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Abstract. Lifelong learning for whole-slide images (WSIs) poses the
challenge of training a unified model to perform multiple WSI-related
tasks, such as cancer subtyping and tumor classification, in a distributed,
continual fashion. This is a practical and applicable problem in clinics
and hospitals, as WSIs are large, require storage, processing, and trans-
fer time. Training new models whenever new tasks are defined is time-
consuming. Recent work has applied regularization- and rehearsal-based
methods to this setting. However, the rise of vision-language founda-
tion models that align diagnostic text with pathology images raises the
question: are these models alone sufficient for lifelong WSI learning using
zero-shot classification, or is further investigation into continual-learning
strategies needed to improve performance? The empirical study demon-
strates that a well-pretrained pathology vision-language foundation model,
when used with a simple zero-shot approach, can achieve competitive per-
formance compared to training-based rehearsal and regularization-based
continual learning methods. To our knowledge, this is the first study to
compare conventional continual-learning approaches with vision-language
zero-shot classification for WSIs. Our source code and experimental re-
sults will be available at https://github.com/caodoanh2001/ZeroSlide.

Keywords: lifelong learning · whole slide image analysis · pathology
vision-language foundation model.

1 Introduction

Whole-slide images (WSIs) are gigapixel in size and provide visualization of
tissue at the cellular level, playing a key role in cancer diagnosis and prognosis
[1]. Computational tools have been developed to support diagnostic tasks such
as cancer subtyping [2], tumor classification [3], [4], cancer grading [5], [6], and
survival analysis [7], [8]. However, the rapid growth in WSI volume has led to
an increasing number of related tasks. Moreover, because WSIs are so large,
they require substantial storage, processing, and transfer time. Therefore, it is
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necessary to investigate how to extend a unified computational model to new
WSI-related tasks without retraining or building a new model to save time and
effort.

Prior studies on lifelong learning primarily fall into two categories: regularization-
and rehearsal-based methods [9]–[14]. Regularization-based methods constrain
the parameters learned on the current task to remain close to those of previous
tasks. Notable examples include LwF [9] and EWC [10]. Rehearsal-based meth-
ods maintain a fixed-size buffer of representative samples from past tasks for
replay during new-task training; examples include ER-ACE [12], AGEM [13],
and DER++ [14]. In WSI analysis, ConSlide [15] introduced BuRo, a buffer
strategy that partitions slides into regions and randomly recombines them to
diversify the buffer without increasing its capacity. Subsequently, [16] proposed
a distance consistency loss that minimizes the discrepancy between pairwise dis-
tances of current replay sample representations and those stored in a memory
bank, thereby stabilizing the replay queue.

Concurrently, MI-Zero [17] introduced a similarity computation between vi-
sion features and class prompts for zero-shot classification of WSI tasks fol-
lowing self-supervised contrastive learning, yielding promising results. Founda-
tion pathology vision-language models, such as CONCH [18] and TITAN [19],
have been developed using self-supervised methods to align slide embeddings
with diagnostic text. These models further strengthen zero-shot classification by
matching pathology visual features with text prompts.
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Fig. 1. Regularization-based and rehearsal-based methods require retraining when
adding tasks, while zero-shot classification with a pathology vision-language model
only needs new class templates, making it training-free. This study compares the per-
formance of lifelong learning with training-free zero-shot classification to training-based
continual learning methods.
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Given these developments, we pose the following research question: Is zero-shot
classification sufficient for lifelong learning on WSIs when leveraging an ad-
vanced pathology vision-language foundation model, or are additional continual
learning techniques required? If zero-shot classification is treated as a lifelong
learning method, adding a new task requires only defining a new class text
prompt and using a pathology-specific vision-language foundation model to ex-
tract text embeddings as a classifier, rather than performing time-consuming
continual learning. In this study, we frame zero-shot classification as a lifelong
learning approach and compare it head-to-head with training-based continual
learning methods on WSI analysis tasks to determine whether zero-shot classifi-
cation suffices or if continual learning methods still offer superior performance.
Our experiments, designed to answer this question, reveal that zero-shot classi-
fication is highly competitive with continual-learning-based models.

2 Experimental Designs

2.1 Problem Definition

We define the lifelong learning problem for WSI analysis as follows. Let D =
{Di}Ni=1 be a sequence of N tasks or datasets. Each Di is partitioned into
Di = Dtrain

i ∪Dtest
i , where Dtrain

i is used for training and Dtest
i for evaluation.

After training on the t-th task using Dtrain
t , the algorithm F must maintain

its performance on {Dtest
i }i<t, minimizing forgetting as much as possible. Our

objective is to evaluate: (1) whether zero-shot classification alone suffices
to develop F , or: (2) whether continual learning approaches, where F is
trained with techniques designed to mitigate forgetting, are required. Following
the evaluation settings of continual learning studies [13]–[15], there are two sce-
narios: class-incremental (CLASS-IL) and task-incremental (TASK-IL).
CLASS-IL requires the model to correctly predict the true class label across all
accumulated classes as the number of tasks grows, whereas TASK-IL considers
only the logits for the current task’s classes. Hence, CLASS-IL is more challeng-
ing.

2.2 WSI Tiling & Feature Extraction

Given a WSI, we tile it into K patches using the segmentation and patching strat-
egy of CLAM [3]. We then use the vision-language foundation model TITAN’s
vision encoder [19] to extract features for each patch. This yields a sequence of
patch features x = {xi}Ki=1, where xi ∈ RCvis is a Cvis-dimensional feature vec-
tor. The sequence x then undergoes a slide aggregation function fA to obtain a
single slide embedding for classification. To incorporate continual learning, fA is
learnable, and we use HIT [15], which leverages the pyramid structure of a WSI.
For zero-shot classification, fA is pretrained and requires no further training
when adapting to new tasks.
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2.3 Lifelong Learning for WSIs using Continual Learning-based
Models

For the regularization-based model, we include Elastic Weight Consolida-
tion (EwC) [10], which leverages parameters from the (t − 1)-th task’s model
θt−1 to regularize training of the current model θt. EwC [10] approximates the
posterior importance of each parameter by a Gaussian centered at θt−1 with
precision given by the diagonal of the Fisher information matrix F , then adds
a quadratic penalty to prevent important parameters from drifting. These tech-
niques mitigate forgetting by constraining updates to directions deemed critical
for previous tasks.
For rehearsal-based models, we select Dark Experience Replay (DER++), a
widely used rehearsal-based method, and ConSlide [15], specifically designed for
continual learning on WSIs. DER++ performs knowledge distillation by aligning
the prediction logits of the current model f (i)

t at iteration i with those of a past
model f (k)

t for k < i, thereby reducing forgetting. ConSlide proposes a hierar-
chical transformer to leverage the pyramid structure of WSIs and introduces the
BuRo strategy, which breaks a WSI into regions, stores them in a buffer, and
then randomly merges them to form new WSIs for replay. For continual learning-
based methods, the slide aggregator fA is trainable and includes a classification
head to generate logits.

2.4 Lifelong Learning as WSI Zero-Shot Classification

To formulate lifelong learning as zero-shot classification, we first create a set of
class templates for each test dataset Dtest

i . Following the zero-shot setup of [17],
we define T = 22 base templates (e.g., “a histopathological image showing
[CLASS].”) and generate ≈ 4 phrasing variants per class. For a dataset with m
classes, this yields about 4m sentences per class and a total of ≈ 88m prompts.
We denote the jth class’s prompts collectively as cj , and set Ci = {cj}mj=1. Each
prompt in Ci is fed into a text encoder of TITAN vision-language foundation
model fTITAN

text , and we average the resulting embeddings across variants to obtain
one prototype embedding per class.
ZeroSlide: Adapt To Lifelong Learning. Algorithm 1 details how these
embeddings are used for zero-shot classification in the lifelong learning setting.
First, a global set of prototypes T is defined. For each new i-th task, we define
its class templates Ci and obtain their embeddings via fTITAN

text . Given test patch
features xj ∈ Dtest

i , we aggregate them into a slide embedding si and compute
its similarity to each prototype. The prototype with the highest similarity to
si determines the predicted cancer subtype. In the CLASS-IL scenario, si is
compared against all prototypes in T ; in the TASK-IL scenario, it is compared
only to the prototypes of the current task.

We refer to the strategy to adapt zero-shot classification as lifelong learning
as ZeroSlide.
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Algorithm 1 ZeroSlide: Lifelong Learning as WSI Zero-Shot Classification
Input: Sequence of test datasets Dtest = {Dtest

i }|D|, class templates C = {Ci}|D|
i=1

Output: Predicted class label
Initialize: Set of prototype embeddings T = ∅
Supporting Operations: TITAN text encoder: fTITAN

text , pre-trained slide encoder: fA
1: for Dtest

i in Dtest do
2: Ti ←

{
fTITAN
text (ck) | ck ∈ Ci

}|Ci|
k=1

3: ▷ Extract text embeddings for the i-th task, where Ti ∈ R|Ci|×dim

4: T ← T ∪ Ti ▷ Add to the text-based classifier, where T ∈ R
∑

k≤t |Ck|×dim

5: for xj in Dtest
i do

6: sj ← fA(xj) ▷ Aggregate the set of patch features, where sj ∈ R1×dim

7: p̂CI
j ← sj ⊙ T ⊺ ▷ Compute CLASS-IL similarity, where p̂CI

j ∈ R1×
∑

k≤t |Ck|

8: p̂TI
j ← sj ⊙ T ⊺

i ▷ Compute TASK-IL similarity, where p̂TI
j ∈ R1×|Ci|

9: ŷCI
j ← argmax p̂CI

j ▷ Get CLASS-IL prediction
10: ŷTI

j ← argmax p̂TI
j ▷ Get TASK-IL prediction

3 Experiments

3.1 Datasets

We establish a sequence of six TCGA datasets: TCGA-BRCA (breast), TCGA-RCC
(kidney), TCGA-NSCLC (lung), TCGA-ESCA (esophagus), TCGA-TGCT (testis),
and TCGA-CESC (cervix uteri). Each dataset addresses a cancer subtyping task.
The dataset details are shown in Fig. 2. Each dataset is split into 10 folds, each
comprising a train–validation–test split. All experiments are run on 10 folds to
ensure stability. For continual learning–based models, training is performed on
Dtrain

i ; checkpoints are saved based on performance on the validation set Dval
i ,

and results are reported on Dtest
i . For ZeroSlide, only Dtest

i is used for evaluation
using Algorithm 1 without training.
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Fig. 2. Distribution of six TCGA datasets.
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3.2 Metrics

There are five metrics: Accuracy (ACC), Masked Accuracy (MASKED ACC),
Mean Accuracy (mACC), Backward Transfer (BWT), and Forgetting. ACC mea-
sures performance under the CLASS-IL scenario using prediction logits p̂CI

j com-
puted with all accumulated prototypes. MASKED ACC measures performance
under the Task-IL scenario using prediction logits p̂TI

j computed with prototypes
of the current task only. The mACC is the running average of mean task accu-
racies: after each new task i, compute the mean accuracy over the i tasks seen
so far and then average these means across the sequence. BWT quantifies how
learning new tasks affects past tasks, indicating positive or negative transfer.
Forgetting measures knowledge loss by comparing the highest accuracy achieved
on task i with its final accuracy after training on all |D| datasets/tasks.

3.3 Implemental Details

For all models, we train 10 epochs per task sequentially on six TCGA datasets
using the same random seed to ensure stable comparisons. For the backbone fA
used to extract slide embeddings in all continual learning methods, we employ
HIT [15], which is designed to aggregate features from the patch to region level.
Regions are tiled at 10× magnification into 1024×1024 pixel areas and then each
region is cropped into 4× 4 patches of 256× 256 pixels. Both patch and region
features are obtained using fTITAN

vis , with Cvis = 768. For embedding dimension
in HIT, we use dim = 384.

3.4 Experimental Results

Main Results. The results, reported in Tab. 1, reveal an interesting find-
ing: despite being training-free, ZeroSlide achieves competitive performance with
rehearsal-based continual learning methods DER++ and ConSlide, and signif-
icantly outperforms the regularization-based method EWC. For rehearsal-based
methods, with a buffer size of |Br| = 30, ConSlide attains the highest ACC in the
CLASS-IL scenario (65.673%) and the second-best Masked ACC in the TASK-IL
scenario (90.255 %), as well as mACC (82.602 %). These margins over ZeroSlide
are small (+1.544 % ACC, +0.497% Masked ACC, and +0.009 % mACC). Fur-
thermore, ZeroSlide outperforms DER++ (with |Br| = 10 or 30) in ACC by
+5.131 % and +7.510 %, respectively, although DER++ still leads in TASK-IL.
We also observe that ZeroSlide is more stable with respect to the BWT and For-
getting metrics. Regarding Forgetting, ZeroSlide achieves the best score (0.909),
while securing the second-best BWT (–0.909). These results suggest that ad-
vanced training-based WSI-specific continual learning models still outperform
ZeroSlide in CLASS-IL accuracy. However, adapting zero-shot classification to
lifelong learning is both promising and feasible, as ZeroSlide’s performance re-
mains not only highly competitive with training-based continual learning meth-
ods under both CLASS-IL and TASK-IL scenarios but also demonstrates the
most stability in BWT and Forgetting metrics.
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Table 1. Experimental results on a sequence of six TCGA datasets. Red highlights
the best performance, while blue highlights the second-best.

Method Buffer size
|Br|

ACC MASKED
ACC

mACC BWT ↑ Forgetting ↓

Regularization-based Methods (Training-based)

EWC 0 43.522
(±6.765)

89.244
(±1.902)

69.834
(±3.566)

-3.617
(±3.101)

4.649
(±2.558)

Rehearsal-based Methods (Training-based)

DER++ 56.619
(±4.027)

89.571
(±1.051)

81.786
(±1.575)

-3.627
(±1.182)

4.266
(±1.089)

ConSlide ≈ 10 64.226
(±4.282)

89.318
(±2.349)

81.992
(±1.055)

0.196
(±1.745)

4.849
(±2.527)

DER++ 58.998
(±1.219)

90.604
(±1.472)

83.580
(±1.532)

-2.368
(±1.889)

3.199
(±1.640)

ConSlide ≈ 30 65.673
(±1.780)

90.255
(±1.334)

82.602
(±1.201)

-2.930
(±1.506)

4.032
(±1.248)

Lifelong Learning as Zero-Shot Classification (Training-free)

ZeroSlide 0 64.129
(±1.591)

89.758
(±0.984)

82.593
(±0.017)

-0.909
(±0.406)

0.909
(±0.406)

Confidence Score Study. We examine the prediction results of all models to
investigate the stability of predictions across tasks after training the final task, as
shown in Fig. 3. We analyze the prediction scores corresponding to the ground-
truth labels to assess the model’s confidence in the true labels. For ZeroSlide, we
consider all scores computed with prototypes in T . For the other three models, we
examine the logits across all cancer subtypes in |D| datasets/tasks after softmax.
Our first observation is that ZeroSlide’s score is significantly lower than the other
continual learning models. This is expected, as ZeroSlide is training-free and
uses class template prototypes while distance between the slide embedding and
the prototype is not perfectly close. For the training-based models, the score
with the target label is high. However, EWC shows significant degradation in
confidence for TCGA-BRCA (median ≈ 0.1) and TCGA-RCC (median ≈ 0.3)
as tasks increase, while DER++ and ConSlide maintain high performance on
these datasets (median ≥ 0.75). All models struggle with TCGA-ESCA test
samples, with extremely low confidence scores. EWC and DER++ even achieve
a median confidence score of 0 on TCGA-ESCA, while ZeroSlide has a median
of ≈ 0.09. EWC and DER++ also show low confidence for TGCT. Overall,
ConSlide demonstrates the best stability in confidence as tasks increase. While
ZeroSlide’s scores with target prototypes are modest, they are still sufficiently
sensitive to correctly classify cancer subtypes, making its performance highly
competitive with ConSlide and other continual learning models.

4 Discussion

Based on the experimental designs and results, we conclude that leveraging ad-
vanced pathology vision-language foundation models and performing zero-shot
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Fig. 3. Confidence scores for target cancer subtype labels after training/inference on
the final tasks of ZeroSlide and all continual-learning-based models.

classification is feasible for lifelong WSI analysis in two key ways: 1) ZeroSlide’s
performance asymptotically matches or surpasses continual learning methods,
and 2) it is fully training-free, requiring no storage for WSIs. Despite these
promising results, we highlight the limitations of ZeroSlide and suggest future
improvements for lifelong learning.
Risk of Ambiguous Class Prediction. As shown in Fig. 3, ZeroSlide’s con-
fidence score for the target label is significantly lower than that of DER++ and
ConSlide. This indicates that if class templates are poorly defined or if tasks
include out-of-distribution class names, ZeroSlide may not perform effectively in
a lifelong learning setting.
Perspectives for Improvement. Although ZeroSlide is effective, training-
based continual learning methods still yield strong results. Future work could
involve integrating class templates with methods like ConSlide to enhance per-
formance. The CATE approach [20] maximizes informative features using text
prompts but requires time and storage for class template embeddings during
inference. A promising direction would be to limit class prompt usage to online
training, ignoring it during inference. Additionally, current continual learning
methods require training over multiple epochs when new tasks are added. An
ideal approach would involve leveraging class templates from pathology vision-
language foundation models to minimize training epochs.

5 Conclusion

This study examines zero-shot classification using a pathology vision-language
foundation model (ZeroSlide) and compares it with training-based continual
learning methods for lifelong WSI analysis. Experimental results across six TCGA
datasets suggest that ZeroSlide performs similarly to continual learning models,
while being training-free and incurring no storage or online buffer costs. How-
ever, some limitations are noted, and future studies are recommended to im-
prove lifelong learning for WSIs. We believe this study bridges the knowledge
gap in zero-shot classification within the pathology vision-language model era
and encourages developments to make lifelong learning for WSI analysis more
applicable and practical in clinical settings.



Title Suppressed Due to Excessive Length 9

Acknowledgments

This work was supported in part by the Japan Science and Technology Agency
(JST)-Advanced Technologies for CArbon-Neutral (ALCA-Next)-Next Program,
Japan, under Grant JPMJAN23F4; in part by the Japan Society for the Pro-
motion of Science (JSPS), Grants-in-Aid for Scientific Research (KAKENHI),
Japan, under Grant 22H00515; and in part by the Next Generation Researchers
Challenging Research Program under Grant zk25010020.

Disclosure of Interests

The authors declare that they have no conflict of interest.

References

[1] S. Wu, G. Hong, A. Xu, et al., “Artificial intelligence-based model for
lymph node metastases detection on whole slide images in bladder can-
cer: A retrospective, multicentre, diagnostic study,” The Lancet Oncology,
vol. 24, no. 4, pp. 360–370, 2023.

[2] H. Zhang, Y. Meng, Y. Zhao, et al., “Dtfd-mil: Double-tier feature dis-
tillation multiple instance learning for histopathology whole slide image
classification,” in Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, 2022, pp. 18 802–18 812.

[3] M. Y. Lu, D. F. Williamson, T. Y. Chen, R. J. Chen, M. Barbieri, and F.
Mahmood, “Data-efficient and weakly supervised computational pathol-
ogy on whole-slide images,” Nature biomedical engineering, vol. 5, no. 6,
pp. 555–570, 2021.

[4] Z. Shao, H. Bian, Y. Chen, Y. Wang, J. Zhang, X. Ji, et al., “Transmil:
Transformer based correlated multiple instance learning for whole slide
image classification,” Advances in neural information processing systems,
vol. 34, pp. 2136–2147, 2021.

[5] T. T. Le Vuong, K. Kim, B. Song, and J. T. Kwak, “Joint categorical and
ordinal learning for cancer grading in pathology images,” Medical image
analysis, vol. 73, p. 102 206, 2021.

[6] D. C. Bui, B. Song, K. Kim, and J. T. Kwak, “Spatially-constrained and-
unconstrained bi-graph interaction network for multi-organ pathology im-
age classification,” IEEE Transactions on Medical Imaging, 2024.

[7] R. Li, J. Yao, X. Zhu, Y. Li, and J. Huang, “Graph cnn for survival anal-
ysis on whole slide pathological images,” in International Conference on
Medical Image Computing and Computer-Assisted Intervention, Springer,
2018, pp. 174–182.

[8] P. Liu, L. Ji, F. Ye, and B. Fu, “Advmil: Adversarial multiple instance
learning for the survival analysis on whole-slide images,” Medical Image
Analysis, vol. 91, p. 103 020, 2024.



10 Bui et al.

[9] Z. Li and D. Hoiem, “Learning without forgetting,” IEEE transactions on
pattern analysis and machine intelligence, vol. 40, no. 12, pp. 2935–2947,
2017.

[10] J. Kirkpatrick, R. Pascanu, N. Rabinowitz, et al., “Overcoming catas-
trophic forgetting in neural networks,” Proceedings of the national academy
of sciences, vol. 114, no. 13, pp. 3521–3526, 2017.

[11] A. Prabhu, P. H. Torr, and P. K. Dokania, “Gdumb: A simple approach
that questions our progress in continual learning,” in Computer Vision–
ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28,
2020, Proceedings, Part II 16, Springer, 2020, pp. 524–540.

[12] L. Caccia, R. Aljundi, N. Asadi, T. Tuytelaars, J. Pineau, and E. Belilovsky,
“New insights on reducing abrupt representation change in online continual
learning,” arXiv preprint arXiv:2104.05025, 2021.

[13] A. Chaudhry, M. Ranzato, M. Rohrbach, and M. Elhoseiny, “Efficient
lifelong learning with a-gem,” arXiv preprint arXiv:1812.00420, 2018.

[14] P. Buzzega, M. Boschini, A. Porrello, D. Abati, and S. Calderara, “Dark
experience for general continual learning: A strong, simple baseline,” Ad-
vances in neural information processing systems, vol. 33, pp. 15 920–15 930,
2020.

[15] Y. Huang, W. Zhao, S. Wang, Y. Fu, Y. Jiang, and L. Yu, “Conslide: Asyn-
chronous hierarchical interaction transformer with breakup-reorganize re-
hearsal for continual whole slide image analysis,” in Proceedings of the
IEEE/CVF International Conference on Computer Vision, 2023, pp. 21 349–
21 360.

[16] X. Zhu, Z. Jiang, K. Wu, J. Shi, and Y. Zheng, “Lifelong histopathology
whole slide image retrieval via distance consistency rehearsal,” in Inter-
national Conference on Medical Image Computing and Computer-Assisted
Intervention, Springer, 2024, pp. 274–284.

[17] M. Y. Lu, B. Chen, A. Zhang, et al., “Visual language pretrained multiple
instance zero-shot transfer for histopathology images,” in Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition,
2023, pp. 19 764–19 775.

[18] M. Y. Lu, B. Chen, D. F. Williamson, et al., “A visual-language founda-
tion model for computational pathology,” Nature Medicine, vol. 30, no. 3,
pp. 863–874, 2024.

[19] T. Ding, S. J. Wagner, A. H. Song, et al., “Multimodal whole slide foun-
dation model for pathology,” arXiv preprint arXiv:2411.19666, 2024.

[20] Y. Huang, W. Zhao, Y. Chen, Y. Fu, and L. Yu, “Free lunch in pathology
foundation model: Task-specific model adaptation with concept-guided fea-
ture enhancement,” Advances in Neural Information Processing Systems,
vol. 37, pp. 79 963–79 995, 2024.


