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Abstract

Many adaptive language model applications, such as RAG and ICL, require the1

efficient combination of multiple external contexts to generate a response. In this2

work, we explore the potential of parallel encoding to speedup generation and extend3

context by pre-caching the KV states of each context separately for direct loading and4

position reuse during inference. However, directly applying it reduces performance5

due to its misalignment with sequential encoding. To address this challenge, we6

propose APE, which brings a shared prefix, additional scaling factor, and lower7

attention temperature to align these two distributions of attention weights. Extensive8

experiments showcase APE improves performance by 7.8% over standard parallel9

encoding and 2.9% over sequential encoding for long contexts, while maintaining10

93% accuracy in few-shot learning. For the efficiency evaluation, APE achieves a11

976× speedup for 512K context-augmented generation with a 256-token response.12

1 Introduction13

Recently, retrieval-augmented generation (RAG) [11, 9] and in-context learning (ICL) [7, 23] have14

been widely adopted in large language models (LLMs) [8, 1] to drastically increase their ability to15

generalize to unseen tasks with external data. Both techniques incorporate a sequential encoding16

process to ground LLM inputs with additional texts: concatenating them into one sequence, and17

encoding the sequence into key-value (KV) states to serve as the context for the following query.18

This new, significantly longer input prompt enhances performance but introduces two key challenges19

as illustrated in Figure 1. First, the increased latency required to prefill these contexts becomes a20

bottleneck in many tasks [3, 2, 13]. Second, the limited size of context window [4] leads to an accuracy21

gap compared to the ideal case where all relevant texts are included.22

One natural direction to address these issues is to enable parallel encoding [18, 26, 16, 19] of23

independent contexts. Specifically, each context can be encoded separately and the query attends to the24

KV states from all contexts during generation. This approach brings two benefit: (i) We can pre-cache25

KV states from all contexts for faster inference. (ii) We can reuse the positions across contexts, enable26

more contexts to fit into the limited context window.27

Despite these potential advantages, Figure 2 demonstrate that directly applying parallel encoding28

reduces performance in RAG and ICL, with average declines of 4.9% (with longer context) and 49.0%,29

respectively. To address this challenge, we propose Adaptive Parallel Encoding (APE), a simple yet30

effective method to enable efficient and accurate parallel context encoding for LLM inference. First,31

we observe an inherent alignment between sequential and parallel encoding. Our key insight, as shown32

in Figure 3 and 4, is that KV states from independently encoded contexts can be naturally merged into33

a sequence due to their similarity in both direction and magnitude, attributed to the presence of an34

attention sink [24]. Next, we identify the remaining misalignments in attention weights and re-align35

them to sequential encoding (Figure 1 (bottom)). The main contribution of this paper is as follows:36

Submitted to 38th Conference on Neural Information Processing Systems (NeurIPS 2024). Do not distribute.



Scaling Factor Low Temperature

Position 0 – 2500 Position 5000 – 7500

Sequential Encoding

Parallel Encoding

Additional Contexts 𝐶: numerous and lengthy Query 𝑄 Response 𝑅

Passage 1: Fugitive Lady may refer to: Fugitive Lady (1934 film) … Who was born first? A: Marino Girolami.

Problem Setup: Context-Augmented Generation

Inference start: compute the KV states of contexts on-the-fly

Pre-compute and store the KV states of contexts

Position 2500 – 5000

Position 0 – 7500: More and longer contexts are prepended to the Query 

Inference start: load pre-cached contexts

Latency: 260s Accuracy: 24.15%

Latency: 9s Accuracy: 21.80%

Answer the question.

Shared Prefix Our adaptive alignments recover the accuracy

Accuracy: 34.59%Latency: 9sOur Approach: Adaptive Parallel Encoding

Position 20 - 7500

Figure 1: Overview of our approach. Context-augmented generation leverages additional context
for response generation, but faces challenges with sequential encoding (exceeding LLM’s window
size and increasing prefilling time) and parallel encoding (worse performance). We propose adaptive
parallel encoding, which aligns attention weight distribution with sequential encoding through shared
prefix, scaling factor, and adaptive temperature. Our approach brings the benefit of parallel encoding
while preserving the accuracy of the prediction without requiring additional fine-tuning of the model.

• We systematically analyze the distribution properties of parallel encoding, focusing on KV states37

across samples and positions and identifying alignments and misalignments with sequential encoding.38

• We introduce APE with three key alignment steps: (i) Prepend a shared prefix to each context, avoiding39

the duplication of abnormal token distributions that can occur at the start positions. (ii) Apply a scaling40

factor to offset the increased attention weights resulting from placing all contexts closer to the query.41

(iii) Utilize a lower attention temperature to focus on undervalued semantically important tokens.42

• We empirically show that APE (i) outperforms parallel encoding by 7.8%; (ii) extends the context43

length and surpasses sequential encoding by 2.9% in long-context scenarios; (iii) maintains 93% ac-44

curacy of sequential encoding using same input; (iv) accelerates long-context generation up to 976×.45

2 Observations46
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Figure 2: Performance comparison of sequential encoding, parallel encoding, and CEPED in RAG and ICL.

In this section, we evaluate sequential encoding, parallel encoding, and CEPE-Distilled (CEPED) [26]47

on various tasks using LLAMA-2-7B-CHAT 1, with results in Figure 2. First, trainable approaches48

like CEPED fail on most tasks, indicating poor generalization to complex problems. Second, despite49

LLMs being trained sequentially, parallel encoding does not break down. We explore this phenomenon50

to elucidate both the alignments and misalignments between parallel and sequential encoding.51

1We use LLAMA-2 for CEPED, as it’s the only supported model. For other analyses, we employ LLAMA-3.
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2.1 Comparing Parallel Encoding and Sequantial Encoding.52

Our analysis reveals that the attention mechanism in LLMs naturally enables the comparison and53

combination of KV states from different contexts. To clarify this, Figures 3 and 4 visualize the direction54

and magnitude of KV states across different samples and positions, where we observe that key states55

share similar directions and value states demonstrate comparable magnitudes across different contexts.56

10
0

10
1

10
2

10
3

(a)

0.6

0.7

0.8

0.9

1.0

C
os

in
e 

Si
m

ila
rit

y

10
0

10
1

10
2

10
3

(b)

0.4

0.5

0.6

0.7

0.8

0.9

10
0

10
1

10
2

10
3

(c)

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

10
0

10
1

10
2

10
3

(d)

0.2

0.0

0.2

0.4

0.6

0.8

1.0

Similarity between samples in different positions Similarity between the initial token and tokens in different positions

Layer 0
Layer 1

Layer 2
Layer 3

Layer 4
Layer 5

Layer 6
Layer 7

Layer 8
Layer 9

Layer 10
Layer 11

Layer 12
Layer 13

Layer 14
Layer 15

Layer 16
Layer 17

Layer 18
Layer 19

Layer 20
Layer 21

Layer 22
Layer 23

Layer 24
Layer 25

Layer 26
Layer 27

Layer 28
Layer 29

Layer 30
Layer 31

Figure 3: Left: Both LLAMA-3-8B-INSTRUCT (a) and MISTRAL-7B-INSTRUCT-V0.3 (b) exhibit
a cosine similarity larger than 0.9 between the key states from distinct initial tokens. Right: Initial
token’s key states show similar negative similarity to those from other positions for each model. The
X-axis is the position in the context, using a logarithmic scale. Results are measured on HotPotQA.
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Figure 4: Left: The cosine similarity between query and key states increases as the distance between
their positions decreases. Middle and Right: The magnitude of key and value states remain relatively
stable across positions, with the exception of an abnormal region demarcated by a red dashed line.

Key states from different contexts are similar. In Figures 3a and 3b, we measure the cosine similarity57

of the key states between different initial tokens for various models, which consistently yields a value58

close to 1. This indicates that the direction of the initial token remains largely invariant across different59

input. Figure 3c and 3d further visualize the similarity between initial token’s key states and those60

from subsequent positions, where we observe comparable negative values, showing a similarly large61

angle between initial key states and following ones. These findings, combined with the small variance62

in Figure 4, showcase that key states from different contexts share similar directions and magnitudes.63

Values states from different contexts are similar. In the Softmax attention, value states are combined64

through a weighted summation. This normalization determines the magnitude of current value states65

based on those from all positions across contexts, yielding a similar L2 norm, as shown in Figure 4c.66

Opportunities for improvement. Previous analyses show that KV states exhibit a natural alignment67

across contexts. However, the residual misalignments still severely reduce performance:68

• In Figures 3 and 4, we observe a notable discrepancy in both direction and magnitude within the69

first few positions. We designate this area as an abnormal region within the whole context.70

• Figure 4a illustrates the cosine similarity between query states from the last position and all key71

states. A significant increase is observed when the distance between these states is extremely close.72

3 Adaptive Parallel Encoding73

With all the lessons learned in Section 2, we will design our Adaptive Parallel Encoding to address74

the misalignments, enabling a training-free shift to parallel encoding with minimal performance drop.75

3.1 Prepending Shared Prefix.76

Figure 4b and 4c show that the magnitudes of KV states for the initial tokens differ significantly from77

those of subsequent tokens. This discrepancy poses a challenge when encoding contexts in parallel from78

the beginning. To address this, we prepend a shared prefix to all contexts, ensuring these KV states ap-79

pear only once per generation step. The choice of prefix depends on the model and task; we use existing80

system prompts and instructions when available, or insert newline characters before contexts otherwise.81
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3.2 Adding Scaling Factor.82

In Figure 4a, the cosine similarity between query and key states increases as their distance decreases,83

with a notably sharper rise when the distance approaches zero. To offset this, we introduce a scaling84

factor s smaller than one to the context. This factor is applied after the exp operation in the Softmax,85

allowing for a proportionally greater reduction for larger product values between query and key states.86

3.3 Adjusting Attention Temperature.87

We adjust the attention temperature T to a value less than 1 to emphasize semantically important tokens88

whose attention weights are above average but not as high as those closest to the query token. A carefully89

chosen temperature can recover the attention on these tokens while still maintaining a reduced scaling90

for the query’s immediate neighbors. To prevent an overall increase in attention weights across the entire91

context, we also apply the temperature T as an exponent to the sum of attention weights before normal-92

ization. This can be expressed as (
∑

exp(qk/T ))T , where q and k ar query and key states, respectively.93

3.4 Formulation.94

Given these steps, we formulate the attention in APE from the standard Softmax attention (ignore
√
d),95

where Q, K, and V are the query, key, and value states from the input, and Ci denotes i-th context.96

O=Softmax(Q[K⊤
C0

,...,K⊤
CN−1

,K⊤])×[VC0 ,...,VCN−1
,V ] (1)

=
[AC0

,...,ACN−1
,A]∑N−1

i=0

∑li−1
j=0 aCi,j+

∑l−1
j=0aj

×[VC0 ,...,VCN−1
,V ], (2)

where ACi
=[expQk⊤Ci,0,...,expQk⊤Ci,li−1] and aCi,j=expQk⊤Ci,j . Similar for A and aj .

After incorporating our proposed changes, the formula for our refined attention calculation becomes:97

O′=
[AP ,A

′
C0

,...,A′
CN−1

,A]∑lP−1
j=0 aP,j+(

∑N−1
i=0

∑li−1
j=0 a

′
Ci,j

)T +
∑l−1

j=0aj
×[VP ,VC0

,...,VCN−1
,V ], (3)

where A′
Ci

=[s·expQk⊤Ci,0/T,...,s·expQk⊤Ci,li−1/T ] and a′Ci,j=s·expQk⊤Ci,j/T.

Here, AP represent the attention weights for the shared prefix, respectively. The scaling factor s and98

attention temperature T for the context are both less than 1 (s< 1, T < 1). All these modifications99

can be fused into fast attention implementations such as [6] without additional cost.100

4 Experiments101

4.1 Long-context Understanding102

Setup. Our evaluation involves four tasks with multi-document input on LongBench [3] and three mod-103

els limited in context length: LLAMA-3-8B-INSTRUCT [8], LLAMA-2-7B-CHAT [22], and GEMMA-104

2-9B-IT [20]. Baselines include: (i) Prompt Compression: LLMLingua2 [17], (ii) KV Cache Eviction:105

StreamingLLM [24], (iii) Long-context FT [10, 21], (iv) Parallel Encoding: PCW [18], CEPE [26].106

Results. As in Table 1, APE is the only method that consistently enhances performance across various107

models, leading to an average improvement of 2.9% compared to the base models. Moreover, it can108

generalize to an unlimited number of contexts without additional training. In contrast, other baselines109

underperform the original models in most tasks, highlighting their limitations in real-world scenarios.110

4.2 Few-shot Learning111

Setup. We evaluate APE on GSM8K (8-shot) [5], TriviaQA (5-shot) [14], and MMLU (5-shot) [12].112

Baselines include parallel and sequential encoding with varying numbers of shots.113

Results. In Figure 5, APE significantly surpasses parallel encoding with average improvements114

of 15.4% on GSM8K, 4.7% on TriviaQA, and 3.5% on MMLU. Moreover, APE achieves better115

performance than half-shot sequential encoding in 8/12 settings and preserve 93% accuracy comparing116

to the full-shot sequential encoding with using similar context length to the one-shot baseline.117

4.3 Efficiency Evaluation118

Setup. We measured the prefilling time and total generation time for sequential encoding and APE on119

Llama-3.1-8B-Instruct [8] using VLLM [15]. Our evaluation were conducted on an H100. The query120

and generation lengths were 256 tokens, while context varied across 2K, 8K, 32K, 128K, and 512K.121

Results. Table 2 demonstrates that our method can accelerate inference up to 756× in long-context122

scenarios, where the prefilling time dominates the overall process. For a 512K-token prompt with123
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Table 1: Performance of various methods on different models with LongBench [3] samples exceeding
8K tokens. Markers ◦ and • refer to training-required and inference-only methods.

Methods Length HotpotQA 2WikiMQA MuSiQue MultiNews Avg.

LLAMA-3-8B-INSTRUCT 8K 44.45 23.63 20.91 23.26 28.07
◦LLMLingua2 40K 40.16 24.72 20.85 21.34 26.77
•StreamingLLM ∞ 32.76 20.12 17.32 21.49 22.92
◦Long-context FT 262K 15.89 10.49 8.74 24.28 14.85
•PCW ∞ 37.37 24.47 11.59 20.02 23.36
•APE ∞ 44.68 25.48 22.85 22.93 28.99
LLAMA-2-7B-CHAT 4K 24.15 23.12 7.92 23.17 19.59
◦LLMLingua2 20K 27.79 19.35 11.07 20.68 19.72
•StreamingLLM ∞ 14.74 14.17 3.99 18.93 12.96
◦Long-context FT 32K 13.39 7.35 7.41 22.28 12.61
◦CEPE(D) ∞ 26.25 18.08 8.78 16.02 17.28
•PCW ∞ 25.80 20.01 7.28 21.64 18.68
•APE ∞ 34.59 23.25 9.37 21.97 22.30
GEMMA-2-9B-IT 8K 43.38 31.27 20.81 23.16 29.66
◦LLMLingua2 40K 48.63 43.37 23.87 18.73 33.65
•StreamingLLM ∞ 32.61 27.9 17.39 20.16 24.52
•PCW ∞ 47.06 34.04 22.60 20.75 31.12
•APE ∞ 51.16 37.10 28.01 22.89 34.79
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Figure 5: Performance comparison of APE, parallel encoding, and sequential encoding on ICL tasks.

Table 2: Latency on H100 GPU: [prefill / generation time (ms)]. The gray text in brackets is batch size.
Methods 2K 8K 32K 128K 512K

Sequential Encoding (1) 67/1983 269/2484 1623/4106 16063/19661 250926/259798
APE (1) 6/1922 10/2225 36/2483 91/3689 332/9204

Sequential Encoding (4) 275/2288 1097/3601 6502/10091 64807/9185 OOM
APE (4) 29/2042 63/2576 83/3672 108/9293 OOM

256 tokens generated, prefilling occupies 97% of the total generation time. Moreover, as context length124

and batch size increase, prefilling time rises significantly faster than decoding time. This is because125

prefilling is computation-bound, making it less susceptible to acceleration through I/O optimizations.126

5 Conclusion127

In summary, the work explores the potential of parallel encoding, which pre-cache the context for128

fast inference and reuse positions for extended context but leads to worse performance. To address129

this, we propose APE to enable accurate, fast, and long context-augmented generation without130

requiring additional fine-tuning. APE achieves this by aligning the attention weight distribution of131

parallel encoding with sequential encoding via three steps: shared prefix, scaling factor, and adaptive132

temperature. Our method improves both efficiency and performance in RAG and ICL scenarios.133
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A Appendix204

In Appendix, we present analyses to answer the following research questions: RQ1: Does each205

alignment process in APE function effectively? RQ3: Can APE generalize to more general scenarios206

featuring single long-context input? RQ4: Can APE improve performance for real-world RAG tasks?207

A.1 How does each step in APE contribute to the performance?208

Table 3: Ablation study of APE on three
ICL tasks. SP : shared prefix, s: scaling
factor, and T : attention temperature.

SP s T GSM8K TriviaQA MMLU

38.25% 67.99% 63.09%
✓ 50.42% 70.76% 63.70%
✓ ✓ 51.15% 71.03% 64.49%

✓ ✓ ✓ 53.62% 72.64% 66.62%

In Table 3, we conduct an ablation study to examine each209

alignment process in APE, including the shared prefix210

(SP ), scaling factor (s), and attention temperature (T ). We211

present results averaged across the four models evaluated212

in Figure 5. Our findings indicate that incorporating each213

of these components can consistently enhance performance214

across all tasks, with average improvements of 5.19%,215

0.59%, and 2.07% , respectively. Among them, adding216

the scaling factor yields minimal performance gains with-217

out the complementary effect of attention temperature.218

A.2 Can APE work with single, continuous long context?219

Table 4 examines the effectiveness of APE when processing a single long context input for the LLAMA-220

3-8B-INSTRUCT model on LongBench [3]. To accommodate the long context within our APE, we221

spilt it into multiple segments, each containing fewer than 7,500 tokens. The results demonstrate222

that APE enhances performance on 6 tasks, with the exception of two code completion tasks. This223

limitation arises from the disruption of long-range dependencies within the original context, leading to224

performance degradation in tasks that heavily rely on these contextual relationships.225

Table 4: Performance comparison between the LLAMA-3-8B-INSTRUCT model with and without
APE on LongBench [3] . All eight tasks involve single, continuous long-context inputs.

Methods NarratQA Qasper MultiFQA GovReport SAMSum LCC RepoBench-P

LLAMA-3-8B-INSTRUCT 18.74 26.11 42.91 27.98 42.46 53.10 38.83
+ APE 21.52 38.55 47.13 28.67 43.31 32.89 23.45

A.3 Can APE work in real-world RAG applications?226

In Table 5, we evaluate APE’s performance in real-world RAG scenarios using the CRAG benchmark227

[25]. Task 1 augments the model with several webpages, while Task 2 provides an additional knowl-228

edge graph. By incorporating significantly more external data during generation, APE consistently229

outperforms sequential encoding that have limited context sizes. Moreover, the improvement in Task 2230

further shows our method’s effectiveness in merging text from multiple sources.231

Table 5: Performance comparison using LLAMA-3-8B-INSTRUCT on CRAG.
Task Model Accuracy Hallucination Missing Scorea

LLM only LLAMA-3-8B-INSTRUCT 22.14 48.97 28.90 -26.83

Task 1 LLAMA-3-8B-INSTRUCT 23.28 29.49 47.22 -6.21
+APE 25.53 21.30 37.93 -0.41

Task 2 LLAMA-3-8B-INSTRUCT 24.46 28.38 47.15 -3.92
+APE 27.04 18.74 37.32 2.16
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