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ABSTRACT

We present protein autoregressive modeling (PAR), the first multi-scale autore-
gressive framework for protein backbone generation via coarse-to-fine next-scale
prediction. Using the hierarchical nature of proteins, PAR generates structures that
mimic sculpting a statue, forming a coarse topology and refining structural details
over scales. To achieve this, PAR consists of three key components: (i) multi-
scale downsampling operations that represent protein structures across multiple
scales during training; (ii) an autoregressive transformer that encodes multi-scale
information and produces conditional embeddings to guide structure generation;
(iii) a flow-based backbone decoder that generates backbone atoms conditioned
on these embeddings. Moreover, autoregressive models suffer from exposure bias,
caused by the training and the generation procedure mismatch, and substantially de-
grades structure generation quality. We effectively alleviate this issue by adopting
noisy context learning and scheduled sampling, enabling robust backbone gener-
ation. Notably, PAR exhibits strong zero-shot generalization, supporting flexible
human-prompted conditional generation and motif scaffolding without requiring
fine-tuning. On the unconditional generation benchmark, PAR effectively learns
protein distributions and produces backbones of high design quality, and exhibits
favorable scaling behavior. Together, these properties establish PAR as a promising
framework for protein structure generation.

1 INTRODUCTION

Deep generative modeling of proteins has emerged as a way to design and model novel structures
with desired functions and properties, with broad applications in biomedicine and nanotechnology
(Huang et al., 2016; Kuhlman & Bradley, 2019). A widely adopted approach is to directly model
the distribution of three-dimensional protein structures, which govern protein function. Typically,
structure generative models produce protein backbones without sequences or side chains. Prior
work in this area could be broadly categorized into methods that predict the SE(3) backbone frame
representations (Yim et al., 2023a; Watson et al., 2023) and those that directly model atoms, e.g., Cα
coordinates for simplicity and scalability (Geffner et al., 2025; Lin & AlQuraishi, 2023). However,
all these works are based on diffusion models and their variations (e.g., flow matching).
On the other hand, autoregressive (AR) modeling has emerged as a powerful paradigm for large
language models (Achiam et al., 2023; Touvron et al., 2023). AR models employ next-token prediction
to model the probability of each token based on prior ones, showing striking empirical behaviors such
as scalability (Kaplan et al., 2020) and zero-shot generalization to unseen tasks (Brown et al., 2020).
Despite its success in other domains, AR modeling has received little attention in backbone modeling.
We identify two main reasons. (i) Extending AR models to continuous data, e.g. atomic positions in
3D, often relies on data discretization (Esser et al., 2021b;a), which can reduce structural fidelity and
fine-grained details for proteins, limiting generative performance (Hsieh et al., 2025). (ii) Protein
residues exhibit strong bidirectional dependencies: residues distant in sequence may be spatially
close and form hydrogen bonds or hydrophobic contacts. This mutual dependency conflicts with the
unidirectional assumption of standard AR models, and thus limits the quality of previous attempts on
autoregressive structure generation (Gaujac et al., 2024). A natural question therefore arises: can we
apply AR modeling to protein backbone design?
In this paper, we answer the above question affirmatively, and propose PAR, a protein autoregressive
framework, to unlock the power of AR models for protein backbone generation. We take initiative
from the hierarchical nature of proteins: their structures span multiple scales of granularity, from
coarse 3D topology and tertiary fold arrangements, local secondary structures, to the finest atomic
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Figure 1: Overview of PAR. PAR comprises the autoregressive (AR) transformer Tθ (left) and the
flow-based backbone decoder vθ(right). During training, we downsample a backbone x ∈ RL×3 into
multi-scale representations {x1, . . . ,x}. AR transformer performs next-scale prediction, producing
conditional embeddings (z1, . . . , zn) from (bos, . . . ,xn−1). The shared flow-based decoder learns to
denoise backbones xi at each scale conditioned on zi. At inference, PAR autoregressively generates
xi until the final structure x is constructed.

coordinates. PAR thus adopts a multi-scale autoregressive framework via next-scale prediction,
predicting each scale conditioned on prior coarser scales. This strategy, inspired by advances in
image generation, enabled AR models to surpass strong diffusion models in image synthesis for the
first time (Tian et al., 2024), and further allows multimodal LLMs to achieve unified text and image
generation framework (Li et al., 2025).
Building on this multi-scale framework, PAR includes three key components (Fig. 1). The multi-scale
downsampling creates coarse-to-fine structural representations to serve as structural context and
targets during training. AR transformer, a stack of non-equivariant attention layers (Vaswani et al.,
2017), encodes all preceding scales to produce a scale-wise conditional embedding following Li
et al. (2024). The flow-based backbone decoder is conditioned on this embedding to model Cα
backbone atoms directly. As a result, PAR avoids both discretization of protein structures and
residue-wise unidirectional autoregressive ordering, thereby overcoming the two aforementioned
limitations that compromise structural fidelity and generative quality. Moreover, training on ground-
truth structural context, AR models suffer from exposure bias (Arora et al., 2022), which is a key
challenge substantially reducing structure generation quality in our preliminary study. We effectively
mitigate such issue via noisy context learning and scheduled sampling, allowing the model to learn
from corrupted, or partially inaccurate context.
This multi-scale approach introduces several notable model behaviors. PAR generates backbones
by establishing a global topology and performing refinements, analogous to progressively sculpting
a statue into a masterpiece. For unconditional generation, PAR exhibits favorable scaling behavior,
yielding competitive results on distributional metrics like Fréchet Protein Structure Distance (FPSD).
Unlike diffusion models, which operate at a single scale, PAR flexibly handles inputs at various
granularities, and hence shows zero-shot generalization in tasks like prompt-based generation and
motif scaffolding. Finally, PAR provides a more general framework, incorporating flow-based models
as a special case when restricted to a single scale, and thus remains compatible with techniques from
flow-based models like self-conditioning (Chen et al., 2022).
Main contributions: (i) We present PAR, the first multi-scale AR model for protein backbone
generation that addresses key limitations of existing AR methods. (ii) PAR comprises multi-scale
downsampling, AR transformer, and a flow-based decoder, to directly model Cα atom, avoiding
fidelity loss from discretization. (iii) We alleviate exposure bias through noisy context learning
and scheduled sampling, effectively improving structure generation. (iv) Our model shows an
interpretable generation process that forms coarse backbone topology and refines it progressively.
(v) Benchmarking results show that PAR effectively captures protein data distributions, achieving
FPSD score of 231.5 against PDB dataset that further scale with training compute. (vi) PAR exhibits
zero-shot generalization potential, reflecting the versatility of AR large language models.

2 BACKGROUND AND RELATED WORK

Flow and diffusion-based structure generative models. Flow-based and diffusion methods
(Lipman et al., 2022; Ho et al., 2020) operate by transforming samples from a prior distribution to the
target data distribution, and have been widely applied to protein backbone generation. These methods
either predict per-residue rotations and translations using a frame-based Riemannian manifold
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representation (Yim et al., 2023b; Bose et al., 2023; Yim et al., 2023a; Watson et al., 2023; Ingraham
et al., 2023) or directly model atom coordinates, such as Cα positions (Lin & AlQuraishi, 2023; Lin
et al., 2024; Geffner et al., 2025), with some approaches generating fully atomistic proteins including
side chains (Qu et al., 2024; Chu et al., 2024). Discrete diffusion methods (Hayes et al., 2025; Wang
et al., 2024), trained on structure tokens, often reduce structural fidelity and limit generation quality
(Hsieh et al., 2025). Unlike most diffusion approaches, which are single-scale, PAR models protein
structures across multiple scales using a parameterized upsampling autoregressive process from short
to long, allowing flexible handling of different structural granularities and zero-shot generalization
to tasks like prompt-based generation. In addition, PAR provides a more general framework, as it
naturally reduces to a flow-based model when restricted to a single scale.
Autoregressive modeling. Autoregressive (AR) modeling has been driving natural language process-
ing and computer vision due to its strong scalability and zero-shot generalization (Tian et al., 2024;
Touvron et al., 2023; Achiam et al., 2023). The approach relies on next-token prediction that predicts
the distribution of the next token based on prior ones in a unidirectional sequence. However, adapting
autoregressive models to continuous domains, like image generation, often involves tokenizers such
as VQVAE (Esser et al., 2021b;a), which discretizes the data for transformer training and may discard
fine-grained details. Recently, Li et al. (2024) used the AR model that produces conditioning for
a diffusion network (e.g., a small MLP) to model image latents, unlocking the operations of AR
models in a continuous-valued space. In addition, defining appropriate autoregressive orders that
preserve data properties is crucial. Since next-token prediction inherently discards spatial locality
by flattening the 2D image feature map into a 1D sequence, VAR (Tian et al., 2024) introduced
next-scale prediction. Leveraging a multi-scale VQVAE, the image feature map is quantized into n
multi-scale token maps that preserve the spatial and bidirectional correlations. To our knowledge,
autoregressive modeling has not been widely applied to protein structure generation despite their
success in other domains. The only exception is Gaujac et al. (2024), which models structure tokens
with a causal transformer. In contrast, we design a multi-scale autoregressive framework that operates
directly in continuous backbone space using a flow-based backbone decoder, thereby addressing the
limitations of discrete token maps while respecting the bidirectional biophysical characteristics of
protein structures.

3 PROTEIN AUTOREGRESSIVE MODELING

In this section, we introduce PAR, a multi-scale autoregressive (AR) framework for protein backbone
generation. Formally, we want to model a protein backbone Cα structure with L residues x ∈ RL×3

in an autoregressive manner as follows:

pθ(x) = E
X∼qdecompose(·|x)

pθ(X = {x1, . . . ,xn}) = E
X∼qdecompose(·|x)

n∏
i=1

pθ(x
i | X<i), (1)

where qdecompose(·|x) defines a decomposition of autoregressive order for protein structure x into n
scales X = {x1, . . . ,xn} with xn = x, while pθ(x

i | X<i) is the desired PAR model learning to
generate x via a scale-wise autoregression.
The design space of qdecompose and pθ under this formulation (Eqn. 1) can be flexible. Recall that
our goal is to enable AR modeling to preserve spatial dependencies and avoid discretization, as
discussed in §1. To this end, in §3.1, we devise a non-parametric and deterministic qdecompose by
multi-scale protein downsampling (Fig. 1, left) that represents protein backbones at multiple scales
via hierarchical down-sampling (Eqn. 2), providing structural context and training targets. In §3.2, we
parameterize PAR pθ as a backbone autoregressive upsampling process via next-scale prediction and
achieve direct Cα modeling in the continuous space (Eqn. 3). This comprises two key components: (i)
an autoregressive transformer (Fig. 1, left) that produces scale-wise conditional embeddings informed
by preceding scales to guide generation (Eqn. 4); and (ii) a flow-based backbone decoder (Fig. 1,
right) which samples Cα backbone coordinates conditioned on the learned embeddings (Eqn. 5).
Finally, in §3.3, we dedicated strategies to mitigate exposure bias (Arora et al., 2022), a mismatch
between training on ground-truth data and inference on model predictions that leads to error accumu-
lations and degrading generation quality in AR models. Together, these components enable PAR to
robustly generate protein backbones in a coarse-to-fine manner.

3.1 MULTI-SCALE PROTEIN DOWNSAMPLING

We construct the multi-scale representations of protein structures via hierarchical downsampling to
serve as training context and targets for PAR (Fig. 1, left). Given a protein structure x ∈ RL×3, it
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produces a hierarchy of coarse-to-fine scales by progressively downsampling x into n scales:
qdecompose : x → X =

{
x1,x2, . . . ,xn

}
= {Down(x, size(1)),Down(x, size(2)), . . . ,x} ,

(2)

where Down(x, size(i)) ∈ Rsize(i)×3 denotes a downsampling operation that interpolates x along
the sequence dimension, leading to size(i) 3D centroids that provide a coarse structural layout.
Since qdecompose is designed as a deterministic mapping for every x, the likelihood of Eqn. 1 can be
simplified without marginalization: pθ(x) =

∏n
i=1 pθ(x

i | X<i).
Scale configurations S = {size(1), . . . , size(n)} could be defined in two ways. When defined
by length, scales are chosen as hyperparameters, e.g., S = {64, 128, 256}. In this case, if L lies in
(size(i), size(i+ 1)], the protein could be generated with only i+ 1 autoregressive steps. When
defined by ratio, scales are adaptively determined based on protein length, e.g., S = {L/4, L/2, L}.
Empirically, defining scales by length yields slightly better results in modeling data distributions.
We adopt this as the default configuration. This design enables training PAR with flexible scale
configurations. In the following sections, we describe how this hierarchy of representations are
modeled using the autoregressive transformer and backbone decoder.

3.2 COARSE-TO-FINE BACKBONE AUTOREGRESSIVE MODELING

Preserving the inherent dependencies in data when defining the autoregressive order is crucial and
affects generation performance (Tian et al., 2024). Standard AR models assume unidirectional
dependency, which conflicts with the strong bidirectional interactions in protein sequences, e.g.,
spatially close residues can form hydrophobic contacts or hydrogen bonds even if distant in sequence.
PAR addresses this with a multi-scale AR framework via next-scale prediction, capturing mutual
structural dependency over each scale. Motivated by Li et al. (2024), we propose to use an AR
Transformer with diffusion/flow-based regression loss to enable modeling of Cα atoms directly in
continuous space. That is, we could rewrite the likelihood as:

pθ(X = {x1, . . . ,xn}) =
n∏

i=1

pθ(x
i|X<i) =

n∏
i=1

pθ(x
i | zi = Tθ(X<i)), (3)

where Tθ is an AR Transformer that produces scale-wise conditioning zi while pθ(xi|zi) is optimized
with a flow-based atomic decoder vθ with flow matching. This avoids discretizing protein structures
into tokens, preserving structural details and generation fidelity. We describe each component below.
Autoregressive transformer for scale-wise conditioning. To formulate the autoregressive order, we
leverage the hierarchical nature of proteins, where a protein structure could span various levels of
representations from coarse tertiary topology to the finest atomic coordinates. We adopt the next-scale
prediction to model per-scale distribution based on prior coarser scales, which further ensures that
the bidirectional dependencies of residues are modeled over each scale. We train our autoregressive
model (Fig. 1, left), a non-equivariant transformer Tθ, to produce scale-wise conditioning embedding
zi for scale i depending on prior scales X<i = x1, . . . ,xi−1:

zi = Tθ(X<i) = Tθ
([
bos, Up(x1, size(2)), . . . , Up(xi−1, size(i))

])
, (4)

where bos ∈ Rsize(1)×3 is a learnable embedding, and Up(xi−1, size(i)) interpolates xi−1 to
size(i) 3D points. All inputs are concatenated along the sequence dimension before being fed into
Tθ. The embedding zi is then used to condition the flow matching decoder to predict the backbone
coordinates xi, detailed as follows.
Flow-based atomic decoder. We enable PAR to directly model Cα positions x, wherein pθ(x|zi)
is parameterized by an atomic decoder vθ with flow matching (FM, Lipman et al., 2022), which
maps standard normal distribution to the target data distribution. We condition the vθ with scale-wise
conditioning zi predicted by the AR Transformer Tθ at each scale i (Fig. 1, right). During training,
we sample the noise ϵi ∼ N (0, I) and a time variable ti ∈ [0, 1], and compute the interpolated
sample as xi

ti = ti · xi + (1− ti) · ϵi. As such, we can jointly train vθ and Tθ with an FM objective:

L(θ) = Ex∼pD

[
1

n

n∑
i=1

1

size(i)
Eti∼p(ti),ϵi∼N (0,I)

∥∥vθ(x
i
ti , t

i, zi)− (xi − ϵi)
∥∥2 ], (5)

where pD(x) denotes the training data distribution and p(t) denotes the t-sampling distribution in
Geffner et al. (2025). The conditioning embedding zi is injected into the atomic decoder network
vθ through adaptive layer norms (Peebles & Xie, 2023). We further concatenate a learnable scale

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

embedding alongside zi to help the model identify different scales and incorporate self-conditioning
input as an additional condition (Chen et al., 2022), though we omit them in the equation for simplicity.
To formulate the indices for positional encoding pi at scale i, we uniformly sample size(i) numbers
from the interval [1, L], i.e., pi = linspace(1, L, size(i)). At coarse scales, the wide spacing between
adjacent indices encourages the model to capture global structural layout, while at finer scales the
dense indices allow the model to focus on local details. For more details, please refer to §A.1.
Leveraging the learned flow network vθ, sampling could be performed at each scale through ordinary
differential equation (ODE) dxt = vθ(xt, t) dt, with the scale superscript i omitted for simplicity.
Moreover, we could define the stochastic differential equation (SDE) for sampling:

dxt = vθ(xt, t) dt+ g(t) sθ(xt, t) dt+
√

2g(t)γ dWt, (6)
where g(t) is a time-dependent scaling function for the score function sθ(xt, t) (Albergo et al.,
2023; Ma et al., 2024) and the noise term, γ is a noise scaling parameter, and Wt is a standard
Wiener process. The score function, defined as the gradient of the log-probability of the noisy data
distribution at time t, could be computed as sθ(xt, t) =

tvθ(xt,t)−xt

1−t .

Multi-scale structure generation. At inference, the autoregressive transformer first produces z1 at
the coarsest scale, which conditions the flow matching decoder to generate x1 either via ODE or SDE
sampling in Eqn. 6. We upsample x1 using Up(x1, size(2)) and send it back into the autoregressive
transformer to predict the next scale embedding z2. This coarse-to-fine process iterates n times until
the flow-matching model generates the full-resolution backbone x. KV cache is applied throughout
the autoregressive process for efficiency.

3.3 MITIGATING EXPOSURE BIAS

Training AR models typically uses teacher forcing (Williams & Zipser, 1989), where ground-truth
data are fed as context to stabilize learning. However, during inference the model is conditioned on its
own predictions, creating a training-inference mismatch known as exposure bias (Arora et al., 2022;
He et al., 2019). Errors can then accumulate across autoregressive steps, degrading output quality.
Our preliminary study shows that teacher forcing greatly reduces the designability of generated
structures. To mitigate this, we adapt Noisy Context Learning (NCL) and Scheduled Sampling (SS),
techniques from language and image AR modeling (Ren et al., 2025; Bengio et al., 2015), for PAR.
Noisy context learning. We train PAR with noisy context, adding noise to the ground-truth prior-
scale input during training. This encourages the model to learn the per-scale distribution with-
out relying on perfectly accurate context, improving robustness. We randomly sample n noise
weights {w1

ncl, · · · , wn
ncl} ∈ [0, 1], and draw n noise samples {ϵ1ncl, · · · , ϵnncl} ∈ N (0, I). Each

input context xi is corrupted as xi
ncl = wi

ncl · xi + (1 − wi
ncl) · ϵincl. This perturbation is ap-

plied to the input context only during training, which updates the autoregressive step in Eqn. 4
as zi = Tθ

([
bos, Up(x1

ncl, size(2)), . . . , Up(xi−1
ncl , size(i))

])
.

Scheduled sampling. During training, we use scheduled sampling (Bengio et al., 2015) by running
the forward process iteratively across scales. At the i-th scale, the flow-based backbone decoder
predicts the clean data xi

pred = xi
t + (1− ti)vθ(x

i
t, t

i, zi). With a probability of 0.5, we replace the
ground truth context xi with this prediction xi

pred at later scales. This exposes the model to its own
output and reduces the train-test gap. Notably, we could combine noisy context learning with this
technique by adding noises to the model predicted context xi

pred.
Leveraging these designs, PAR robustly models Cα backbone coordinates within a coarse-to-fine
autoregressive framework, enabling it to effectively learn the underlying protein data distribution.
Further, the multi-scale formulation leads to various notable model behaviors, e.g., zero-shot general-
ization. We present these analyses in the following section.

4 EXPERIMENTS

We begin by evaluating PAR on unconditional backbone generation and compare it with existing
structure generative methods in §4.1. Next, we examine its zero-shot generalization ability in §4.2.
We then study scaling behavior and propose strategies to mitigate exposure bias as well as additional
ablation studies in §4.3.

4.1 PROTEIN BACKBONE GENERATION

Generation over scales. We illustrate PAR’s backbone generation using a 5-scale model
(S = {L/16, L/8, L/4, L/2, L}) in Fig. 2, showing generated structures with target lengths of
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Figure 2: Samples generated by PAR over scales. We illustrate PAR’s generation process across
five scales. Much like sculpting a statue, the model first formulates the global structural layout at
coarse scales and progressively refines the details at later scales.

Table 1: Unconditional backbone generation performance. We follow Geffner et al. (2025) in
adopting FPSD and fS to evaluate the model’s ability to capture the data distribution. PARpdb denotes
the 400M model finetuned on the PDB subset.

Method Designability Diversity FPSD vs. fS Sec. Struct. %
(%)↑ sc-RMSD↓ TM-Sc.↓ PDB↓ AFDB↓ (C / A / T)↑ (α/β)

FrameDiff (17M) 65.4 - 0.40 194.2 258.1 2.46/5.78/23.35 64.9/11.2
RFDiffusion (60M) 94.4 - 0.42 253.7 252.4 2.25/5.06/19.83 64.3/17.2
ESM3 (1.4B) 22.0 - 0.42 933.9 855.4 3.19/6.71/17.73 64.5/8.5
Genie2 (16M) 95.2 - 0.38 350.0 313.8 1.55/3.66/11.65 72.7/4.8
Proteina (200M) 92.8 1.14 0.37 282.3 285.6 2.17/6.22/21.48 66.3/9.2
Proteina (400M) 92.6 1.09 0.37 271.3 272.6 2.13/6.14/21.18 65.1/9.5
Proteinapdb 94.8 1.02 0.36 181.5 257.3 2.64/6.48/30.10 46.9/17.6

PAR (200M) 87.0 1.33 0.37 252.0 237.9 2.11/6.41/19.22 64.3/8.8
PAR (400M) 88.0 1.28 0.36 231.5 211.8 2.20/6.59/20.96 63.2/9.7

γ=0.30 96.0 1.01 0.39 313.9 296.4 2.24/6.60/16.71 66.3/8.9
PARpdb 96.6 1.04 0.43 161.0 228.4 2.57/7.42/23.61 50.2/16.7

{50, 100, 200, 250} residues. Generation proceeds in a coarse-to-fine manner, which resonates with
statue sculpting: the coarser scales establish a rough global layout, and finer scales progressively add
local details. This multi-scale formulation yields a clear and interpretable generation process. We
present the quantitative analysis on PAR’s backbone generation in the next paragraph.
Unconditional generation benchmark. We compare 3-scale PAR’s (S = {64, 128, 256}) backbone
generation performance with other baselines in Tab. 1, following the evaluation protocol in Geffner
et al. (2025). The baselines span three categories: frame-based diffusion methods (Yim et al., 2023c;
Watson et al., 2023), multimodal protein language models (Hayes et al., 2025), and diffusion/flow-
based Cα generators (Lin et al., 2024; Geffner et al., 2025). We train both PAR and Proteina for 200k
steps on our training data, and report results of other baselines from Geffner et al. (2025) for fair
comparison. Evaluation metrics and baseline categories are detailed in §A.2§A.3. As shown in Tab. 1,
PAR generates samples that closely match the reference data distribution and maintaining competitive
designability. PAR achieves high FPSD and fold score (fS), which assess generation quality and
diversity by comparing generated and reference distributions. When comparing to Proteina, which
also models Cα with non-equivariant transformers, PAR more effectively models the data distribution,
achieving a lower FPSD (231.5 vs. 271.3). By reducing the noise scaling parameter γ from 0.45 to
0.3 in Equation 6 for the SDE sampling, we can reduce sampling stochasticity and improve sample
quality, improving the designability from 88.0% to 96.00% without additional training. Moreover,
PAR demonstrates superior generation diversity among all methods. Meanwhile, we note that Geffner
et al. (2025) also report results using fine-tuned models on a PDB subset, which improves FPSD
while maintaining strong designability. Following their approach, we curated a PDB subset of 21K
designable samples and fine-tuned PAR on this subset for 5K steps. After fine-tuning, PAR achieved
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Prompt

(16 points)

Generated

structure

mainly alpha mainly beta mainly alpha beta barrel mixed shape Ashape P shape R

Figure 3: Backbone generation with human prompt. Given a small number of points (e.g., 16)
as prompt, PAR can generate protein backbones that adhere to the global arrangements specified by
these points, without any finetuning. For visualization, input points are interpolated to match the
length of the generated structure.

Figure 4: Zero-shot motif scaffolding. Given a motif structure, PAR can generate diverse, plausible
scaffold structures that accurately preserve the motif via teacher-forcing the motif coordinates at each
scale, without additional conditioning or fine-tuning.

96.6% designability and 161.0 FPSD against the PDB, outperforming all diffusion-based baselines
and even surpassing Proteina fine-tuned on the same subset.
4.2 ZERO-SHOT TASK GENERALIZATION

Guiding backbone generation with human-specified prompt. Proteins possess hierarchical and
complex structures, which makes it challenging to directly specify a target shape and design proteins
accordingly. By leveraging PAR’s coarse-to-fine generation, a simple prompt (e.g., 16 points) can
specify a protein’s coarse layout, from which the model generates the complete structure as shown in
Fig. 3. In particular, we first obtain a 16-point input prompt either by downsampling a real protein
structure from the test set, or by specifying the points manually (the top row in Fig. 3). Using a 5-scale
PAR (S = {16, 32, 64, 128, 256}), we initialize the first-scale prediction with the 16-point prompt
and autoregressively upsample until the full protein structure is generated, as illustrated in the bottom
row of Fig. 3. Following this process, PAR can generate a new structure that preserves the coarse
structural layout (first five examples), and explore entirely novel structures (last three examples). If
desired, longer prompts (e.g., 32 points) could be specified to achieve more finer-grained control over
backbone generation. As later shown in Tab. 5, we quantitatively evaluate the structural consistency
(TM-score) between the prompted layout and the final generation.
Motif scaffolding. Besides the point-based layout, PAR can preserve finer-grained prompts like
atomic coordinates. Fig. 4 highlights the zero-shot motif scaffolding capabilities of PAR. Using a
5-scale PAR, we downsample a raw protein structure into five scales and teacher-force the ground-
truth motif coordinates at each scale before propagating into the next scale. To avoid clashes or
discontinuities, we superimpose the ground-truth motif residues and the generated motif segments
before replacement. With no fine-tuning and no conditioning, PAR generates plausible scaffolds
that preserve motif structures with high fidelity. This stands in contrast to diffusion or flow-based
frameworks, which typically require fine-tuning on additional conditions such as masks or motif
coordinates, or rely on decomposition strategies (Geffner et al., 2025; Watson et al., 2023; Wang

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Figure 5: Scaling effects of PAR. Performance of four metrics over varying training steps and model
sizes, (a) FPSD vs. PDB, (b) FPSD vs. AFDB, (c) fS(T), (d) sc-RMSD.

et al., 2022). Moreover, the generated scaffolds differ substantially from the input structure, showing
that PAR generates structurally diverse scaffolds rather than merely copying. For example, the
leftmost example in Fig. 4 preserves the yellow motif helix while introducing new secondary structure
elements like β-sheet and loops, in contrast to the original helices.

4.3 EMPIRICAL ANALYSIS OF MULTISCALE PAR

Scaling effects of PAR. We examine the model’s behaviors by varying the backbone decoder’s size
and number of training steps in Fig. 5. We train PAR with 3 scales over three different model sizes
with 60,200,400 million parameters and three training durations over 200, 400, 600K steps. PAR
demonstrates favorable behavior when scaling both model size and training duration, effectively
improving its ability to capture the protein data distribution with FPSD scores of 187 against
PDB and 170 against AFDB (first two columns in Fig. 5). Further, the fS scores, which reflect
quality and diversity, increase with larger model sizes and greater computational budgets. While
extending training duration alone offers negligible gains, increasing model size substantially enhances
designability, leading to lower sc-RMSD values. Meanwhile, we empirically observe that scaling the
autoregressive transformer has minimal impacts on the evaluation results. This is consistent with the
module’s role to generate scale-wise conditioning to guide the backbone generation, which does not
require large model capacity. Similar trends have been observed in image generation (Chen et al.,
2025), where outputs from one scale are directly passed to the next without relying on additional
encoding modules. This allows us to prioritize increasing the backbone decoder’s model capacity
that effectively improves metrics.

Table 2: Performance of different sampling methods and
steps. Combining SDE and ODE sampling across scales
yields a 2.5× inference speedup compared to the single-scale
400-step baseline, shown in the first and the last row. We
generate 100 samples at each length.

Sampling Steps Length 150 Length 200
Time (s) Design. (%) Time (s) Design. (%)

Proteina (SDE) 0/0/400 131 97% 170 92%
0/0/200 67 89% 86 80%

All SDE 400/400/400 312 97% 351 94%
400/400/2 184 0% - -

All ODE 400/400/400 312 28% - -

S/S/O 400/400/400 312 98% - -
400/400/2 184 99% 186 91%

S/O/O 400/400/400 312 96% - -
400/2/2 67 97% 68 94%

Efficient sampling with multi-scale
orchestration of SDE/ODE. While
Tab. 1 reports results using a uni-
form number of sampling steps across
scales, the multi-scale formulation
of PAR actually offers advantages in
sampling efficiency. More specifi-
cally, (1) sampling at the coarser scale
(e.g., first scale) is more efficient than
sampling at finer scales (e.g., 2nd
scale) due to shorter sequence length;
(2) we can use less number of sam-
pling steps at finer scales than coarser
scales. As shown in Tab. 2, by using
SDE sampling only at the first scale,
and switching to ODE sampling for the remaining scales, PAR could dramatically reduce the diffusion
steps from 400 to 2 steps at the last two scales without harming designability (97%), yielding a 4.7x
inference speedup. This is possible because a high-quality coarse topology places the model near
high-density regions, enabling efficient refinement with ODE sampling. Naively reducing the SDE
sampling steps significantly harms designability, dropping to 22% when reducing steps to 50, as
shown in Fig. 8. This is consistent with the observation of single-scale models like Proteina, where
designability degrades to 89% when reducing SDE sampling steps to 200 in Tab. 2. Crucially, SDE
sampling at the first scale is necessary for establishing a reliable global topology, given that ODE-only
sampling exhibits poor designability. Compared to the single-scale 400-step baseline, PAR achieves
1.96x and 2.5x sampling speedup at length 150 and 200, respectively. This improvement is driven by
speeding up the final scales, where the longer sequence lengths cause computational costs to grow
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quadratically in transformer architectures. Moreover, the computational costs remain constant at the
first scale because it has a fixed size 64, even when generating longer sequences.

Table 3: Mitigating exposure bias for PAR. We adopted various
training strategies to mitigate the exposure bias for multi-scale
autoregressive modeling. These techniques are consistently effec-
tive effective in improving structure quality. NCL: Noisy Context
Learning. SS: Schedule Sampling.

Method sc-RMSD ↓ FPSD vs. (PDB/AFDB) ↓ fS-(C/A/T) ↑
Teacher Forcing 2.20 99.66 / 37.64 2.53 / 5.56 / 29.67
+ NCL 1.58 89.70 / 23.69 2.54 / 5.85 / 28.37
+ NCL & SS 1.48 90.66 / 24.59 2.54 / 5.84 / 28.77

Mitigating exposure bias. To
mitigate exposure bias, we
adopted noisy context learning
(NCL) and scheduled sampling
(SS) as defined in §3.3. Noisy
context learning encourages the
model to infer structural guid-
ance from corrupted context and
boosts the structure generation
quality. Tab. 3 shows that noisy
context learning effectively improves the sc-RMSD of the generated structure from 2.20 to 1.58,
and reduces FPSD against AFDB to 23.69 when using ODE sampling. The designability further
improved to 1.48 along with scheduled sampling, which makes the training process more aligned
with the inference scenario. Results are obtained with 60M PAR trained for 100K steps.
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Figure 6: Visualization of the average attention scores in PAR
autoregressive transformer over 5 scales, obtained from samples
with lengths in (128, 256]. We provide attention map visualization
for shorter proteins in §C.3

Interpreting multi-scale PAR.
We visualize the attention maps
of the autoregressive transformer
at each scale (Fig. 6). We aver-
age the attention scores within
each scale, normalize them such
that the scores across scales sum
to 1, and average them over 50
test samples to obtain the scale-
level attention distribution dur-
ing inference. We summarize
three key observations: (i) Most
scales barely attend to the first
scale, since the input to this scale, a bos token, carries little structural signal. (ii) Each scale primarily
attends to the previous scale, which typically contains richer contextual and structural information.
(iii) Despite focusing most heavily on the current scale, the model still retains non-negligible attention
to earlier scales. This indicates that PAR effectively integrates information across multiple scales
and maintains structural consistency during generation. This aligns with results in Tab. 5 where the
autoregressive Transformer effectively improves consistency with the given prompt.

Table 4: Multi-scale formulation. We ablate different strategies
for scale configuration in downsampling.

Designability FPSD vs. fS
Define scale (%)↑ (sc-RMSD)↓ PDB↓ AFDB↓ (C / A / T)↑
{64, 256} 83.0 1.38 282.85 274.32 2.14/6.58/20.66
{64, 128, 256} 85.0 1.39 279.63 267.35 2.15/6.52/20.35
{64, 128, 192, 256} 77.8 1.55 296.70 282.69 2.05/6.04/18.69
{64, 96, 128, 192, 256} 81.0 1.51 276.00 263.58 2.17/6.31/20.65
{L/4, L/2, L} 86.4 1.49 310.64 298.30 2.00/5.87/18.91

Multi-scale formulation. We
ablate the effect of defining scale
by length versus ratio, as shown
in §3.1. Tab. 4 shows that un-
der comparable levels of upsam-
pling ratio ({64, 128, 256} and
{L/4, L/2, L}), the by-length
strategy outperforms by-ratio.
Meanwhile, PAR obtains better
designability and FPSD when increasing from two scales to three scales. Beyond this point, increasing
the scale configurations to four and five scales results in degraded designability, potentially due to
error accumulation and exposure bias. These results support our choice of adopting the 3-scale PAR
as the default. All results are obtained using the 60M model.

Table 5: Structural consistency for prompted generation. Us-
ing a transformer to encode prior-scale structural conditions shows
better prompt-following than direct input.

RMSD vs. Reference ↓ TM-score vs. Prompt ↑
Length (32.64] (64,128] (64,128] (32.64] (64,128] (64,128]

Reference - - - 0.60 0.61 0.59
Direct Input 2.13 3.38 6.51 0.58 0.61 0.59
Trans. Encode 1.45 2.72 5.75 0.60 0.64 0.61

AR Transformer improves
structural consistency. We
conduct an ablation study to
evaluate the effectiveness of
the autoregressive transformer
in Tab. 5. We compare two
different strategies for encoding
prior-scale structural context,
including (i) direct input, where the multi-scale structures are directly fed into the backbone decoder
without any intermediate encoding; and (ii) transformer encoder, where all scales are processed
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autoregressively by a Transformer encoder, and the resulting encoded representation is then passed to
the backbone decoder. We train two 60M models and evaluate both models by downsampling 588
testing structures as prompts and re-upsamples them with PAR. As shown in Tab. 5, the transformer
encoder demonstrates better structural consistency, indicating that autoregressive encoding across
scales produces coherent structural guidance over scales, consistent with attention maps in Fig. 6.
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Figure 7: Ablation with self-conditioning. Self-
conditioning consistently improves backbone gen-
eration performance of PAR across varying protein
lengths, showing that both methods are compati-
ble.

Ablation with self-conditioning. Multi-scale
autoregressive modeling and self-conditioning
similarly guide the generation with a coarse esti-
mate of the structure. To evaluate the role of self-
conditioning in our multiscale framework, we
conducted an ablation study (Fig. 7), where the
results are from the same 60M model in the pre-
vious ablation study. Across all length ranges,
the model with self-conditioning consistently
generates higher-quality protein structures, in
terms of sc-RMSD. Although self-conditioning
also supplies an intermediate structural estimate
during generation, it is complementary to the
multi-scale formulation and yields further im-
provements in structural quality.

5 DISCUSSION

PAR is the first multi-scale autoregressive model for protein backbone generation, offering a general
framework that includes flow-based methods as a special case. PAR addressed limitations of standard
autoregressive models, such as unidirectional dependency, discretization, and exposure bias. Our
method robustly models structures over multiple granularities and in turn enables strong zero-shot
generalization. This capability includes coarse-prompted conditional generation using points (e.g.,
16 points) as structural layout and finer-grained controls such as atomic-coordinate-based motif
scaffolding. For unconditional backbone generation, PAR exhibits powerful distributional fidelity
and generation quality. The analysis of scale-level attention map provides additional insights into
how the multi-scale formulation operates.
We hope that PAR unlocks the potential of autoregressive modeling for protein design. Some promis-
ing open directions include: (1) Conformational dynamics modeling. PAR can, in principle, perform
zero-shot modeling of conformational distributions: we downsample a structure and upsample it with
PAR to mimic local molecular dynamics. We leave this exciting application for future research. (2)
All-atom modeling. This work focuses on backbone Cα atoms to prioritize autoregressive design, but
it’s natural to extend to full-atom representations (Qu et al., 2024). The multi-scale framework offers
an advantage for flexible zero-shot prompt-based all-atom designs.

ETHICS STATEMENT

Protein design holds significant potential in drug development, vaccine and antibody discovery,
industrial biotechnology, and sustainable chemistry. Generative models provide new opportunities to
accelerate discovery and deepen our understanding of protein structures, which may bring positive
impact to medicine, materials science, and manufacturing.
However, we also acknowledge the potential risks of generative models. To mitigate such risks,
this study is conducted solely on publicly available datasets and strictly adheres to relevant ethical
guidelines. We advocate for the responsible research and application of protein generative models to
ensure that their development truly benefits society.

REPRODUCIBILITY STATEMENT

We ensure that the training data, training and inference procedures, and result evaluations are all
reproducible. The appendix provides all necessary details and offers a comprehensive explanation of
each component of this work. The datasets used are publicly available, and the model implementation
is based on the open-source Proteina (Geffner et al., 2025) codebase. The code and models used
for evaluation are also publicly accessible and cited in the appendix. Furthermore, we describe the
training and inference hyperparameters in detail in the appendix, thereby ensuring that the entire
experimental process is fully reproducible.
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A IMPLEMENTATION AND EVALUATION DETAILS

We follow the implementation of Proteina (Geffner et al., 2025) for training PAR, using the same
architecture and hyperparameter setup. Training is conducted on 8 H100 GPUs, with a batch size of
15 per GPU, for a total of 200k steps. We train the flow-based backbone decoder with 60 M, 200 M,
and 400 M parameters, using the same non-equivariant transformer architecture as Proteina. For the
autoregressive module, we adopt Proteina’s smallest configuration (60 M parameters), as we find that
a small AR module is enough to yield competitive generation quality, discussed in §4.3 For a fair
comparison, we trained Proteina from scratch under the same setting and achieved similar or even
better performance than results reported in the original paper. For other baselines, we directly obtain
the results from Geffner et al. (2025). Model and training configurations can be found in Tab. 6. Note
that we remove pair representations and triangle update for memory and training efficiency, and the
additional trainable parameters come from the 60M autoregressive transformer encoder.

Table 6: Hyperparameters for PAR models.
Tθ vθ

PAR Architecture 60M 60M 200M 400M

initialization random random random random
sequence repr dim 512 512 768 1024
sequence cond dim 128 128 512 512
t sinusoidal enc dim 196 196 256 256
interpolated position enc dim 196 196 128 128
# attention heads 12 12 12 16
# transformer layers 12 12 15 18
# trainable parameters 60M 60M 200M 400M

A.1 IMPLEMENTATION DETAILS

In §3.2 we briefly introduce two novel techniques for our autoregressive modeling: scale embedding
and interpolated position embedding.
Scale Embedding. Since we use a shared decoder to train across all scales, we introduce a scale
embedding to distinguish data distributions at different scales. Each scale is assigned a unique scale
id, which is incorporated into the model to help disambiguate the varying statistical characteristics
associated with different scales.
Interpolated Position Embedding. Interpolated position embedding is a natural extension to the
standard position embedding for sequence representation. In the raw structure, each residue is
associated with a 3D coordinate and a position ID ranging from 1 to L, where L is the protein
length. Our downsampled structure and interpolated position embeddings are derived from the
raw structure and position IDs via interpolation, following the sequential order of residues. Each
interpolated residue is computed by interpolating the coordinates of neighboring real residues, while
each interpolated position ID is obtained by interpolating over the corresponding relative positions.
This approach has the advantage that, across inputs of different lengths (i.e., different scales), the
interpolated positions still reflect the relative location of each interpolated residue within the original
structure, providing a coarse-grained view of the real protein.

A.2 EVALUATION METRICS

We evaluate the model from multiple perspectives, including quality and diversity, following evalua-
tion protocols established in prior literature by Yim et al. (2023c); Bose et al. (2023). Specifically, we
sample 100 structures for each of the five sequence lengths: 50, 100, 150, 200, and 250, resulting in a
total of 500 structures for evaluation.
Designability. Following the procedure from Yim et al. (2023c), we generate 8 candidate sequences
for each structure using ProteinMPNN Dauparas et al. (2022) with a temperature of 0.1. Each
sequence is folded into a predicted structure using ESMFold Lin et al. (2023). We compute the root-
mean-square deviation (RMSD) between each predicted structure and the original generated structure,
and record the minimum RMSD across the 8 predictions. A structure is considered designable if its
minimum RMSD is less than 2 Å. We report the proportion of designable structures and the average
minimum RMSD across all samples.
Diversity. Following Bose et al. (2023), we compute the average pairwise TM-score among all
designable structures for each sequence length. The final diversity score is obtained by averaging
these values across all five lengths.
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Secondary Structure To analyze secondary structure characteristics, we annotate all designable
structures using the P-SEA algorithm Labesse et al. (1997) as implemented in Biotite Kunzmann &
Hamacher (2018). For each structure, we compute the proportion of alpha helices and beta sheets,
and report the average proportions across all samples.
To better assess the model’s overall structural fidelity at the distributional level, we adopt two metrics
introduced in Geffner et al. (2025). We randomly sample 125 structures at each sequence length from
60 to 255 (with a step size of 5), resulting in 5,000 structures in total. Importantly, no designability
filtering is applied during this stage; all samples are used for evaluation.
Fréchet Protein Structure Distance (FPSD). Analogous to the Fréchet Inception Distance (FID)
Heusel et al. (2017), FPSD measures the Wasserstein distance between the distributions of generated
and reference structures. Structures are embedded into a feature space defined by a fold class predictor,
and the distance is computed based on the resulting Gaussian approximations.
Protein Fold Score (fS). Inspired by the Inception Score (IS) Salimans et al. (2016), the fS metric
encourages both diversity and sample-level quality. High-quality generations lead to confident fold
class predictions, while diversity is captured by the entropy across the predicted fold distribution.
A.3 UNCONDITIONAL BACKBONE GENERATION

We train 200M and 400M models for Proteina and PAR for 200k steps, using Adam optimizer with
learning rate 1e-4, no warmup applied. For evaluation, we sample from Proteina and PAR with the
same techniques below. We follow the optimal configuration and sample 400 steps for Proteina. For
PAR, we find 1k steps show better results.
Self conditioning. Self-conditioning has been widely employed in protein design. During sampling,
the model’s own previous predictions

x̂(xt) = xt + (1− t)vθ
t (xt) (7)

are fed back as conditions to guide subsequent generation. During training, the model is conditioned
on its own predictions with a probability of 50%. Sampling can be performed either with or without
self-conditioning.
Low temperature sampling. In Eqn. 6, the parameter γ is injected to control the scale of noise.
When γ = 1, this SDE yields the same marginals as the ODE defined by flow model. In practice, it is
common to use a lower γ < 1 which empirically improves designability at the cost of diversity. In
this paper, we use γ = 0.45 for Proteina and PAR.
Category of unconditional backbone generation baselines. We categorize each baseline based on
their modeling types and frameworks in the table below.

Table 7: Category of unconditional backbone generation baselines.

Method Type Framework
FrameDiff Frame Diffusion
RFDiffusion Frame Diffusion
ESM3 Token PLM
Genie2 Ca Diffusion
Proteina Ca FM
PAR Ca PAR

B DATASETS

The training data is derived from the curated AFDB representative dataset (denoted as DFS, containing
0.6M structures), as processed by Proteina. This dataset ensures both high quality (pLDDT > 80)
and structural diversity, with sequence lengths ranging from 32 to 256 residues. We follow Geffner
et al. (2025) and split it by 98:19:1 for training, validation and testing.
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C MORE EMPIRICAL ANALYSIS

Figure 8: Designability analysis of multi-scale SDE/ODE sampling methods. Naively reducing
the SDE sampling steps substantially degrades the designability (red). Using ODE alone exhibits
limited designability (purple). Orchestrating SDE and ODE sampling enables reduced sampling steps
while retaining designability (blue and green).

C.1 EFFICIENT SAMPLING WITH SDE/ODE ORCHESTRATION

We report the designability over varying sampling steps in Fig. 8. Leveraging SDE sampling at the
first scale and ODE for the remaining scales, PAR could effectively reduce diffusion steps without
harming designability, highlighting the unique advantage of multi-scale design to orchestrate SDE
and ODE sampling at different scales. In addition, aggressively reducing SDE steps or replacing SDE
with ODE across all scales yields much worse designability, highlighting the necessity of combining
both sampling methods.

C.2 LONG PROTEIN GENERATION
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Figure 9: Protein length distribution for long protein finetuning.
Finetuning on longer protein chains. We follow Proteina to finetune our models on datasets with
longer proteins. Since Proteina has not released its long-protein dataset, we cannot fully reproduce
their experiment setups. Instead, we follow the filtering procedure described in their appendix on
PDB structures to curate a long-protein dataset. We filter PDB structures to lengths between 256
and 768 residues and keep only designable samples, resulting in 26k high-quality proteins. The
length-distribution of this dataset (Fig. 9) exhibits a long-tail shape with peaks around 300-400
residues. We then finetune the 400M PAR and Proteina models in Tab. 1 on this dataset for 10k steps.
Long-protein generation. We generate 100 proteins for each length in {300, 400, 500, 600, 700}.
PAR exhibits higher designability at lengths {300, 400}, consistent with the higher density of training
samples in this range. At lengths between 500 to 700, both Proteina and PAR show degraded
designability, while PAR demonstrating slightly better results. We attribute this to the long-tail nature
of the training set, which includes far fewer samples in the length range between 500 and 700. The

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

limited size of the training set (26K) also potentially hinders the model from reaching its full potential.
We leave scaling up long-protein data as a promising direction for future work.

Table 8: Long protein generation. scR: sc-RMSD (Å) ↑. DesA: Designability (%) ↓.

300 400 500 600 700
scR DesA scR DesA scR DesA scR DesA scR DesA

Proteina 1.91 85 2.70 61 4.09 49 7.90 21 13.32 4
PAR 1.28 93 1.65 72 3.19 52 6.80 29 11.29 10

C.3 VISUALIZATION OF ATTENTION SCORES.
We provide attention score visualization for shorter proteins in Fig. 10. The pattern generally aligns
with Fig. 6, where each scale primarily attends to its previous scale.
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Figure 10: Visualization of the average attention scores in PAR autoregressive transformer over 3/4
scales. Top Length ∈ (32, 64]. Bottom Length ∈ (64, 128].

C.4 SCALE-AGNOSTIC INFERENCE

In our original setup, we included a learnable scale embedding vector as part of the AR module’s con-
ditioning. This embedding allows the model to identify the current scale and adjust its behavior (e.g.,
generating coarse vs. fine structures). However, since the dimensionality of this learnable embedding
is fixed to the number of scales, the model cannot be applied to a different scale configuration at
inference.
To explore flexible scale configurations, we finetune an alternative model that simply discards the
learnable embedding on the PDB designable subset for 5k steps. This formulation cancels the
embedding from a fixed number of scales and enables inference across arbitrary scale settings.
As shown in the Tab. 9, when inferring with five scales using this 3-scale model, FPSD remains
stable, suggesting that the model still captures the underlying data distribution under altered scale
configurations. However, the designability substantially drops, indicating that sampling with an
unseen scale configuration fails to preserve structural detail, ultimately leading to lower-quality
results.

Table 9: Inference with flexible scale configuration.

Designability FPSD ↓ fS ↑
(%) ↑ (sc-RMSD) ↓ vs. PDB vs. AFDB (C/A/T)

PAR (3 scale) 96.6 1.04 160.99 228.44 2.57/7.42/23.61
w/o scale emb 92.8 1.16 175.09 246.34 2.54/7.66/26.68
5 scale inference 72.6 1.74 177.01 246.76 2.56/7.53/26.78

C.5 ABLATING AR AND DECODER SIZE

We introduced an ablation study examining the AR encoder size, and discussed crucial design choices
for both the AR encoder and flow-based decoder. We summarize key findings below.
Per-token vs per-scale decoder. In our preliminary study, we implemented the model with a 200M-
parameter AR module and, following MAR (Li et al., 2024), used a 3-layer MLP ( 20M) as the
diffusion head. However, this setup failed to generate reasonable structures, yielding an average
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Table 10: Effect of AR module and decoder size. Both AR and decoder utilize transformer-based
architectures.

AR Decoder sc-RMSD Designability (%)
400M 60M 1.26 87.80
60M 400M 1.01 96.00
60M 60M 1.19 92.60

sc-RMSD of 16. This likely occurs because a per-token decoder is not expressive enough to capture
the global correlations between atoms that is required to produce a reliable coarse structure at the first
scale, which is crucial for the subsequent coarse-to-fine refinement. These observations motivated
our shift to a per-scale transformer-based decoder.
Large vs. small decoder. As shown in Tab. 10 and our scaling experiments in §4.3, using a large
decoder brings effective improvements to generation quality.
Large AR vs small AR. With the decoder size fixed, increasing the AR transformer size from 60M to
400M does not offer improvements. We believe this is due to exposure bias: the AR module overfits
to ground truth context to stabilize training, resulting in a mismatch with inference, where the model
relies on its predictions as context. This issue becomes more severe under several conditions:

(1) Larger AR models tend to overfit the context more strongly, making exposure bias more severe.
(2) Limited data increases overfitting risks: our 588K training structures (32–256 residues each)

provide far less coverage than datasets like ImageNet (1.28M 256x256 images).
(3) High precision tasks like protein modeling are sensitive to small errors, making exposure bias

more serious than in image generation, where the compressed VAE latents lie in a smoother
Gaussian space that is robust to small errors at the cost of some visual details (Zheng et al., 2025;
Li & He, 2025).

Our noisy context learning and scheduled sampling mitigate this issue for the 60M PAR, but scaling
the AR transformer appears to intensify this issue. Exploring more training data is a potential solution
and we leave this for future work.
C.6 SEQUENCE-BASED DOWNSAMPLING PRESERVES PAIRWISE SPATIAL RELATIONSHIPS

Size(i) 16 32 64 128

RMSE 0.362 0.275 0.217 0.170
LDDT 1 1 1 1

Table 11: RMSE and LDDT across different downsample sizes.
We discuss whether 1D downsampling properly preserves pairwise spatial relationships. To study this,
we attempt to investigate the difference between pairwise distances computed after downsampling the
1D coordinate sequence and those obtained by downsampling the full-resolution 2D distance map.
We discuss details below.
Spatial relationships in downsampled 1D sequence. We follow the process below to quantify the
spatial relationships:

1. Downsample the coordinate sequence from RL×3 to Rsize(i)×3 for each scale i.
2. We compute pairwise distance maps using the downsampled sequence, leading to a

size(i)× size(i) map.

Spatial relationships in 3D space after downsampling. We quantify this using the pairwise distance
map calculated from the full-resolution structure:

1. Calculate the pairwise distance map of the structure, producing a L× L map.
2. We downsample pairwise map this using the F.interpolate(mode=’bicubic’)

operation, resulting in a size(i)× size(i) map.

Does sequence-based downsampling preserve spatial relationships? We select all samples from
the testing set, and calculate the RMSE and lddt between the aforementioned two size(i)×size(i)
pairwise maps for each sample. As expected, rmse slightly increases as size(i) decreases, reflecting
the loss of fine-grained details at coarser scales. However, lddt remains consistently at 1 and
the rmse values remain low across all scales. Together, these results indicate that, despiste small
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information loss at the coarse scales, 1D sequence downsampling preserves the essential pairwise
spatial correlations captured by the downsampled 2D distance map.

C.7 FOLDSEEK CLUSTER DIVERSITY

Table 12: Foldseek cluster diversity.

γ Designable Clusters

0.35 118
0.40 125
0.45 141
0.50 139
0.60 163
0.70 159
0.80 145

We investigated the foldseek cluster diversity of PAR-generated samples. A larger γ increases
sampling stochasticity and improves the diversity, reaching its peak value at γ=0.6. We generate 500
structures, with 100 samples for each length in {50, 100, 150, 200, 250}. We use the same foldseek
command following Geffner et al. (2025) with a tmscore threshold of 0.5. The command is
foldseek easy-cluster <path_samples> <path_tmp>/res <path_tmp>
--alignment-type 1 --cov-mode 0 --min-seq-id 0
--tmscore-threshold 0.5

C.8 ZERO-SHOT MOTIF SCAFFOLD BENCHMARK

Table 13: Zero-shot motif scaffold benchmark. PAR* indicates our zero-shot model, producing 100
samples, while other baselines require finetuning. Baseline results are taken directly from Geffner
et al. (2025), which reports results using 1000 samples. SR: success rate.

Unique Solutions (%)
PAR* Proteina Genie2 RFDiffusion FrameFlow

1PRW 0 0.3 0.2 0.1 0.3
1BCF 0 0.1 0.1 0.1 0.1
5TPN 0 0.4 0.8 0.5 0.6
5IUS 0 0.1 0.1 0.1 0
3IXT 9.0 0.8 1.4 0.3 0.8
5YUI 0 0.5 0.3 0.1 0.1
1QJG 3.0 0.3 0.5 0.1 1.8
1YCR 4.0 24.9 13.4 0.7 14.9
2KL8 4.0 0.1 0.1 0.1 0.1
7MRX.60 0 0.2 0.5 0.1 0.1
7MRX.85 1.0 3.1 2.3 1.3 2.2
7MRX.128 1.0 5.1 2.7 6.6 3.5
4JHW 0 0 0 0 0
4ZYP 0 1.1 0.3 0.6 0.4
5WN9 0 0.2 0.1 0 0.3
5TRV short 0 0.1 0.3 0.1 0.1
5TRV med 0 2.2 2.3 1.0 2.1
5TRV long 0 17.9 9.7 2.3 7.7
6E6R short 8.0 5.6 2.6 2.3 2.5
6E6R med 2.0 41.7 27.2 15.1 9.9
6E6R long 3.0 71.3 41.5 38.1 11.0
6EXZ short 2.0 0.3 0.2 0.1 0.3
6EXZ med 9.0 4.3 5.4 2.5 11.0
6EXZ long 12.0 29.0 32.6 16.7 40.3
# tasks (SR ≥ 1%) 11 11 11 9 11

We quantify the zero-shot motif scaffolding performance of PAR in Tab. 13. For other training-
based methods, we directly quote the results reported in Proteina (Geffner et al., 2025). We use
PAR to generate 100 backbone structures for each benchmark problem in Watson et al. (2023).
Following Proteina’s evaluation protocol, we produce 8 ProteinMPNN sequences with the motif
residues fixed, and feed each sequence to ESMFold. Using the predicted structure, we calculate
ca-RMSD and MotifRMSD. A design is considered a success if any sequence achieves scRMSD ≤
2Å, a motifRMSD ≤ 1Å, pLDDT ≥ 70, and pAE ≤ 5. Note that our method is the only one evaluated
in a zero-shot setting, whereas all other baselines rely on training or finetuning with additional motif
conditioning.
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D OTHER RELATED WORK

Flow and diffusion-based structure generative models. Flow-based and diffusion methods have
been widely applied to protein backbone generation, with examples including RFDiffusion (Watson
et al., 2023) and Chroma (Ingraham et al., 2023). Subsequently, various protein representations have
been proposed for protein structure generation. FrameDiff, FoldFlow and FrameFlow (Yim et al.,
2023b; Bose et al., 2023; Yim et al., 2023a) model protein structures through per-residue rotation
and translation predictions, employing a frame-based Riemannian manifold representation (Jumper
et al., 2021; Huang et al., 2022). Building upon FrameFlow, Multiflow (Campbell et al., 2024)
jointly models sequence and structures. In contrast, Genie and Genie2 (Lin & AlQuraishi, 2023; Lin
et al., 2024) generate protein backbones by diffusing the Cα coordinates. Pallatom and Protpardelle
(Qu et al., 2024; Chu et al., 2024) further generate fully atomistic proteins that include side-chains.
Meanwhile, Proteina (Geffner et al., 2025) leverages a non-equivariant transformer architecture to
model the Cα backbone coordinates, exhibiting scalability and simplicity. In addition to continuous
diffusion and flow-matching based approaches, discrete diffusion methods like ESM3 (Hayes et al.,
2025) and DPLM-2 (Wang et al., 2024) have been trained on structure tokens, which often reduce
structural fidelity and thus limit structure generation quality (Hsieh et al., 2025).

E THE USE OF LARGE LANGUAGE MODELS

We employ large language models exclusively for language-editing, which is limited to polishing
text to improve readability. No language models contributed to the development of research ideas,
analysis, model, or interpretation of results.
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