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Abstract
Training Large Language Models (LLMs)
presents significant memory challenges, predom-
inantly due to the growing size of weights and
optimizer states. Common memory-reduction
approaches, such as low-rank adaptation
(LoRA), add a trainable low-rank matrix to the
frozen pre-trained weight in each layer. How-
ever, such approaches typically underperform
training with full-rank weights in both pre-
training and fine-tuning stages since they limit
the parameter search to a low-rank subspace
and alter the training dynamics, and further,
may require full-rank warm start. In this work,
we propose Gradient Low-Rank Projection
(GaLore), a training strategy that allows full-
parameter learning but is more memory-efficient
than common low-rank adaptation methods
such as LoRA. Our approach reduces memory
usage by up to 65.5% in optimizer states while
maintaining both efficiency and performance for
pre-training on LLaMA 1B and 7B architectures
with C4 dataset with up to 19.7B tokens, and on
fine-tuning RoBERTa on GLUE tasks. Our 8-bit
GaLore further reduces optimizer memory by up
to 82.5% and total training memory by 63.3%,
compared to a BF16 baseline. Notably, we
demonstrate, for the first time, the feasibility of
pre-training a 7B model on consumer GPUs with
24GB memory (e.g., NVIDIA RTX 4090) with-
out model parallel, checkpointing, or offloading
strategies. Code is provided in the link.

1. Introduction
Large Language Models (LLMs) have shown impressive
performance across multiple disciplines, including conver-
sational AI and language translation. However, pre-training
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Figure 1: Estimated memory consumption of pre-training a
LLaMA 7B model with a token batch size of 256 on a single de-
vice, without activation checkpointing and memory offloading2.
Details refer to Section 5.5.

Algorithm 1: GaLore, PyTorch-like
for weight in model.parameters():

grad = weight.grad
# original space -> compact space
lor grad = project(grad)
# update by Adam, Adafactor, etc.
lor update = update(lor grad)
# compact space -> original space
update = project back(lor update)
weight.data += update

and fine-tuning LLMs require not only a huge amount of
computation but is also memory intensive. The memory
requirements include not only billions of trainable parame-
ters, but also their gradients and optimizer states (e.g., gra-
dient momentum and variance in Adam) that can be larger
than parameter storage themselves (Raffel et al., 2020;
Touvron et al., 2023; Chowdhery et al., 2023). For exam-
ple, pre-training a LLaMA 7B model from scratch with a
single batch size requires at least 58 GB memory (14GB for
trainable parameters, 42GB for Adam optimizer states and
weight gradients, and 2GB for activations1). This makes
the training not feasible on consumer-level GPUs such as
NVIDIA RTX 4090 with 24GB memory.

In addition to engineering and system efforts, such as gra-
dient checkpointing (Chen et al., 2016), memory offload-

1The calculation is based on LLaMA architecture, BF16 nu-
merical format, and maximum sequence length of 2048.

2In the figure, “no retaining grad” denotes the application of
per-layer weight update to reduce memory consumption of storing
weight gradient (Lv et al., 2023b).
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ing (Rajbhandari et al., 2020), etc., to achieve faster and
more efficient distributed training, researchers also seek
to develop various optimization techniques to reduce the
memory usage during pre-training and fine-tuning.

Parameter-efficient fine-tuning (PEFT) techniques allow
for the efficient adaptation of pre-trained language mod-
els (PLMs) to different downstream applications without
the need to fine-tune all of the model’s parameters (Ding
et al., 2022). Among them, the popular Low-Rank Adapta-
tion (LoRA Hu et al. (2022)) reparameterizes weight ma-
trix W ∈ Rm×n into W = W0 + BA, where W0 is a
frozen full-rank matrix and B ∈ Rm×r, A ∈ Rr×n are
additive low-rank adaptors to be learned. Since the rank
r � min(m,n), A and B contain fewer number of train-
able parameters and thus smaller optimizer states. LoRA
has been used extensively to reduce memory usage for fine-
tuning in which W0 is the frozen pre-trained weight. Its
variant ReLoRA is also used in pre-training, by periodi-
cally updatingW0 using previously learned low-rank adap-
tors (Lialin et al., 2024).

However, many recent works demonstrate the limitation of
such a low-rank reparameterization. For fine-tuning, LoRA
is not shown to reach a comparable performance as full-
rank fine-tuning (Xia et al., 2024). For pre-training from
scratch, it is shown to require a full-rank model training
as a warmup (Lialin et al., 2024), before optimizing in the
low-rank subspace. There are two possible reasons: (1) the
optimal weight matrices may not be low-rank, and (2) the
reparameterization changes the gradient training dynamics.

Our approach: To address the above challenge, we pro-
pose Gradient Low-Rank Projection (GaLore), a training
strategy that allows full-parameter learning but is more
memory-efficient than common low-rank adaptation meth-
ods, such as LoRA. Our key idea is to leverage the slow-
changing low-rank structure of the gradient G ∈ Rm×n of
the weight matrix W , rather than trying to approximate the
weight matrix itself as low rank.

We first show theoretically that the gradient matrix G be-
comes low-rank during training. Then, we propose Ga-
Lore that computes two projection matrices P ∈ Rm×r
and Q ∈ Rn×r to project the gradient matrix G into a low-
rank form P>GQ. In this case, the memory cost of opti-
mizer states, which rely on component-wise gradient statis-
tics, can be substantially reduced. Occasional updates of P
and Q (e.g., every 200 iterations) incur minimal amortized
additional computational cost. GaLore is more memory-
efficient than LoRA as shown in Table 1. In practice, this
yields up to 30% memory reduction compared to LoRA
during pre-training.

We demonstrate that GaLore works well in both LLM pre-
training and fine-tuning. When pre-training LLaMA 7B on

C4 dataset, 8-bit GaLore, combined with 8-bit optimizers
and layer-wise weight updates techniques, achieves com-
parable performance to its full-rank counterpart, with less
than 10% memory cost of optimizer states.

Notably, for pre-training, GaLore keeps low memory
throughout the entire training, without requiring full-rank
training warmup like ReLoRA. Thanks to GaLore’s mem-
ory efficiency, it is possible to train LLaMA 7B from
scratch on a single GPU with 24GB memory (e.g., on
NVIDIA RTX 4090), without any costly memory offload-
ing techniques (Fig. 1).

GaLore is also used to fine-tune pre-trained LLMs on
GLUE benchmarks with comparable or better results than
existing low-rank methods. When fine-tuning RoBERTa-
Base on GLUE tasks with a rank of 4, GaLore achieves
an average score of 85.89, outperforming LoRA, which
achieves a score of 85.61.

As a gradient projection method, GaLore is independent
of the choice of optimizers and can be easily plugged into
existing ones with only two lines of code, as shown in Al-
gorithm 1. Our experiment (Fig. 3) shows that it works
for popular optimizers such as AdamW, 8-bit Adam, and
Adafactor. In addition, its performance is insensitive to
very few hyper-parameters it introduces. We also provide
theoretical justification on the low-rankness of gradient up-
date, as well as the convergence analysis of GaLore.

2. Related Works
Low-rank adaptation. Hu et al. (2022) proposed Low-
Rank Adaptation (LoRA) to fine-tune pre-trained models
with low-rank adaptors. This method reduces the mem-
ory footprint by maintaining a low-rank weight adaptor for
each layer. There are a few variants of LoRA proposed to
enhance its performance (Renduchintala et al., 2023; Sheng
et al., 2023; Zhang et al., 2023; Xia et al., 2024), sup-
porting multi-task learning (Wang et al., 2023b), and fur-
ther reducing the memory footprint (Dettmers et al., 2024).
Lialin et al. (2024) proposed ReLoRA, a variant of LoRA
designed for pre-training, but requires a full-rank training
warmup to achieve comparable performance as the stan-
dard baseline. Inspired by LoRA, Hao et al. (2024) also
suggested that gradients can be compressed in a low-rank
subspace, and they proposed to use random projections to
compress the gradients. There have also been approaches
that propose training networks with low-rank factorized
weights from scratch (Kamalakara et al., 2022; Wang et al.,
2023a; Zhao et al., 2023).

Subspace learning. Recent studies have demonstrated
that the learning primarily occurs within a significantly
low-dimensional parameter subspace (Gur-Ari et al., 2018;
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Larsen et al., 2022). These findings promote a spe-
cial type of learning called subspace learning, where the
model weights are optimized within a low-rank subspace.
This notion has been widely used in different domains of
machine learning, including meta-learning and continual
learning (Lee & Choi, 2018; Chaudhry et al., 2020).

Projected gradient descent. GaLore is closely related to
the traditional topic of projected gradient descent (PGD)
(Chen & Wainwright, 2015; Chen et al., 2019). A key dif-
ference is that, GaLore considers the specific gradient form
that naturally appears in training multi-layer neural net-
works (e.g., it is a matrix with specific structures), proving
many of its properties (e.g., Lemma 3.3, Theorem 3.2, and
Theorem 3.8). In contrast, traditional PGD mostly treats
the objective as a general blackbox nonlinear function, and
study the gradients in the vector space only.

Low-rank gradient. Gradient is naturally low-rank dur-
ing training of neural networks, and this property have been
studied in both theory and practice (Zhao et al., 2022; Cos-
son et al., 2023; Yang et al., 2023). It has been applied
to reduce communication cost (Wang et al., 2018; Vogels
et al., 2020), and memory footprint during training (Goon-
eratne et al., 2020; Huang et al., 2023; Modoranu et al.,
2023).

Memory-efficient optimization. There have been some
works trying to reduce the memory cost of gradient statis-
tics for adaptive optimization algorithms (Shazeer & Stern,
2018; Anil et al., 2019; Dettmers et al., 2022). Quantiza-
tion is widely used to reduce the memory cost of optimizer
states (Dettmers et al., 2022; Li et al., 2024). Recent works
have also proposed to reduce weight gradient memory by
fusing the backward operation with the optimizer update
(Lv et al., 2023a;b).

3. GaLore: Gradient Low-Rank Projection
3.1. Background

Regular full-rank training. At time step t, Gt =
−∇Wϕt(Wt) ∈ Rm×n is the backpropagated (negative)
gradient matrix. Then the regular pre-training weight up-
date can be written down as follows (η is the learning rate):

WT = W0 + η

T−1∑
t=0

G̃t = W0 + η

T−1∑
t=0

ρt(Gt) (1)

where G̃t is the final processed gradient to be added to
the weight matrix and ρt is an entry-wise stateful gradient
regularizer (e.g., Adam). The state of ρt can be memory-
intensive. For example, for Adam, we needM,V ∈ Rm×n

to regularize the gradient Gt into G̃t:

Mt = β1Mt−1 + (1− β1)Gt (2)

Vt = β2Vt−1 + (1− β2)G2
t (3)

G̃t = Mt/
√
Vt + ε (4)

Here G2
t and Mt/

√
Vt + ε means element-wise multipli-

cation and division. η is the learning rate. Together with
W ∈ Rm×n, this takes 3mn memory.

Low-rank updates. For a linear layer W ∈ Rm×n, LoRA
and its variants utilize the low-rank structure of the update
matrix by introducing a low-rank adaptor AB:

WT = W0 +BTAT , (5)

where B ∈ Rm×r and A ∈ Rr×n, and r � min(m,n).
A and B are the learnable low-rank adaptors and W0 is a
fixed weight matrix (e.g., pre-trained weight).

3.2. Low-Rank Property of Weight Gradient

While low-rank updates are proposed to reduce memory
usage, it remains an open question whether the weight ma-
trix should be parameterized as low-rank. In many situa-
tions, this may not be true. For example, in linear regres-
sion y = Wx, if the optimal W ∗ is high-rank, then impos-
ing a low-rank assumption onW never leads to the optimal
solution, regardless of what optimizers are used.

Surprisingly, while the weight matrices are not necessarily
low-rank, the gradient indeed becomes low-rank during the
training for certain gradient forms and associated network
architectures.

Reversible networks. Obviously, for a general loss func-
tion, its gradient can be arbitrary and is not necessarily
low rank. Here we study the gradient structure for a gen-
eral family of nonlinear networks known as “reversible net-
works” (Tian et al., 2020), which includes not only simple
linear networks but also deep ReLU/polynomial networks:

Definition 3.1 (Reversiblity (Tian et al., 2020)). A network
N that maps input x to output y = N (x) is reversible,
if there exists L(x;W ) so that y = L(x;W )x, and the
backpropagated gradient gx satisfies gx = L>(x;W )gy ,
where gy is the backpropagated gradient at the output y.
Here L(x;W ) depends on the input x and weightW in the
network N .

Please check Appendix B.1 for its properties. For re-
versible networks, the gradient takes a specific form.

Theorem 3.2 (Gradient Form of reversible mod-
els). Consider a chained reversible neural net-
work N (x) := NL(NL−1(. . .N1(x))) and de-
fine Jl := Jacobian(NL) . . . Jacobian(Nl+1) and
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fl := Nl(. . .N1(x)). Then the weight matrix Wl at layer
l has gradient Gl in the following form for batch size 1:

(a) For `2-objective ϕ := 1
2‖y − fL‖

2
2:

Gl =
(
J>l y − J>l JlWlfl−1

)
f>l−1 (6)

(b) Left P⊥1 := I − 1
K11> be the zero-mean PSD pro-

jection matrix. For K-way logsoftmax loss ϕ(y;fL) :=

− log
(

exp(y>fL)
1> exp(fL)

)
with small logits ‖P⊥1 fL‖∞ �

√
K:

Gl =
(
JlP

⊥
1 y − γK−1J>l P

⊥
1 JlWlfl−1

)
f>l−1 (7)

where γ ≈ 1 and y is a data label with y>1 = 1.

From the theoretical analysis above, we can see that for
batch size N , the gradient G has certain structures: G =
1
N

∑N
i=1(Ai − BiWCi) for input-dependent matrix Ai,

Positive Semi-definite (PSD) matrices Bi and Ci. In the
following, we prove that such a gradient will become low-
rank during training in certain conditions:

Lemma 3.3 (Gradient becomes low-rank during training).
Suppose the gradient follows the parametric form:

Gt =
1

N

N∑
i=1

(Ai −BiWtCi) (8)

with constantAi, PSD matricesBi and Ci after t ≥ t0. We
study vanilla SGD weight update: Wt = Wt−1 + ηGt−1.
Let S := 1

N

∑N
i=1 Ci ⊗ Bi and λ1 < λ2 its two smallest

distinct eigenvalues. Then the stable rank sr(Gt) satisfies:

sr(Gt) ≤ sr(G
‖
t0)+

(
1−ηλ2

1−ηλ1

)2(t−t0) ‖G0−G‖t0‖
2
F

‖G‖t0‖
2
2

(9)

where G
‖
t0 is the projection of Gt0 onto the minimal

eigenspace V1 of S corresponding to λ1.

In practice, the constant assumption can approximately
hold for some time, in which the second term in Eq. 9 goes
to zero exponentially and the stable rank of Gt goes down,
yielding low-rank gradient Gt. The final stable rank is de-
termined by sr(G

‖
t0), which is estimated to be low-rank by

the following:

Corollary 3.4 (Low-rank Gt). If the gradient takes the
parametric form Gt = 1

N

∑N
i=1(ai−BiWtfi)f

>
i with all

Bi full-rank, and N ′ := rank({fi}) < n, then sr(G
‖
t0) ≤

n−N ′ and thus sr(Gt) ≤ n/2 for large t.

Remarks. The gradient form is justified by Theorem 3.2.
Intuitively, when N ′ is small, Gt is a summation of N ′

rank-1 update and is naturally low rank; on the other hand,
when N ′ becomes larger and closer to n, then the training

dynamics has smaller null space V1, which also makes Gt
low-rank. The full-rank assumption of {Bi} is reasonable,
e.g., in LLMs, the output dimensions of the networks (i.e.,
the vocabulary size) is often huge compared to matrix di-
mensions.

In general if the batch size N is large, then it becomes a bit
tricky to characterize the minimal eigenspace V1 of S. On
the other hand, if V1 has nice structure, then sr(Gt) can be
bounded even further:

Corollary 3.5 (Low-rank Gt with special structure of V1).
If V1(S) is 1-dimensional with decomposable eigenvector
v = y⊗ z, then sr(G

‖
t0) = 1 and thus Gt becomes rank-1.

One rare failure case of Lemma 3.3 is whenG‖t0 is precisely
zero, in which sr(G

‖
t0) becomes undefined. This happens to

be true if t0 = 0, i.e., Ai, Bi and Ci are constant through-
out the entire training process. Fortunately, for practical
training, this does not happen.

Transformers. For Transformers, we can also separately
prove that the weight gradient of the lower layer (i.e.,
project-up) weight of feed forward network (FFN) becomes
low rank over time, using the JoMA framework (Tian et al.,
2024). Please check Appendix (Sec. B.3) for details.

3.3. Gradient Low-rank Projection (GaLore)

Since the gradient G may have a low-rank structure, if we
can keep the gradient statistics of a small “core” of gradient
G in optimizer states, rather thanG itself, then the memory
consumption can be reduced substantially. This leads to
our proposed GaLore strategy:

Definition 3.6 (Gradient Low-rank Projection (GaLore)).
Gradient low-rank projection (GaLore) denotes the follow-
ing gradient update rules (η is the learning rate):

WT = W0 + η

T−1∑
t=0

G̃t, G̃t = Ptρt(P
>
t GtQt)Q

>
t

(10)

where Pt ∈ Rm×r andQt ∈ Rn×r are projection matrices.

Different from LoRA, GaLore explicitly utilizes the low-
rank updates instead of introducing additional low-rank
adaptors and hence does not alter the training dynamics.

In the following, we show that GaLore converges under
a similar (but more general) form of gradient update rule
(Eqn. 8). This form corresponds to Eqn. 6 but with a larger
batch size.

Definition 3.7 (L-continuity). A function h(W ) has (Lip-
schitz) L-continuity, if for any W1 and W2, ‖h(W1) −
h(W2)‖F ≤ L‖W1 −W2‖F .
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Theorem 3.8 (Convergence of GaLore with fixed projec-
tions). Suppose the gradient has the form of Eqn. 8 and
Ai, Bi and Ci have LA, LB and LC continuity with re-
spect to W and ‖Wt‖ ≤ D. Let Rt := P>t GtQt,
B̂it := P>t Bi(Wt)Pt, Ĉit := Q>t Ci(Wt)Qt and κt :=
1
N

∑
i λmin(B̂it)λmin(Ĉit). If we choose constant Pt = P

and Qt = Q, then GaLore with ρt ≡ 1 satisfies:

‖Rt‖F ≤
[
1−η(κt−1−LA−LBLCD2)

]
‖Rt−1‖F (11)

As a result, if mint κt > LA+LBLCD
2, Rt → 0 and thus

GaLore converges with fixed Pt and Qt.

Setting P and Q. The theorem tells that P and Q should
project into the subspaces corresponding to the first few
largest eigenvectors of B̂it and Ĉit for faster convergence
(large κt). While all eigenvalues of the positive semidefi-
nite (PSD) matrix B and C are non-negative, some of them
can be very small and hinder convergence (i.e., it takes a
long time for Gt to become 0). With the projection P and
Q, P>BitP and Q>CitQ only contain the largest eigen
subspaces of B and C, improving the convergence of Rt
and at the same time, reduces the memory usage.

While it is tricky to obtain the eigenstructure of B̂it and Ĉit
(they are parts of Jacobian), one way is to instead use the
spectrum of Gt via Singular Value Decomposition (SVD):

Gt = USV > ≈
r∑
i=1

siuiv
>
i (12)

Pt = [u1, u2, ..., ur], Qt = [v1, v2, ..., vr] (13)

Difference between GaLore and LoRA. While both Ga-
Lore and LoRA have “low-rank” in their names, they fol-
low very different training trajectories. For example, when
r = min(m,n), GaLore with ρt ≡ 1 follows the ex-
act training trajectory of the original model, as G̃t =
PtP

>
t GtQtQ

>
t = Gt. On the other hand, when BA

reaches full rank (i.e., B ∈ Rm×m and A ∈ Rm×n), op-
timizing B and A simultaneously follows a very different
training trajectory compared to the original model.

4. GaLore for Memory-Efficient Training
For a complex optimization problem such as LLM pre-
training, it may be difficult to capture the entire gradient
trajectory with a single low-rank subspace. One reason is
that the principal subspaces ofBt andCt (and thusGt) may
change over time. In fact, if we keep the same projection
P and Q, then the learned weights will only grow along
these subspaces, which is not longer full-parameter train-
ing. Fortunately, for this, GaLore can switch subspaces
during training and learn full-rank weights without increas-
ing the memory footprint.

𝑾𝟎

𝑾𝟎 + ∆𝑾𝑻𝟏

𝑾𝟎 + ∆𝑾𝑻𝟏 + ∆𝑾𝑻𝟐

!𝑮𝒕𝟏 !𝑮𝒕𝟐

Figure 2: Learning through low-rank subspaces ∆WT1 and
∆WT2 using GaLore. For t1 ∈ [0, T1 − 1], W are updated by
projected gradients G̃t1 in a subspace determined by fixed Pt1

and Qt1 . After T1 steps, the subspace is changed by recomputing
Pt2 and Qt2 for t2 ∈ [T1, T2 − 1], and the process repeats until
convergence.

4.1. Composition of Low-Rank Subspaces

We allow GaLore to switch across low-rank subspaces:

Wt = W0 + ∆WT1
+ ∆WT2

+ . . .+ ∆WTn
, (14)

where t ∈
[∑n−1

i=1 Ti,
∑n
i=1 Ti

]
and ∆WTi =

η
∑Ti−1
t=0 G̃t is the summation of all Ti updates within the

i-th subspace. When switching to i-th subspace at step
t = Ti, we re-initialize the projector Pt andQt by perform-
ing SVD on the current gradient Gt by Equation 12. We il-
lustrate how the trajectory of G̃t traverses through multiple
low-rank subspaces in Fig. 2. In the experiment section, we
show that allowing multiple low-rank subspaces is the key
to achieving the successful pre-training of LLMs.

Following the above procedure, the switching frequency
T becomes a hyperparameter. The ablation study (Fig. 5)
shows a sweet spot exists. A very frequent subspace change
increases the overhead (since new Pt and Qt need to be
computed) and breaks the condition of constant projection
in Theorem 3.8. In practice, it may also impact the fidelity
of the optimizer states, which accumulate over multiple
training steps. On the other hand, a less frequent change
may make the algorithm stuck into a region that is no longer
important to optimize (convergence proof in Theorem 3.8
only means good progress in the designated subspace, but
does not mean good overall performance). While optimal
T depends on the total training iterations and task com-
plexity, we find that a value between T = 50 to T = 1000
makes no much difference. Thus, the total computational
overhead induced by SVD is negligible (< 10%) compared
to other memory-efficient training techniques such as mem-
ory offloading (Rajbhandari et al., 2020).

4.2. Memory-Efficient Optimization

Reducing memory footprint of gradient statistics. Ga-
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Algorithm 2: Adam with GaLore
Input: A layer weight matrix W ∈ Rm×n with m ≤ n. Step size η,
scale factor α, decay rates β1, β2, rank r, subspace change frequency
T .
Initialize first-order moment M0 ∈ Rn×r ← 0
Initialize second-order moment V0 ∈ Rn×r ← 0
Initialize step t← 0
repeat
Gt ∈ Rm×n ← −∇Wϕt(Wt)
if t mod T = 0 then
U, S, V ← SVD(Gt)
Pt ← U [:, : r] {Initialize left projector as m ≤ n}

else
Pt ← Pt−1 {Reuse the previous projector}

end if
Rt ← P>t Gt {Project gradient into compact space}

UPDATE(Rt) by Adam
Mt ← β1 ·Mt−1 + (1− β1) ·Rt

Vt ← β2 · Vt−1 + (1− β2) ·R2
t

Mt ←Mt/(1− βt
1)

Vt ← Vt/(1− βt
2)

Nt ←Mt/(
√
Vt + ε)

G̃t ← α · PNt {Project back to original space}
Wt ←Wt−1 + η · G̃t

t← t+ 1
until convergence criteria met
return Wt

Lore significantly reduces the memory cost of optimizer
that heavily rely on component-wise gradient statistics,
such as Adam (Kingma & Ba, 2015). When ρt ≡ Adam,
by projecting Gt into its low-rank form Rt, Adam’s gra-
dient regularizer ρt(Rt) only needs to track low-rank gra-
dient statistics. where Mt and Vt are the first-order and
second-order momentum, respectively. GaLore computes
the low-rank normalized gradient Nt as follows:

Nt = ρt(Rt) = Mt/(
√
Vt + ε). (15)

GaLore can also apply to other optimizers (e.g., Adafactor)
that have similar update rules and require a large amount of
memory to store gradient statistics.

Reducing memory usage of projection matrices. To
achieve the best memory-performance trade-off, we only
use one project matrix P or Q, projecting the gradient G
into P>G if m ≤ n and GQ otherwise. We present the
algorithm applying GaLore to Adam in Algorithm 2.

With this setting, GaLore requires less memory than LoRA
during training. As GaLore can always merge ∆Wt to
W0 during weight updates, it does not need to store a
separate low-rank factorization BA. In total, GaLore re-
quires (mn + mr + 2nr) memory, while LoRA requires
(mn + 3mr + 3nr) memory. A comparison between Ga-
Lore and LoRA is shown in Table 1.

As Theorem 3.8 does not require the projection matrix to
be carefully calibrated, we can further reduce the memory

Table 1: Comparison between GaLore and LoRA. Assume W ∈
Rm×n (m ≤ n), rank r.

GaLore LoRA

Weights mn mn + mr + nr
Optim States mr + 2nr 2mr + 2nr

Multi-Subspace 3 7
Pre-Training 3 7
Fine-Tuning 3 3

cost of projection matrices by quantization and efficient pa-
rameterization, which we leave for future work.

4.3. Combining with Existing Techniques

GaLore is compatible with existing memory-efficient opti-
mization techniques. In our work, we mainly consider ap-
plying GaLore with 8-bit optimizers and per-layer weight
updates.

8-bit optimizers. Dettmers et al. (2022) proposed 8-bit
Adam optimizer that maintains 32-bit optimizer perfor-
mance at a fraction of the memory footprint. We apply Ga-
Lore directly to the existing implementation of 8-bit Adam.

Per-layer weight updates. In practice, the optimizer typ-
ically performs a single weight update for all layers after
backpropagation. This is done by storing the entire weight
gradients in memory. To further reduce the memory foot-
print during training, we adopt per-layer weight updates to
GaLore, which performs the weight updates during back-
propagation. This is the same technique proposed in recent
works to reduce memory requirement (Lv et al., 2023a;b).

4.4. Hyperparameters of GaLore

In addition to Adam’s original hyperparameters, GaLore
only introduces very few additional hyperparameters: the
rank r which is also present in LoRA, the subspace change
frequency T (see Sec. 4.1), and the scale factor α.

Scale factor α controls the strength of the low-rank update,
which is similar to the scale factor α/r appended to the
low-rank adaptor in Hu et al. (2022). We note that the α
does not depend on the rank r in our case. This is because,
when r is small during pre-training, α/r significantly af-
fects the convergence rate, unlike fine-tuning.

5. Experiments
We evaluate GaLore on both pre-training and fine-tuning of
LLMs. All experiments run on NVIDIA A100 GPUs.

Pre-training on C4. To evaluate its performance, we ap-
ply GaLore to train LLaMA-based large language models
on the C4 dataset. C4 dataset is a colossal, cleaned version
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Table 2: Comparison with low-rank algorithms on pre-training various sizes of LLaMA models on C4 dataset. Validation perplexity
is reported, along with a memory estimate of the total of parameters and optimizer states based on BF16 format. The actual memory
footprint of GaLore is reported in Fig. 4.

60M 130M 350M 1B

Full-Rank 34.06 (0.36G) 25.08 (0.76G) 18.80 (2.06G) 15.56 (7.80G)

GaLore 34.88 (0.24G) 25.36 (0.52G) 18.95 (1.22G) 15.64 (4.38G)
Low-Rank 78.18 (0.26G) 45.51 (0.54G) 37.41 (1.08G) 142.53 (3.57G)
LoRA 34.99 (0.36G) 33.92 (0.80G) 25.58 (1.76G) 19.21 (6.17G)
ReLoRA 37.04 (0.36G) 29.37 (0.80G) 29.08 (1.76G) 18.33 (6.17G)
r/dmodel 128 / 256 256 / 768 256 / 1024 512 / 2048
Training Tokens 1.1B 2.2B 6.4B 13.1B

AdamW 8-Bit Adam Adafactor

Figure 3: Applying GaLore to different optimizers for pre-training LLaMA 1B on C4 dataset for 10K steps. Validation perplexity over
training steps is reported. We apply GaLore to each optimizer with the rank of 512 and 1024, where the 1B model dimension is 2048.

Table 3: Pre-training LLaMA 7B on C4 dataset for 150K steps.
Validation perplexity and memory estimate are reported.

Mem 40K 80K 120K 150K

8-bit GaLore 18G 17.94 15.39 14.95 14.65
8-bit Adam 26G 18.09 15.47 14.83 14.61

Tokens (B) 5.2 10.5 15.7 19.7

of Common Crawl’s web crawl corpus, which is mainly
intended to pre-train language models and word represen-
tations (Raffel et al., 2020). To best simulate the practical
pre-training scenario, we train without data repetition over
a sufficiently large amount of data, across a range of model
sizes up to 7 Billion parameters.

Architecture and hyperparameters. We follow the ex-
periment setup from Lialin et al. (2024), which adopts a
LLaMA-based3 architecture with RMSNorm and SwiGLU
activations (Zhang & Sennrich, 2019; Shazeer, 2020; Tou-
vron et al., 2023). For each model size, we use the same
set of hyperparameters across methods, except the learn-
ing rate. We run all experiments with BF16 format to re-
duce memory usage, and we tune the learning rate for each
method under the same amount of computational budget
and report the best performance. The details of our task
setups and hyperparameters are provided in the appendix.

3LLaMA materials in our paper are subject to LLaMA com-
munity license.

Fine-tuning on GLUE tasks. GLUE is a benchmark for
evaluating the performance of NLP models on a variety
of tasks, including sentiment analysis, question answering,
and textual entailment (Wang et al., 2019). We use GLUE
tasks to benchmark GaLore against LoRA for memory-
efficient fine-tuning.

5.1. Comparison with Existing Low-Rank Methods

We first compare GaLore with existing low-rank methods
using Adam optimizer across a range of model sizes.

Full-Rank Our baseline method that applies Adam opti-
mizer with full-rank weights and optimizer states.

Low-Rank We also evaluate a traditional low-rank ap-
proach that represents the weights by learnable low-rank
factorization: W = BA (Kamalakara et al., 2022).

LoRA Hu et al. (2022) proposed LoRA to fine-tune pre-
trained models with low-rank adaptors: W = W0 + BA,
where W0 is fixed initial weights and BA is a learnable
low-rank adaptor. In the case of pre-training, W0 is the
full-rank initialization matrix. We set LoRA alpha to 32
and LoRA dropout to 0.05 as their default settings.

ReLoRA Lialin et al. (2024) proposed ReLoRA, a vari-
ant of LoRA designed for pre-training, which periodically
merges BA into W , and initializes new BA with a reset on

7
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optimizer states and learning rate. ReLoRA requires care-
ful tuning of merging frequency, learning rate reset, and
optimizer states reset. We evaluate ReLoRA without a full-
rank training warmup for a fair comparison.

For GaLore, we set subspace frequency T to 200 and scale
factor α to 0.25 across all model sizes in Table 2. For each
model size, we pick the same rank r for all low-rank meth-
ods, and we apply them to all multi-head attention layers
and feed-forward layers in the models. We train all mod-
els using Adam optimizer with the default hyperparame-
ters (e.g., β1 = 0.9, β2 = 0.999, ε = 10−8). We also
estimate the memory usage based on BF16 format, includ-
ing the memory for weight parameters and optimizer states.
As shown in Table 2, GaLore outperforms other low-rank
methods and achieves comparable performance to full-rank
training. We note that for 1B model size, GaLore even
outperforms full-rank baseline when r = 1024 instead of
r = 512. Compared to LoRA and ReLoRA, GaLore re-
quires less memory for storing model parameters and opti-
mizer states. A detailed training setting of each model and
memory estimation for each method are in the appendix.

5.2. GaLore with Memory-Efficient Optimizers

We demonstrate that GaLore can be applied to various
learning algorithms, especially memory-efficient optimiz-
ers, to further reduce the memory footprint. We apply
GaLore to AdamW, 8-bit Adam, and Adafactor optimiz-
ers (Shazeer & Stern, 2018; Loshchilov & Hutter, 2019;
Dettmers et al., 2022). We consider Adafactor with first-
order statistics to avoid performance degradation.

We evaluate them on LLaMA 1B architecture with 10K
training steps, and we tune the learning rate for each set-
ting and report the best performance. As shown in Fig. 3,
applying GaLore does not significantly affect their conver-
gence. By using GaLore with a rank of 512, the memory
footprint is reduced by up to 62.5%, on top of the mem-
ory savings from using 8-bit Adam or Adafactor optimizer.
Since 8-bit Adam requires less memory than others, we de-
note 8-bit GaLore as GaLore with 8-bit Adam, and use it
as the default method for the following experiments on 7B
model pre-training and memory measurement.

5.3. Scaling up to LLaMA 7B Architecture

Scaling ability to 7B models is a key factor for demonstrat-
ing if GaLore is effective for practical LLM pre-training
scenarios. We evaluate GaLore on an LLaMA 7B architec-
ture with an embedding size of 4096 and total layers of 32.
We train the model for 150K steps with 19.7B tokens, using
8-node training in parallel with a total of 64 A100 GPUs.
Due to computational constraints, we compare 8-bit Ga-
Lore (r = 1024) with 8-bit Adam with a single trial with-
out tuning the hyperparameters. As shown in Table 3, after

350M 1B 3B 7B
Model Size
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Figure 4: Memory usage for different methods at various model
sizes, evaluated with a token batch size of 256. 8-bit GaLore (re-
taining grad) disables per-layer weight updates but stores weight
gradients during training.

150K steps, 8-bit GaLore achieves a perplexity of 14.65,
comparable to 8-bit Adam with a perplexity of 14.61.

5.4. Memory-Efficient Fine-Tuning

GaLore not only achieves memory-efficient pre-training
but also can be used for memory-efficient fine-tuning. We
fine-tune pre-trained RoBERTa models on GLUE tasks us-
ing GaLore and compare its performance with a full fine-
tuning baseline and LoRA. We use hyperparameters from
Hu et al. (2022) for LoRA and tune the learning rate and
scale factor for GaLore. As shown in Table 4, GaLore
achieves better performance than LoRA on most tasks with
less memory footprint. This demonstrates that GaLore can
serve as a full-stack memory-efficient training strategy for
both LLM pre-training and fine-tuning.

5.5. Measurement of Memory and Throughput

While Table 2 gives the theoretical benefit of GaLore com-
pared to other methods in terms of memory usage, we also
measure the actual memory footprint of training LLaMA
models by various methods, with a token batch size of 256.
The training is conducted on a single device setup with-
out activation checkpointing, memory offloading, and opti-
mizer states partitioning (Rajbhandari et al., 2020).

Training 7B models on consumer GPUs with 24G mem-
ory. As shown in Fig. 4, 8-bit GaLore requires signifi-
cantly less memory than BF16 baseline and 8-bit Adam,
and only requires 22.0G memory to pre-train LLaMA 7B
with a small per-GPU token batch size (up to 500 tokens).
This memory footprint is within 24GB VRAM capacity of
a single GPU such as NVIDIA RTX 4090. In addition,
when activation checkpointing is enabled, per-GPU token
batch size can be increased up to 4096. While the batch size
is small per GPU, it can be scaled up with data parallelism,
which requires much lower bandwidth for inter-GPU com-
munication, compared to model parallelism. Therefore, it
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Table 4: Evaluating GaLore for memory-efficient fine-tuning on GLUE benchmark using pre-trained RoBERTa-Base. We report the
average score of all tasks.

Memory CoLA STS-B MRPC RTE SST2 MNLI QNLI QQP Avg

Full Fine-Tuning 747M 62.24 90.92 91.30 79.42 94.57 87.18 92.33 92.28 86.28

GaLore (rank=4) 253M 60.35 90.73 92.25 79.42 94.04 87.00 92.24 91.06 85.89
LoRA (rank=4) 257M 61.38 90.57 91.07 78.70 92.89 86.82 92.18 91.29 85.61

GaLore (rank=8) 257M 60.06 90.82 92.01 79.78 94.38 87.17 92.20 91.11 85.94
LoRA (rank=8) 264M 61.83 90.80 91.90 79.06 93.46 86.94 92.25 91.22 85.93

is possible that GaLore can be used for elastic training (Lin
et al., 2019) 7B models on consumer GPUs such as RTX
4090s.

Specifically, we present the memory breakdown in Fig. 1.
It shows that 8-bit GaLore reduces 37.92G (63.3%) and
24.5G (52.3%) total memory compared to BF16 Adam
baseline and 8-bit Adam, respectively. Compared to 8-
bit Adam, 8-bit GaLore mainly reduces the memory in
two parts: (1) low-rank gradient projection reduces 9.6G
(65.5%) memory of storing optimizer states, and (2) using
per-layer weight updates reduces 13.5G memory of storing
weight gradients.

Throughput overhead of GaLore. We also measure the
throughput of the pre-training LLaMA 1B model with 8-bit
GaLore and other methods, where the results can be found
in the appendix. Particularly, the current implementation
of 8-bit GaLore achieves 1019.63 tokens/second, which
induces 17% overhead compared to 8-bit Adam imple-
mentation. Disabling per-layer weight updates for GaLore
achieves 1109.38 tokens/second, improving the throughput
by 8.8%. We note that our results do not require offloading
strategies or checkpointing, which can significantly impact
training throughput. We leave optimizing the efficiency of
GaLore implementation for future work.

6. Ablation Study
How many subspaces are needed during pre-training?
We observe that both too frequent and too slow changes of
subspaces hurt the convergence, as shown in Fig. 5 (left).
The reason has been discussed in Sec. 4.1. In general, for
small r, the subspace switching should happen more to
avoid wasting optimization steps in the wrong subspace,
while for large r the gradient updates cover more sub-
spaces, providing more cushion.

How does the rank of subspace affect the convergence?
Within a certain range of rank values, decreasing the rank
only slightly affects the convergence rate, causing a slow-
down with a nearly linear trend. As shown in Fig. 5 (right),
training with a rank of 128 using 80K steps achieves a
lower loss than training with a rank of 512 using 20K steps.

Figure 5: Ablation study of GaLore on 130M models. Left:
varying subspace update frequency T . Right: varying subspace
rank and training iterations.

This shows that GaLore can be used to trade-off between
memory and computational cost. In a memory-constrained
scenario, reducing the rank allows us to stay within the
memory budget while training for more steps to preserve
the performance.

7. Conclusion
We propose GaLore, a memory-efficient pre-training and
fine-tuning strategy for large language models. GaLore sig-
nificantly reduces memory usage by up to 65.5% in opti-
mizer states while maintaining both efficiency and perfor-
mance for large-scale LLM pre-training and fine-tuning.

We identify several open problems for GaLore, which in-
clude (1) applying GaLore on training of various mod-
els such as vision transformers (Dosovitskiy et al., 2021)
and diffusion models (Ho et al., 2020), (2) further enhanc-
ing memory efficiency by employing low-memory projec-
tion matrices, and (3) exploring the feasibility of elastic
data distributed training on low-bandwidth consumer-grade
hardware.

We hope that our work will inspire future research on
memory-efficient training from the perspective of gradi-
ent low-rank projection. We believe that GaLore will be
a valuable tool for the community, enabling the training of
large-scale models on consumer-grade hardware with lim-
ited resources.
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Impact Statement
This paper aims to improve the memory efficiency of train-
ing LLMs in order to reduce the environmental impact of
LLM pre-training and fine-tuning. By enabling the training
of larger models on hardware with lower memory, our ap-
proach helps to minimize energy consumption and carbon
footprint associated with training LLMs.
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A. Additional Related Works
Adafactor (Shazeer & Stern, 2018) achieves sub-linear memory cost by factorizing the second-order statistics by a row-
column outer product. GaLore shares similarities with Adafactor in terms of utilizing low-rank factorization to reduce
memory cost, but GaLore focuses on the low-rank structure of the gradients, while Adafactor focuses on the low-rank
structure of the second-order statistics.

GaLore can reduce the memory cost for both first-order and second-order statistics, and can be combined with Adafactor
to achieve further memory reduction. In contrast to the previous memory-efficient optimization methods, GaLore operates
independently as the optimizers directly receive the low-rank gradients without knowing their full-rank counterparts.

The fused backward operation proposed by LOMO (Lv et al., 2023b) mitigates the memory cost of storing weight gradients
during training. Integrated with the standard SGD optimizer, LOMO achieves zero optimizer and gradient memory cost
during training. AdaLOMO (Lv et al., 2023a) enhances this approach by combining the fused backward operation with
adaptive learning rate for each parameter, similarly achieving minimal optimizer memory cost.

While LOMO and AdaLOMO represent significant advancements in memory-efficient optimization for fine-tuning or
continual pre-training, they might not be directly applicable to pre-training from scratch at larger scales. For example, the
vanilla Adafactor, adopted by AdaLOMO, has been demonstrated to lead to increased training instabilities at larger scales
(Rae et al., 2021; Chowdhery et al., 2023; Wortsman et al., 2023; Zhai et al., 2022). We believe integrating GaLore with
the fused backward operation may offer a promising avenue for achieving memory-efficient large-scale pre-training from
scratch.

B. Proofs
B.1. Reversibility

Definition B.1 (Reversiblity (Tian et al., 2020)). A network N that maps input x to output y = N (x) is reversible, if
there exists L(x;W ) so that y = L(x;W )x, and the backpropagated gradient gx satisfies gx = L>(x;W )gy , where gy
is the backpropagated gradient at the output y. Here L(x;W ) depends on the input x and weight W in the network N .

Note that many layers are reversible, including linear layer (without bias), reversible activations (e.g., ReLU, leaky ReLU,
polynomials, etc). Furthermore, they can be combined to construct more complicated architectures:

Property 1. If N1 and N2 are reversible networks, then (Parallel) y = α1N1(x) + α2N2(x) is reversible for constants
α1 and α2, and (Composition) y = N2(N1(x)) is reversible.

From this property, it is clear that ResNet architecture x + N (x) is reversible, if N contains bias-free linear layers and
reversible activations, which is often the case in practice. For a detailed analysis, please check Appendix A in (Tian et al.,
2020). For architectures like self-attention, one possibility is to leverage JoMA (Tian et al., 2024) to analyze, and we leave
for future work.

The gradient of chained reversible networks has the following structure:

Theorem 3.2 (Gradient Form of reversible models). Consider a chained reversible neural network N (x) :=
NL(NL−1(. . .N1(x))) and define Jl := Jacobian(NL) . . . Jacobian(Nl+1) and fl := Nl(. . .N1(x)). Then the weight
matrix Wl at layer l has gradient Gl in the following form for batch size 1:

(a) For `2-objective ϕ := 1
2‖y − fL‖

2
2:

Gl =
(
J>l y − J>l JlWlfl−1

)
f>l−1 (6)

(b) Left P⊥1 := I − 1
K11> be the zero-mean PSD projection matrix. For K-way logsoftmax loss ϕ(y;fL) :=

− log
(

exp(y>fL)
1> exp(fL)

)
with small logits ‖P⊥1 fL‖∞ �

√
K:

Gl =
(
JlP

⊥
1 y − γK−1J>l P

⊥
1 JlWlfl−1

)
f>l−1 (7)

where γ ≈ 1 and y is a data label with y>1 = 1.
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Proof. Note that for layered reversible network, we have

N (x) = NL(NL−1(...N1(x))) = KL(x)KL−1(x) . . .K1(x)x (16)

Let fl := Nl(Nl−1(. . .N1(x))) and Jl := KL(x) . . .Kl+1(x), and for linear layer l, we can write N (x) = JlWlfl−1.
Therefore, for the linear layer l with weight matrix Wl, we have:

dϕ = (y −N (x))>dN (x) (17)

= (y −N (x))>KL(x) . . .Kl+1(x)dWlfl−1 + terms not related to dWl (18)

= (y − JlWlfl−1)>JldWlfl−1 (19)

= tr(dW>l J
>
l (y − JlWlfl−1)f>l−1) (20)

This gives the gradient of Wl:

Gl = J>l yf
>
l−1 − J>l JlWlfl−1f

>
l−1 (21)

Softmax Case. Note that for softmax objective with small logits, we can also prove a similar structure of backpropagated
gradient, and thus Theorem 3.2 can also apply.

Lemma B.2 (Gradient structure of softmax loss). ForK-way logsoftmax loss ϕ(y;f) := − log
(

exp(y>f)
1> exp(f)

)
, let f̂ = P⊥1 f

be the zero-mean version of network output f , where P⊥1 := I − 1
K11>, then we have:

−dϕ = y>df̂ − γf̂>df̂/K +O(f̂2/K)df̂ (22)

where γ(y,f) ≈ 1 and y is a data label with y>1 = 1.

Proof. Let f̂ := P⊥1 f be the zero-mean version of network output f . Then we have 1>f̂ = 0 and f = f̂+c1. Therefore,
we have:

−ϕ = log

(
exp(c) exp(y>f̂)

exp(c)1> exp(f̂)

)
= y>f̂ − log(1> exp(f̂)) (23)

Using the Taylor expansion exp(x) = 1 + x+ x2

2 + o(x2), we have:

1> exp(f̂) = 1>(1 + f̂ +
1

2
f̂2) + o(f̂2) = K(1 + f̂>f̂/2K + o(f̂2/K)) (24)

So

−ϕ = y>f̂ − log(1 + f̂>f̂/2K + o(f̂2/K))− logK (25)

Therefore

−dϕ = y>df̂ − γ

K
f̂>df̂ +O

(
f̂2

K

)
df̂ (26)

where γ := (1 + f̂>f̂/2K + o(f̂2/K))−1 ≈ 1.

Remarks. With this lemma, it is clear that for a reversible network f := N (x) = Jl(x)Wlfl−1(x), the gradient Gl of
Wl has the following form:

Gl = JlP
⊥
1 yfl−1︸ ︷︷ ︸
A

− γJ>l P⊥1 Jl︸ ︷︷ ︸
B

Wl fl−1f
>
l−1/K︸ ︷︷ ︸
C

(27)
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B.2. Gradient becomes low-rank

Lemma B.3 (Gradient becomes low-rank during training). Suppose the gradient follows the parametric form:

Gt =
1

N

N∑
i=1

(Ai −BiWtCi) (8)

with constant Ai, PSD matrices Bi and Ci after t ≥ t0. We study vanilla SGD weight update: Wt = Wt−1 + ηGt−1. Let
S := 1

N

∑N
i=1 Ci ⊗Bi and λ1 < λ2 its two smallest distinct eigenvalues. Then the stable rank sr(Gt) satisfies:

sr(Gt) ≤ sr(G
‖
t0)+

(
1−ηλ2

1−ηλ1

)2(t−t0) ‖G0−G‖t0‖
2
F

‖G‖t0‖
2
2

(9)

where G‖t0 is the projection of Gt0 onto the minimal eigenspace V1 of S corresponding to λ1.

Proof. We have

Gt =
1

N

N∑
i=1

(Ai −BiWtCi) =
1

N

N∑
i=1

Ai −Bi(Wt−1 + ηGt−1)Ci = Gt−1 −
η

N

N∑
i=1

BiGt−1Ci (28)

Let S := 1
N

∑N
i=1 Ci ⊗ Bi, and gt := vec(Gt) ∈ Rmn be a vectorized version of the gradient Gt ∈ Rm×n. Using

vec(BWC) = (C> ⊗B)vec(W ), we have:

gt = (I − ηS)gt−1 (29)

Now let’s bound the stable rank of Gt:

stable-rank(Gt) :=
‖Gt‖2F
‖Gt‖22

(30)

Now λ1 < λ2 are the smallest two distinct eigenvectors of S. The smallest eigenvalue λ1 has multiplicity κ1. We can
decompose g0 into two components, g0 = g

‖
0 + g⊥0 , in which g‖0 lies in the κ1-dimensional eigenspace V1 that corresponds

to the minimal eigenvalue λ1, and g⊥0 is its residue. Then V1 ⊂ Rmn and its orthogonal complements are invariant
subspaces under S and thus:

‖Gt‖2F = ‖gt‖22 = ‖(I − ηS)tg0‖22 = ‖(I − ηS)tg
‖
0‖22 + ‖(I − ηS)tg⊥0 ‖22 (31)

≤ (1− ηλ2)2t‖g⊥0 ‖22 + (1− ηλ1)2t‖g‖0‖22 (32)

On the other hand, by our assumption, G‖0 is rank L and thus has SVD decomposition:

G
‖
0 =

L∑
l=1

clzly
>
l (33)

with orthonormal unit vectors {zl}Ll=1 and {yl}Ll=1 and singular values {cl}Ll=11. This means that

g
‖
0 = vec(G

‖
0) =

L∑
l=1

cl(yl ⊗ zl) =:

L∑
l=1

clvl (34)

with unit vector vl := yl ⊗ zl ∈ V1. It is clear that

v>l vl′ = (y>l ⊗ z>l )(yl′ ⊗ zl′) = (y>l yl′)(z
>
l zl′) = I(l = l′) (35)
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Therefore, by the definition of spectral norm (or matrix 2-norm), we know it corresponds to the largest singular value,
which means:

‖Gt‖2 = max
‖y′‖2=1,‖z′‖2=1

z
′>Gty

′ (36)

≥ max
l
z>l Gtyl = max

l
(yl ⊗ zl)>gt (37)

= max
l
v>l (1− ηS)tg0 = (1− ηλ1)t max

l
v>l g0 (38)

Note that the last equation is because any v ∈ V1 is an eigenvector of S with eigenvalue of λ1.

Since v>l g0 = v>l (g⊥0 + g
‖
0) = cl, maxl cl = ‖G‖0‖2 and ‖g‖0‖22 = ‖G‖0‖2F , we have:

stable-rank(Gt) :=
‖Gt‖2F
‖Gt‖22

≤ stable-rank(G
‖
0) +

(
1− ηλ2

1− ηλ1

)2t ‖G⊥0 ‖2F
‖G‖0‖22

(39)

Corollary B.4 (Low-rank Gt). If the gradient takes the parametric form Gt = 1
N

∑N
i=1(ai − BiWtfi)f

>
i with all Bi

full-rank, and N ′ := rank({fi}) < n, then sr(G
‖
t0) ≤ n−N ′ and thus sr(Gt) ≤ n/2 for large t.

Proof. Let Ci = fif
>
i ∈ Rn×n. Since N ′ := rank({fi}Ni=1) < n and fi ∈ Rn, the collections of vectors {fi}Ni=1 cannot

span the entire space Rn. Let {uj}n−N
′

j=1 be the orthonormal bases for the null space of {fi}Ni=1, and {ek}mk=1 be any
orthonormal bases for Rm. Then the product bases {uj ⊗ ek} form a set of bases for the minimal eigenspace V1 of S with
the minimal eigenvalue of 0. Since Bi are full-rank, no extra dimensions exist for V1.

Therefore, when we project Gt0 onto V1, we have:

G
‖
t0 =

n−N ′∑
j=1

m∑
k=1

cjkuje
>
k =

n−N ′∑
j=1

uj

(
m∑
k=1

cjkek

)>
(40)

and thus sr(G
‖
t0) ≤ rank(G

‖
t0) ≤ n−N ′, since stable rank is a lower-bound of the rank.

On the other hand, Gt can be written as a summation of N ′ rank-1 matrices, by representing each fi =
∑N ′

j=1 bijf
′
j as a

linear combination of {f ′j}N
′

j=1:

Gt =
1

N

N∑
i=1

(ai −BiWtfi)

 N ′∑
j=1

bijf
′
j

> =
1

N

N ′∑
j=1

[
N∑
i=1

bij(ai −BiWtfi)

]
f
′>
j (41)

and thus has rank at most N ′. Therefore, when t is sufficiently large so that the second term in Eqn. 39 is negligible, by
Lemma 3.3, we have (notice that N ′ < n):

sr(Gt) ≤ min(n−N ′, N ′) ≤ n/2 (42)

Corollary B.5 (Low-rank Gt with special structure of V1). If V1(S) is 1-dimensional with decomposable eigenvector
v = y ⊗ z, then sr(G

‖
t0) = 1 and thus Gt becomes rank-1.

Proof. In this case, we have g‖0 = vv>g0 ∝ v. Since v = y ⊗ z, the resulting G‖0 is a rank-1 matrix and thus sr(G
‖
t0) =

1.
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B.3. Gradient Low-rank property for Transformers

Note that Transformers do not belong to the family of reversible networks. However, we can still show that the gradient of
the lower layer (i.e., project-up) weightW ∈ Rm×n of feed forward network (FFN) becomes low rank over time, using the
JoMA framework (Tian et al., 2024). Here m is the embedding dimension, and n is the number of hidden nodes in FFNs.

Lemma B.6 (Gradient of Project-up in Transformer FFNs). Suppose the embedding matrix U ∈ Rm×M is fixed and
column-orthonormal (M is vocabulary size), the activation functions are linear and the backpropagated gradient are
stationary (Tian et al., 2024), then the training dynamics of transformed project-up matrix V := U>W ∈ RM×n satisfies
the following:

V̇ =
1

A
diag

(
exp

(
V ◦ V

2

)
1

)
∆ (43)

where A is the normalization factor of softmax, ◦ is the Hadamard (element-wise) product and ∆ is defined in the proof.
As a result, the gradient of V is “exponentially more low-rank” than V itself.

Proof. Let ∆ := [∆1, . . . ,∆n] ∈ RM×n, where ∆j := Eq[gjx] ∈ RM . Here gj is the backpropagated gradient of hidden
node j in FFN layer, Eq[·] is the conditional expectation given the query is token q, and x is the representation of token
distribution in the previous layer of Transformer. Specifically, for intermediate layer, x represents the activation output of
the previous project-up layer; for the first layer, x represents the frequency count of the input tokens. Then following the
derivation of Theorem 2 (Tian et al., 2024), we have for each hidden node j and its weight wj , the transformed weight
vj := U>wj satisfies the following dynamics:

v̇j =
1

A
∆j ◦ exp(v2

j /2) (44)

where v2
j := vj ◦ vj is the element-wise square of a vector and ◦ is the Hadamard (element-wise) product. Since V :=

[v1, . . . ,vn], Eqn. 43 follows.

Note that the dynamics of vj shows that the direction of vj will change over time (because of exp(v2
j /2)), and it is not

clear how such dynamics leads to low-rank V and even more low-rank V̇ . For this, we per-row decompose the matrix V :

V :=


u>1
u>2
. . .
u>M

 (45)

where ul ∈ Rn. We can also do the same for ∆:

∆ :=


µ>1
µ>2
. . .
µ>M

 (46)

where µl ∈ Rn. Then Eqn. 43 can be decomposed along each row:

u̇l =
1

A
(eu

2
l · 1)µl (47)

Then it is clear that ul is always along the direction of µl, which is a fixed quality since the backpropagated gradient gj
and input x are assumed to be stationary (and thus ∆j := Eq[gjx] is a constant).

Therefore, let ul(t) = αl(t)µl with initial condition of the magnitude αl(0) = 0, and we have:

α̇l =
1

A
eα

2
lµ

2
l · 1 =

1

A

n∑
j=1

eα
2
l µ

2
lj (48)
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where 1 ≤ l ≤ M is the token index. In the following we will show that for different l, the growth of αl can be very
different. This leads to very different row norms of V and V̇ over time, leading to their low-rank structures. Note that
Eqn. 48 does not have a close form solution, instead we could estimate its growth:

1

A
eα

2
l µ̄

2
l ≤ α̇l ≤

n

A
eα

2
l µ̄

2
l (49)

where µ̄2
l := maxj µ

2
lj .

Note that both sides have analytic solutions using Gaussian error functions erf(x) = 2√
π

∫ x
0
e−t

2

dt ∈ [−1, 1]. Specifically,

for dynamic system like ẋ = Ceβ
2x2

, we have

e−β
2x2

dx = Cdt (50)

which gives:

√
π

2β
erf (βx(t)) =

∫ x(t)

0

e−β
2y2dy = Ct (51)

or

x(t) =
1

β
erf−1

(
2βC√
π
t

)
(52)

For inequality like ẋ ≥ Ceβ2x2

or ẋ ≤ Ceβ2x2

, similar equation can be derived. Plug that in, we have:

1

µ̄l
erf−1

(
2µ̄l
A
√
π
t

)
≤ αl(t) ≤

1

µ̄l
erf−1

(
2nµ̄l
A
√
π
t

)
(53)

Let

h(t; a) :=
1

a
erf−1

(
2√
π

a

A
t

)
(54)

then limt→A
√
π/2a h(t; a) = +∞, and h(t; µ̄l) ≤ αl(t) ≤ nh(t;nµ̄l).

Let l∗ = arg maxl µ̄
∗
l be the row with the largest entry of µ, then if µ̄∗l > nµ̄l for all l 6= l∗, then when t → t∗ := A

√
π

2µ̄∗l
,

the magnitude αl∗(t) ≥ h(t; µ̄l∗)→ +∞, while αl(t) ≤ nh(t;nµ̄l) still stay finite, since its critical time t′ := A
√
π

2nµ̄l
> t∗.

Since αl(t) controls the magnitude of each row of V , This means that V eventually becomes rank-1 and so does W .

Finally, V̇ is even more low rank than V , since α̇l has αl in its exponents.

B.4. Convergence of GaLore

Theorem 3.8 (Convergence of GaLore with fixed projections). Suppose the gradient has the form of Eqn. 8 and Ai, Bi
and Ci have LA, LB and LC continuity with respect to W and ‖Wt‖ ≤ D. Let Rt := P>t GtQt, B̂it := P>t Bi(Wt)Pt,
Ĉit := Q>t Ci(Wt)Qt and κt := 1

N

∑
i λmin(B̂it)λmin(Ĉit). If we choose constant Pt = P and Qt = Q, then GaLore

with ρt ≡ 1 satisfies:

‖Rt‖F ≤
[
1−η(κt−1−LA−LBLCD2)

]
‖Rt−1‖F (11)

As a result, if mint κt > LA + LBLCD
2, Rt → 0 and thus GaLore converges with fixed Pt and Qt.

Proof. Using vec(AXB) = (B> ⊗A)vec(X) where ⊗ is the Kronecker product, the gradient assumption can be written
as the following:

gt = at − Stwt (55)
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where gt := vec(Gt) ∈ Rmn, wt := vec(Wt) ∈ Rmn be the vectorized versions of Gt and Wt, at := 1
N

∑
i vec(Ait) and

St = 1
N

∑
i Cit ⊗Bit are mn-by-mn PSD matrix.

Using the same notation, it is clear to show that:

(Q⊗ P )>gt = (Q> ⊗ P>)vec(Gt) = vec(P>GtQ) = vec(Rt) =: rt (56)

g̃t := vec(G̃t) = vec(PP>GtQQ
>) = (Q⊗ P )vec(Rt) = (Q⊗ P )rt (57)

Then we derive the recursive update rule for gt:

gt = at − Stwt (58)
= (at − at−1) + (St−1 − St)wt + at−1 − St−1wt (59)
= et + at−1 − St−1(wt−1 + ηg̃t−1) (60)
= et + gt−1 − ηSt−1g̃t−1 (61)

where et := (at − at−1) + (St−1 − St)wt. Left multiplying by (Q⊗ P )>, we have:

rt = (Q⊗ P )>et + rt−1 − η(Q⊗ P )>St−1(Q⊗ P )rt−1 (62)

Let

Ŝt := (Q⊗ P )>St(Q⊗ P ) =
1

N

∑
i

(Q⊗ P )>(Cit ⊗Bit)(Q⊗ P ) =
1

N

∑
i

(Q>CitQ)⊗ (P>BitP ) (63)

Then we have:

rt = (I − ηŜt−1)rt−1 + (Q⊗ P )>et (64)

Now we bound the norm. Note that since P and Q are projection matrices with P>P = I and Q>Q = I , we have:

‖(Q⊗ P )>et‖2 = ‖vec(P>EtQ)‖2 = ‖P>EtQ‖F ≤ ‖Et‖F (65)

where Et := 1
N

∑
i(Ait −Ai,t−1) + 1

N

∑
i(Bi,t−1WtCi,t−1 −BitWtCit). So we only need to bound ‖Et‖F . Note that:

‖At −At−1‖F ≤ LA‖Wt −Wt−1‖F = ηLA‖G̃t−1‖F ≤ ηLA‖Rt−1‖F (66)

‖(Bt −Bt−1)WtCt−1‖F ≤ LB‖Wt −Wt−1‖F ‖Wt‖F ‖Ct−1‖F = ηLBLCD
2‖Rt−1‖F (67)

‖BtWt(Ct−1 − Ct)‖F ≤ LC‖Bt‖F ‖Wt‖F ‖Wt−1 −Wt‖F = ηLBLCD
2‖Rt−1‖F (68)

Now we estimate the minimal eigenvalue of Ŝt−1. Let λit := λmin(P>BitP ) and νit := λmin(Q>CitQ), then
λmin((P>BitP )⊗ (Q>CitQ)) = λitνit and for any unit vector v:

v>Ŝtv =
1

N

∑
i

v>
[
(P>BitP )⊗ (Q>CitQ)

]
v ≥ 1

N

∑
i

λitνit (69)

And thus λmin(Ŝt) ≥ 1
N

∑
i λitνit. Therefore, λmax(I − ηŜt−1) ≤ 1 − η

N

∑
i λi,t−1νi,t−1. Therefore, let κt :=

1
N

∑
i λitνit and using the fact that ‖rt‖2 = ‖Rt‖F , we have:

‖Rt‖F ≤
[
1− η(κt−1 − LA − 2LBLCD

2)
]
‖Rt−1‖F (70)

and the conclusion follows.

19



GaLore: Memory-Efficient LLM Training by Gradient Low-Rank Projection

C. Details of Pre-Training Experiment
C.1. Architecture and Hyperparameters

We introduce details of the LLaMA architecture and hyperparameters used for pre-training. Table 5 shows the most
hyperparameters of LLaMA models across model sizes. We use a max sequence length of 256 for all models, with a batch
size of 131K tokens. For all experiments, we adopt learning rate warmup for the first 10% of the training steps, and use
cosine annealing for the learning rate schedule, decaying to 10% of the initial learning rate.

Table 5: Hyperparameters of LLaMA models for evaluation. Data amount are specified in tokens.

Params Hidden Intermediate Heads Layers Steps Data amount

60M 512 1376 8 8 10K 1.3 B
130M 768 2048 12 12 20K 2.6 B
350M 1024 2736 16 24 60K 7.8 B
1 B 2048 5461 24 32 100K 13.1 B
7 B 4096 11008 32 32 150K 19.7 B

For all methods on each size of models (from 60M to 1B), we tune their favorite learning rate from a set of
{0.01, 0.005, 0.001, 0.0005, 0.0001}, and the best learning rate is chosen based on the validation perplexity. We find
GaLore is insensitive to hyperparameters and tends to be stable with the same learning rate across different model sizes.
For all models, GaLore use the same hyperparameters, including the learning rate of 0.01, scale factor α of 0.25, and the
subspace change frequency of T of 200. We note that since α can be viewed as a fractional learning rate, most of the
modules (e.g., multi-head attention and feed-forward layers) in LLaMA models have the actual learning rate of 0.0025.
This is, still, a relatively large stable learning rate compared to the full-rank baseline, which usually uses a learning rate
≤ 0.001 to avoid spikes in the training loss.

C.2. Memory Estimates

As the GPU memory usage for a specific component is hard to measure directly, we estimate the memory usage of the
weight parameters and optimizer states for each method on different model sizes. The estimation is based on the number
of original parameters and the number of low-rank parameters, trained by BF16 format. For example, for a 60M model,
LoRA (r = 128) requires 42.7M parameters on low-rank adaptors and 60M parameters on the original weights, resulting
in a memory cost of 0.20G for weight parameters and 0.17G for optimizer states. Table 6 shows the memory estimates for
weight parameters and optimizer states for different methods on different model sizes, as a compliment to the total memory
reported in the main text.

Table 6: Memory estimates for weight parameters and optimizer states.

(a) Memory estimate of weight parameters.

60M 130M 350M 1B

Full-Rank 0.12G 0.25G 0.68G 2.60G

GaLore 0.12G 0.25G 0.68G 2.60G
Low-Rank 0.08G 0.18G 0.36G 1.19G
LoRA 0.20G 0.44G 1.04G 3.79G
ReLoRA 0.20G 0.44G 1.04G 3.79G

(b) Memory estimate of optimizer states.

60M 130M 350M 1B

Full-Rank 0.23G 0.51G 1.37G 5.20G

GaLore 0.13G 0.28G 0.54G 1.78G
Low-Rank 0.17G 0.37G 0.72G 2.38G
LoRA 0.17G 0.37G 0.72G 2.38G
ReLoRA 0.17G 0.37G 0.72G 2.38G
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C.3. Training Progression

We show the training progression of 130M, 350M, 1B and 7B models in Figure 6. Compared to LoRA, GaLore closely
matches the training trajectory of the full-rank baseline, and it even converges slightly faster at the beginning of the training.
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Figure 6: Training progression for pre-training LLaMA models on C4 dataset.
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D. Fine-Tuning Experiments
D.1. Details of Fine-Tuning on GLUE

We fine-tune the pre-trained RoBERTa-Base model on the GLUE benchmark using the model provided by the Hugging
Face1. We trained the model for 30 epochs with a batch size of 16 for all tasks except for CoLA, which uses a batch size
of 32. We tune the learning rate and scale factor for GaLore. Table 7 shows the hyperparameters used for fine-tuning
RoBERTa-Base for GaLore.

Table 7: Hyperparameters of fine-tuning RoBERTa base for GaLore.

MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B

Batch Size 16 16 16 32 16 16 16 16
# Epochs 30 30 30 30 30 30 30 30

Learning Rate 1E-05 1E-05 3E-05 3E-05 1E-05 1E-05 1E-05 1E-05
Rank Config. r = 4

GaLore α 4
Max Seq. Len. 512

MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B

Batch Size 16 16 16 32 16 16 16 16
# Epochs 30 30 30 30 30 30 30 30

Learning Rate 1E-05 2E-05 2E-05 1E-05 1E-05 2E-05 2E-05 3E-05
Rank Config. r = 8

GaLore α 2
Max Seq. Len. 512

D.2. Fine-Tuning on SQuAD dataset

We evaluate GaLore on the SQuAD dataset (Rajpurkar et al., 2016) using the pre-trained BERT-Base model. We use rank
16 for both GaLore and LoRA. GaLore outperforms LoRA in both Exact Match and F1 scores.

Table 8: Evaluating GaLore on SQuAD dataset. Both Exact Match and F1 scores are reported.

Exact Match F1

Baseline 80.83 88.41

GaLore 80.52 88.29
LoRA 77.99 86.11

D.3. Fine-Tuning on OpenAssistant Conversations Dataset

We apply GaLore on fine-tuning experiments on the OpenAssistant Conversations dataset (Köpf et al., 2024), using the
pre-trained models, including Gemma-2b, Phi-2, and LLaMA-7B (Touvron et al., 2023; Team et al., 2024). We use rank
of 128 for both GaLore and LoRA. The results are shown in Table 9.

D.4. Fine-Tuning on Belle-1M Dataset

We also apply GaLore on fine-tuning experiments on the Belle-1M dataset (BELLEGroup, 2023), using the pre-trained
models, including Gemma-2b, Phi-2, and LLaMA-7B. We use rank of 128 for both GaLore and LoRA. The results are
shown in Table 10.

1https://huggingface.co/transformers/model_doc/roberta.html
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Table 9: Evaluating GaLore on OpenAssistant Conversations dataset. Testing perplexity is reported.

Gemma-2b Phi-2 LLaMA-7B

Baseline 4.53 3.81 2.98

GaLore 4.51 3.83 2.95
LoRA 4.56 4.24 2.94

Table 10: Evaluating GaLore on Belle-1M dataset. Testing perplexity is reported.

Gemma-2b Phi-2 LLaMA-7B

Baseline 5.44 2.66 2.27

GaLore 5.35 2.62 2.28
LoRA 5.37 2.75 2.30

E. Additional Memory Measurements
We empirically measure the memory usage of different methods for pre-training LLaMA 1B model on C4 dataset with a
token batch size of 256, as shown in Table 11.

Table 11: Measuring memory and throughput on LLaMA 1B model.

Model Size Layer Wise Methods Token Batch Size Memory Cost Throughput
#Tokens / s #Samples / s

1B 8

AdamW 256 13.60 1256.98 6.33
Adafactor 256 13.15 581.02 2.92
Adam8bit 256 9.54 1569.89 7.90

8-bit GaLore 256 7.95 1109.38 5.59

1B 4

AdamW 256 9.63 1354.37 6.81
Adafactor 256 10.32 613.90 3.09
Adam8bit 256 6.93 1205.31 6.07

8-bit GaLore 256 5.63 1019.63 5.13
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