Under review as submission to TMLR

Decision-Focused Surrogate Modeling for Mixed-Integer
Linear Optimization

Anonymous authors
Paper under double-blind review

Abstract

Mixed-integer optimization is at the core of many online decision-making systems that
demand frequent updates of decisions in real time. However, due to their combinatorial
nature, mixed-integer linear programs (MILPs) can be difficult to solve, rendering them
often unsuitable for time-critical online applications. To address this challenge, we develop a
data-driven approach for constructing surrogate optimization models in the form of linear
programs (LPs) that can be solved much more efficiently than the corresponding MILPs. We
train these surrogate LPs in a decision-focused manner such that for different model inputs,
they achieve the same or close to the same optimal solutions as the original MILPs. One key
advantage of the proposed method is that it allows the incorporation of all of the original
MILP’s linear constraints, which significantly increases the likelihood of obtaining feasible
predicted solutions. Results from two computational case studies indicate that this decision-
focused surrogate modeling approach is highly data-efficient and provides very accurate
predictions of the optimal solutions. In these examples, it outperforms more commonly used
neural-network-based optimization proxies.

1 Introduction

Effectively operating complex systems in online environments, where input parameters are constantly changing,
requires efficient decision making in real time. Many online decision-making frameworks involve the solving of
mathematical optimization problems; however, often the computational complexity of the given optimization
problem presents a major challenge such that the long solution time renders it ineffective in real-time
applications. A common approach to tackling this challenge is to perform the online optimization with a
surrogate model, which is an approximation of the original model that can be solved more efficiently (Bhosekar
& Ierapetritoul [2018).

Surrogate modeling for optimization typically involves three steps: (i) identify the complicating constraints in
the original optimization model, (ii) generate surrogate models for the complicating constraint functions, and
(iii) replace the complicating constraints with the surrogates to obtain a surrogate optimization model that
can be solved more efficiently. This approach is especially effective in applications where the computational
complexity of the problem is only due to a small part of the model such that one can keep most of the
original constraints. Here, a major underlying assumption is that a surrogate model that provides a good
approximation of the complicating constraints will also, once incorporated into the optimization problem,
lead to solutions that are close to the true optimal solutions. However, this assumption often does not hold.
The original optimization problem and the surrogate optimization problem may achieve very different optimal
solutions despite having a highly accurate (but not perfect) embedded surrogate model.

Recently, |(Gupta & Zhang| (2024) have developed a new surrogate modeling framework that explicitly aims to
construct surrogate models that minimize the decision prediction error defined as the difference between
the optimal solutions of the original and the surrogate optimization problems; it is hence referred to as
decision-focused surrogate modeling (DFSM). DFSM has been applied to construct convex decision-focused
surrogate optimization models (DFSOMSs) for nonconvex nonlinear programs that are difficult to solve to
global optimality |Gupta & Zhang| (2024); however, these problems only involve continuous variables. In this

Under review as submission to TMLR

work, we extend the DFSM framework to MILPs, which arise in many real-time decision-making problems
such as online production scheduling and hybrid model predictive control. Due to their combinatorial nature,
MILPs can take long times to solve. Here, we propose to construct DFSOMs in the form of LPs that are
computationally significantly more efficient and achieve optimal solutions close to the ones of the original
MILPs.

The remainder of this paper is organized as follows. We first provide a review of related works in Section
focusing on existing data-driven and parametric methods for solving online mixed-integer optimization
problems. The proposed DFSM approach for MILPs is presented in Section (3] while its utility is highlighted
in two computational case studies in Section [d] Finally, in Section [5} we close with some concluding remarks.

2 Related work

In this section, we provide a brief review of related works. Note that we do not review the vast literature on
surrogate modeling as the methods described therein are of less relevance to us given our specific focus on
MILPs and decision-focused modeling approaches.

2.1 ML-based optimization proxies

The line of research that is most closely related to this work is the one on constructing optimization proxies
using machine learning (ML). Here, the goal is to learn a direct mapping of the input parameters of an
optimization problem to its optimal solution. In that sense, it has the same objective as DFSM, namely to
obtain a model that predicts optimal solutions close to the true ones. It uses the same offline generated data
consisting of different model inputs and the corresponding true optimal solutions. The main difference is
that while DFSM trains a model in the form of a surrogate optimization problem, optimization proxies are
ML models, most commonly neural networks (NNs) (Sun et al. 2018} |[Pan et al., 2019; Karg & Lucia), 2020}
Kumar et al.l [2021)).

Optimization proxies take advantage of the expressive power of deep NNs; however, in deep learning, it is
difficult to enforce constraints on the predictions, which often leads to predicted solutions that are infeasible
in the original optimization problem. In their work on constructing NN-based optimization proxies for the
AC optimal power flow (OPF) problem, |Zamzam & Baker] (2020)) ensure feasibility by generating a training
set of strictly feasible solutions through a modified AC OPF formulation and by using the natural bounds
of the sigmoid activation function to enforce generation and voltage limits. When also addressing the AC
OPF problem, |Fioretto et al.| (2020) consider constraints in their deep learning framework by augmenting the
loss function with penalty terms derived from the Lagrangian dual of the original optimization problem and
applying a subgradient method to update the Lagrange multipliers. This approach has also been applied to
the security-constrained OPF problem (Velloso & Van Hentenryck, [2021)) and job shop scheduling (Kotary,
et al} |2022). Most of these and similar approaches increase the likelihood of obtaining feasible predictions but
cannot guarantee it; hence, in most cases, a feasibility restoration step is added to obtain a feasible solution.
One common approach to correcting an infeasible prediction is to project it onto a suitable set such that the
projection is a feasible solution (Chen et al.| 2018} [Paulson & Mesbahl 2020)).

2.2 Decision-focused learning

We now describe a framework that is closely related to the DFSM approach but is not motivated by the
need for fast online optimization. Instead, it addresses the following problem: In traditional data-driven
optimization, we often follow a two-stage predict-then-optimize approach, i.e. we first predict unknown input
parameters from data with external features and then solve the optimization problem with those predicted
inputs. Here, the learning step focuses on minimizing the parameter estimation error; however, this does
not necessarily lead to the best decisions (evaluated with the true parameter values) in the optimization
step. In contrast, decision-focused learning (Wilder et al. 2019)), also known as smart predict-then-optimize
(Elmachtoub & Grigas, [2022) or predict-and-optimize (Mandi et al.,|2020), integrates the two steps to explicitly
account for the quality of the optimization solution in the learning of the model parameters.

Under review as submission to TMLR

[Elmachtoub & Grigas| (2022) consider decision-focused learning for optimization problems with a linear
objective function and a closed convex feasible region. They develop a convex surrogate loss function that is
Fisher consistent with respect to the original loss function and allows the use of stochastic gradient descent
to efficiently solve the problem. The same algorithm has also been applied to combinatorial problems
. Decision-focused learning has further motivated research on differentiable optimization in
deep learning (Amos & Kolter, [2017)), which allows NNs to comprise differentiable layers that represent full
optimization problems. Using this approach, quadratic programs (Donti et al.| 2017)), linear programs
2019), and mixed-integer linear programs (Ferber et all, [2020) have been considered in the training
of decision-focused NNs. This approach is applied by |[Ferber et al.| (2023) to address a problem of similar
nature as our DFSM problem, namely to learn linear surrogate objective functions for discrete optimization
problems with linear constraints but nonlinear objective functions.

2.3 ML-enhanced mixed-integer optimization

There is a rapidly growing body of literature on using ML to speed up the solution of mixed-integer
optimization problems (Bengio et al.| [2021). Our work as well as the ML-based optimization proxies reviewed
in Section fall into this broad category. Other strategies include using ML to learn more effective primal
heuristics (Bengio et al.| 2020} [Shen et al. 2021)), branching rules (Lodi & Zarpellon| [2017}; [Khalil et al. 2016)),
the set of active constraints at the optimal solution (Bertsimas & Stellato), 2022, and how to warm-start
MILPs (Jiménez-Cordero et all [2022). More closely related to our work are the contributions on learning
how to improve the generation of cutting planes (Deza & Khalill 2023; Tang et al., [2020; Huang et al., 2022)).
However, while these methods add cuts as part of a branch-and-cut algorithm, our approach learns parametric
cuts that can be added immediately to the LP relaxation for a given model input, as discussed in more detail
in Section Bl

2.4 Multiparametric programming

While DFSM and optimization proxies can generally only provide approximate optimal solutions, multipara-
metric programming is an exact approach that maps model inputs directly to the true optimal solutions
through explicit functions (Oberdieck et al. [2016). The solution of a multiparametric LP follows from the
basic sensitivity theorem (Fiacco & Ishizukal [1990), which states that the active set remains unchanged in the
neighborhood of the given vector of input parameters and the corresponding optimal solution. This results in
the partitioning of the feasible parameter space into polytopic regions called critical regions. The goal of
multiparametric programming is to obtain these critical regions and their corresponding optimal policies
offline, then the online optimization reduces to selecting and applying the right policy for a given parameter
vector that lies in the corresponding critical region.

When solving multiparametric MILPs, the same concept can be applied. One naive way is to enumerate all
the possible discrete solutions and then treat the multiparametric MILP as a set of many multiparametric LPs
, one for each discrete solution. Thus, the resulting solution to the multiparametric MILP is
again achieved by partitioning the parameter space into critical regions, each of which is associated with
an optimal policy as an affine function of the model parameters. More advanced methods apply algorithms
based on branch-and-bound (Ohtake & Nishidal, |1985; [Acevedo & Pistikopoulos, [1999)) and decomposition
(Dua & Pistikopoulos, [2000).

Multiparametric programming has found several successful applications in explicit model predictive control
(Alessio & Bemporad, [2009; [Pistikopoulos et al.| [2015]) with extensions to other frameworks such as integrated
design and operations (Burnak et al.| 2019) and optimization under uncertainty (Charitopoulos et al., [2018]).
However, as the problem size grows with the number of decision variables, constraints, and model parameters,
the construction of the full multiparametric solution becomes challenging as the number of critical regions
grows exponentially with the problem size. Moreover, given a parameter vector, finding the critical region for
that point becomes a point location problem, which can also be a computationally difficult problem for larger
systems with many critical regions.

Under review as submission to TMLR

3 DFSM for MILPs

We consider MILPs, which we aim to solve efficiently in an online setting, given in the following general form:

minimize c(u) '
x
Au)z < b(u) (1)
z € R™ x 7"

where z is a vector of continuous and discrete variables. The cost vector, constraint matrix, and right-hand-side
vector are denoted by c¢(u), A(u), and b(u), respectively, which generally all depend on the input parameters
u.

In general, the complicating constraints in an MILP are the integrality constraints on the discrete variables.
Here, the key idea is to replace them with simple linear inequalities. This is motivated by a fundamental
property of MILPs that can be stated as follows (Schrijver} |1998): Given a mixed-integer polyhedral set
S ={x € R™ x Z" ™ : Az < b}, there exist A and b such that the convex hull of S is conv(S) = {z € R™ :
Az <b, Az < 13}, as illustrated in Figure (1} Then, loosely speaking, an MILP with a cost vector ¢ and S as
its feasible region will have the same optimal value as an LP with the same cost vector and constrained by
Az < b and Az < b. Moreover, if that MILP has a unique optimal solution, the corresponding LP will have
the same optimal solution, i.e. argmin,{c'z:z € S} = argmin,{c'z : z € conv(S)}.

Figure 1: Illustrative example in which for the given cost vector ¢, the MILP with integer variables z; and
x9 and constraints Az < b has the same optimal solution as the LPs with conv(S) and S’ as their feasible
regions.

One does not have to recover the full convex hull to obtain an LP that achieves the same optimal solution as
the MILP. As illustrated in Figure for the given cost vector ¢, the LP with &’ = {z € R™ : Az < b, Az < B}
as its feasible region, where Az < b are a smaller set of constraints, will equally lead to the same optimal
solution. This idea forms the basis for traditional exact cutting-plane approaches, where linear inequalities
are successively added to the linear relaxation of the MILP until the optimal solution is found (Marchand
et al.; |2002). The downside of a cutting-plane algorithm (or one implemented in a branch-and-cut scheme)
is that for every new instance of the MILP, new cutting planes need to be generated in the same iterative
fashion, which can be too time-intensive for real-time applications.

In our DFSM approach, we propose to learn LPs with added linear inequalities parameterized by the input
parameters u as surrogate optimization models for the corresponding MILPs. As such, this approach can be
interpreted as learning parametric cutting planes that are generated a priori and change automatically with
each new instance given by new values for the input parameters u.

3.1 General formulation

Given an MILP of the form , the surrogate LP that we aim to construct can be written as follows:

Under review as submission to TMLR

mixnei{gbize c(u) Tz (2a)
A(uw)z < b(u) (2b)
Au,0)z < b(u,), (2¢)

where) are the original inequality constraints of problem (1)), and (2] t are the new set of linear constraints
that we want to learn. The elements of both the constralnt matrix A and right-hand-side vector b are
functions of the input parameters u. These functional relationships are parameterized by the parameters
and can in principle be of arbitrary complexity. In this work, we use low-order polynomials, which have
proven to be sufficiently accurate in our case studies and also provide some computational advantages (see
Section . In this case, 6 are the coefficients of the polynomial terms. In Appendix we present an
illustrative example that highlights how such parametric inequalities can help the surrogate LP recover the
optimal solutions of the original MILP.

The DFSM problem for learning a DFSOM of the form can be formulated as follows:

minimize Z lzF — &1 (3a)
i€l
Z; € argmin{c 'z : A(@;)x < b(a;), A, 0)x < b(u;,0)} Viel, (3b)
zeR™

where Z = {(u;,z})}; constitutes the training dataset with x} being the optimal solution to the original
MILP for input u;. As shown in , we use the ¢1-norm to measure the decision error, and the objective
is to choose # from some appropriate set © such that the sum of decision errors across all training data points
is minimized. Problem is a bilevel optimization problem with N lower-level problems. As shown in ,
each lower-level problem represents the surrogate LP for a particular input u;, and Z; is constrained to be an
optimal solution to that LP.

3.2 Solution strategy

To solve problem , we first reformulate it into a single-level optimization problem by replacing the lower-level
problems with their KKT optimality conditions, which results in the following formulation:

puinimize ; 27 — il (4a)
e+ A(w) N+ A, 0) =0 Viel (4b)
A% —b(a;) <0 Yiel (4¢)
A(;,0)%; — b(u;,0) <0 Vi e (4d)
D) (A(w)F; — b(w)) =0 Viel (4e)
D) (A, 0)7: — b, 0) =0 ¥ieT (4f)
Air >0, pi; >0, %, eR" VieZ, reR,jeV, (4g)

where ([{db) are the stationarity conditions, (4k)-(4) are the primal feasibility conditions, ([{)-(df) are the
complementary slackness conditions, and are the dual feasibility conditions. The dual variables are
denoted by A and p. In)—), D(-) denotes a diagonal matrix formed from a given vector, R represents
the set of original constraints in the MILP, and V represents the set of additional constraints in the DFSOM.

Problem is a nonconvex NLP that violates constraint qualification (due to, for example, the complementary
slackness conditions), which means that standard NLP solvers cannot guarantee convergence to the optimal
solution when directly applied to this problem. Here, we adopt the solution strategy proposed by [Gupta &
Zhang| (2022) for data-driven inverse optimization problems, which turn out to have the same structure as
the DFSM problem. We apply an exact penalty reformulation that is achieved by penalizing the violation of
constraints ([4p)-(4f) in the objective function using the ¢;-norm. We can then iteratively update the penalty

Under review as submission to TMLR

parameter until no more constraint violation is observed at which point the algorithm is guaranteed to have
converged to a local solution of problem . The penalty reformulation takes the form of a multiconvex
optimization problem in terms of the three sets of variables 0, &, and (A,), i.e. the problem is convex with
respect to each of these three sets of variables. This structure can be exploited using a block coordinate
descent (BCD) algorithm that allows an efficient decomposition of the problem, which has been crucial in
solving large instances of the DFSM problem. For more details on the solution algorithm, see Appendix [A22]

4 Computational case studies

We conduct two computational case studies to assess the efficacy of the proposed DFSM approach. Both
examples are representative of common real-time optimization problems involving both continuous and discrete
decisions. All optimization problems were implemented in Julia v1.7.2 using the modeling environment JuMP
v0.22.3 (Dunning et al., [2017)). We applied Gurobi v10.3 to solve all LPs and MILPs, and all NLPs were
solved using IPOPT v0.9.1. All DFSM instances were solved utilizing 24 cores and 60 GB memory on the
Mesabi cluster of the Minnesota Supercomputing Institute (MSI) equipped with Intel Haswell E5-2680v3
processors.

4.1 Hybrid vehicle control

We first consider a hybrid vehicle control problem adapted from [Takapoui et al.| (2015). Given a hybrid
vehicle with a battery, an electric generator, and an engine, the objective is to minimize the fuel consumption
cost over a given time horizon while also maintaining a high terminal battery level. This problem can be
formulated as the following MILP:

T-1
B . 2 (0 P8 + Bzy) + (E™ — Br) (5a)
- Eg = Bt (5b)
0< By < E™ Vt=0,..,T (5¢)
Eiyy = B, — 7P Vt=0,...,T -1 (5d)
0< P™M < 2P/ Yt=0,..,T—1 (5€)
PP 4 P8 > Dy Vt=0,..,T -1 (5f)
2z €40,1,..,8} Vt=0,...,T—1. (5g)

Here, the decision variables are given for each time period ¢, starting with the energy status of the battery Ej,
then the power to or from the battery P,"*", the power from the engine P78 and the engine switch status
z;. The input parameters are the power demand D; over the T time periods and the initial battery state
FEinit. The cost function to be minimized,), contains the fuel cost in each time period given by a;P; + Bzt
and a penalty on the deviation of the terminal battery charge from its maximum given by n(E™** — Er).
The initial battery state is given by) The bounds on the battery state are stated in) The battery
charge balance is given by), where 7 denotes the length of each time interval. We assume that the engine
can operate at different levels, modeled using the integer variable z;. The different levels represent different
fractions of the maximum engine power available for use in a given time period. As per constraints),
when z; = 0, no power can be derived from the engine, and when z; = .S, the maximum amount of power
can be drawn. Finally, the combined power output from the battery and the engine must at least match the
demand D; as stated in (5f).

4.1.1 Data generation and surrogate design

To generate different problem instances, we choose n ~ N(2.5,5.5), ayx ~ N(6,16), 8 ~ N(0.5,2), and
Einit ~ N (90,97), and set 7 =5, P™** =1, and E™* = 100. Moreover, the value of S is also varied between
{1,2,3} across these instances. This way we generate 10 different instances, each representing a hybrid vehicle
with different attributes. For each instance, the training dataset is generated by varying the power demand

Under review as submission to TMLR

profile D, which is the model input, and solving the original MILP for that demand profile to obtain the
corresponding optimal solution (E*, P*"8*, z*). Repeating this process provides a set of data points, each
consisting of an input-solution pair.

The additional linear inequalities in the postulated surrogate LP take the form of A(D, §)[E P¢ 2] < b(D,),
where the number of constraints |V| is a hyperparameter that can be adjusted. Each element of Aand bis a
cubic polynomial in D with 6 being the coefficients. In this case, the time required to train the surrogate
model for 100 training data points is around 10,000 seconds. This surrogate design remains the same across
the 10 different instances; however, for each instance, different linear inequality parameters 6 have to be
derived.

We also compare the performance of the DFSM approach with that of more commonly used NN-based
optimization proxies. Here we use two such optimization proxies, one that applies a simple NN architecture
(see Appendix for details on how the NNs were trained) and the other using a state-of-the-art augmented
NN architecture where the loss function contains the penalty terms derived from the Lagrangian dual of the
optimization problem to impose feasibility on the predicted solutions (Fioretto et al. [2020]). These NN-based
optimization proxies are similarly trained in a decision-focused manner using the same datasets.

4.1.2 Surrogate model performance

All reported values are averaged over the 10 different randomly generated instances. For the DFSOM and
the NN-based optimization proxies, if a predicted solution is not directly integer-feasible, an inexpensive
projection-based feasibility restoration problem is solved to recover a feasible solution. More details on the
feasibility restoration step can be found in Appendix [A.4]

The decision prediction errors and optimality gaps for each instance are determined using 100 unseen test
data points, each given by a different power demand profile. The relative prediction error is defined as
the ¢1-norm of the difference between the predicted solution (after feasibility restoration) and true optimal
solution divided by the £1-norm of the true optimal solution. Similarly, the optimality gap is the difference
between the costs of the predicted and true optimal solutions. The size of the problem increases with T'. In
the following, we present results for the case with T" = 30, which has 61 continuous variables, 30 integer
variables, and 122 constraints in the resulting MILP; additional results for 7'= 10 and T = 20 are shown in

Appendix [AT5]

Figure [compares the performance of the DFSOM and the NN-based optimization proxies. For these methods,
it shows how the prediction errors and optimality gaps change with the number of training data points. Note
that while the maximum number of training data points we use to construct each DFSOM is 100, we use
up to 500 data points to train the two NN-based optimization proxies. Also, to aid the interpretation of
the results, we show the prediction errors with respect to the discrete (Figure d)) and continuous (Figure
b)) decisions separately. We observe that the Lagrangian-based NN (NN+LD) achieves better solutions
than the standard NN, likely because its predictions are closer to being integer-feasible. Yet the DFSOM
significantly outperforms both NN-based optimization proxies in terms of prediction accuracy, where the
prediction errors plateau at much lower values as the size of the training dataset increases. DFSM also proves
to be very data-efficient as it achieves a high prediction accuracy with only 50 data points while the NNs
seem to require much more data.

Notice that the relative prediction errors that the DFSOM achieves are about 20% and 8% in terms of the
discrete and continuous decisions, respectively, which seem relatively high. The corresponding optimality
gaps, however, are close to zero, as shown in Figure c). While surprising at first, upon closer investigation,
we can attribute this behavior to the specific nature of the hybrid vehicle control problem. Given a fixed
solution in terms of the discrete variables z for problem , due to the flexibility that the battery provides,
there are many solutions in terms of the continuous variables that are optimal or close to optimal. Moreover,
as the cost parameter a; has a much larger value than (;, the contribution of the continuous variables to the
total cost outweighs that of the discrete variables. As a result, from a cost standpoint, it is more important
to predict the continuous variables accurately, hence the difference in the relative prediction errors.

Under review as submission to TMLR

. i C Sorici
Discrete (b) 7 @ [T e
I 5 . 12 :::ow
——NN+LD S0 —NN+LD
—DFSOM H —DFSOM —DFSOM
< 5ol a10
&% g
7]
sull |l ! zs !
@ ®
2
l l o B M £
g e "-“l 20 d0
I 2 i | % oo g |L{l
1 o o U o & @ L2 I =4
] §
s T o 2
SA&E r§tt Is
0 ,,H.‘b.md.-p...ai.“‘.
510 20 30 40 50 60 70 80 90 100 200 300 400 500 510 20 30 40 50 60 70 80 90 100 200 300 400 500 510 20 30 40 50 60 70 80 90 100 200 300 400 500
of training data points # of training data points # of training data points

Figure 2: DFSOM performance compared to NN-based optimization proxies in the hybrid vehicle control
problem.

We see that it is important to predict integer-feasible solutions, which is where DFSM has an advantage as it
keeps all linear inequalities from the original MILP in the DFSOM. Here, the difference between the solutions
directly predicted by the DFSOM and the integer-feasible solutions obtained after feasibility restoration is on
average 6.6%. The standard NN tends to predict solutions that are far from being integer-feasible such that
the obtained solutions after feasibility restoration are highly suboptimal, as indicated in Figure c). This is
also reflected in the on average 26.8% difference between the solutions predicted by the NN and those post
feasibility restoration. This difference decreases to 23.1% in the case of the Lagrangian-based NN, which is
still much higher than what is achieved by the DFSOM.

We further investigate the impact of the number of added constraints, |V|, on the performance of the resulting
DFSOM. Figure [3[shows the decision prediction errors and optimality gaps for different |V|. Here, we can see
that when T'/3 linear inequalities are added, the DFSOM cannot reduce the prediction error to a reasonable
level even with a large number of training data points. As we increase |V| to T' and then to 27", the prediction
accuracy increases significantly. However, there is only a marginal improvement from |V| = 2T to |V| = 3T,
which indicates that |V| = 2T is likely a good choice that provides a good balance between prediction accuracy
and computational complexity.

Discrete

(a

(b)

© rg

w0l @ O V=TI O IVI=Ti3 . O IV=T3
i A V=T 50 A V=T A V=T

140 ‘G |V|=2T O |V|=2T - |V[=2T

120 O V=37 © OVvi=3T . O VI=3T

H

~

& 8 8
% optimality gap

% decision prediction error
3 8

% decision prediction error

8

30 40 50 60 70 8 9 100
of training data points

0 10 20 80 20 100 o 10 20 30 40 50 60 70
of training data points

#;r’of lrj;ningsndala points
Figure 3: DFSOM performance for varying number of constraints learned (|V|) in the hybrid vehicle control
problem.

Finally, we consider all 1,000 test data points across the 10 different instances to compare the computation
times of solving the original MILPs, the corresponding DFSOMs, and the original MILPs but only to the same
objective function values as achieved by the DFSOMs. The third method serves as a benchmark heuristic
solution method that allows a fair comparison with the DFSOM. Figure [4] shows the number of instances
solved by each of the three methods as the solution time increases. One can see that the surrogate LP clearly
outperforms the MILP, even when the MILP is only solved to achieve a solution of the same quality as the
DFSOM.

Under review as submission to TMLR

Model predictive control

100

i

60

——DFSOM
= MILP

% of instances solved

MILP solved to DFSOM
objective value

1072 107 10° 10’ 102 103 104
time (s)

Figure 4: Computational performance of DFSOMs evaluated across 1,000 random instances in the hybrid

vehicle control case compared to directly solving the original MILPs and solving the MILPs to the same
objective values achieved by the corresponding DFSOMs

4.2 Production scheduling

In the second case study, we consider a single-stage production scheduling problem with parallel units, which
can be formulated as the following MILP (Maravelias, [2021)):

mén%m}ze Z Z Z Yij Xijt (6&)

€T jeJ teT

Ty >T51 VjieTd, teT (6b)
> Xijp=1 VieZ (6¢)
JjeET teT

Y X <1 Vjed teT (6d)
i€

Sy<M> Xy VieIL jeJ (6e)

teT

Sij > Tj,t—l — 17(1 — Xijt) Vie Z,j S j,t cT (6f)

Sij-i-TijSTjt-i-n(l—Xijt) Viel jedJ, teT (6g)
J

Zsij + Z ZTinijt < €, Viel (61)
J JET teT

SijZO; Tjt207 Xith{O,l} ViEI,jEJ7tET, (GJ)

where J denotes the set of units, Z is the set of batches to be processed, T is the set of time slots, and 7 is
the horizon length. For each batch ¢, we are given a release time p;, a due time ¢;, and processing time 7;; if
it is processed on unit j. The binary variable X;;; equals 1 if batch ¢ is processed on unit j in time slot ¢,
which is associated with a cost denoted by ;;; Si; denotes the start time of batch ¢ on unit j, and T}, is
the end time of time slot ¢ for unit j. The objective is to minimize the total production cost given in (6p).
Constraints (6]p) ensure the non-negative length of each time slot, equations @) ensure that every batch is
processed, allow at most one batch to be processed on a given unit at a given time, (@s) set the start
time of a batch on a unit to 0 if the batch is not being processed at any time on that unit and otherwise
provide a bound on the start time, (@f) and) combined determine the end time of a time slot on each

Under review as submission to TMLR

unit, @1) only allow a batch to start processing after its release, and @i) ensure that the processing of each
batch is completed before its due time.

4.2.1 Data generation and surrogate design

In all the 10 randomly generated problem instances, we use a horizon length of n = 40. We choose
7i; ~ N(1,7), pi ~N(1,9), ¢ ~N(10,39), v;; ~ N (30,100), and we set M = max;cz(¢;). Here, the model
input parameters are p, €, and 7, which we vary to generate the training datasets. We also set 7 = {1,...,8},
which is the smallest set that is still sufficiently large for all considered instances. With |Z| = 13, |J| = 4,
and |T| =8, the MILP has 84 continuous variables, 416 binary variables, and 987 constraints.

In the hybrid vehicle control case study, we learned additional linear inequalities that involve all decision
variables. If we were to take the same approach here, each new constraint would involve |Z||J||T| + |Z||J| +
|T||T| decision variables; this would lead to a very large number of parameters to be learned, which would
significantly increase the computational complexity of the DFSM problem. Hence, instead, we try to exploit
the structure of the scheduling problem in designing the additional constraints. Specifically, we notice that
most of the constraints in @ are written for all ¢ € Z, and it also makes intuitive sense that the relationships
are strongest among the variables associated with the same batch. Using this rationale, we propose to add
for each batch i linear inequalities that only involve variables associated with that batch. The constraint
coefficients and right-hand-sides are given as quadratic functions of the input parameters. In this case, the
time taken to train the surrogate model for 100 training data points is around 3,000 seconds.

4.2.2 Surrogate model performance

Like in the first case study, we assess the performance of the DFSOM as well as that of the NN-based
optimization proxies. Note that the MILP solutions that serve as the basis for comparison are obtained at 1%
optimality gap since many problem instances cannot be solved to full optimality within several hours. The
results in Figure [5] show that the DFSOM clearly outperforms the NN and NN+LD. The DFSM approach is
again very data-efficient, achieving a decision prediction error with respect to the binary variables of less
than 10% with only 50 training data points (Figure a)). In this case, the prediction error with respect to
the continuous variables is much higher and does not improve with increasing number of training data points
(Figure [5(b)), yet the DFESOM still achieves very small optimality gaps (Figure [5c)). The reason is that the
objective function in problem @ only involves the binary variables, which is why the optimality gap will be
small as long as the solution in terms of the binary variables is predicted accurately. In addition, for a fixed
assignment of batches to units and time slots (discrete decisions), there are many start times (continuous
variables) that are feasible and hence optimal since they do not affect the cost. Due to this multiplicity of
optimal solutions, it is not surprising that the surrogate LP does not achieve the same solutions in terms of
the continuous variables. But as long as the predicted solutions in terms of the binary variables are close
to the true ones, the DFSOM will perform well. The difference between the surrogate solutions and the
solutions obtained post feasibility restoration here is 8.3% when DFSOM is used, while 50.4% and 56.6% are
achieved by the standard and Lagrangian-based NNs, respectively.

Binary decisi Conti decisi
(@) 1a0f (b) 140 (©) 2 NN 1
5 7NN LD = ——NN+LD
s
: PEbqqt : H - |
d o
c c F
.gwo E’] LJ;J -2100 B g
3 g 5 215]
£ ol £
g 80 g ‘_é’
o o
60 60 =
§ 5 3o i il i
2w 2 40 =
@ (]
° £ 5]
AL ITTITTY *
. . éaaaaa@@a
510 20 30 40 50 60 70 80 90 100 200 300 400 500 510 20 30 40 50 60 70 80 90 100 200 300 400 500 510 20 30 40 50 60 70 80 90 100 200 300 400 500
of training data points # of training data points # of training data points

Figure 5: DFSOM performance compared to NN-based optimization proxies in the production scheduling
problem.

10

Under review as submission to TMLR

Figure |§| shows the impact of the number of added constraints on the DFSOM’s performance. Here, |V|
denotes the number of constraints added per batch. Interestingly, we observe that it is sufficient to add just
one constraint for each batch. In fact, the DFSOMs for [V| = 5 and |V| = 10 have much larger prediction
errors with respect to the binary variables and optimality gaps for smaller training datasets, which indicates
overfitting.

Binary decisit ¢ d
@ () () +
5 O M=t 5 . St v
E v : B Vs OV
v \ VI=10 3 O|VI=10
: v R om g e i
5. o 3 A o 3
= 8 g ;
s 3 ' . AN
30 g £’
2 g E
c 5 8
Q
Su 2 <
— ‘© <
2 3 o
° O 2
= 10 oS e Qs Qe *
34

L] 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 920 100
of training data points # of training data points # of training data points

Figure 6: DFSOM performance for varying number of constraints learned (|V|) in the production scheduling
problem.

We again solve the 1,000 problem instances taken from the 10 different instances to compare the computation
times of solving the original MILPs, the corresponding DFSOMs, and the original MILPs but only to the
same objective function values as achieved by the DFSOMSs. In this case, the original MILPs were solved to
1% optimality gap as it would have taken excessively long to solve them to full optimality. Even with 1%
optimality, as shown in Figure[7] some instances of the MILP take multiple hours to solve while the DFSOM
solves within a few seconds in all instances.

Production scheduling

100
- 80 p
2
o
7]
n 60 4
Q
3]
c
8
24 1
5 —— DFSOM
N3 20 ~—— MILP (1% gap) 1
____MILP solved to DFSOM
objective value
o 1 1
107 10° 10’ 102 10° 10*

time (s)

Figure 7: Computational performance of DFSOMs evaluated across 1,000 random instances in the production
scheduling case compared to directly solving the original MILPs and solving the MILPs to the same objective
function values achieved by the corresponding DFSOMs.

In addition, we test the performance of the DFSOM on some hard problem instances for which the corre-
sponding MILPs could not be solved to 1% optimality within the given time limit of 3,000 seconds. We use
30 such hard instances to form the test dataset, while the DFSOM is trained only using instances that could
be solved to optimality. The results are shown in the performance plot in Figure [§] where we observe that
the DFSOM obtains integer-feasible solutions significantly faster when compared to solving the MILP to the
same objective function values. We should note that our hope here was that the DFSOM might occasionally
achieve even better solutions than the MILP (at the time limit) since it was trained using optimal solutions.
While this does not seem to be true in this case, it is an aspect we plan to explore more in our future work.

11

Under review as submission to TMLR

100 [~

- 80 i
]

=

o

]

w 60 E
]

o

c

8

24 1
—

o

Y —DFSOM

© 20 4

MILP solved to DFSOM
objective value
0 1 1 1
10° 10° 10? 10°

time (s)

Figure 8: Computational performance of DFSOMSs evaluated across 30 hard instances in the production
scheduling case compared to solving the MILPs to the same objective function values achieved by the
corresponding DFSOMs.

5 Conclusions

Motivated by the need to solve difficult MILPs in real-time settings, we developed a data-driven approach
for constructing efficient surrogate LPs that can replace the MILPs. When generating these surrogate LPs,
we explicitly try to minimize the decision prediction error defined as the difference between the optimal
solutions of the surrogate and the original optimization problems. The resulting decision-focused surrogate
modeling problem is a large-scale bilevel program that we solve using a penalty-based block coordinate
descent algorithm. In our computational case studies, we demonstrated the efficacy of the proposed approach
both in terms of prediction accuracy and data efficiency. It also allows the use of problem-specific knowledge
to design surrogate model structures that enhance the training and/or the performance of the surrogate
optimization models.

References

JoaquiN Acevedo and Efstratios N Pistikopoulos. An algorithm for multiparametric mixed-integer linear
programming problems. Operations research letters, 24(3):139-148, 1999.

Alessandro Alessio and Alberto Bemporad. A survey on explicit model predictive control. Lecture Notes in
Control and Information Sciences, 384:345-369, 2009.

Brandon Amos and J. Zico Kolter. Optnet: Differentiable optimization as a layer in neural networks. 3 2017.
Yoshua Bengio, Emma Frejinger, Andrea Lodi, Rahul Patel, and Sriram Sankaranarayanan. A learning-based
algorithm to quickly compute good primal solutions for stochastic integer programs. In Integration of
Constraint Programming, Artificial Intelligence, and Operations Research: 17th International Conference,

CPAIOR 2020, Vienna, Austria, September 21-24, 2020, Proceedings 17, pp. 99-111. Springer, 2020.

Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. Machine learning for combinatorial optimization: a
methodological tour d’horizon. European Journal of Operational Research, 290(2):405-421, 2021.

Dimitris Bertsimas and Bartolomeo Stellato. Online mixed-integer optimization in milliseconds. INFORMS
Journal on Computing, 34(4):2229-2248, 2022.

Atharv Bhosekar and Marianthi Ierapetritou. Advances in surrogate based modeling, feasibility analysis, and
optimization: A review. Computers and Chemical Engineering, 108:250-267, 2018.

12

Under review as submission to TMLR

Baris Burnak, Nikolaos A. Diangelakis, Justin Katz, and Efstratios N. Pistikopoulos. Integrated process
design, scheduling, and control using multiparametric programming. Computers Chemical Engineering,
125:164-184, 6 2019.

Vassilis M Charitopoulos, Lazaros G Papageorgiou, and Vivek Dua. Multi-parametric mixed integer linear
programming under global uncertainty. Computers & Chemical Engineering, 116:279-295, 2018.

Steven Chen, Kelsey Saulnier, Nikolay Atanasov, Daniel D. Lee, Vijay Kumar, George J. Pappas, and
Manfred Morari. Approximating Explicit Model Predictive Control Using Constrained Neural Networks.
In Proceedings of the American Control Conference, pp. 1520-1527. AACC, 2018.

Arnaud Deza and Elias B Khalil. Machine learning for cutting planes in integer programming: A survey.
arXiw preprint arXiv:2302.09166, 2023.

Priya L Donti, Brandon Amos, and J Zico Kolter. Task-based End-to-End Model Learning in Stochastic
Optimization. In Advances in Neural Information Processing Systems 30, 2017.

Vivek Dua and Efstratios N Pistikopoulos. An algorithm for the solution of multiparametric mixed integer
linear programming problems. Annals of operations research, 99:123-139, 2000.

Tain Dunning, Joey Huchette, and Miles Lubin. Jump: A modeling language for mathematical optimization.
SIAM Review, 59(2):295-320, 2017.

Adam N. Elmachtoub and Paul Grigas. Smart "Predict, then Optimize". Management Science, 68(1):9-26,
2022.

Aaron Ferber, Bryan Wilder, Bistra Dilkina, and Milind Tambe. MIPaal: Mixed integer program as a layer.
In AAAT 2020 - 34th AAAI Conference on Artificial Intelligence, pp. 1504-1511, 2020.

Aaron M Ferber, Taoan Huang, Daochen Zha, Martin Schubert, Benoit Steiner, Bistra Dilkina, and Yuandong
Tian. Surco: Learning linear surrogates for combinatorial nonlinear optimization problems. In International
Conference on Machine Learning, pp. 10034-10052. PMLR, 2023.

Anthony V. Fiacco and Yo Ishizuka. Sensitivity and stability analysis for nonlinear programming. Annals of
Operations Research, 27:215-235, 12 1990.

Ferdinando Fioretto, Terrence W. K. Mak, and Pascal van Hentenryck. Predicting AC optimal power flows:
Combining deep learning and Lagrangian dual methods. In Proceedings of the AAAI Conference on
Artificial Intelligence, pp. 630-637, 2020.

Rishabh Gupta and Qi Zhang. Efficient learning of decision-making models: A penalty block coordinate
descent algorithm for data-driven inverse optimization. Computers & Chemical Engineering, pp. 108123,
2022.

Rishabh Gupta and Qi Zhang. Data-driven decision-focused surrogate modeling. AIChE Journal, pp. €18338,
2024.

Zeren Huang, Kerong Wang, Furui Liu, Hui-Ling Zhen, Weinan Zhang, Mingxuan Yuan, Jianye Hao, Yong
Yu, and Jun Wang. Learning to select cuts for efficient mixed-integer programming. Pattern Recognition,
123:108353, 2022.

Asuncién Jiménez-Cordero, Juan Miguel Morales, and Salvador Pineda. Warm-starting constraint generation
for mixed-integer optimization: A machine learning approach. Knowledge-Based Systems, 253:109570, 2022.

Benjamin Karg and Sergio Lucia. Efficient Representation and Approximation of Model Predictive Control
Laws via Deep Learning. IEEE Transactions on Cybernetics, 50(9):3866-3878, 2020.

Elias Khalil, Pierre Le Bodic, Le Song, George Nemhauser, and Bistra Dilkina. Learning to branch in mixed
integer programming. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 30, 2016.

13

Under review as submission to TMLR

James Kotary, Ferdinando Fioretto, and Pascal Van Hentenryck. Fast Approximations for Job Shop Scheduling:
A Lagrangian Dual Deep Learning Method. In Proceedings of the AAAI Conference on Artificial Intelligence,
2022.

Pratyush Kumar, James B. Rawlings, and Stephen J. Wright. Industrial, large-scale model predictive control
with structured neural networks. Computers and Chemical Engineering, 150:107291, 2021.

Andrea Lodi and Giulia Zarpellon. On learning and branching: a survey. Top, 25(2):207-236, 2017.

Jayanta Mandi, Emir Demirovié¢, Peter J. Stuckey, and Tias Guns. Smart predict-and-optimize for hard
combinatorial optimization problems. In AAAI 2020 - 8/th AAAI Conference on Artificial Intelligence, pp.
1603-1610, 2020.

Christos T Maravelias. Chemical Production Scheduling: Mized-Integer Programming Models and Methods.
Cambridge University Press, 2021.

Hugues Marchand, Alexander Martin, Robert Weismantel, and Laurence Wolsey. Cutting planes in integer
and mixed integer programming. Discrete Applied Mathematics, 123(1-3):397-446, 2002.

Richard Oberdieck, Nikolaos A. Diangelakis, Ioana Nascu, Maria M. Papathanasiou, Muxin Sun, Styliani
Avraamidou, and Efstratios N. Pistikopoulos. On multi-parametric programming and its applications in
process systems engineering. Chemical Engineering Research and Design, 116:61-82, 12 2016.

Yoshiaki Ohtake and Naonori Nishida. A branch-and-bound algorithm for 0—1 parametric mixed integer
programming. Operations Research Letters, 4(1):41-45, 1985.

Xiang Pan, Tianyu Zhao, and Minghua Chen. DeepOPF: Deep neural network for DC optimal power flow.
In Proceedings of the 2019 IEEFE International Conference on Communications, Control, and Computing
Technologies for Smart Grids (SmartGridComm). IEEE, 2019.

Joel A. Paulson and Ali Mesbah. Approximate Closed-Loop Robust Model Predictive Control with Guaranteed
Stability and Constraint Satisfaction. IEEE Control Systems Letters, 4(3):719-724, 2020.

Efstratios N. Pistikopoulos, Nikolaos A. Diangelakis, Richard Oberdieck, Maria M. Papathanasiou, Ioana
Nascu, and Muxin Sun. PAROC - An integrated framework and software platform for the optimisation
and advanced model-based control of process systems. Chemical Engineering Science, 136:115-138, 2015.

Gary M Roodman. Postoptimality analysis in zero-one programming by implicit enumeration. Naval Research
Logistics Quarterly, 19(3):435-447, 1972.

Alexander Schrijver. Theory of linear and integer programming. John Wiley & Sons, 1998.

Yunzhuang Shen, Yuan Sun, Andrew Eberhard, and Xiaodong Li. Learning primal heuristics for mixed
integer programs. In 2021 international joint conference on neural networks (ijenn), pp. 1-8. IEEE, 2021.

Haoran Sun, Xiangyi Chen, Qingjiang Shi, Mingyi Hong, Xiao Fu, and Nicholas D. Sidiropoulos. Learning to
Optimize: Training Deep Neural Networks for Interference Management. IEEE Transactions on Signal
Processing, 66(20):5438-5453, 2018.

Reza Takapoui, Nicholas Moehle, Stephen Boyd, and Alberto Bemporad. A simple effective heuristic for
embedded mixed-integer quadratic programming. 9 2015.

Yunhao Tang, Shipra Agrawal, and Yuri Faenza. Reinforcement learning for integer programming: Learning
to cut. In International conference on machine learning, pp. 9367-9376. PMLR, 2020.

Alexandre Velloso and Pascal Van Hentenryck. Combining Deep Learning and Optimization for Preventive
Security-Constrained DC Optimal Power Flow. IEEE Transactions on Power Systems, 36(4):3618-3628,
2021.

14

Under review as submission to TMLR

Bryan Wilder, Bistra Dilkina, and Milind Tambe. Melding the data-decisions pipeline: Decision-focused
learning for combinatorial optimization. In 33rd AAAI Conference on Artificial Intelligence, AAAI 2019,
31st Innovative Applications of Artificial Intelligence Conference, IAAI 2019 and the 9th AAAI Symposium
on Educational Advances in Artificial Intelligence, EAAI 2019, pp. 1658-1666, 2019.

Ahmed S. Zamzam and Kyri Baker. Learning optimal solutions for extremely fast ac optimal power flow.
Proceedings of the 2020 IEEE International Conference on Communications, Control, and Computing
Technologies for Smart Grids (SmartGridComm,), 2020.

A Appendix

A.1 lllustrative example

To illustrate the working of the surrogate LP model, we present a 2-dimensional multi-constraint knapsack
problem with one of its constraints changing as a function of the input parameter u:

maximize 4.8z + 629
T1 €L, v2€ZL

4xq1 4 3x2 < 70 (7)
100uz; + 8522 < 800w + 680
T S 17, xTo S 17.

We obtain an surrogate LP for problem by adding linear inequalities to the original problem whose
parameters are trained by solving the DFSM problem . The resulting DFSOM is the following LP:

maximize 4.8x1 + 622
z1ER, z2€R

4y + 319 < 70

100uz; + 8525 < 800u + 680

(17.9 — 56.9u 4 45.1u%) 21 + (—4.5 + 25.3u — 14.3u%)z5 < 100 (8)
(7.4 + 6.4u — 7.9u*)z; < 100

(—0.2 + 14.5u — 9.4u?)x; + (12 — 9.7u + 3.7u?) x5 < 100

x1 <17, 9 < 17.

In Figure@ we show for different values of u the feasible regions of the LP relaxation of problem , which we
denote as S, in blue. The feasible region of problem , denoted by &', is shown in green. The integer-feasible
points for problem constitute the set S. From the figure, one can see that the solutions obtained by
solving the surrogate LP for different values of u are the same as those obtained by solving the original

MILP (7).

Note that the added inequalities A(u)z < b(u) may not be valid for all integer-feasible points of the original
problem as DFSM only aims to minimize the prediction error with respect to the optimal solutions. Indeed,
for the three cases of u-values shown in Figure |§|, conv(S) € & in the first two instances as shown in Figures

[9(a) and [9]b).

15

Under review as submission to TMLR

Figure 9: Comparison of feasible regions and optimal solutions of @ and . For the three instances of
u = {1.45;0.2;0.61}, the corresponding optimal solutions are z* = {(2,17); (12,7); (12,5)}.

A.2 The BCD algorithm

To describe the BCD approach, we first re-write the formulation in the following form:

. . (I~
il 2l
i€l

subject to ¢+ A" d\=0 VieZI
Ald — 0, <0 VieT
D(d)(Ali; — b)) =0 VieT
d;>0,7, eR" Viel

4= it =[] 4 =[] veez

Problem @ is a nonconvex NLP which becomes intractable for large instances. Furthermore, some constraints,
such as the complementarity constraints, in the problem cause it to violate constraint qualification conditions
leading to convergence difficulties for standard NLP solvers.

We address the lack of regularity in @D by considering its penalty reformulation in , which is a standard
strategy employed in the NLP literature for degenerate NLPs such as @[):

T
Yierlle+ A diflx
e e . ~ T ~,
minimize > af =&l +a" | ez max{0, Alz; — b}

i€T
ez I (Ajzi = b)),
subject to d; >0, &; e R" VieZ,

(10)

where we penalize the violation of the constraints using a nonsmooth ¢;-norm-based penalty function. This
particular penalty function is known to be exact in the sense that, for values of the penalty parameters ¢
larger than a certain threshold, every optimal solution of @[) also minimizes . Therefore, instead of @D,
one can solve which is amenable to solution via standard NLP solvers if the description of the set ©
satisfies necessary constraint qualification conditions.

However, the threshold value for ¢ above which the exactness of the penalty reformulation holds is generally
hard to determine a priori. Therefore, we employ an iterative approach where we start with small values for
q and successively increase them by a factor p in every iteration until we arrive at a solution that is feasible

for (9) (Algorithm [I]).

The reformulated problem is still a nonconvex NLP that is difficult to solve when the number of data
points (|Z|) is large.. We alleviate this issue by observing that is a multiconvex optimization problem

16

Under review as submission to TMLR

if the set © is convex. This feature of allows us to solve it via an efficient block-coordinate-descent
(BCD) approach. While implementing BCD, we tackle the nonsmoothness of the objective functions of BCD
subproblems by augmenting them with the proximal operator.

Algorithm 1 The penalty-based BCD algorithm.
initialize (Z, 0, d') with a feasible solution from IPOPT
initialize q + ¢, fix p < p
while convergence criteria for blocks are not satisfied do
solve with BCD or IPOPT,

T
ez lle+ AT dilly

q=q+p | ;crmax{0, AiZ; — b}}

Sier 1T (Ajz; — b))l
end while

A.3 Design of NN-based optimization proxies

We contrast the performance of the proposed DFSOM approach with NN-based optimization proxies as
surrogates for MILPs. To train the NN models, we split the data containing input parameters and optimal
solutions into training and test datasets. We use the mean squared error between the true and predicted
values as the loss function and apply the ADAM optimizer to estimate the NN parameters. Similar to
DFSOM, for a given input, the NN model is also trained to predict an optimal solution for the original
problem.

For the NN model, the numbers of hidden layers and neurons in each layer are determined through a
trial-and-error approach aiming to minimize the training loss over a fixed number of epochs. The number of
hidden layers is based on the empirical observation that increasing the number of hidden layers resulted in
little improvements in the model’s accuracy. The design of the specific NN model used in the hybrid vehicle
control case study is as follows: the input layer contains 7" nodes, the same as the dimension of the input
vector u. The two hidden layers have 3T and 67 nodes, and finally, the output layer consists of 37 + 1 nodes
aligning with the dimensionality of the decision space. We also account for the effect of different learning
rates (namely 0.1, 0.01, and 0.001) on the training loss. Based on our analysis, we determine 0.01 to be the
most suitable learning rate for our purpose.

Given that there are no hard constraints embedded in the NN model, the feasibility of the predicted optimal
solutions with respect to the constraints of the original model is not guaranteed. Therefore, we use the same
feasibility restoration strategy that is applied to the outputs of DFSOM; a discussion of this strategy is
provided in the next section.

A.4 Feasibility restoration

The predicted decisions from the DFSOM may not always satisfy the integrality constraints. For such
instances, we employ an inexpensive feasibility restoration strategy to obtain an integer-feasible solution from
the predicted solution. Let Z; be the optimal solution of the DFSOM for u;. Suppose the discrete decisions
associated with Z;, denoted by 2%, are not integer. To restore integer feasibility, we solve the following
problem:

minimize ||2* — #%|
LER™M xZn—m (11)

We then solve the original MILP with the discrete decision variables fixed to the values of the optimal solution
to problem to obtain the corresponding optimal values for the continuous variables. Figure|10[a) provides
an illustration of an infeasible prediction from the DFSOM. By using the feasibility restoration strategy
described above, we obtain the closest integer-feasible point as shown in Figure b) .

17

Under review as submission to TMLR

(a) Infeasible prediction

Figure 10: The predicted decision variables that are not integer-feasible are used in a projection problem to

return discrete decision values.

A.5 Additional results

For the hybrid vehicle control problem, Figures [11] and [I2] compare the performance of the DFSOM and the
NN-based optimization proxy for T'= 10 and T' = 20, respectively. The DFSOMs were trained with |V| = 2T
The results indicate DEFSOM’s superior performance even for these smaller problems, emphasizing the benefit
of incorporating original constraints in DFSM. Notably, with only 50 training data points, DFSOM reliably

yields solutions with an optimality gap close to zero in both cases.

Discrete

@) 460

g 8 3

% decision prediction error
& 8 8

il

Q%ég.}.gtﬂa

3

i

510 20 30 40 50 60 70 80 90 100 200 300 400 500

of training data points

(b) Feasible projection

(b)

% decision prediction error
3 8

l
éjéﬁéﬂafg é éH

(c)

% optimality gap

HIRH BHH

@a@lﬁ@--.

510 20 30 40 50 60 70 80 90 100 200 300 400 500
of training data points

510 20 30 40 50 60 70 80 90 100 200 300 400 500
of training data points

Figure 11: DFSOM performance compared to NN-based optimization proxy for T' = 10.

Discrete

8 8 3

% decision prediction error

8 &8 8 8

o

510 20 30 40 50 60 70 80 90 100 200 300 400 500

of training data points

(b)

8 8 8 g

% decision prediction error
3

Widddadodiii]

(c)

% optimality gap
[N ey ST

NI

B & D e e B @m @

510 20 30 40 50 60 70 80 90 100 200 300 400 500
training data points

510 20 30 40 50 60 70 80 90 100 200 300 400 500
of training data points

Figure 12: DFSOM performance compared to NN-based optimization proxy for T" = 20.

18

	Introduction
	Related work
	ML-based optimization proxies
	Decision-focused learning
	ML-enhanced mixed-integer optimization
	Multiparametric programming

	DFSM for MILPs
	General formulation
	Solution strategy

	Computational case studies
	Hybrid vehicle control
	Data generation and surrogate design
	Surrogate model performance

	Production scheduling
	Data generation and surrogate design
	Surrogate model performance

	Conclusions
	Appendix
	Illustrative example
	The BCD algorithm
	Design of NN-based optimization proxies
	Feasibility restoration
	Additional results

