
AGI-Elo: How Far Are We From Mastering A Task?

Shuo Sun1,3 Yimin Zhao1 Christina Dao Wen Lee1 Jiawei Sun1 Chengran Yuan1

Zefan Huang1,3 Dongen Li1,3 Justin KW Yeoh1 Alok Prakash3

Thomas W. Malone2,3 Marcelo H. Ang Jr.1,3

1National University of Singapore 2Massachusetts Institute of Technology
3Singapore MIT Alliance for Research and Technology

{shuo.sun,yimin.zhao,christinaldw,sunjiawei,chengran.yuan,
huangzefan,li.dongen}@u.nus.edu alok.prakash@smart.mit.edu

malone@mit.edu {justinyeoh,mpeangh}@nus.edu.sg

Abstract

As the field progresses toward Artificial General Intelligence (AGI), there is a
pressing need for more comprehensive and insightful evaluation frameworks that
go beyond aggregate performance metrics. This paper introduces a unified rating
system that jointly models the difficulty of individual test cases and the competency
of AI models (or humans) across vision, language, and action domains. Unlike
existing metrics that focus solely on models, our approach allows for fine-grained,
difficulty-aware evaluations through competitive interactions between models and
tasks, capturing both the long-tail distribution of real-world challenges and the
competency gap between current models and full task mastery. We validate the
generalizability and robustness of our system through extensive experiments on
multiple established datasets and models across distinct AGI domains. The resulting
rating distributions offer novel perspectives and interpretable insights into task
difficulty, model progression, and the outstanding challenges that remain on the
path to achieving full AGI task mastery. We have made our code and results
publicly available at https://ss47816.github.io/AGI-Elo/.

Image
Classification

Object
Detection

Question
Answering

Motion
Prediction

Motion
Planning

Vision Language Action

Code
Generation

Cat

Dog

HardSimple
High prob. Low prob.

50% prob. to solve

AGI

Figure 1: In this paper, we address long-standing questions regarding the current capabilities of AGI
and humans on challenging tasks by proposing a standardized framework to quantitatively assess task
difficulty, evaluate AGI competency, and identify gaps to task mastery.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://ss47816.github.io/AGI-Elo/

1 Introduction

As Artificial General Intelligence (AGI) begins to replace traditional Artificial Intelligence (AI) in our
everyday lives, there is a growing need to systematically evaluate state-of-the-art (SOTA) AI models
across a diverse range of tasks. These tasks span three fundamental domains: vision, language, and
action. A crucial aspect of this evaluation is understanding not only the performance of AI models
but also considering the inherent difficulty of the tasks they attempt to solve, and identifying the
competency gap between the current models and the remaining unsolved difficult cases. As illustrated
in Figure 1, this paper aims to quantitatively address three key questions simultaneously:

• What is the difficulty of each test case within a task or a dataset?
• What is the competency of an AI model (or a human) on a given task?
• How far are the current SOTA models from fully mastering a task?

1.1 Existing gaps in AI evaluation

Despite the extensive research on AI benchmarking, several fundamental gaps remain unaddressed:

Quantifying task and test case difficulties: Defining and measuring the difficulty of an entire task
(e.g., a dataset) or an individual test case (e.g., a single image, question, or driving scenario) remains
a fundamental challenge. While a range of heuristic proxies have been explored, such as curriculum
learning signals [4], input characteristics [73, 24], training loss [26, 3, 70], model confidence [31],
prediction variance [7], and information-theoretic measures [83]—these methods often rely on task-
specific assumptions or model-dependent signals. A unified, systematic framework for quantifying
difficulty consistent across tasks and interpretable from both AI and human perspectives is still
lacking.

Difficulty-aware & predictive metric for AI: Most public benchmarks and datasets [48, 41, 13, 18,
6, 25, 17, 12] rely on task-specific metrics such as accuracy, mean Average Precision (mAP), and
success rate to evaluate model performance. However, these metrics typically capture only aggregated
performance across the dataset, providing relative comparisons between models rather than predictive
indicators of how well an AI model (or a human) would perform on individual test cases of varying
difficulty. This averaging effect obscures the underlying distribution of task difficulty and limits our
understanding of a model’s capacity to adapt to diverse and complex scenarios.

Progress over the long-tail in real-world tasks: Many real-world tasks exhibit a long-tail distri-
bution, where certain test cases are significantly more challenging than others [86]. Identifying
these difficult cases remains non-trivial, and existing benchmarks do not provide a systematic way
to measure the length of the "tail", which is how much further AI models must progress before
confidently claiming task mastery at a well-defined confidence interval (e.g., 50%, 90%, or 99%).

1.2 Our contributions

To address these gaps identified, we propose a rating system that jointly models task difficulty and
model competency in a unified, probabilistic manner. Our key contributions are as follows:

1. A task-agnostic rating system for AGI evaluations: We introduce a rating system that
simultaneously models test case difficulties and model competencies using a probabilistic
approach. The rating of each test case or model is modeled as a normal distribution, which
is constantly updated by a series of competitive matches between models and test cases.

2. Unified measurement of test case difficulty and model competency: Our framework
provides a principled way to quantitatively estimate the difficulty of individual test cases
and the comparative competency of intelligent agents (models or humans) simultaneously.

3. Extensive experiments across domains: Extensive experiments were conducted across the
3 AGI domains: vision, language, and action. To this end, we considered 6 well-established
datasets using 7-20 models/humans that demonstrated effectiveness.

4. Comprehensive evaluation and predictive insights: By establishing a singular rating
system for each of the AGI tasks, we analyze the rating distribution of test cases and the
model ratings to identify the task difficulty distributions and long-tail characteristics. With
this, we can conclude the competency gap from current models to fully mastering a task.

2

By establishing a robust and predictive rating system, our work provides a new perspective on AI
evaluation, paving the way for a more comprehensive understanding of AI capabilities and limitations
as we move toward AGI.

2 Rating systems explained

2.1 Conventional rating systems

Rating systems are commonly used to estimate the relative skill or performance of players based on
outcomes of pairwise (or multiplayer) matches. After each match, the ranking system awards rating
points to the winning side and deducts rating points from the losing side in a zero-sum fashion based
on the match result.

Elo [15] is the foundational rating system originally developed for chess. It updates the ratings of
both players based on the match score, assuming a logistic model of win probability. Given two
players A and B with ratings RA and RB , the expected score of A can be computed as

E[SA] =
1

1 + 10(RB−RA)/400
. (1)

The rating update formula is given by:

RA ← RA +K(SA − E[SA]), (2)

where K is a sensitivity parameter and SA ∈ [0, 1] is the match score of A.

Glicko [19] extends the Elo system by modeling a player’s rating as a Gaussian belief distribution
characterized by a mean µ and a Rating Deviation (RD) σ, which quantifies the uncertainty in rating.
Ratings with higher RD values are updated with a higher magnitude as compared to players with low
RD, whose ratings will be more stable.

2.2 Properties & utilities

Probabilistic prediction: A key utility of rating systems is their predictive power. Given two players’
ratings, the system can estimate the probability of each outcome based on Equation 1.

Translation-invariant: Rating systems are translation-invariant: shifting all ratings by a constant
value does not affect the expected outcome. Only the relative difference in ratings between the
two players determines the result, as the absolute scale is arbitrary and does not influence ranking
behavior.

Transitivity: A desirable property of rating systems is transitivity: if player A consistently beats B,
and B consistently beats C, then we expect A to have a higher rating than C. Transitivity enables the
construction of a consistent global ranking across many players without requiring exhaustive pairwise
evaluation.

Efficient placement: Only a small number of matches is required to determine the rating of a new
player in the system. Efficient placement of new players with minimal evaluations is critical in
large-scale settings.

3 AGI-Elo rating system design

The proposed AGI-Elo rating system consists of three main steps, including the conversion from
benchmark results to match results, the update of models’ and test cases’ ratings based on match
results, and the prediction of model competencies, as illustrated by the three arrows in Figure 2.

3.1 Test cases vs. agents

Conventional rating systems are primarily designed for homogeneous agents that can freely compete
against one another in direct, one-on-one matches. In chess, humans and computers are assumed to
be in the same category and compete directly, sharing comparable characteristics that make such
matches meaningful.

3

2500

2200

1250

2750

2400

2150

1100

1050

Tasks / Datasets

Intelligent Agents
AI Model / Human

Test Cases

1500

1500

1500

1500

1500

#
 T

es
t

Ca
se

s

Rating

SOTA
in 2015

SOTA
in 2025

Oracle
@ 90%

Confidence

Long-tailed
Cases

Test Cases

Models

Models

Existing Metric Match ScoreScoring Function
[0, 1]

Competency
Gap

Test Cases

1500 1500

Oracle
@ 50%

Confidence

c) Estimated Ratings

a) Benchmark Results

d) Rating Distribution

b) Match Results

1. Convert

2. Update Ratings

3. Predict

𝑓

𝑓!"

Figure 2: Illustration of the proposed AGI-Elo rating system.

However, our proposed rating system diverges significantly as it is designed for matches between
heterogeneous agents, in a similar fashion to Item Response Theory (IRT) [54], which models the
probability that an agent (human or model) with a certain ability level correctly solves a test case as:

P (correct | α, β,Rt, Ra) =
1

1 + β−α(Rt−Ra)
(3)

where Rt and Ra present the difficulty of the test case and the ability of the agent, and α = 1/400,
β = 10 are assigned to follow existing conventions used in chess rating systems.

Specifically, AGI-Elo defines two distinct player types: test cases and agents (i.e., models or humans),
and players can only engage in inter-category matches. A test case can be matched against an agent,
but never directly compete with another test case; similarly, agents cannot compete with each other.

To enable the joint estimation of test case and agent ratings, AGI-Elo leverages the transitivity
property of rating systems, under the assumption that the transitivity property remains valid in our
heterogeneous agent setting (an assumption later supported by our experimental results in subsec-
tion 4.3). By observing the outcomes of inter-category matches, our rating system simultaneously
infers ratings for both test cases and agents. Consequently, players within the same category are
evaluated indirectly, with their relative ratings inferred through shared interactions with players from
the opposing category.

Furthermore, our system explicitly incorporates the ratings of the intermediary category during the
evaluation process. In particular, the rating of a test case plays a critical role in adjusting model
ratings. For example, if a model fails on an easy (i.e., low-rated) test case, it is penalized more heavily
than if it fails on a difficult (i.e., high-rated) one. By accounting for the inherent difficulty of each
test case, the system avoids treating all errors equally, thereby preventing serious overestimation
or underestimation of model competency in the presence of exceptionally easy or hard examples.

4

A key advantage of this rating system design is that model ratings are anchored to the empirical
difficulty distribution of test cases. Moreover, the performance of any model on any test case can be
quantitatively predicted.

3.2 Conversion to match results

For any given task, let M ∈ R denote a task-specific performance metric (e.g., accuracy, mAP), and
let f : R → [0, 1] be a scoring function that maps M to a normalized match score s ∈ [0, 1]. We
define:

S = f(M) (4)

The primary objective of the function f is to transform arbitrary task-specific metrics into a unified,
continuous match score space, facilitating consistent comparison across matches. Once ratings
are established in this normalized space, the inverse function f−1 : [0, 1] → R can be used to
project predicted match scores back into the original metric space, yielding an interpretable predicted
performance:

M̂ = f−1(S) (5)

To support generalization across diverse tasks and datasets, the scoring function f can be tailored
to the specific characteristics and scale of the underlying metric M . This design ensures that our
approach remains broadly applicable with minimal task-specific adjustments.

3.3 Rating update

To determine the appropriate rating adjustment after each match, we model the rating R of each player
(whether a test case or a model) as a normal distribution R ∼ N (µ, σ2) with a mean µ representing
its rating score and a standard deviation σ representing the uncertainty in our estimate, following the
Glicko system [19]. Initially, all models and test cases are assigned the same starting ratings. After
each rated match, the µ and σ of both players are updated based on the match outcome. For each
opponent j, the impact factor g(σj), which adjusts the weight of the match outcome based on the
opponent’s uncertainty, is defined as:

g(σj) =
1√

1 +
3q2σ2

j

π2

(6)

where q = ln(10)
400 ≈ 0.0057565. The expected outcome of player i against opponent j is:

Eij =
1

1 + 10−g(σj)(µi−µj)/400
(7)

After a rated match where player i competes against multiple opponents j, the new rating is updated
as:

µi ← µi +
q

1
σ2
i
+
∑

j g(σj)2Eij(1− Eij)

∑
j

g(σj)(Sij − Eij) (8)

where Sij ∈ [0, 1] represents the actual match score. The updated rating deviation is given by:

σi ←

 1

σ2
i

+
∑
j

g(σj)
2Eij(1− Eij)

−1/2

(9)

After a sufficient number of matches, ideally when all models have competed against all test cases,
the ratings of both models and test cases should converge to stable values that reflect their respective
competency and difficulty levels.

3.4 Prediction

With the ratings of both models and test cases determined, we can leverage the properties of the rating
system to make the following predictions:

5

Agent performance: The expected performance E[Ma] of an agent a in the original metric space on
a test case t can be estimated as:

E[Ma] = f−1(E[Sa]) = f−1

(
1

1 + 10(Rt−Ra)/400

)
, (10)

where E[Sa] denotes the expected match outcome of agent a, and Ra, Rt represent the mean rating
values of the agent and the test case, respectively.

Long-tailed test cases beyond an agent’s competency: The set of test cases on which agent a is
expected to achieve a performance below a threshold Mθ (in the original metric space) is defined as:

T hard
a,Mθ

=

{
t ∈ T

∣∣∣∣ f−1

(
1

1 + 10(Rt−Ra)/400

)
< Mθ

}
, (11)

where T denotes the complete set of test cases in the dataset.

Oracle’s task mastery levels: In AI and machine learning, an oracle typically refers to a model that
achieves ideal performance or provides ground-truth answers for a given task. In the context of this
paper, the concept of an "oracle" serves solely as a theoretical reference point, illustrating where future
models with higher skill levels might be positioned relative to current models. Assuming the dataset
is a faithful miniature reflection of the real-world distribution of test cases, the oracle’s performance
on the most difficult test case in the dataset serves as a proxy for its worst-case performance in the
real world. In this paper, we further quantify an oracle using either a performance threshold Sθ in the
match score space or a corresponding threshold Mθ in the original metric space. The hypothetical
oracles with different confidence levels and their ratings can be estimated based on the distribution of
the test cases in the post-experiment analysis. For example, a hypothetical oracle @ Mθ mastery is
defined as a model capable of achieving at least Mθ performance, or equivalently, at least Sθ × 100%
confidence in solving, all test cases in the task. The rating required for such an oracle can be estimated
as:

Roracle@Sθ
≥ Rt,max − 400 · log10

(
1− Sθ

Sθ

)
, (12)

where Rt,max = max{Rt | t ∈ T } denotes the rating of the hardest test case in the dataset.

Agent’s competency gap to full task mastery: The competency gap for an agent a to reach this
oracle-level performance is defined as:

Competency Gap = Roracle@Sθ
−Ra, (13)

which quantifies how much the agent’s rating must improve in order to achieve the desired level of
task mastery.

4 Experiments

4.1 Experimental setup

We selected six representative tasks spanning three core AGI domains—vision, language, and action:
image classification, object detection, question answering, code generation, motion prediction,
and motion planning. For each task, we chose the most widely adopted dataset: ImageNet [13],
COCO [48], MMLU [29], LiveCodeBench [37], Waymo [17], and NAVSIM [12], respectively.

The specific agents evaluated, as well as the evaluation metrics and scoring functions used for each
dataset, are detailed in Appendix B. Notably, the motion planning task includes a human expert
as one of the evaluated agents, alongside AI models. All players (both agents and test cases) are
initialized with a rating of R ∼ N (1500, 3502). During the rating update step, the order of matches
is fully randomized to ensure smooth and unbiased convergence of ratings.

4.2 Rating distributions

In Figure 3, the rating distributions of both test cases and agents are visualized across all six datasets.
To provide a qualitative evaluation of test case difficulty, we randomly sample test cases from each
rating level for every dataset/task and present them in Appendix A for visual comparison.

6

750 1000 1250 1500 1750 2000 2250 2500
Rating

0

2500

5000

7500

10000

12500

15000

17500

20000

N
um

be
r

of
 T

es
t

Ca
se

s

Test Cases
ConvNeXt-Large
Swin-B
ConvNeXt-Tiny
ViT-B-16
Swin-T
RegNet-X-8GF
ResNext-101
ResNet-152
EfficientNet-B0
ResNext-50
ViT-L-32
RegNet-Y-800MF
DenseNet-121
MobileNet-v2
VGG-16
ResNet-18
Inception-v3
ShuffleNetV2-x1-0
SqueezeNet1-0
AlexNet

0

20

40

60

80

100

Cu
m

ul
at

iv
e

Pe
rc

en
ta

ge

Cumulative %

(a) Image classification: ImageNet [13]

250 500 750 1000 1250 1500 1750 2000 2250
Rating

0

200

400

600

800

1000

1200

N
um

be
r

of
 T

es
t

Ca
se

s

Test Cases
DINO-L
RTDETR
ConvNeXt-S
FasterRCNN-ResNet50v2
ConvNext-T
YOLOv11x
YOLOv8l
Swin-S
ResneSt-CascadeRCNN
FCOS-ResNet50
RetinaNet-ResNet50
Swin-T
MaskRCNN-ResNet50
FasterRCNN-ResNet50v1
YOLOv3-darknet53
YOLOv11n
YOLOv8n
SSD-VGG16
FasterRCNN_MobileNet_V3
SSD-Lite

0

20

40

60

80

100

Cu
m

ul
at

iv
e

Pe
rc

en
ta

ge

Cumulative %

(b) Object detection: COCO [48]

500 1000 1500 2000 2500
Rating

0

500

1000

1500

2000

2500

3000

N
um

be
r

of
 T

es
t

Ca
se

s

Test Cases
Gemini-2.5-Pro-Exp
DeepSeek-R1
Claude-3.7-Sonnet
Llama-4-Maverick
DeepSeek-V3-0324
GPT-4.1
ChatGPT-4o
Qwen-2.5-72B
GPT-4.1-mini
Llama-4-Scout
QwQ-32B-Preview
Gemma-3-27B
ChatGPT-4o-mini
GPT-4.1-nano
Llama-3.1-8B-Instruct
DeepSeek-R1-Distill-Qwen-7B
BLOOMZ-7B1
BLOOMZ-1B7
DeepSeek-R1-Distill-Qwen-1.5B
BLOOMZ-1B1

0

20

40

60

80

100

Cu
m

ul
at

iv
e

Pe
rc

en
ta

ge

Cumulative %

(c) Question answering: MMLU [29]

500 1000 1500 2000
Rating

0

20

40

60

80

100

120

N
um

be
r

of
 T

es
t

Ca
se

s

Test Cases
Claude-3.7-Sonnet
Claude-3.5-Sonnet
DeepSeek-V3-0324
Gemma-3-27B
GPT-4.1
GPT-4.1-mini
o1-mini
GPT-4o-mini
Qwen2.5-Coder-32B
GPT-4o
GPT-4-turbo
Qwen2.5-Coder-7B
Gemma-3-12B
Qwen2.5-Coder-3B
DeepSeek-Coder-7B
StarCoder2-7b
Gemma-3-4B
StarCoder2-3B
DeepSeek-Coder-1.3B
Gemma-3-1B

0

20

40

60

80

100

Cu
m

ul
at

iv
e

Pe
rc

en
ta

ge

Cumulative %

(d) Code generation: LiveCodeBench [37]

800 1000 1200 1400 1600 1800 2000 2200
Rating

0

2000

4000

6000

8000

10000

12000

N
um

be
r

of
 T

es
t

Ca
se

s

Test Cases
IMPACT
RMP-YOLO
BeTop
EDA
ControlMTR
MTR
LSTM

0

20

40

60

80

100

Cu
m

ul
at

iv
e

Pe
rc

en
ta

ge

Cumulative %

(e) Motion prediction: Waymo [17]

800 1000 1200 1400 1600 1800 2000 2200 2400
Rating

0

500

1000

1500

2000

2500

3000

N
um

be
r

of
 T

es
t

Ca
se

s

Test Cases
Human
DiffusionDrive
DRAMA_II
DRAMA
Transfuser
MLP
CV_Agent

0

20

40

60

80

100

Cu
m

ul
at

iv
e

Pe
rc

en
ta

ge

Cumulative %

(f) Motion planning: NAVSIM [12]

Figure 3: Visualization of the estimated test case rating distribution and agent ratings on six distinct
datasets. The percentile curve represents the cumulative percentage of test cases up to each rating
level. For each agent, the portion of the test cases and the percentile curve that lies to the right
represents the fraction of the dataset that remains difficult (below 50% confidence).

From Figure 3, we observe distinct test case difficulty distributions across different datasets by
examining the histograms and the percentile curves over the rating spectrum. Datasets such as
ImageNet [13], MMLU [29], and NAVSIM [12] exhibit long-tail distributions, indicated by a small
fraction of highly challenging test cases. In contrast, LiveCodeBench [37] and Waymo [17] present
more symmetrical distributions from the agents’ perspectives, indicating a more balanced spread of
difficulty levels. Meanwhile, COCO [48] shows a short-tail distribution, suggesting that its most
difficult test cases are relatively moderate in comparison.

By observing the improvements in model performance, we can trace the progress made on each task
over the years. For example, on ImageNet [13], ConvNeXt-Large [53] (2022) obtained a rating of
2035, successfully surpassing approximately 85% of test images (rated < 2035) with at least 50%
confidence, and about 67% of images (rated < 1635 = 2035− 400) with at least 91% confidence.
Compared to AlexNet [42] (2012), which beats 64% of the dataset with a rating of 1586, the progress
over 10 years is about 449 rating points, and newly mastering 18% of the dataset.

7

Table 1: Competency gaps estimated on each dataset (excluding human)

Domain Task Dataset Metric Rt,max Ra,max E[Ma,t] ↑
Competency Gap to Oracles ↓
@50% @90% @99%

Vision Classification ImageNet [13] Acc@1 2389.7 2035.0 0.115 354.7 736.4 1152.9
Detection COCO [48] AP@[.50:.90] 2132.7 1745.5 0.097 387.2 768.9 1185.4

Language QA MMLU [29] Accuracy 2446.1 2159.2 0.161 286.9 668.6 1085.1
Coding LiveCodeBench [37] PassAll 2263.3 1939.7 0.134 323.6 705.3 1121.8

Action Prediction Waymo [17] mAP 2014.3 1689.8 0.134 324.5 706.2 1122.8
Planning NAVSIM [12] PDM Score 2273.0 2040.5 0.208 232.5 614.2 1030.8

In Table 1, we report the highest-rated agents and test cases for each dataset, along with the predicted
expected performance of each agent on the most difficult test case and the corresponding competency
gaps to oracles at various confidence thresholds.

The results show that, excluding the human agent, the highest-rated AI models across the six datasets
generally exhibit competency gaps of approximately 233–387 rating points from achieving mastery
on the most difficult test cases at the 50% confidence level, and approximately 1031–1185 rating
points from oracles @ 99% confidence level. In contrast, the human expert on the NAVSIM [12]
dataset achieves near-oracle-level competency under the PDM score metric, with a gap of only 20.7
rating points from the oracle @ 50% confidence. This suggests that the human agent is approaching
the performance of an ideal oracle on this task. These findings highlight that, in the presence of
challenging test cases, current AI models remain significantly below oracle-level performance and
face substantial competency gaps that must be bridged before achieving true task mastery.

4.3 Reliability of the rating system

As the proposed method is uniquely designed for rating heterogeneous players, it is essential to
evaluate the reliability of the resultant ratings to ensure meaningful interpretations and to validate the
assumptions underlying the design of the rating system. We assess rating reliability from two key
perspectives: consistency with existing evaluation metrics and predictive accuracy.

Consistency: Spearman’s rank correlation is used to measure the consistency between our estimated
rating rankings and the original task-specific performance metrics. For each test case t, we record the
average agent performance M̄t on that test case, and for each agent a, we compute the average agent
performance M̄a across all test cases. The Spearman’s rank correlation coefficient ρt between the
rankings of {Rt} and {M̄t}, and ρa between the rankings of {Ra} and {M̄a}, are used as indicators.

Predictive accuracy: For each agent, its average performance M̄a,B = 1
|B|

∑
t∈B Ma,t on all test

cases within the same rating bin B is computed and compared against the theoretical expectations
E[Ma,B] derived from the rating system. The mean absolute error (MAE) and mean squared error
(MSE) are used to quantify the deviation between the empirical performance M̄a,B and the theoretical
expectation E[Ma,B].

Table 2: Consistency & predictive accuracy across various datasets

Dataset Split Nt Na Nmatch
Consistency Predictive Accuracy

ρt ↓ ρa ↑ MAE ↓ MSE↓
ImageNet [13] val 50,000 20 1,000,000 -0.9685 0.9985 0.0476 0.0039

COCO [48] val 4,952 20 99,040 -0.9999 1.0000 0.0167 0.0005
MMLU [29] test 13,957 20 279,140 -0.9962 1.0000 0.0662 0.0076

LiveCodeBench [37] test 880 20 17,600 -0.9968 0.9985 0.0446 0.0038
Waymo [17] val 44,097 7 308,679 -0.9981 1.0000 0.0354 0.0023

NAVSIM [12] test 12,147 7 85,050 -0.9963 1.0000 0.0546 0.0088

As shown in Table 2, our method achieves consistently low MAE and MSE across all datasets,
highlighting its accuracy in ratings and predictive performance. Experimental results also demonstrate
that our method achieves consistently high correlation, indicating a strong association between the
derived ratings and the traditional aggregate metrics. Despite the strong overall correlation, our
approach uniquely uncovers subtle rank-reversal cases, where models with similar traditional scores

8

0 20 40 60 80 100
% of Matches

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

M
AE

COCO
ImageNet
LiveCodeBench
MMLU
NAVSIM
Waymo

0 20 40 60 80 100
% of Matches

0.00

0.01

0.02

0.03

0.04

0.05

0.06

M
SE

COCO
ImageNet
LiveCodeBench
MMLU
NAVSIM
Waymo

0 20 40 60 80 100
% of Matches

1.0

0.8

0.6

0.4

0.2

0.0

t

COCO
ImageNet
LiveCodeBench
MMLU
NAVSIM
Waymo

0 20 40 60 80 100
% of Matches

0.0

0.2

0.4

0.6

0.8

1.0

a COCO
ImageNet
LiveCodeBench
MMLU
NAVSIM
Waymo

Figure 4: Evaluation of the reliability as a function of the percentage of completed matches.

receive different relative rankings under our method. The Spearman’s rank correlation coefficient
ρa on both ImageNet [13] and LiveCodeBench [37] is 0.9985, instead of perfectly 1, indicating the
existence of such "rank-reversal" cases in the model rankings. More specifically, on the ImageNet [13]
dataset, the "rank-reversal" case happened between ViT-B-16 (Acc. 0.81066, rating 1969.5) and
Swin-T (Acc. 0.81088, rating 1969.0); while on the LiveCodeBench [37] dataset, the "rank-reversal"
case happened between GPT-4.1-mini (Acc. 0.77019, rating 1832.1) and o1-mini (Acc. 0.77361,
rating 1820.5).

In Figure 4, we plot the evolution of all four evaluation metrics as a function of the percentage
of matches used by the rating system. As more match data is incorporated, both MAE and MSE
consistently decrease, indicating the convergence and stability of the system. Similarly, the correlation
grows stronger with additional match information, demonstrating the effectiveness of our method in
accurately rating both test cases and agents. These trends provide empirical support for the transitivity
assumption introduced earlier.

5 Related works

Estimating per-instance difficulty Evaluating instance difficulties in datasets is an important yet
understudied field [85, 77]. Some methods rely on hand-crafted features like word overlap [4], input
length [73, 24], or similarity scores [60] as proxies for difficulty, which are oversimplistic. Many
techniques adopt loss-based metrics [26, 3, 70] or prediction confidence [31, 7, 83]. Approaches
like [82, 77, 16] leverage model training dynamics, which can offer deeper insights, but are often
influenced by the stochastic nature of training. However, these methods often yield model-specific
difficulty estimates that are difficult to compare across models due to varying loss designs, and
they are typically inapplicable to non-learning agents like classical algorithms or human agents. In
contrast, our system directly utilizes performance metrics as difficulty indicators, making it broadly
compatible and capable of capturing insights from a wide range of agents. This universality ensures
that the estimated difficulties are meaningful and comparable across different agent types.

Benchmarking AI capabilities Inspired by competitive games, several works have adopted rating
systems to evaluate AI model performance across tasks or in head-to-head comparisons. For example,
rating systems have been used to assess AlphaStar agents in StarCraft II competitions [84] and in
reinforcement learning tournaments [30]. The Chatbot Arena framework [9] applies a modified
Elo system to conduct pairwise comparisons of large language models (LLMs), based on crowd-
sourced human preference judgments. However, these evaluation approaches typically focus solely
on modeling agent capabilities, without accounting for the implicit difficulty of individual test cases.
As a result, the estimated model ratings may fail to reflect true performance under varying levels of
difficulty and can be unreliable [5]. Furthermore, such model-vs-model competition setups are not
easily generalizable to a wide range of AI tasks beyond dialogue or games.

Psychometric benchmarks [92, 44] have also been applied to the AI domain to assess question diffi-
culty and model ability. In particular, Item Response Theory (IRT) has been adapted to characterize
the relative competency of models across tasks and datasets, enabling fine-grained performance
profiling [58]. However, prior works have primarily focused on basic machine learning tasks with
simple classifiers, without extending to a broad range of complex tasks and state-of-the-art (SOTA)
models. By integrating rating systems with IRT-inspired evaluation, our framework offers a unified
and interpretable approach to jointly estimate test case difficulty and model competency. This enables
more reliable predictions for models on tasks, while preserving generalizability.

9

6 Conclusion and limitations

In this paper, we propose AGI-Elo, a unified framework for jointly estimating task difficulties
and agent competencies through a quantifiable, general-purpose rating system tailored for AGI
tasks. Experimental results across six diverse tasks spanning vision, language, and action domains
demonstrate the broad applicability and high predictive accuracy of our approach. The resulting rating
distributions enable in-depth analysis of dataset difficulty characteristics, precise identification of
long-tailed challenging test cases, and quantification of competency gaps between current AI agents
and idealized oracles at various levels. To support further research, we release the computed test case
and agent ratings, and we hope that our findings will stimulate broader interest in this important yet
underexplored area.

While our results offer a novel perspective, they are not exhaustive. Due to limited computational
resources, our current experimental scale is constrained, and the selected datasets and models may
not fully represent state-of-the-art performance. Nevertheless, we believe the proposed methodology
is sound, and we envision future studies expanding upon it with more comprehensive evaluations
across the full spectrum of AGI capabilities.

References
[1] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni

Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4
technical report. arXiv preprint arXiv:2303.08774, 2023.

[2] Anthropic. Claude 3.7 sonnet and claude code. https://www.anthropic.com/news/
claude-3-7-sonnet, February 2025. Accessed: 2025-05-16.

[3] Eric Arazo, Daniel Ortego, Paul Albert, Noel E O’Connor, and Kevin McGuinness. Unsu-
pervised label noise modeling and loss correction. In International Conference on Machine
Learning, pages 312–321, 2019.

[4] Yoshua Bengio, Jerome Louradour, Ronan Collobert, and Jason Weston. Curriculum learning.
In Proceedings of the 26th annual international conference on machine learning, pages 41–48,
2009.

[5] Meriem Boubdir, Edward Kim, Beyza Ermis, Sara Hooker, and Marzieh Fadaee. Elo uncovered:
Robustness and best practices in language model evaluation. In The Thirty-eighth Annual
Conference on Neural Information Processing Systems, 2024.

[6] Holger Caesar, Varun Bankiti, Alex H. Lang, Sourabh Vora, Venice Erin Liong, Qiang Xu,
Anush Krishnan, Yu Pan, Giancarlo Baldan, and Oscar Beijbom. nuscenes: A multimodal
dataset for autonomous driving. In CVPR, 2020.

[7] Hwanjun Songkuk Chang and et al. Active bias: Training more accurate neural networks by
emphasizing high variance samples. In Advances in Neural Information Processing Systems,
pages 1002–1012, 2017.

[8] Kai Chen, Jiaqi Wang, Jiangmiao Pang, Yuhang Cao, Yu Xiong, Xiaoxiao Li, Shuyang Sun,
Wansen Feng, Ziwei Liu, Jiarui Xu, et al. Mmdetection: Open mmlab detection toolbox and
benchmark. arXiv preprint arXiv:1906.07155, 2019.

[9] Wei-Lin Chiang, Lianmin Zheng, Ying Sheng, Anastasios Nikolas Angelopoulos, Tianle Li,
Dacheng Li, Banghua Zhu, Hao Zhang, Michael Jordan, Joseph E Gonzalez, et al. Chatbot
arena: An open platform for evaluating llms by human preference. In Forty-first International
Conference on Machine Learning, 2024.

[10] Kashyap Chitta, Aditya Prakash, Bernhard Jaeger, Zehao Yu, Katrin Renz, and Andreas Geiger.
Transfuser: Imitation with transformer-based sensor fusion for autonomous driving. Pattern
Analysis and Machine Intelligence (PAMI), 2023.

[11] OpenScene Contributors. Openscene: The largest up-to-date 3d occupancy prediction bench-
mark in autonomous driving, 2023.

10

https://www.anthropic.com/news/claude-3-7-sonnet
https://www.anthropic.com/news/claude-3-7-sonnet

[12] Daniel Dauner, Marcel Hallgarten, Tianyu Li, Xinshuo Weng, Zhiyu Huang, Zetong Yang,
Hongyang Li, Igor Gilitschenski, Boris Ivanovic, Marco Pavone, Andreas Geiger, and Kashyap
Chitta. Navsim: Data-driven non-reactive autonomous vehicle simulation and benchmarking.
In Advances in Neural Information Processing Systems (NeurIPS), 2024.

[13] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 248–255, 2009.

[14] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al.
An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

[15] Arpad E Elo. The proposed uscf rating system, its development, theory, and applications. Chess
life, 22(8):242–247, 1967.

[16] Kawin Ethayarajh, Yejin Choi, and Swabha Swayamdipta. Understanding dataset difficulty with
v-usable information. In International Conference on Machine Learning, pages 5988–6008.
PMLR, 2022.

[17] Scott Ettinger, Shuyang Cheng, Benjamin Caine, Chenxi Liu, Hang Zhao, Sabeek Pradhan,
Yuning Chai, Ben Sapp, Charles R Qi, Yin Zhou, et al. Large scale interactive motion forecasting
for autonomous driving: The waymo open motion dataset. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 9710–9719, 2021.

[18] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready for autonomous driving?
the kitti vision benchmark suite. In Conference on Computer Vision and Pattern Recognition
(CVPR), 2012.

[19] Mark E. Glickman. Parameter estimation in large dynamic paired comparison experiments.
Journal of the Royal Statistical Society: Series C (Applied Statistics), 48(3):377–394, 1999.

[20] Google DeepMind. Gemini 2.5: Our most intelligent ai model. https://blog.google/
technology/google-deepmind/gemini-model-thinking-updates-march-2025/,
March 2025. Accessed: 2025-05-16.

[21] Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian,
Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama
3 herd of models. arXiv preprint arXiv:2407.21783, 2024.

[22] Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in
llms via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

[23] Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen,
Xiao Bi, Yu Wu, YK Li, et al. Deepseek-coder: When the large language model meets
programming–the rise of code intelligence. arXiv preprint arXiv:2401.14196, 2024.

[24] Suchin Gururangan, Swabha Swayamdipta, Omer Levy, Roy Schwartz, Samuel Bowman, and
Noah A. Smith. Annotation artifacts in natural language inference data. In Proceedings of
the 2018 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, volume 2, pages 107–112, 2018.

[25] K. Tan et al. H. Caesar, J. Kabzan. Nuplan: A closed-loop ml-based planning benchmark for
autonomous vehicles. In CVPR ADP3 workshop, 2021.

[26] Bo Han, Quanming Yao, Xingrui Yu, Gang Niu, Miao Xu, Weihua Hu, Ivor W Tsang, and
Masashi Sugiyama. Co-teaching: Robust training of deep neural networks with extremely noisy
labels. In Advances in Neural Information Processing Systems, pages 8527–8537, 2018.

[27] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn. arXiv preprint
arXiv:1703.06870, 2017.

11

https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025/
https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025/

[28] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 770–778, 2016.

[29] Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020.

[30] Ralf Herbrich, Tom Minka, and Thore Graepel. Trueskill™: a bayesian skill rating system.
Advances in neural information processing systems, 19, 2006.

[31] Dirk Hovy, Barbara Plank, and Anders Sogaard. Learning whodunnit: Classification of event
participants in news articles. In Proceedings of the 2013 Conference on Empirical Methods in
Natural Language Processing, pages 540–545, 2013.

[32] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected
convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 4700–4708, 2017.

[33] Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jia-
jun Zhang, Bowen Yu, Keming Lu, et al. Qwen2. 5-coder technical report. arXiv preprint
arXiv:2409.12186, 2024.

[34] Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark,
AJ Ostrow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. arXiv
preprint arXiv:2410.21276, 2024.

[35] Forrest N Iandola, Song Han, Matthew W Moskewicz, Khalid Ashraf, William J Dally, and
Kurt Keutzer. Squeezenet: Alexnet-level accuracy with 50x fewer parameters and< 0.5 mb
model size. arXiv preprint arXiv:1602.07360, 2016.

[36] Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. arXiv
preprint arXiv:2412.16720, 2024.

[37] Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Ar-
mando Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination
free evaluation of large language models for code. arXiv preprint arXiv:2403.07974, 2024.

[38] Glenn Jocher, Ayush Chaurasia, and Jing Qiu. Ultralytics yolov8, 2023.

[39] Glenn Jocher and Jing Qiu. Ultralytics yolo11, 2024.

[40] Glenn Jocher, Alex Stoken, Jirka Borovec, Liu Changyu, Adam Hogan, Laurentiu Diaconu,
Jake Poznanski, Lijun Yu, Prashant Rai, Russ Ferriday, et al. ultralytics/yolov5: v3. 0. Zenodo,
2020.

[41] Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report, 2009.

[42] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with deep con-
volutional neural networks. In Advances in Neural Information Processing Systems (NeurIPS),
volume 25, pages 1097–1105, 2012.

[43] Quentin Lhoest, Albert Villanova Del Moral, Yacine Jernite, Abhishek Thakur, Patrick
Von Platen, Suraj Patil, Julien Chaumond, Mariama Drame, Julien Plu, Lewis Tunstall,
et al. Datasets: A community library for natural language processing. arXiv preprint
arXiv:2109.02846, 2021.

[44] Yuan Li, Yue Huang, Hongyi Wang, Xiangliang Zhang, James Zou, and Lichao Sun. Quanti-
fying ai psychology: A psychometrics benchmark for large language models. arXiv preprint
arXiv:2406.17675, 2024.

[45] Bencheng Liao, Shaoyu Chen, Haoran Yin, Bo Jiang, Cheng Wang, Sixu Yan, Xinbang Zhang,
Xiangyu Li, Ying Zhang, Qian Zhang, and Xinggang Wang. Diffusiondrive: Truncated diffusion
model for end-to-end autonomous driving. arXiv preprint arXiv:2411.15139, 2024.

12

[46] Longzhong Lin, Xuewu Lin, Tianwei Lin, Lichao Huang, Rong Xiong, and Yue Wang. Eda:
Evolving and distinct anchors for multimodal motion prediction. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 38, pages 3432–3440, 2024.

[47] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal loss for dense
object detection. arXiv preprint arXiv:1708.02002, 2017.

[48] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In Computer
vision–ECCV 2014: 13th European conference, zurich, Switzerland, September 6-12, 2014,
proceedings, part v 13, pages 740–755. Springer, 2014.

[49] Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437, 2024.

[50] Haochen Liu, Li Chen, Yu Qiao, Chen Lv, and Hongyang Li. Reasoning multi-agent behavioral
topology for interactive autonomous driving. In NeurIPS, 2024.

[51] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-Yang Fu,
and Alexander C Berg. Ssd: Single shot multibox detector. In Computer Vision–ECCV 2016:
14th European Conference, Amsterdam, The Netherlands, October 11–14, 2016, Proceedings,
Part I 14, pages 21–37. Springer, 2016.

[52] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining
Guo. Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings
of the IEEE/CVF International Conference on Computer Vision (ICCV), pages 10012–10022,
2021.

[53] Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and Saining
Xie. A convnet for the 2020s. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 11976–11986, 2022.

[54] Frederic M Lord and Melvin R Novick. Statistical theories of mental test scores. IAP, 2008.

[55] Anton Lozhkov, Raymond Li, Loubna Ben Allal, Federico Cassano, Joel Lamy-Poirier, Noua-
mane Tazi, Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei, et al. Starcoder 2 and the stack
v2: The next generation. arXiv preprint arXiv:2402.19173, 2024.

[56] Wenyu Lv, Shangliang Xu, Yian Zhao, Guanzhong Wang, Jinman Wei, Cheng Cui, Yuning
Du, Qingqing Dang, and Yi Liu. Detrs beat yolos on real-time object detection (2023). arXiv
preprint arXiv:2304.08069, 2023.

[57] Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun. Shufflenet v2: Practical guidelines
for efficient cnn architecture design. In Proceedings of the European conference on computer
vision (ECCV), pages 116–131, 2018.

[58] Fernando Martínez-Plumed, Ricardo BC Prudêncio, Adolfo Martínez-Usó, and José Hernández-
Orallo. Item response theory in ai: Analysing machine learning classifiers at the instance level.
Artificial intelligence, 271:18–42, 2019.

[59] Meta AI. The llama 4 herd: The beginning of a new era of natively multimodal ai innova-
tion. https://ai.meta.com/blog/llama-4-multimodal-intelligence/, April 2025.
Accessed: 2025-05-16.

[60] Swaroop Mishra, Anjana Arunkumar, Chris Bryan, and Chitta Baral. Hardness of samples need
to be quantified for a reliable evaluation system: Exploring potential opportunities with a new
task. arXiv preprint arXiv:2210.07631, 2022.

[61] Niklas Muennighoff, Thomas Wang, Lintang Sutawika, Adam Roberts, Stella Biderman,
Teven Le Scao, M Saiful Bari, Sheng Shen, Zheng-Xin Yong, Hailey Schoelkopf, et al. Crosslin-
gual generalization through multitask finetuning. arXiv preprint arXiv:2211.01786, 2022.

[62] NanoGPT. Nanogpt api. https://nano-gpt.com/api, 2025. Accessed: 2025-05-15.

13

https://ai.meta.com/blog/llama-4-multimodal-intelligence/
https://nano-gpt.com/api

[63] OpenAI. Openai api. https://platform.openai.com, 2025. Accessed: 2025-05-15.

[64] A Paszke. Pytorch: An imperative style, high-performance deep learning library. arXiv preprint
arXiv:1912.01703, 2019.

[65] Qwen Team. Qwq: Reflect deeply on the boundaries of the unknown. https://qwenlm.
github.io/blog/qwq-32b-preview/, November 2024. Accessed: 2025-05-16.

[66] Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaiming He, and Piotr Dollár. Design-
ing network design spaces. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 10428–10436, 2020.

[67] Joseph Redmon and Ali Farhadi. Yolov3: An incremental improvement. arXiv preprint
arXiv:1804.02767, 2018.

[68] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time
object detection with region proposal networks. arXiv preprint arXiv:1506.01497, 2015.

[69] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen.
Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pages 4510–4520, 2018.

[70] Yao Shen and Sujay Sanghavi. Learning with bad training data via iterative trimmed loss
minimization. In International Conference on Machine Learning, pages 5739–5748, 2019.

[71] Shaoshuai Shi, Li Jiang, Dengxin Dai, and Bernt Schiele. Motion transformer with global inten-
tion localization and local movement refinement. Advances in Neural Information Processing
Systems, 2022.

[72] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556, 2014.

[73] Valentin I Spitkovsky, Hiyan Alshawi, and Dan Jurafsky. Baby steps: How "less is more"
in unsupervised dependency parsing. In Human Language Technologies: The 2010 Annual
Conference of the North American Chapter of the Association for Computational Linguistics,
pages 751–759, 2010.

[74] Jiawei Sun, Jiahui Li, Tingchen Liu, Chengran Yuan, Shuo Sun, Zefan Huang, Anthony Wong,
Keng Peng Tee, and Marcelo H Ang Jr. Rmp-yolo: A robust motion predictor for partially
observable scenarios even if you only look once. arXiv preprint arXiv:2409.11696, 2024.

[75] Jiawei Sun, Chengran Yuan, Shuo Sun, Shanze Wang, Yuhang Han, Shuailei Ma, Zefan Huang,
Anthony Wong, Keng Peng Tee, and Marcelo H. Ang. Controlmtr: Control-guided motion
transformer with scene-compliant intention points for feasible motion prediction. In 2024 IEEE
27th International Conference on Intelligent Transportation Systems (ITSC), pages 1507–1514,
2024.

[76] Jiawei Sun, Xibin Yue, Jiahui Li, Tianle Shen, Chengran Yuan, Shuo Sun, Sheng Guo, Quanyun
Zhou, and Marcelo H Ang Jr. Impact: Behavioral intention-aware multimodal trajectory
prediction with adaptive context trimming. arXiv preprint arXiv:2504.09103, 2025.

[77] Swabha Swayamdipta, Roy Schwartz, Nicholas Lourie, Yizhong Wang, Hannaneh Hajishirzi,
Noah A Smith, and Yejin Choi. Dataset cartography: Mapping and diagnosing datasets with
training dynamics. arXiv preprint arXiv:2009.10795, 2020.

[78] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. Re-
thinking the inception architecture for computer vision. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 2818–2826, 2016.

[79] Mingxing Tan and Quoc V. Le. Efficientnet: Rethinking model scaling for convolutional
neural networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 6105–6114, 2019.

14

https://platform.openai.com
https://qwenlm.github.io/blog/qwq-32b-preview/
https://qwenlm.github.io/blog/qwq-32b-preview/

[80] Gemma Team, Aishwarya Kamath, Johan Ferret, Shreya Pathak, Nino Vieillard, Ramona
Merhej, Sarah Perrin, Tatiana Matejovicova, Alexandre Ramé, Morgane Rivière, et al. Gemma
3 technical report. arXiv preprint arXiv:2503.19786, 2025.

[81] Zhi Tian, Chunhua Shen, Hao Chen, and Tong He. Fcos: Fully convolutional one-stage object
detection. In Proceedings of the IEEE/CVF International Conference on Computer Vision
(ICCV), pages 9627–9636, 2019.

[82] Mariya Toneva, Alessandro Sordoni, Yulia Tsvetkov, Tommi Jaakkola, and Ellie Pavlick. An
empirical study of example forgetting during deep neural network learning. In International
Conference on Learning Representations, 2019.

[83] Neeraj Varshney, Swaroop Mishra, and Chitta Baral. Ildae: Instance-level difficulty analysis of
evaluation data. arXiv preprint arXiv:2203.03073, 2022.

[84] Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, et al. Grandmaster level in starcraft ii
using multi-agent reinforcement learning. Nature, 575(7782):350–354, 2019.

[85] Kumar Vodrahalli, Ganesh Ramakrishnan, and Balaraman Ravindran. Are all training examples
created equal? an empirical study. In arXiv preprint arXiv:1803.07156, 2018.

[86] Haohui Wang, Weijie Guan, Jianpeng Chen, Zi Wang, and Dawei Zhou. Towards heterogeneous
long-tailed learning: Benchmarking, metrics, and toolbox. In Advances in Neural Information
Processing Systems 37 (NeurIPS 2024), Datasets and Benchmarks Track, 2024.

[87] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He. Aggregated residual
transformations for deep neural networks. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 1492–1500, 2017.

[88] An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
Li, Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. arXiv preprint
arXiv:2412.15115, 2024.

[89] Chengran Yuan, Zhanqi Zhang, Jiawei Sun, Shuo Sun, Zefan Huang, Christina Dao Wen Lee,
Dongen Li, Yuhang Han, Anthony Wong, Keng Peng Tee, et al. Drama: An efficient end-to-end
motion planner for autonomous driving with mamba. arXiv preprint arXiv:2408.03601, 2024.

[90] Hang Zhang, Chongruo Wu, Zhongyue Zhang, Yi Zhu, Zhi Zhang, Haibin Lin, Yue Sun,
Tong He, Jonas Muller, R. Manmatha, Mu Li, and Alexander Smola. Resnest: Split-attention
networks. arXiv preprint arXiv:2004.08955, 2020.

[91] Hao Zhang, Feng Li, Shilong Liu, Lei Zhang, Hang Su, Jun Zhu, Lionel M Ni, and Heung-
Yeung Shum. Dino: Detr with improved denoising anchor boxes for end-to-end object detection.
arXiv preprint arXiv:2203.03605, 2022.

[92] Yan Zhuang, Qi Liu, Yuting Ning, Weizhe Huang, Zachary A Pardos, Patrick C Kyllonen, Jiyun
Zu, Qingyang Mao, Rui Lv, Zhenya Huang, et al. From static benchmarks to adaptive testing:
Psychometrics in ai evaluation. arXiv preprint arXiv:2306.10512, 2023.

15

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction describes the proposed rating system (AGI-Elo),
the experiments done to validate and the generalizability and reliability of AGI-Elo (Section
4, Appendix A, B).
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations are discussed in the Section 6, the conclusion section.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

16

Answer: [NA]
Justification: The paper does not include theoretical results
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The code will be open-sourced on Github and the datasets used in the experi-
ment will be available through HuggingFace. The procedures to run the experiment will
also be described on Github.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

17

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The code will be provided on Github.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Experiment settings and details are released together with the code on Github.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: The paper does not provide error bars due to the expensive nature of the
resources needed to run the large scale experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

18

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The compute resources used are specified in Appendix B.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The NeurIPS Code of Ethics has been reviewed. Since the research described
in this paper does not involve humans and is not believed to have potentially harmful social
impacts, it is assumed to conform to the NeurIPS code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [No]
Justification: The paper describes a technical method to rate different AGI models in
completing tasks in common domains. There are no specific discussions about societal
impacts other than the beliefs that the rating system will be helpful, implying positive social
impact.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.

19

https://neurips.cc/public/EthicsGuidelines

• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper describes a new method to benchmark AGI capabilities, the risk for
misuse is believed to be low.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The papers describing the dataset used are cited. The specific datasets source,
versions, and license will be described on the public dataset repository on HuggingFace.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.

20

• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The code used will be published on Github under CC BY-NC-SA 4.0. Docu-
mentation will be provided in the repository.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The research described in the paper does not involve crowdsourcing or human
test subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The research described in this paper does not involve crowdsourcing or human
subjects, therefore no risk disclosure or IRB approval is needed.

Guidelines:

21

paperswithcode.com/datasets

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: LLMs are being evaluated by our rating system. Although it is a core compo-
nent of our research, it is not modified in any way in this paper.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

22

https://neurips.cc/Conferences/2025/LLM

A Supplementary results for experiments

A.1 Qualitative evaluation

We have made our qualitative examples available on:

HuggingFace:

https://huggingface.co/collections/ztony0712/agi-elo-6825d88e9587700e9dd41b12

Project page:

https://ss47816.github.io/AGI-Elo/

A.2 Performance prediction vs. reality: predictive accuracy on various datasets

1200 1000 800 600 400 200 0 200 400 600 800 1000 1200
Rating Difference (Model - Test Case)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Pe
rf

or
m

an
ce

 (
Ac

cu
ra

cy
)

Theoretical
Empirical

(a) Image classification: ImageNet [13]

1200 1000 800 600 400 200 0 200 400 600 800 1000 1200
Rating Difference (Model - Test Case)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Pe
rf

or
m

an
ce

 (
AP

@
[.

50
:.9

5]
)

Theoretical
Empirical

(b) Object detection: COCO [48]

1200 1000 800 600 400 200 0 200 400 600 800 1000 1200
Rating Difference (Model - Test Case)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Pe
rf

or
m

an
ce

 (
Ac

cu
ra

cy
)

Theoretical
Empirical

(c) Question answering: MMLU [29]

1200 1000 800 600 400 200 0 200 400 600 800 1000 1200
Rating Difference (Model - Test Case)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Pe
rf

or
m

an
ce

 (
Ac

cu
ra

cy
)

Theoretical
Empirical

(d) Code generation: LiveCodeBench [37]

1200 1000 800 600 400 200 0 200 400 600 800 1000 1200
Rating Difference (Model - Test Case)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Pe
rf

or
m

an
ce

 (
m

AP
)

Theoretical
Empirical

(e) Motion prediction: Waymo [17]

1200 1000 800 600 400 200 0 200 400 600 800 1000 1200
Rating Difference (Model - Test Case)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Pe
rf

or
m

an
ce

 (
PD

M
 S

co
re

)

Theoretical
Empirical

(f) Motion planning: NAVSIM [12]

Figure 5: Visualization of the predicted (theoretical) agent performances based on the differences
between agents and test cases vs. the empirical performance obtained on each dataset.

23

https://huggingface.co/collections/ztony0712/agi-elo-6825d88e9587700e9dd41b12
https://ss47816.github.io/AGI-Elo/

A.3 Influence of match percentage on model rating stability

0 20 40 60 80 100
% of Matches

800

1000

1200

1400

1600

1800

2000

2200
Ra

ti
ng

AlexNet
ConvNeXt-Large
ConvNeXt-Tiny
DenseNet-121
EfficientNet-B0
Inception-v3
MobileNet-v2

RegNet-X-8GF
RegNet-Y-800MF
ResNet-152
ResNet-18
ResNext-101
ResNext-50
ShuffleNetV2-x1-0

SqueezeNet1-0
Swin-B
Swin-T
VGG-16
ViT-B-16
ViT-L-32

(a) Image classification: ImageNet [13]

0 20 40 60 80 100
% of Matches

1000

1200

1400

1600

1800

2000

Ra
ti

ng

ConvNeXt-S
ConvNext-T
DINO-L
FCOS-ResNet50
FasterRCNN-ResNet50v1
FasterRCNN-ResNet50v2
FasterRCNN_MobileNet_V3

MaskRCNN-ResNet50
RTDETR
ResneSt-CascadeRCNN
RetinaNet-ResNet50
SSD-Lite
SSD-VGG16
Swin-S

Swin-T
YOLOv11n
YOLOv11x
YOLOv3-darknet53
YOLOv8l
YOLOv8n

(b) Object detection: COCO [48]

0 20 40 60 80 100
% of Matches

800

1000

1200

1400

1600

1800

2000

2200

Ra
ti

ng

BLOOMZ-1B1
BLOOMZ-1B7
BLOOMZ-7B1
ChatGPT-4o-mini
ChatGPT-4o
Claude-3.7-Sonnet
DeepSeek-R1-Distill-Qwen-1.5B

DeepSeek-R1-Distill-Qwen-7B
DeepSeek-R1
DeepSeek-V3-0324
GPT-4.1-mini
GPT-4.1-nano
GPT-4.1
Gemini-2.5-Pro-Exp

Gemma-3-27B
Llama-3.1-8B-Instruct
Llama-4-Maverick
Llama-4-Scout
QwQ-32B-Preview
Qwen-2.5-72B

(c) Question answering: MMLU [29]

0 20 40 60 80 100
% of Matches

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

2600

Ra
ti

ng

Claude-3.5-Sonnet
Claude-3.7-Sonnet
DeepSeek-Coder-1.3B
DeepSeek-Coder-7B
DeepSeek-V3-0324
GPT-4-turbo
GPT-4.1-mini

GPT-4.1
GPT-4o-mini
GPT-4o
Gemma-3-12B
Gemma-3-1B
Gemma-3-27B
Gemma-3-4B

Qwen2.5-Coder-32B
Qwen2.5-Coder-3B
Qwen2.5-Coder-7B
StarCoder2-3B
StarCoder2-7b
o1-mini

(d) Code generation: LiveCodeBench [37]

0 20 40 60 80 100
% of Matches

200
400
600
800

1000
1200
1400
1600
1800
2000
2200
2400
2600
2800

Ra
ti

ng

BeTop
ControlMTR
EDA

IMPACT
LSTM

MTR
RMP-YOLO

(e) Motion prediction: Waymo [17]

0 20 40 60 80 100
% of Matches

600

800

1000

1200

1400

1600

1800

2000

2200

2400

Ra
ti

ng

CV_Agent
DRAMA
DRAMA_II

DiffusionDrive
Human

MLP
Transfuser

(f) Motion planning: NAVSIM [12]

Figure 6: Model ratings over the percentage of matches on respective datasets.

24

A.4 Effect of percentage of matches on rating system accuracy and consistency

0 20 40 60 80 100
% of Matches

0.06

0.08

0.10

0.12

0.14

0.16
M

AE

0 20 40 60 80 100
% of Matches

0.01

0.02

0.03

0.04

M
SE

0 20 40 60 80 100
% of Matches

0.96

0.94

0.92

0.90

0.88

0.86

0.84

t

0 20 40 60 80 100
% of Matches

0.0

0.2

0.4

0.6

0.8

1.0

a

(a) Image classification: ImageNet [13]

0 20 40 60 80 100
% of Matches

0.02

0.04

0.06

0.08

0.10

M
AE

0 20 40 60 80 100
% of Matches

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014
M

SE

0 20 40 60 80 100
% of Matches

1.0

0.8

0.6

0.4

0.2

0.0

t

0 20 40 60 80 100
% of Matches

0.0

0.2

0.4

0.6

0.8

1.0

a

(b) Object detection: COCO [48]

Figure 7: System prediction errors and Spearman’s correlations over the percentage of matches on
respective datasets (Vision).

0 20 40 60 80 100
% of Matches

0.06

0.08

0.10

0.12

0.14

0.16

M
AE

0 20 40 60 80 100
% of Matches

0.01

0.02

0.03

0.04

M
SE

0 20 40 60 80 100
% of Matches

1.00

0.95

0.90

0.85

0.80

t

0 20 40 60 80 100
% of Matches

0.0

0.2

0.4

0.6

0.8

1.0

a

(a) Question answering: MMLU [29]

0 20 40 60 80 100
% of Matches

0.050

0.075

0.100

0.125

0.150

0.175

0.200

M
AE

0 20 40 60 80 100
% of Matches

0.01

0.02

0.03

0.04

0.05

0.06

M
SE

0 20 40 60 80 100
% of Matches

1.00

0.95

0.90

0.85

0.80

0.75

t

0 20 40 60 80 100
% of Matches

0.0

0.2

0.4

0.6

0.8

1.0

a

(b) Code generation: LiveCodeBench [37]

Figure 8: System prediction errors and Spearman’s correlations over the percentage of matches on
respective datasets (Language).

25

0 20 40 60 80 100
% of Matches

0.03

0.04

0.05

0.06

0.07

0.08

M
AE

0 20 40 60 80 100
% of Matches

0.002

0.004

0.006

0.008

0.010

M
SE

0 20 40 60 80 100
% of Matches

1.0

0.8

0.6

0.4

0.2

0.0

t

0 20 40 60 80 100
% of Matches

0.0

0.2

0.4

0.6

0.8

1.0

a

(a) Motion prediction: Waymo [17]

0 20 40 60 80 100
% of Matches

0.06

0.07

0.08

0.09

0.10

M
AE

0 20 40 60 80 100
% of Matches

0.0100

0.0125

0.0150

0.0175

0.0200

0.0225

0.0250

M
SE

0 20 40 60 80 100
% of Matches

1.0

0.9

0.8

0.7

0.6

0.5

0.4

t

0 20 40 60 80 100
% of Matches

0.0

0.2

0.4

0.6

0.8

1.0

a

(b) Motion planning: NAVSIM [12]

Figure 9: System prediction errors and Spearman’s correlations over the percentage of matches on
respective datasets (Action).

26

B Detailed experimental setup

B.1 Vision - Image Classification

B.1.1 Dataset

For the computer vision task, we selected the ImageNet [13] dataset, which is one of the most
widely used and challenging public benchmarks for image classification. The dataset consists of
over 14 million labeled images spanning 1,000 object categories. Experiments were conducted on
the validation set, which contains 50,000 distinct images, ensuring a diverse and comprehensive
evaluation of model performance.

B.1.2 Metric

On the ImageNet [13] dataset, the standard Acc@1 metric is used:

Acc@1 =
1

N

N∑
i=1

1 (ŷi = yi) (14)

B.1.3 Scoring function

The scoring function f used on the ImageNet [13] dataset is defined as:

S := Acc@1 (15)

B.1.4 Models

On the image classification task, we selected 20 representative image classification models and
summarized their key characteristics and release years in Table 3. All pretrained models were
obtained from the torchvision.models module in PyTorch [64] and evaluated on a local desktop
equipped with an Intel i9-12900K CPU, 32 GB of RAM, and an NVIDIA RTX 3090 Ti GPU.

Table 3: Image classification models
Model Year Source
1 ConvNeXt-Large [53] 2022 Pytorch
2 Swin-B [52] 2021 Pytorch
3 ConvNeXt-Tiny [53] 2022 Pytorch
4 ViT-B-16 [14] 2020 Pytorch
5 SwinT [52] 2021 Pytorch
6 RegNet-X-8GF [66] 2020 Pytorch
7 ResNext-101 [87] 2017 Pytorch
8 ResNet-152 [28] 2016 Pytorch
9 EfficientNet-B0 [79] 2019 Pytorch

10 ResNext-50 [87] 2017 Pytorch
11 ViT-L-32 [14] 2020 Pytorch
12 RegNet-Y-800MF [66] 2020 Pytorch
13 DenseNet-121 [32] 2017 Pytorch
14 MobileNet-v2 [69] 2018 Pytorch
15 VGG16 [72] 2014 Pytorch
16 ResNet-18 [28] 2016 Pytorch
17 Inception-v3 [78] 2016 Pytorch
18 ShuffleNetV2-x1-0 [57] 2018 Pytorch
19 SqueezeNet1-0 [35] 2016 Pytorch
20 AlexNet [42] 2012 Pytorch

27

B.2 Vision - Object Detection

B.2.1 Dataset

Object Detection is a task that started almost a decade ago. To this end, we use the established dataset
and benchmark the COCO dataset [48], evaluating on the validation set, which consists of 5,000
images.

B.2.2 Metric

Based on the 2017 validation split (val2017) evaluation guidelines, the metric used, AP:0.5-0.95, was
calculated by averaging AP over 80 object classes AND all 10 IoU thresholds from 0.5 to 0.95 with a
step size of 0.05 as shown in Equation 16.

APCOCO =
1

10

9∑
k=0

APIoU=0.50+0.05k (16)

B.2.3 Scoring function

The scoring function f used on the Waymo dataset is defined as:

S := APCOCO (17)

B.2.4 Models

Similar to the image classification task, we selected 20 object detection models that vary in perfor-
mance and year of development. They constitute models that have developed over the years. The
models include: models with a CNN vs a Transformer backbone, and vary in speed and performance.

All pretrained models were obtained from PyTorch [64], MMDetection [8], and Ultralytics [40],
and evaluated on a local desktop equipped with an Intel i9-12900K CPU, 32 GB of RAM, and an
NVIDIA RTX 3090 Ti GPU.

Table 4: Object detection models
Model Year Source
1 DINO-L [91] 2023 MMDetection
2 RT-DETR [56] 2023 Ultralytics
3 ConvNeXt-S [53] 2022 MMDetection
4 Faster R-CNN- ResNet50 -v2 [68] 2015 PyTorch
5 ConvNeXt-T [53] 2022 MMDetection
6 YOLOv11x [39] 2024 Ultralytics
7 YOLOv8l [38] 2023 Ultralytics
8 Swin-S [52] 2021 MMDetection
9 ResNeSt [90] 2021 MMDetection

10 FCOS [81] 2019 PyTorch
11 RetinaNet [47] 2017 PyTorch
12 Swin-T [52] 2021 MMDetection
13 MaskRCNN [27] 2017 MMDetection
14 Faster RCNN -ResNet50 - v1 [68] 2015 PyTorch
15 YOLOv3 [67] 2018 MMDetection
16 YOLOv11n [39] 2024 Ultralytics
17 YOLOv8n [38] 2023 Ultralytics
18 SSD-VGG16 [51] 2016 PyTorch
19 Faster R-CNN -MobileNetv3 [68] 2015 PyTorch
20 SSDLite [51] 2016 PyTorch

28

B.3 Language - Question Answering

B.3.1 Dataset

The MMLU (Massive Multitask Language Understanding) benchmark [29] is designed to evaluate
models on a diverse set of challenging tasks that span 57 subjects, including mathematics, history,
law, and computer science. To this end, we evaluate models on the official test split, which contains
multiple-choice questions with four options each.

B.3.2 Metrics

Following the original evaluation protocol, we report the Acc@1 metric, defined as the proportion
of questions for which the model selects the correct answer, as shown in Equation 18. This metric
captures the model’s ability to perform zero-shot reasoning across a wide range of knowledge-
intensive tasks.

Acc@1 =
1

N

N∑
i=1

1 (ŷi = yi) (18)

where ŷi denotes the model’s predicted answer for the i-th question, and 1(ŷi = yi) is an indicator
function that returns 1 if the prediction matches the ground truth yi, and 0 otherwise.

B.3.3 Scoring function

The scoring function f used on the Waymo dataset is defined as:

S := Acc@1 (19)

B.3.4 Models

For this task, we selected 20 LLMs that vary in performance and year of development. The three
BLOOMZ [61] pretrained models were obtained from Huggingface [43], and evaluated on a local
desktop equipped with an Intel i9-12900K CPU, 32 GB of RAM, and an NVIDIA RTX 3090 Ti GPU.
The other models were evaluated using the OpenAI API [63] and the NanoGPT API [62] online.

Table 5: Question answering models
Model Year Source
1 Gemini-2.5-Pro-Exp [20] 2025 NanoGPT API
2 DeepSeek-R1 [22] 2025 NanoGPT API
3 Claude-3.7-Sonnet [2] 2025 NanoGPT API
4 Llama-4-Maverick [59] 2025 NanoGPT API
5 DeepSeek-V3-0324 [49] 2025 NanoGPT API
6 GPT-4.1 [1] 2025 OpenAI API
7 GPT-4o [34] 2024 OpenAI API
8 Qwen2.5-72B [88] 2024 NanoGPT API
9 GPT-4.1-mini [1] 2025 OpenAI API

10 Llama-4-Scout [59] 2025 NanoGPT API
11 QwQ-32B-Preview [65] 2024 NanoGPT API
12 Gemma-3-27B [80] 2025 NanoGPT API
13 GPT-4o-mini [34] 2024 OpenAI API
14 GPT-4.1-nano [1] 2025 OpenAI API
15 Llama-3.1-8B-Instruct [21] 2024 NanoGPT API
16 DeepSeek-R1-Distill-Qwen-7B [22] 2025 NanoGPT API
17 BLOOMZ-7B1 [61] 2023 hf (bigscience/bloomz-7b1)
18 BLOOMZ-1B7 [61] 2023 bigscience/bloomz-1b7
19 DeepSeek-R1-Distill-Qwen-1.5B [22] 2025 NanoGPT API
20 BLOOMZ-1B1 [61] 2023 bigscience/bloomz-1b1

29

B.4 Language - Code Generation

B.4.1 Dataset

LiveCodeBench is a recently proposed benchmark for evaluating the live code generation capabilities
of large language models. To this end, we adopt the livecodebench/code_generation_lite dataset
[37], which comprises executable, interactive coding problems designed to simulate real-world
programming tasks. Evaluation is conducted on the 5th version of the official test split, which
contains 880 problems spanning diverse domains such as algorithms and data structures.

B.4.2 Metric

Following the evaluation protocol outlined by the authors, each model is assessed based on Functional
Correctness (FC), defined as the proportion Equation 20 of generated code completions that pass all
test cases for a given problem.

FC =
1

N

N∑
i=1

1 (PassAll(ĉi)) (20)

where PassAll(ĉi) is an indicator function that returns 1 if the generated code ĉi passes all functional
test cases for the i-th problem, and 0 otherwise.

B.4.3 Scoring function

The scoring function f used on the Waymo dataset is defined as:

S := PassAll(ĉi) (21)

B.4.4 Models

For the code generation task, we selected 20 LLMs known for their strong performance in
programming-related benchmarks. Several pretrained models were obtained from Huggingface [43],
and evaluated on a local desktop equipped with an Intel i9-12900K CPU, 32 GB of RAM, and an
NVIDIA RTX 3090 Ti GPU. The other models were evaluated using the OpenAI API [63] and the
NanoGPT API [62] online.

Table 6: Code generation models
Model Year Source
1 Claude-3.7-Sonnet [2] 2025 NanoGPT API
2 Claude-3.5-Sonnet [2] 2024 NanoGPT API
3 DeepSeek-V3-0324 [49] 2025 NanoGPT API
4 Gemma-3-27B [80] 2025 NanoGPT API
5 GPT-4.1 [1] 2025 OpenAI API
6 GPT-4.1-mini [1] 2025 OpenAI API
7 o1-mini [36] 2024 OpenAI API
8 GPT-4o-mini [34] 2024 OpenAI API
9 Qwen2.5-Coder-32B [33] 2024 NanoGPT API
10 GPT-4o [34] 2024 OpenAI API
11 GPT-4-turbo [1] 2024 OpenAI API
12 Qwen2.5-Coder-7B [33] 2024 hf (Qwen/Qwen2.5-Coder-7B-Instruct)
13 Gemma-3-12B [80] 2025 hf (google/gemma-3-12b-it)
14 Qwen2.5-Coder-3B [33] 2024 hf (Qwen/Qwen2.5-Coder-3B-Instruct)
15 DeepSeek-Coder-7B [23] 2024 hf (deepseek-ai/deepseek-coder-7b-instruct)
16 StarCoder2-7B [55] 2024 hf (bigcode/starcoder2-7b)
17 Gemma-3-4B [80] 2025 hf (google/gemma-3-4b-it)
18 StarCoder2-3B [55] 2024 hf (bigcode/starcoder2-3b)
19 DeepSeek-Coder-1.3B [23] 2024 hf (deepseek-ai/deepseek-coder-1.3b-instruct)
20 Gemma-3-1B [80] 2025 hf (google/gemma-3-1b-it)

30

B.5 Action - motion prediction

B.5.1 Dataset

For the motion prediction task, we adopt the Waymo Open Motion Dataset (WOMD) [17], one of the
most comprehensive and challenging public datasets for autonomous driving behavior prediction.
WOMD is specifically designed to facilitate research on multi-agent trajectory forecasting in complex
urban environments. The dataset contains a total of 486,995 training clips, 44,097 validation clips,
and 44,920 testing clips. Each clip spans 8 seconds and is recorded at a sampling frequency of 10 Hz.
Within each clip, 10 timesteps of historical agent states, 1 current timestep, and 80 future timesteps
are provided, enabling both short-term and long-term trajectory forecasting. Evaluation is conducted
on the validation split using the official Waymo evaluation API. For each selected target agent (as
specified by Waymo), the model generates six candidate future trajectories along with their associated
confidence scores.

B.5.2 Metric

In the WOMD, there are eight predefined trajectory buckets, including straight, straight-left, straight-
right, left, right, left u-turn, right u-turn, and stationary [17]. For each bucket, a predicted trajectory
is classified as a false positive if it is considered a miss as defined in MR; otherwise, it is classified
as a true positive. Consistent with the mAP metrics used in object detection tasks, a maximum of
one true positive is assigned to the one with the highest probability, while all others are assigned a
false positive. True positives and false positives are then stored by their probabilities, and a Precision
/ Recall (P/R) curve can be plotted for each bucket. The Average Precision (AP) is represented by
the area under the P/R curve, and the mAP metric can be computed by averaging the AP across all
buckets as:

mAP =
1

N

N∑
i=1

APi (22)

B.5.3 Scoring function

The scoring function f used on Waymo [17] dataset is defined as:

S := mAP (23)

B.5.4 Models

To ensure a fair and consistent evaluation, we reproduced all listed motion prediction models
using a unified hardware setup consisting of eight NVIDIA RTX 3090 GPUs. For the publicly
available models, we followed their official open-source implementations closely, adapting only
minor components where necessary to ensure compatibility within our evaluation framework. As
ControlMTR and IMPACT are not publicly available, we contacted the authors directly and received
assistance in replicating their results.

Table 7: Motion prediction models
Model Year Source
1 Waymo LSTM Baseline [17] 2021 Proprietary
2 MTR [71] 2022 https://github.com/sshaoshuai/MTR
3 EDA [46] 2023 https://github.com/Longzhong-Lin/EDA
4 ControlMTR [75] 2023 Proprietary
5 RMP-YOLO [74] 2024 https://github.com/ggosjw/RMP-YOLO
6 BETOP [50] 2024 https://github.com/OpenDriveLab/BeTop
7 IMPACT [76] 2025 Proprietary

31

B.6 Action - motion planning

B.6.1 Dataset

To evaluate the motion planning performance, we adopt the NAVSIM benchmark [12], which utilizes
the OpenScene dataset [11] - a refined derivative of the nuPlan [25]. This comprehensive benchmark
features 120 hours of vehicle trajectories sampled at 2Hz, providing multimodal sensor observations
including: (1) synchronized 8-view high-resolution RGB image (1920×1080 pixels) and (2) fused
LiDAR point clouds aggregated from five sensors. The agent’s input encompasses the current
observation frame along with three temporally preceding frames, thereby providing 1.5 seconds of
continuous temporal context. For quantitative evaluation of the closed-loop planning performance,
we employ the Predictive Driver Model Score (PDMS) provided in the NAVSIM benchmark.

B.6.2 Metric

The PDMS in NAVSIM v1.1 is formulated as follows:

PDMS = NC× DAC× (5× EP + 5× TTC + 2× C)
12

, (24)

where NC (no collision), DAC (driving area compliance), EP (ego progress), TTC (time-to-collision),
and C (comfort) are sub-metrics as detailed in [12].

B.6.3 Scoring function

The scoring function f used on the NAVSIM dataset is defined as:

S := PDMS (25)

B.6.4 Models

On the motion planning task, we reproduced all motion prediction models using the same hardware
setup consisting of eight NVIDIA RTX 3090 GPUs. For the publicly available models, we followed
their official open-source implementations closely to ensure a fair and consistent evaluation. As
DRAMA II is not publicly available, we contacted the authors directly and received assistance in
replicating their results.

Table 8: Motion planning models
Model Year Source
1 Human [12] - NAVSIM Ground Truth
2 DiffusionDrive [45] 2025 https://github.com/hustvl/DiffusionDrive
3 DRAMA II 2025 Proprietary
4 DRAMA [89] 2024 https://chengran-yuan.github.io/DRAMA/
5 Transfuser [10] 2024 https://github.com/autonomousvision/transfuser
6 MLP 2023 https://github.com/autonomousvision/navsim
7 CV Agent 2000 https://github.com/autonomousvision/navsim

32

	Introduction
	Existing gaps in AI evaluation
	Our contributions

	Rating systems explained
	Conventional rating systems
	Properties & utilities

	AGI-Elo rating system design
	Test cases vs. agents
	Conversion to match results
	Rating update
	Prediction

	Experiments
	Experimental setup
	Rating distributions
	Reliability of the rating system

	Related works
	Conclusion and limitations
	Supplementary results for experiments
	Qualitative evaluation
	Performance prediction vs. reality: predictive accuracy on various datasets
	Influence of match percentage on model rating stability
	Effect of percentage of matches on rating system accuracy and consistency

	Detailed experimental setup
	Vision - Image Classification
	Dataset
	Metric
	Scoring function
	Models

	Vision - Object Detection
	Dataset
	Metric
	Scoring function
	Models

	Language - Question Answering
	Dataset
	Metrics
	Scoring function
	Models

	Language - Code Generation
	Dataset
	Metric
	Scoring function
	Models

	Action - motion prediction
	Dataset
	Metric
	Scoring function
	Models

	Action - motion planning
	Dataset
	Metric
	Scoring function
	Models

