) + c =

∑
v∈V 1,Sv ̸=ϕ

∑|Sv|
i=1 (Pvx1 +Qv) + c.

Consider that {i ∈ [W ],Wix1 + bi ≥ 0} = {i : i ∈ Sv, v ∈ V 1}, so:
F(x1)

=
∑

i∈[W ],Wix1+bi>0 ai(Wix1 + bi) + c
=

∑
i:i∈Sv,v∈V 1 ai(Wix1 + bi) + c

=
∑

v∈V 1,Sv ̸=ϕ

∑
i∈Sv

ai(Wix1 + bi) + c
=

∑
v∈V 1,Sv ̸=ϕ |Sv|(Pvx1 + bv) + c

= Ff (x1).

By such three points and considering F ∈ argminf∈Hσ
W (n)

∑
(x,y)∈Dtr

L(f(x), y), so there are
Ff ∈ argminf∈Hσ

W (n)

∑
(x,y)∈Dtr

L(f(x), y).

(r2): AD(Ff ) ≤ 1− δ when N ≤ W
1

n+1

0 (n+ 1)/e, where W0 is defined in Theorem. This is what
we want.

Firstly, we show that |{v : Sv ̸= ϕ}| ≤ max{2n+1, eN
n+1

n+1}, just by Lemma E.1.

Secondly, consider the network Ff1 =
∑

v∈{−1,1}N ,Sv ̸=ϕ ReLU(|Sv|Pvx1 + |Sv|Qv) + c. By

the assumption of D and |{v : Sv ̸= ϕ}| ≤ max{2n+1, eN
n+1

n+1}, then we know that, when

N ≤ W
1

n+1

0 (n+ 1)/e, there are AD(Ff1) ≤ 1− δ.

Moreover, there are Ff1(x) =
∑

v∈{−1,1}N ,Sv ̸=ϕ ReLU(|Sv|Pvx + |Sv|Qv) + c =∑
v∈{1,1}N ,Sv ̸=ϕ

∑|Sv|
i=1 ReLU(Pvx + Qv) + c = Ff (x), so AD(Ff ) = AD(Ff1) ≤ 1 − δ, this is

what we want.

A required lemma is given:
Lemma E.1. For any S = {xi}Ni=1 ⊂ Rn, let Π(S) = {(Sgn(Wxi + b))ni=1 : W ∈ Rn, b ∈ R}.
Then |Π(S)| ≤ max{2n+1, eN

n+1

n+1}.

Proof. It is easy to see that |Π(S)| ≤ 2N because Sgn(Wxi + b) ∈ {−1, 1}. So, when N ≤ n+ 1,
it is obviously correct.

When N > n+1. Consider that the VC-dim of the linear space is n+1, and Π(S) = {(Sgn(Wxi +
b))ni=1 : W ∈ Rn, b ∈ R} is the growth function of linear space under dataset S. So by Theorem 1
of (Sauer, 1972), there are |Π(S)| ≤

∑n+1
i=0 Ci

N .

Moreover, there are
∑n+1

i=0 Ci
N ≤ eN

n+1

n+1
as shown in (Sauer, 1972), this is what we want.

F PROOF OF PROPOSITION 5.6

We give the proof of Proposition 5.6.
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Proof. Firstly, it is easy to show that Dn cannot be expressed by HW (n) when W < n/2 by Lemma
F.1, so we have proved (1) of Proposition 5.6.

Let Dtr ∼ DN
n and N ≤ nδ, for any given W , let F be a network in Mσ

W (Dtr, n), and F =∑W
i=1 aiReLU(Wix+ bi) + c.

Now we prove (2) of Proposition 5.6. Let Dtr = {(xi

n 1, I(xi))}Ni=1 where xi ∈ [n] be selected from
the distribution, without loss of generality, let xi < xi+1 for any i ∈ [N ].

We will divide [W ] into several subsets based on the intersection of the plane Wjx+ b and the line
−∞1 → ∞1, let [W ] = ∪2N

i=1si, and:

1. For any i ∈ [N − 1]: if j ∈ [W ] such that xi

n Wj1+ bi < 0 and xi+1

n Wj1+ bj ≥ 0, then j ∈ si;

2. If j ∈ [W ] such that xi

n Wj1+ bi < 0 for any i ∈ [N ], then j ∈ sN ;

3. For any i ∈ {N + 1, N + 2, . . . , 2N − 1}: if j ∈ [W ] such that xi−N

n Wj1 + bi ≥ 0 and
xi−N+1

n Wj1+ bj < 0, then j ∈ si;

4. If j ∈ [W ] such that xi

n Wj1+ bi ≥ 0 for any i ∈ [N ], then j ∈ s2N .

Now, by such 2N subset, we consider another network Ff that is defined as:

For any i ∈ [2N ], if Si ̸= ϕ, define Pi =
∑

j∈Si
aiWi/|Si| and Qi =

∑
j∈Si

aibi/|Si|. Then

Ff =
∑

i∈[2N ],Si ̸=ϕ

∑|Si|
j=1 ReLU(Pix+Qi) + c =

∑
i∈[2N ],Si ̸=ϕ |Si|ReLU(Pix+Qi) + c.

Because there is only one intersection point between a straight line and a plane, each j ∈ [W ] is only
in one subset si. So, Ff ∈ Hσ

W (n). Moreover, we show that Ff (x) = F(x) for any (x, y) ∈ Dtr,
which implies Ff ∈ argminf∈Hσ

W (n)

∑
(x,y)∈Dtr

L(f(x), y).

For any j ∈ [N ], by the definition of si, we know that xj

n Wi1 + bi ≥ 0 if and only if i ∈
{1, 2, . . . , j − 1} ∪ {N + j,N + j + 1, . . . , 2N}, so:

Ff (xj)

=
∑

i∈[2N ],Si ̸=ϕ

∑|Si|
j=1 ReLU(Pixj +Qi) + c

=
∑

i∈{1,2,...,j−1}∪{N+j,N+j+1,...,2N},Si ̸=ϕ

∑|Si|
j=1(Pixj +Qi) + c

=
∑

k∈ ∪si
i∈{1,2,...,j−1,N+j,N+j+1,...,2N}

(Wkxj + bk) + c

=
∑

k∈[W ] ReLU(Wkxj + bk) + c
= F(xj)

This is what we want. At last, by Ff =
∑

i∈[2N ],Si ̸=ϕ |Si|ReLU(Pix+Qi) + c has width at most
2N and Lemma F.1, and consider that N ≤ nδ, we have that: AD(Ff ) ≤ 0.5 + 2δ, this is what we
want.

A required lemma is given:
Lemma F.1. If x1 < x2 < x3 < · · · < xN , and xi has label yi = 1 when i is odd, or xi has label
yi = −1. We consider dataset S = {(xi1(n), yi)}, where 1 is all-one vector in Rn. Then: For any
two-layer network width M , this network can correctly classify at most to M + N

2 samples in S.

Proof. Let F =
∑M

i=1 aiReLU(Wix + bi) + c. Let Wix + bi and the line −∞1(n) → ∞1(n)
intersect at one point Pi1(n). Let Pi ≤ Pj if i ≤ j. Let PM+1 = ∞.

Then it is easy to see that in line segment Pi1(n) → Pi+11(n), F(x) is a linear function. So,
there is Pi+0.5 ∈ (Pi,Pi+1) such that F maintains positive and negative polarity unchanged in
Pi1(n) → Pi+0.51(n) and Pi+0.51(n) → Pi+11(n).

So if Pi ≤ xu < xu+1 < · · · < xu+k < Pi+0.5, F gives the same label to
xu1(n), xu+11(n), . . . , xu+k1(n), which means F can classify at most [ (k+1)+1

2 ] samples in them.
Similar to when Pi+0.5 ≤ xu < xu+1 < · · · < xu+k < Pi+1.
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Let qi = |{j : Pi/2 ≤ xj < Pi/2+0.5}| where i ∈ [2M ]. Consider that each sample in S is appeared
in a Pi1(n) → Pi+0.51(n) or Pi+0.51(n) → Pi+11(n), so

∑2M
i=1 qi = N .

So, the whole network can classify at most
∑2M

i=1[
1+qi
2 ] ≤

∑2M
i=1

1+qi
2 = M + N

2 .

G PROOF OF PROPOSITION 5.7

Proof. Proof of (1): Let 1 be the all one vector,
∑

x =
∑n

i=1 xi where xi is the i-th weight of
x. We show that F = σ(1x − 0.5) ∈ Hσ

1 (n) is what we want. Because if
∑

x is odd, then
σ(1x − 0.5) = σ(

∑
x − 0.5) = sin(π(

∑
x − 0.5)) = 1; if

∑
x is even, then σ(1x − 0.5) =

σ(
∑

x− 0.5) = sin(π(
∑

x− 0.5)) = −1.

Proof of (2): we will prove it into three parts:

Part one: For any W and Dtr ∼ DN
n , let F ∈ Mσ

W (Dtr, n) and F =
∑W

i=1 σ(Wix+ bi) + c. Then
there are: for any (x, y) ∈ Dtr, there are yσ(Wix+ bi) = 1 for any i ∈ [W ].

If not, without loss of generality, assume that yσ(W1x+ b1) < 1 for some (x, y) ∈ Dtr. According
to the proof of (1), there are W0 and b0 such that yσ(W0x+ b0) = 1 for any (x, y) ∈ Dtr. Now we
consider the network Fc(x) =

∑W
i=2 σ(Wix+ bi) + σ(W0x+ b0) + c, then we have that:

Firstly, it is easy to see that Fc ∈ Hσ
W (n).

Secondly, we show that yF(x) ≤ yFc(x) for any (x, y) ∈ Dtr and yF(x) < yFc(x) for some
(x, y) ∈ Dtr.

By the definition of F and Fc, for any (x, y) ∈ Dtr, there are yFc(x)− yF(x) = y(σ(W0x+ b0)−
σ(W1x+ b1)) = 1− yσ(W1x+ b1) ≥ 0, and by the assumption, there is a (x, y) ∈ Dtr such that
1 > yσ(W1x+ b1)), then yFc(x)− yF(x) > 0 for such (x, y) ∈ Dtr, this is what we want.

By the above two results, and considering that L(F(x), y) is a strictly decreasing function about
yF(x), there are

∑
(x,y)∈Dtr

L(F(x), y) >
∑

(x,y)∈Dtr
L(Fc(x), y), which is contradictory to

F ∈ argmin
f∈Hσ

W (n)

∑
(x,y)∈Dtr

L(f(x), y). So we prove part one.

Part Two. For any j ∈ Z, let xj = j
n1 and yj = I(j), where I(x) is defined in the definition of

distribution Dn. If ij ∈ Z where j ∈ [4] such that i1 − i2 and i3 − i4 are co-prime, then there
are: if W0 ∈ [−1, 1]n and b0 ∈ [−1, 1] such that yijσ(W0xij + b0) = 1 for any j ∈ [4], then
ypσ(W0xp + b0) = 1 for all p ∈ Z.

When there is yijσ(W0xij +b0) = yijsin(π(W0xij +b0)) = yijsin(π(< W0,1 > ij/n+b0)) = 1,
consider that yij ∈ {−1, 1}, then there is < W0,1 > ij/n+ b0 = mij − 0.5 for mij ∈ Z, moreover,
mij and ij are same parity.

Now consider (W0xi1 + b0)− (W0xi2 + b0) and (W0xi3 + b0)− (W0xi4 + b0), there are < W0,1 >

(i1− i2)/n = mi1 −mi2 and < W0,1 > (i3− i4)/n = mi3 −mi4 . So, there are i1−i2
i3−i4

=
mi1

−mi2

mi3−mi4
.

By i1 − i2 and i3 − i4 are co-prime, and |mi1 − mi2 | = | < W0,1 > (i1 − i2)/n| ≤ |i1 − i2|,
|mi3 −mi5 | = | < W0,1 > (i3 − i4)/n| ≤ |i3 − i4|, there are < W0,1 > /n = 1 or < W0,1 >
/n = −1.

Hence, by mij−ij =< W0,1 > ij/n+b0+0.5−ij and < W0,1 > /n = 1 or < W0,1 > /n = −1,
consider that mij and ij are the same parity, so b = −0.5.

So for any p ∈ Z, there are ypσ(W0xp + b0) = ypsin(π(< W0,1 > p/n + b0)) = ypsin(π(p −
0.5)) = 1, this is what we want.

Part Three, if Dtr ∼ DN
n and N ≥ 4 ln(δ/2)

ln(0.5+1/n) , with probability 1 − δ, there are four samples
(xi, yi) where i ∈ [4] in Dtr, such that xi =

mi

n 1, m1 −m2 and m3 −m4 are co-prime.

By the definition of Dn, it is equivalent to: repeatable randomly select N ≥ 4 ln(δ/2)
ln(0.5+1/n) points from

[n], with probability 1− δ, there are four samples mi such that m1 −m2 and m3 −m4 are co-prime.
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By Lemma G.1, when N ≥ 4 ln(δ/2)
ln(0.5+1/n) , with probability at least 1− (0.5 + 1/n)

ln(δ/2)
ln(0.5+1/n) /(0.5 +

1/n) = 1− δ/(1 + 2/n) ≥ 1− δ. This is what we want.

Part Four, we prove the result.

Let Dtr ∼ DN
n . For any W , let F ∈ argminf∈Hσ

W (n)

∑
(x,y)∈Dtr

L(f(x), y) and F =∑W
i=1 σ(Wix+ bi) + c.

Firstly, with probability 1− δ, there are four samples in Dtr satisfying part three. Then, according
to part one, there are yσ(Wix + bi) = 1 for such four samples. Finally, in part two, there are
yσ(Wix+ bi) = yσ(

∑
x) = 1 for any (x, y) ∼ Dn. So, yF(x) ≥ W − 1 > 0 for any (x, y) ∼ Dn,

we prove the result.

A required lemma is given.

Lemma G.1. Randomly select N points from [n], where n ≥ 3 and N ≥ 4. With probability
1− (0.5 + 1/n)N/4−1, there are four samples mi such that m1 −m2 and m3 −m4 are co-prime.

Proof. Firstly, we consider the situation that N = 4, let {mi}4i=1 are the selected number. Then we
have

P ((m1 −m2,m3 −m4) = 1)
= P (m1 −m2 ̸= 0,m3 −m4 ̸= 0)− P ((m1 −m2,m3 −m4) ̸= 1,m1 −m2 ̸= 0,m3 −m4 ̸= 0)
= (1− 1/n)2(1− P ((|m1 −m2|, |m3 −m4|) ̸= 1|m1 −m2 ̸= 0,m3 −m4 ̸= 0))
≥ (1− 1/n)2(1−

∑
q∈Prime P (q|(|m1 −m2|, |m3 −m4|)|m1 −m2 ̸= 0,m3 −m4 ̸= 0))

≥ (1− 1/n)2(1−
∑

q∈Prime
1
q2 )

≥ 0.5(1− 1/n)2 ≥ 0.5− 1/n

where Prime is the set of all primes. For the second inequality sign, we use

P (q|m1 −m2 |m1 −m2 ̸= 0)

=
∑n−1

i=1 P (q|i, i = |m1 −m2| |m1 −m2 ̸= 0)
= [(n− 1)/q] ∗ 1

n−1
≤ 1/q.

Similar for m3 −m4. For the last inequality sign, we use P (2) =
∑

i∈Prime
1
i2 < 0.5, where P is

Riemann function.

So, when we select N samples, it contains [N/4] > N/4 − 1 pairs of four independent samples
randomly selected. So, with probability 1− (0.5 + 1/n)N/4−1, there are four samples mi such that
m1 −m2 and m3 −m4 are co-prime.

H PROOF OF THEOREM 6.2

Now, we prove Theorem 6.2.

Proof. we prove the proposition into three parts.

Part One, with probability 1 − 2δ of Dtr ∼ DN0 , there are Ex∼D[yF(x)] ≥ c0N0[
W

W0+1 ] −

2
Lp(W+1)(n+1)(

√
4 log(4)+

√
2 log(2n))√

N0
− 6Fmax

√
ln(2/δ)
2N0

for all F ∈ Mσ
W (Dtr, n), where Fmax =

maxx+δ∈[0,1]n |F(x+ δ)|.

Firstly, we show that there are
∑

(x,y)∈Dtr
yF(x) ≥ N0[

W
W0+1 ]c0 for all F ∈ Mσ

W (Dtr, n) when
Dtr ∼ DN0 satisfies the conditions of the proposition.

Because Dtr can be expressed in the network space Hσ
W0

(n) with confidence c0, there is a network
F0 =

∑W0

i=1 aiσ(Wix + bi) + c such that yF(x) ≥ c0 for all (x, y) ∈ Dtr. Moreover, we can
write such networks as: F0 =

∑W0+1
i=1 aiσ(Wix + bi), where aW0+1 = Sgn(c), WW0+1 = 0,

bW0+1 = |c|.
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Now, we consider the following network in Hσ
W (n):

FW =

(W0+1)[ W
W0+1 ]∑

i=1

ai%(W0+1)σ(Wi%(W0+1)x+ bi%(W0+1)),

Here, we stipulate that i%(W0+1) = W0+1 when W0+1|i. Then we have FW (x) = [ W
W0+1 ]F0(x)

and FW (x) ∈ Hσ
W (n). Moreover, there are yFW (x) = y[ W

W0+1 ]F0(x) ≥ [ W
W0+1 ]c0 for all (x, y) ∈

Dtr, so
∑

(x,y)∈Dtr
L(FW (x), y) ≤ N0 ln(1 + e−c0[

W
W0+1 ]).

Then, because ln 1 + ex is a convex function, so that:

N0 ln 1 + e−
∑

(x,y)∈Dtr
yF(x)

N

≤
∑

(x,y)∈Dtr
ln 1 + e−yF(x)

=
∑

(x,y)∈Dtr
L(F(x), y)

≤
∑

(x,y)∈Dtr
L(FW (x), y)

≤ N0 ln(1 + e−c0[
W

W0+1 ])

So
∑

(x,y)∈Dtr
yF(x) ≥ c0N [ W

W0+1 ].

Hence, by Lemma B.4 and Theorem B.6, with probability 1− δ of Dtr, there are:

|Ex∼D[F(x)]−
∑

x∈Dtr

F(x)

N0
| ≤ 2

Lp(W + 1)(n+ 1)(
√
4 log(4) +

√
2 log(2n))√

N0

+6Fmax

√
ln(2/δ)

2N0
,

for all F ∈ HW (n).

Finally, combining the above two results, with probability 1 − 2δ, there is Ex∼D[F(x)] ≥
c0N0[

W
W0+1 ]− 2

Lp(W+1)(n+1)(
√

4 log(4)+
√

2 log(2n))√
N0

− 6Fmax

√
ln(2/δ)
2N0

.

Part Two, there is an upper bound of E(x,y)∼D[min||δ||≤ϵ yF(x+ δ)], if Dtr satisfies Part One.

For any F ∈ HW (n), we can write F =
∑⌈ W

W0
⌉−1

i=0

∑W0

j=1 ReLU(WiW0+jx+ biW0+j) + c, which
is a representation of the sum of ⌈ W

W0
⌉ small networks with width of W0. So by part one and by

the assumption in the theorem, with probability 1 − δ of Dtr ∼ DN , there is a Dr ∈ R(Dtr, ϵ)
such that

∑
(x,y)∈Dr

yF1(x) ≤ 2N0c1 for all F1 ∈ HW0(n). Then we have
∑

(x,y)∈Dr
yF(x) ≤

2N0c1⌈ W
W0

⌉, by the definition of Dr, which implies that
∑

(x,y)∈Dtr
min||δ||≤ϵ yF(x+δ)+yF(x) ≤

2N0c1⌈ W
W0

⌉.

And then, by McDiarmid inequality, with probability 1 − δ of Dtr ∼ DN0 , there are
|E(x,y)∼D[min||δ||≤ϵ yF(x + δ) + yF(x)] − 1

N0

∑
(x,y)∈Dtr

min||δ||≤ϵ yF(x + δ) + yF(x)| ≤

2Fmax

√
ln 1/δ
2N0

. So if there are E(x,y)∼D[min||δ||≤ϵ yF(x + δ) + yF(x)] > 2c1⌈ W
W0

⌉ +

2Fmax

√
ln 1/δ
2N0

, according to McDiarmid inequality, with probability 1 − δ of Dtr ∼ DN0 ,∑
(x,y)∈Dtr

min||δ||≤ϵ yF(x + δ) + yF(x) > 2N0c1⌈ W
W0

⌉ stand, which is a contradiction with
the above result.

So there must be E(x,y)∼D[min||δ||≤ϵ yF(x+ δ) + yF(x)] ≤ 2c1⌈ W
W0

⌉+ 2Fmax

√
ln 1/δ
2N0

. Finally,
considering the result in Part one, we have that:

E(x,y)∼D[min||δ||≤ϵ yF(x+ δ)]

≤ 2c1⌈ W
W0

⌉ − c0[
W

W0+1 ] + 2
Lp(W+1)(n+1)(

√
4 log(4)+

√
2 log(2n))√

N0
+ 8Fmax

√
ln(2/δ)
2N0

Part Three, Now we can get the result.
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By Lemma H.1 and part two, there are RobD,ϵ(F) ≤ 1 −
c0[

W
W0+1 ]−2c1⌈ W

W0
⌉

Fmax
+ 8

√
ln 2/δ
2N0

+

2
Lp(W+1)(n+1)(

√
4 log(4)+

√
2 log(2n))√

N0Fmax
, and we consider that each parameter of F is not greater

than 1 and Lipschitz constant of σ is not more than Lp, so Fmax = maxx+δ∈[0,1]n |F(x + δ)| =
maxx∈[0,1]n |F(x)| ≤ LpW (n+ 1) + 1.

Let T = [ W
W0+1 ], by Lp, n,W0 ≥ 1 and W ≥ W0 + 1, there are:

c0[
W

W0+1 ]−2c1⌈ W
W0

⌉
LpW (n+1)+1

≥
c0T−2c1(

(T+1)(W0+1)
W0

+1)

Lp(T+1)(W0+1)(n+1)+1

= c0T−2c1T
Lp(T+1)(W0+1)(n+1)+1 − 4c1

Lp(T+1)(W0+1)(n+1)+1 − 2c1
LpW0(W0+1)(n+1)+1

≥ c0−2c1
8LpW0n

− 4c1
LpW0n

( 1
W/W0

+ 1
W0

)

and
Lp(W+1)(n+1)(

√
4 log(4)+

√
2 log(2n))√

N0Fmax

≥ Lp(W+1)(n+1)(
√

4 log(4)+
√

2 log(2n))

2
√
N0Lp(W+1)(n+1)

= 2

√
4 log(4)+

√
2 log(2n)√

N0

So, there are RobD,ϵ(F) ≤ 1− c0−2c1
8LpW0n

+ 4c1
LpW0n

( 1
W/W0

+ 1
W0

)+2
√

ln 2/δ
2N0

+4

√
4 log(4)+

√
2 log(2n)√

N0
.

Merge some items and ignore constants, this is what we want.

A required lemma is given:

Lemma H.1. If F : Rn → R and distribution D ∈ [0, 1]n × {−1, 1} satisfy E(x,y)∼D[yF(x)] ≤ A

and maxx∈[0,1]n |F(x)| ≤ B, then AD(F) ≤ 1 + A
B .

Proof. There are E(x,y)∼D[yF(x)] ≥ −(maxx∈[0,1]n |F(x)|)P(x,y)∼D(y ̸= Sgn(F(x))) =

−B(1−AD(F)), so A ≥ −B +BAD(F), that is, AD(F) ≤ 1− A
B .

I PROOF OF PROPOSITION 6.5

Proof. We take a c > 0 such that ln(1 + e−c) ≥ ln 2 − ln 2/800, 1 − (1/e)4c < 0.1. Then

take an n such that ln(1 + e−n/2+2c) < ln 2/2. Let N satisfy (
4(n+1)(

√
5 log(4)+

√
2log2n)√

98N/200
+ 6(n+

2)
√

ln(2/δ)
2N ) < ln 2/800.

We consider the following distribution D:

(c1): Let s1 = {(x, 1) : x ∈ [0, 1],
∑

x = n/2+c, ||x||−∞ ≥ 2c/n}, ||x||−∞ mean the minimum of
the weight of |x|; s2 = {(x,−1) : x ∈ [0, 1],

∑
x = n/2− c, ||x||∞ ≤ 1− 2c/n}; s3 = {(x,−1) :

x ∈ [0, 1],
∑

x = n− c};

(c2): P(x,y)∼D(
∑

x = n− c) = 1/100, and D is a uniform distribution in s3;

(c3): P(x,y)∼D(
∑

x = n/2 + c) = P(x,y)∼D(
∑

x = n/2 − c) = 99/200, and D is a uniform
distribution in s1 ∪ s2.

Let W0 = 1, then we show this distribution and W0 are what we want.

(1) in Theorem: Let F1 = Relu(1x)− c/2 ∈ H1(n). Then F1(x) > 0 for all x such that
∑

x = c,
and F1(x) < 0 for all x such that

∑
x = −c, so AD(F1) ≥ 0.99.

(2) in Theorem: We use the following parts to show the (2) in the Theorem.
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Part One. With probability at least 1− 3e−2N/2002 of Dtr ∼ DN , there are at least N/200 points in
Dtr ∩ s3, and at least 98/200N points with label 1 in Dtr, at least 98/200N points with label -1 in
Dtr.

Using the Hoeffding inequality and P(x,y)∼D(
∑

x = n− c) = 1/100, we know that with probability
at least 1−e−2N/2002 of Dtr, there are at least N/200 points in s3. Using also the Hoeffding inequality
and P(x,y)∼D(y = 1) = 99/200, we know that with probability at least 1 − e−2N(99/200−98/200)2

of Dtr, there are at least 98/200N points with label 1 in Dtr; similar, with probability at least
1− e−2N(101/200−98/200)2 of Dtr, there are at least 98/200N points with label -1 in Dtr. Adding
them, we get the result.

Part Two. For a Dtr that satisfies Part One, if F ∈ argmin
f∈HW (n)

∑
(x,y)∈Dtr

L(f(x), y), then there is∑
(x,y)∈Dtr

L(F(x), y) ≤ 199 ln 2+ln(1+e−n/2+2c)
200 N .

We just consider the following network F1 ∈ H1(n): F1 = −ReLU(1x − (n/2 + c)), then∑
(x,y)∈Dtr

L(F1(x), y) = ln 2|Dtr/s3| + ln 1 + e−n/2+2c|Dtr ∩ s3| ≤ 199 ln 2+ln(1+e−n/2+2c)
200 .

Hence, for any F ∈ argmin
f∈HW (n)

∑
(x,y)∈Dtr

L(f(x), y), there must be
∑

(x,y)∈Dtr
L(F(x), y) ≤∑

(x,y)∈Dtr
L(F1(x), y) ≤ 199 ln 2+ln(1+e−n/2+2c)

200 N , which is what we want.

Part Three. If F ∈ H1(n) such that F(x) ≥ 0 for all (x,−1) ∈ s3. Then E(x,y)∼D[L(F(x), y)] ≥
99/100 ln 1 + e−c + 1/100 ln 2.

Consider that for any (x1, 1) ∈ s1, there must be (x1 − 2c1/n,−1) ∈ s2; on the other hand, if
(x2,−1) ∈ s2, there must be (x2 + 2c1/n, 1) ∈ s1. So we can match the points in s1 and s2 one by
one by adding or subtracting a vector 2c1/n.

Moreover, for any x ∈ [0, 1] and x ∈ H1(n), there are |F(x)−F(x− 2c1/n)| ≤ 2c, which implies
L(F(x), 1) + L(F(x − 2c1/n),−1) = ln(1 + e−F(x)) + ln(1 + eF(x−2c1/n)) ≥ 2 ln 1 + e−c.
So for a (x1, 1) ∈ s1 and (x2,−1) ∈ s2 where x2 = x1 − 2c1/n, there must be L(F(x1), 1) +
L(F(x2),−1) ≥ 2 ln 1 + e−c.

Hence, by F(x) > 0 for all (x,−1) ∈ s3, E(x,y)∼D[L(F(x), y)] ≥ 99/200 ln(1 + e−c) + ln 2/100.

Part Four. For any network F ∈ H1(n) such that F(x) < 0 for a x ∈ s3, then AD(F) < 60%.

Firstly, we show that if z1, z2, z3 are collinear, without loss of generality, assuming z2 is between
z1 and z3, then F(z1) ≥ F(z2) ≥ F(z3) or F(z1) ≤ F(z2) ≤ F(z3). Consider that z1, z2, z3
are collinear, so z2 = λz1 + (1 − λ)z3 for some λ ∈ (0, 1). So let f(k) = ReLU(k(Wz1 +
b) + (1 − k)(Wz3 + b)), there are f(0) = ReLU(Wz3 + b), f(1) = ReLU(Wz1 + b) and
f(λ) = ReLU(λ(Wz1 + b) + (1− λ)(Wz3 + b)) = ReLU(Wz2 + b). Consider that ReLU(·) is a
monotonic function, so that f(k) is also an monotonic function about k ∈ R, so we get the result.

Secondly, for any (z,−1) ∈ s2, let xz satisfy: (xz, 1) ∈ s1 and x, xz, z are collinear. Then we have
that:

(1): For any (z,−1) ∈ s2, F must give the wrong label to xz or z. If not, there are F(x) < 0,
F(xz) > 0 and F(z) < 0. By the above result, it is not possible.

(2): Let S = {xz : (z, 1) ∈ s2} ⊂ s1, then P(x,y)∼D(x ∈ S|x ∈ s1) ≥ (1− 4c/n)n−1. Because for
any (z, 1) ∈ s2, ||x−xz||2

||x−z||2 =
∑

(x−xz)∑
(x−z) = n/2−2c

n/2 , which is a constant value, where
∑

x means the
sum of the weights of x, so S is a proportional scaling of s1 with the ratio n−4c

n , we get the result.

So, there are: AD(F) ≤ max{P(x,y)∼D((x, y) ∈ s2),P(x,y)∼D((x, y) ∈ S)}+ P(x,y)∼D((x, y) ∈
s3) + P(x,y)∼D(s1/S) ≤ 101+99(1−(1−4c/n)n−1)

200 ≤ 101/200 + 99/200 ∗ (1− (1/e)4c) ≤ 0.6, use
the definition of c.

Part Five. Prove the Theorem.
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We show that with probability 1 − 3e−2N/2002 − δ of Dtr, for any F ∈
argmin

f∈HW (n)

∑
(x,y)∈Dtr

L(f(x), y), F must give the correct label to some points in s3. Then

by part four, we can get the result.

By part one, with probability at least 1 − 3e−2N/2002 of Dtr, there are at least N/200 points
in Dtr ∩ s3, and at least 98N/200(98N/200) points has label 1(-1). Hence, by Lemma I.1 and
Theorem 4.8, we know that, with probability 1− δ of Dtr, there are |

∑
(x,y)∈Dtr

L(F(x), y)/N −

E(x,y)∼D[L(F(x), y)]| ≥ 4(n+1)(
√

5 log(4)+
√
2log2n)√

98N/200
+ 6(n + 2)

√
ln(2/δ)
2N ). So, with probability

1− 3e−2N/2002 − δ, Dtr satisfies the above two conditions.

For such a Dtr, assume that F ∈ argmin
f∈HW (n)

∑
(x,y)∈Dtr

L(f(x), y), and F must give the correct label

to some points in s3.

If not, by part two, we know that
∑

(x,y)∈Dtr
L(F(x), y) ≤ 199 ln 2+ln(1+e−n/2+2c)

200 N .

Then, by part three, E(x,y)∼DL(F(x), y) ≥ 99/100 ln 1 + e−c + 1/100 ln 2. Hence, by the
definition of Dtr, there are

∑
(x,y)∈Dtr

L(F(x), y) ≥ N(99/100 ln 1 + e−c + 1/100 ln 2) −

N(
4(n+1)(

√
5 log(4)+

√
2log2n)√

98N/200
− 6(n+ 2)

√
ln(2/δ)
2N ).

By the definition of c, n and N , there are
∑

(x,y)∈Dtr
L(F(x), y)/N ≥ (99/100 ln 1 +

e−c + 1/100 ln 2) − (
4(n+1)(

√
5 log(4)+

√
2log2n)√

98N/200
+ 6(n + 2)

√
ln(2/δ)
2N ) ≥ 199.5 ln 2

200 >

199 ln 2+ln(1+e−n/2+2c)
200 ≥

∑
(x,y)∈Dtr

L(F(x), y)/N , which leads to contradiction. And we prove
the result.

A required lemma is given:

Lemma I.1. For any given D = {(xi, yi)}Ni=1, if there are at least K samples have label 1 in it and
there are at least K samples have label -1 in it, then there are:

Eσi
[ max
F∈H1(n)

1

N

N∑
i=1

σiL(F(xi), yi)] ≤
4(n+ 1)(

√
5 log(4) +

√
2 log(2n))√

K
,

where σi are i.i.d and P (σi = 1) = P (σi = −1) = 0.5.

Proof. We have

Eσi
[maxF∈H1(n)

1
N

∑N
i=1 σiL(F(xi), yi)]

= Eσi
[maxF∈H1(n)

1
N

∑N
i=1 σi ln 1 + eyiF(xi)]

≤ Eσi
[maxF∈H1(n)

1
|D1|

∑
x∈D1

σi ln 1 + eF(x)] + Eσi
[maxF∈H1(n)

1
|D2|

∑
x∈D2

σi ln 1 + eF(x)]

Hence, see 2 ln(1+ ex) as an activation of the second layer, and the output layer is F2(x) = x/2. By

Lemma B.4, we have Eσi
[maxF∈H1(n)

1
|D1|

∑
x∈D1

σi ln 1+eF(x)] ≤ 2(n+1)(
√

5 log(4)+
√

2 log(2n))√
|D1|

.

Similar for an other part, so we get the result.

J PROOF OF THEOREM 6.8

We give the proof of when loss function Lb satisfies (1) in definition 6.7 at first.

Proof. We first define some symbols.

Let the loss function Lb be a bad loss function that satisfies (1) in Definition 6.7, let Lb(z1, 1) =
minx∈R Lb(x, 1) and Lb(z−1,−1) = minx∈R Lb(x,−1), assume |z1| + |z−1| = z. For any

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

given x ∈ Rn, let xt = (x2, x3, . . . , xn) ∈ Rn−1, where xi is the i-the weight of x; let
xt = (0, x1, x2, x3, . . . , xn) ∈ Rn+1.

Then we prove the Theorem in three parts:

Part One: We construct the following distribution Db ∈ [0, 1]n × {−1, 1}:

(1): Db is defined on {x : x ∈ [0, 1]n, 0.6 ≤ x1 or x1 ≤ 0.4}× {−1, 1}, where x1 is the first weight
of x.

(2): x has label 1 if and only if x1 ≥ 0.6, or x has label -1.

(3): The marginal distribution about x of Db is an uniform distribution.

Part Two: For any Dtr ∼ DN
b , we consider the following network FDtr

.

Let Dtr−t = {(xt, y)∥(x, y) ∈ Dtr}. By Lemma J.2, with probability 0.99, there is a Ft with
width W not greater than O(zN5n2) such that: if (xt, 1) ∈ Dtr−t, there are Ft(xt) = z1; if
(xt,−1) ∈ Dtr−t, there are Ft(xt) = z−1. Let Ft(x) =

∑W
i=1 aiReLU(Wix+ bi) + c.

Then, we construct FDtr
: Rn → R as F =

∑W
i=1 aiReLU(W t

i x+ bi) + c.

Part Three: We prove the Theorem.

For any Dtr ∼ DN
b , we consider the network FDtr

mentioned in part two. Firstly, we show that
FDtr

(x) ∈ argminF∈HW (n)

∑
(x,y)∈Dtr

L(F(x), y). Because FDtr
(x) = Ft(xt) = z1 when

(x, 1) ∈ Dtr and FDtr (x) = Ft(xt) = z−1 when (x,−1) ∈ Dtr. So L(FDtr (x), y) reaches the
minimum value for any (x, y) ∈ Dtr, which implies FDtr ∈ argminF∈HW (n).

Secondly, there are AD(FDtr (x)) = 0.5. If AD(FDtr (x)) > 0.5, then there must be a pair of
(x1, 1) and (x2,−1) in distribution Db such that (x1)t = (x2)t and FDtr (x) give the correct label
to x1 and x2. But it is easy to see that FDtr

(x) = Ft(xt) where Ft is mentioned in part two, so,
FDtr

(x1) = Ft(x)((x1)t) = Ft(x)((x2)t) = FDtr
(x2), which is in contradiction to FDtr

(x) gives
the correct label to x1 and x2. This is what we want.

Some required lemmas are given.

Lemma J.1. For any v ∈ Rn and T ≥ 1, let u ∈ Rn be uniformly randomly sampled from the

hypersphere Sn−1. Then we have P(|⟨u, v⟩| < ||v||2
T

√
8
nπ ) <

2
T .

This is Lemma 13 in (Park et al., 2021).

Lemma J.2. For any N points {xi}Ni=1 randomly selected in [0, 1]n, and any N given point {yi}Ni=1

in [−a, a]. With probability 0.99 of {xi}Ni=1, there is a network F with width not more than O(aN5n2)
and F(xi) = yi.

Proof. Part One: First, we show that with probability 0.99, there is ||xi − xj ||2 ≥ 0.01
2N2

√
n

for all
pairs i, j.

For any i, j ∈ N and ϵ > 0, there are:

P (||xi − xj ||2 ≥ ϵ)
= P (

∑n
k=1((xi)k − (xj)k)

2 ≥ ϵ2)
≥ Πn

k=1P (((xi)k − (xj)k)
2 ≥ ϵ2/n)

≥ Πn
k=1(1− 2ϵ√

n
)

≥ 1− 2ϵ
√
n

So P(||xi − xj ||2 ≥ ϵ,∀(i, j)) ≥ 1−
∑

i̸=j P (||xi − xj ||2 < ϵ) ≥ 1− 2ϵ
√
nN2. Take ϵ = 0.01

2
√
nN2 ,

we get the result.

Part Two: There is a w ∈ Rn such that ||w||2 = 1 and |w(xi − xj)| ≥ 0.01
4N4n

√
8
π
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By Lemma J.1, for any pair i, j, Pu(|u(xi − xj)| < ||xi−xj ||2
2N2

√
8
nπ ) <

1
N2 . So, Pu(|u(xi − xj)| ≥

||xi−xj ||2
2N2

√
8
nπ ,∀(i, j)) ≥ 1 −

∑
i ̸=j Pu(|u(xi − xj)| < ||xi−xj ||2

2N2

√
8
nπ ) > 1 − 1 = 0, which

implies that there is a w such that ||w||2 = 1 and for any pair (i, j), there are |w(xi − xj)| ≥
||xi−xj ||2

2N2

√
8
nπ ≥ 0.01

4N4n

√
8
π , use the result of part one.

Part Three: Prove the result.

Let w be the vector mentioned in part two, and wxi < wxj when i ̸= j. Let δ = 0.01
4N4n

√
8
π . Now,

we consider the following network:

F(x) =

N∑
i=1

yi
δ
(ReLU(wx− (wxi + δ)) + ReLU(wx− (wxi − δ))− 2ReLU(wx− wxi)).

Easy to verify F(xi) = yi. Consider |wxi| ≤ n and |yi

δ | < 400aN4n, so F ∈ HO(aN5n2)(n). This
is what we want.

We now give the proof of when the loss function Lb satisfies (2) in definition 6.7.

Proof. In this proof, we only consider a very simple distribution D: P(x,y)∼D((x, y) = (0,−1)) =
P(x,y)∼D((x, y) = (1, 1)) = 0.5, where 1 is a all one vector.

We show that for any Dtr and W , let F ∈ argminf∈HW (n)

∑
(x,y)∈Dtr

Lb(f(x), y), there are
AD(F) = 0.5.

Part one: When Dtr contains only (0,−1), then there must be F =
∑W

i=1 −ReLU(wix+ 1)− 1
for some xi, which implies F(1) < 0, so AD(F) = 0.5.

Part two: When Dtr contains only (1, 1), then there must be F =
∑W

i=1 ReLU(1x+ 1) + 1, which
implies F(0) > 0, so AD(F) = 0.5.

Part Three: When Dtr contains (1, 1) and (0,−1), we will show that F =
∑W

i=1 ReLU(1x+ 1) +
1 ∈ argminf∈HW (n) Lb(f(0),−1) + Lb(f(1), 1). Consider that AD(F) = 0.5 for such F , we can
prove the Theorem.

If F =
∑W

i=1 ReLU(1x + 1) + 1 /∈ argminf∈HW (n) Lb(f(0),−1) + Lb(f(1), 1). Let F0(x) =∑W
i=1 aiReLU(Wix+bi)+c ∈ argminf∈HW (n) Lb(f(0),−1)+Lb(f(1), 1). Then, let F0(0) = b

and F0(1) = a.

By ϕ(a) + ϕ(−b) = Lb(F0(0),−1) + Lb(F0(1), 1) < Lb(F(0),−1) + Lb(F(1), 1) = ϕ(W (n +
1)+1)+ϕ(−W −1), and ϕ is a decreasing concave function, then there must be W (n+1)+1−a <
−b+W + 1, which implies |a− b| > Wn.

Consider |a − b| = |
∑W

i=1 aiReLU(bi) −
∑W

i=1 aiReLU(Wi1 + bi)| ≤ |
∑W

i=1 ai1Wi| ≤ Wn.
This is a contradiction to |a − b| > Wn which was shown above. So, assumption is wrong, so
F =

∑W
i=1 ReLU(1x + 1) + 1 ∈ argminf∈HW (n) Lb(f(0),−1) + Lb(f(1), 1), this is what we

want.

K FOR THE GENERAL NETWORK

For multi-layer neural networks, we can show that if there is enough data and the network is large
enough, then generalization can also be ensured for the network which can minimum the empirical
risk. Unfortunately, due to the complexity of depth networks, we are unable to provide a good
generalization bound of such network.

Denote HW,D(n) to be the set of all neural networks of layers D with input dimension n, width W
for each hidden layer, activation function ReLU, and all parameters of the transition matrix are in
[−1, 1]. Then, there are:
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Theorem K.1. For any given n ∈ N+, if D ∈ D(n) satisfies: there is a network F ∈ HW0,D0
(n)

such that P(x,y)∼D(yF(x) > c) = 1 for a W0, D0 ∈ N+, c > 0, then we have that:

For any W ≥ Ω(W0), D ≥ Ω(D0) and δ > 0, with probability at least 1 − δ of Dtr ∼ DN ,

there are: AD(F) ≥ 1 − O(e−WD/K + Kn
√

ln(K/δ)
N ) for all F ∈ MW,D(Dtr, n), where K =

( c

2D0+2W
D0−1
0 n

)−1.

However, this bound is relatively loose, how to achieve a bound that is polynomial in W0, D0, c is an
important question.

Proof. Part One. For any given Dtr ∼ DN , we show that there is a network F ∈ HW,D such that
yF(x) ≥ [ WW0

]D0−1 cWD−D0

2 for any (x, y) ∈ Dtr.

By the assumption of D in the theorem, let F1 ∈ HW0,D0
(n) satisfy P(x,y)∼D(yF1(x) ≥ c) = 1.

And Wi is the i-th transition matrix of F1, bi is the i-th bias vector of F1.

We will construct F as F = Fp2 ◦Fp1, and we construct the two networks Fp1 and Fp2 as following:

Fp1 : Rn → RW which has width W and depth D0, and the output layer of Fp1 also uses the ReLU
activation function.

Let W be a matrix in Ra,b where a, b ∈ N+, and T (W,a1, b1) is a matrix in Ra1,b1 defined as: for
any i ∈ [a], j ∈ [b], k1, k2 ∈ Z, there are T (W,a1, b1)k1[

a1
a ]+i,k2[

b1
b ]+j

= Wi,j ; other weights of
T (W,a1, b1) are 0. Then Fp1 is defined as:

(1): The first transition matrix is T (W1,W, n), and the first bias vector is T (b1,W, 1);

(2): When i > 2, the i-th transition matrix is T (Wi,W,W ), and the i-th bias vector is
[ WW0

]i−1T (bi,W, 1).

Then, we have Fp1(x) = [ WW0
]D0−1ReLU(F1(x)).

For Fp2 : RW → R, which has width W and depth D −D0, we define it as:

(1): When i < D − D0, the i-th transition matrix is IW,W , and the i-th bias vector is 0, where I
means all one matrix;

(2): The last transition matrix is I(1,W ), and the last bias vector is −[ WW0
]D0−1 cWD−D0

2 .

Then, F = F2 ◦ F1 is what we want.

Part two. Similar to the proof of 4.3, there are at most Ne−[ W
W0

]D0−1 cWD−D0
4 +2 points in Dtr such

that yF(x) ≤ [ WW0
]D0−1 cWD−D0

4 .

Part three. If yF(x) ≥ [ WW0
]D0−1 cWD−D0

4 , then yF(x′) > 0 for all ||x′ − x||∞ ≤ c

2D0+1W
D0−1
0 n

.

As shown in Lemma K.2, there are yF(x′) ≥ [ WW0
]D0−1 cWD−D0

4 −WL−1n||x− x′||∞. So when

||x− x′||∞ ≤
c[ W

W0
]L0−1

4nWL0−1 ≤ c

2D0+1W
D0−1
0 n

, there are yF(x′) > 0.

Part four. Let r = c

2D0+1W
D0−1
0 n

. we can divide [0, 1]n into 1
(r/2)n disjoint cubes that have side

length r/2. Then by part three, we know that in a cube, F gives the same label to every point in such
a cube when |F(x)| ≥ [ WW0

]D0−1 cWD−D0

2 for at least one x in such cube.

Part Five. Prove the result.

By part four, name such m cubes as c1, c2, · · · , cm, and let Pi = P(x,y)∼D(x ∈ ci) and Pi ≥ Pj

when i ≥ j.

As shown in part four, let S = {i ∈ [N ],∃(x, y) ∈ Dtr ∩ ci, yF(x) ≥ [ WW0
]D0−1 cWD−D0

4 }, then we
have AD(F) ≥

∑
i∈S Pi.
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For any i, by Hoeffding inequality, with probability 1− e−NP2
i /2, there are at least NPi/2 points in

cube ci. So for any given ϵ0 > 0, let Pk0
≥ ϵ0, then, with probability at least 1−

∑m
i=k0

e−Nϵ20/2 of
Dtr, there are at least NPi/2 points in Ci for any i ≥ k0.

As shown in part two, there are at most Ne−[ W
W0

]D0−1 cWD−D0
4 +2 points in Dtr such that yF(x) ≤

[ WW0
]D0−1 cWD−D0

4 . So, by the above result, let T = {k0, k0+1, . . . , N}/S and N(Ci) is the number

of points in Ci, with probability at least 1 −
∑m

i=k0
e−Nϵ20/2 of Dtr, there are

∑
i∈T NPi/2 ≤∑

i∈T N(Ci) ≤ Ne−[ W
W0

]D0−1 cWD−D0
4 +2.

Hence, there are:
PD(F)

≥
∑

i∈S Pi

≥ 1−
∑

i∈[k0]
Pi −

∑
i∈T Pi

≥ 1−mϵ0 − 2e−[ W
W0

]D0−1 cWD−D0
4 +2.

Now, we take ϵ0 =
√

2 ln(m/δ)
N , then we get the result.

A required lemma is given.
Lemma K.2. If a network with depth L and width W , the L∞ norm of each transition matrix does
not exceed 1. Then |F(x)−F(z)| ≤ nWL−1||x− z||∞.

Proof. It is easy to see that ||Relu(Wx+b)−ReLU(Wz+b)||∞ ≤ ||W (x−z)||∞ ≤ ||W ||1,∞||x−
z||∞. Let Fi is the output of i-th layer of F , then

|F(x)−F(z)|
≤ W ||FD−1(x)−FD−1(z)||∞
≤ W 2||FD−2(x)−FD−2(z)||∞
. . .
≤ WD−1||F1(x)−F1(z)||∞
≤ nWD−1||x− z||∞

which proves the lemma.
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