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Abstract—With the continuous development of autonomous 
driving technologies, the registration of outdoor large-scale 
LiDAR point clouds has become increasingly important. Unlike 
indoor small-scale object point clouds, large-scale point clouds 
have inherent sparsity, abundant outliers, and other limitations. 
These characteristics often lead to low alignment accuracy and 
high time consumption when applying existing methods to large-
scale point cloud registration. To address these issues, we propose 
an improved point cloud keypoints extracting method based on 
rotation compensation and a convolutional end-to-end 
unsupervised point cloud registration network. The former 
enables reliable keypoints extraction. The latter further extracts 
global features from the keypoint point clouds obtained by the 
former method and learns the overlapping region information 
between the source and target point clouds using a spatial 
attention weight encoder, and it can be trained efficiently without 
pose ground truth. To ensure fast and effective convergence of 
the network, we introduce a chamfer distance loss based on 
dynamic overlap rates. We test our method on two outdoor large-
scale LIDAR point cloud datasets: PandaSet and KITTI 
odometry datasets. The results demonstrate excellent and stable 
performance, when it is applied to either original consecutive 
frames or the case of simulating large angular variations in real-
world scenarios between consecutive frames by randomly 
transforming the target frame. Moreover, by applying our 
method’s registration results as initial values to the classic ICP, 
we not only achieve optimal accuracy and robustness but also 
significantly accelerate the convergence of ICP, enhancing the 
efficiency of precise registration. 
 
Index Terms—LIDAR point cloud registration, Fast and robust 
registration, Unsupervised deep learning, Large-scale scene, 
Autonomous driving positioning, Global localization.  
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Fig. 1 Comparison of different registration methods based on their 

computation time and registration recall 

I. INTRODUCTION 
ITH the maturity and popularity of 3D point cloud 
acquisition devices such as LiDAR, as well as the 
general improvement in computer processing 

power, point clouds have become the primary data format for 
representing the 3D world and have been widely used. Due to 
the limited field of view of sensors during the process of 
scanning the 3D world to obtain point cloud data, registration 
algorithms are needed to stitch together local point clouds to 
generate complete 3D scenes. Point cloud registration 
essentially involves estimating the Euclidean transformation 
matrix between two frames of scanned point clouds. After 
obtaining the transformation matrix, point clouds captured in 
different camera or LiDAR coordinate systems can be 
converted to the world coordinate system and combined. Point 
cloud registration is of great significance in fields such as 3D 
reconstruction [1], localization, and is specifically applied in 
scenarios such as simultaneous localization and mapping 
(SLAM) for mobile robots [2], [3], [4] and high-precision map 
construction for autonomous driving [5], [6], [7], [8], [9]. 

As the deep learning achieved great development, many 
learning-based methods [10], [11], [12], [13], [14] have 
replaced the classical hand-crafted features [15], [16], [17] to 
perform point cloud registration tasks more quickly and 
accurately. However, existing point cloud registration methods 
have been mostly applied in the stitching of small-scale 3D 
point clouds, such as indoor or object-level point clouds. 
When in large-scale point cloud scenes, due to the range errors 
and noise in the LIDAR scan data, as well as the sparsity of 
the point cloud, the performance of registration algorithms 
designed for small-scale scenes are often unsatisfactory, which 
may bring time-consuming and registration failure problem. In 
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recent years, laser SLAM technologies, with LOAM [18] as a 
representative example, have been widely applied in fields 
such as autonomous driving and robot navigation. And 
registration techniques for large-scale outdoor point clouds are 
the important component of laser SLAM. 

To address the problems mentioned above about the large-
scale outdoor point cloud registration, we take inspiration 
from laser SLAM keypoints extracting algorithms. It is well 
known that LOAM creatively extracts edge and plane 
keypoints from large scene scanned point clouds, and it 
estimates motion by optimizing the distances between edge 
keypoints and edge lines, as well as between plane keypoints 
and planes. In this paper, we first proposed an improved 
keypoints extracting method based on rotation compensation, 
which can help extract corner and surf keypoints from large-
scale outdoor point cloud more robustly. Then, we proposed a 
convolutional end-to-end unsupervised registration network 
including a weighted chamfer distance loss based on dynamic 
overlap ratio, which can help the total registration network 
train efficiently without the availability of pose ground truth 
label data. To validate the performance of our network, we 
performed the experiment on two representative large-scale 
outdoor LiDAR point cloud datasets, namely KITTI odometry 
dataset [19] and PandaSet dataset [20]. The results 
demonstrate that the proposed method performs well in terms 
of efficiency and in dealing with large rotation variation, and it 
can provide good initial values for refined registration 
algorithms, thus surpassing state-of-the-art methods in terms 
of precision. In summary, our main contributions are 
threefold: 
 We proposed an improved keypoints extracting 

method based on rotation compensation to address 
the issue of inaccurate or even failed keypoints 
extraction when there is an inclination angle between 
the point cloud frame and the sensor's XOY plane. 
This method utilizes the idea of point cloud plane 
segmentation to extract the reference plane of the 
point cloud frame and applies rotation compensation 
to the original point cloud, thereby improving the 
robustness of keypoints extraction. 

 Using the robust keypoints extraction, a 
convolutional end-to-end unsupervised registration 
network is proposed for large-scale point cloud 
scenes. It utilizes a Siamese neural network structure 
and employs a PointNet-like module to extract global 
features of consecutive point cloud frames' keypoints, 
which are extracted with the proposed keypoints 
extracting method based on rotation compensation. 
And then an attention weight mechanism is designed 
to enable the network to adaptively learn the 
overlapping regions of consecutive point cloud 
frames, thereby achieving fast and effective end-to-
end registration of large-scale point cloud scenes. 

 Within the proposed convolutional end-to-end 
unsupervised registration network, a dynamic overlap 
ratio weighted chamfer distance loss is proposed 

based on the estimated overlapping regions of large-
scale point clouds, so that the registration network is 
able to converge more quickly and accurately. 

II. RELATED WORK 

A. Classical Point Cloud Registration 
Traditional point cloud registration methods can be roughly 

divided into optimization-based methods and handcrafted 
feature-based methods. Among them, the Iterative Closest 
Point (ICP) [21] is the most classic optimization-based point 
cloud registration method. Given source point cloud 𝑃𝑃  and 
target point cloud 𝑄𝑄, first obtain the correspondence between 
points using the nearest neighbor rule. For example, the point 
𝑝𝑝𝑖𝑖 in 𝑃𝑃 corresponds to the nearest neighbor point 𝑞𝑞𝑖𝑖 in 𝑄𝑄. The 
initial transformation matrix 𝑇𝑇  is usually set to the identity 
matrix 𝐼𝐼 . Then, iteratively optimize the distance error to 
estimate the transformation matrix 𝑇𝑇 . The iteration will be 
terminated when the required error is below a threshold or the 
maximum number of iterations is reached. However, ICP is 
not a global registration algorithm. Its accuracy relies on the 
quality of the initial registration guess, and it often gets 
trapped in local optima. Many ICP variants [22], [23], [24] 
have been proposed to handle the problems existed in ICP. 
Go-ICP (Generalized-Iterative Closest Point) [24] utilizes the 
branch-and-bound method in the SE(3) space. It subdivides 
the initial space into smaller subspaces using an octree data 
structure and eliminates unfavorable subspaces through the 
branch-and-bound technique. It continues subdividing the 
subspaces that meet the threshold conditions to find the 
globally optimal transformation. While this method addresses 
the issue of local minima, it remains sensitive to initialization. 
On the other hand, GICP [23] combines the iterative closest 
point (ICP) algorithm and the point-to-plane ICP algorithm 
into a probabilistic framework, where both point-to-point and 
point-to-plane methods become special cases. This method 
establishes Gaussian distributions on pairs of points. 
Consequently, for any rigid transformation T, the distances 
between the corresponding points follow a Gaussian 
distribution. The optimal transformation matrix is then 
determined as the one that maximizes the Gaussian probability 
of the distances between the corresponding points after the 
transformation. MVGICP [22] calculates the mean and 
variance within voxels at different scales, from large to small, 
during iterations. It incorporates these values into the GICP 
model and utilizes the Gauss-Newton method to obtain the 
transformation matrix. The iteration continues with smaller 
voxels. Larger voxels allow for a more global coarse 
registration of point clouds, while smaller voxels further 
improve the accuracy of the registration results. Additionally, 
the method eliminates the need for nearest neighbor search, 
significantly enhancing computational efficiency. The Normal 
Distributions Transform (NDT) [25] is another classic 
optimization-based point cloud registration method. It 
characterizes point cloud data using mathematical distribution 
properties. By voxelizing the target point cloud and 
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calculating the mean and variance of points within each voxel, 
a probability density function describing the distribution of 
points within the voxel can be obtained. The optimal 
transformation matrix is the one that maximizes the overall 
likelihood of the source point cloud within its corresponding 
probability density function. 

Methods based on handcrafted features [26], [27], [28], [29] 
do not utilize all the point cloud data, which may contain 
outlier points and noise. These methods extract individual or 
combined effective features from the point cloud, such as 
points, lines, surfaces, normal vectors, and curvature. They 
then achieve fast correspondence matching based on custom 
feature descriptors. Once the point-to-point correspondences 
are determined, the transformation matrix can be calculated 
without the need for iterative methods using the RANSAC 
algorithm [30]. Despite the widespread application of these 
classical registration methods, they still face challenges such 
as long computation time and poor robustness when dealing 
with large-scale LIDAR point cloud registration problems.  

B. Learning-based Point Cloud Registration 
The field of learning-based point cloud registration 

encompasses two main divisions: feature-learning-based and 
end-to-end-based methods. Feature-learning-based approaches 
focus on leveraging deep features to estimate accurate 
correspondences, allowing for one-step optimization (e.g., 
SVD or RANSAC) to estimate the transformation without 
iterative processes [31]. For example, PPFNet [10] calculates 
point pair features (PPF) from the local neighborhoods of 
sampled points and uses them as inputs to the network. It 
employs multiple PointNet [32] networks to fuse local features 
at different scales and global features, which are then encoded 
using MLPs to obtain the final features. PPFNet leverages 
global context awareness and feature encoding to enhance 
rotation invariance and robustness against noise. However, 
calculating PPF features requires a significant amount of 
nearest neighbor annotation data, and the establishment of 
local reference frames relies on estimated normal vectors, 
making it sensitive to noise. On the other hand, end-to-end-
learning-based methods employ neural networks to directly 
transform two input point clouds into a corresponding 
transformation matrix [31]. End-to-end networks integrate 
processing modules of various steps into a single network, 
which requires a large amount of memory and is more suitable 
for registration tasks with small datasets. For example, DCP 
(Deep Closest Point) [12] uses DGCNN (Dynamic Graph 
Convolutional Neural Network) [33] to learn an embedding 
module that maps input point clouds to a high-dimensional 
space. It utilizes a transformer module to encode the 
contextual information of the point cloud and outputs the 
predicted rigid transformation matrix using a differentiable 
SVD (Singular Value Decomposition) layer.  

C. Registration for Large-scale Outdoor LIDAR Point Clouds 
For large-scale outdoor LiDAR point cloud registration 

tasks, there are several challenges that need to be addressed. 
These challenges include handling outliers, noise, and 

distortion in individual point clouds, dealing with low overlap 
between consecutive frames, and coping with the high 
computational costs due to the large volume of point cloud 
data. Most existing learning-based registration methods are 
designed for small-scale indoor point clouds or object point 
clouds. However, in recent years, with the continuous 
development of technologies such as autonomous driving, 
deep learning methods for large-scale outdoor LiDAR point 
cloud registration tasks have also emerged. For example, 
DeepVCP [34] implements a deep virtual correspondences 
point method. The network first uses PointNet++ [35] to 
extract semantic features of the points. USIP [36] and 
RSKDD-Net [37] are two different point cloud keypoint 
detectors that can be used for registration tasks. USIP 
leverages a feature proposal network to learn stable keypoints 
from the input 3D point cloud and its transformed counterpart. 
It proposes a probabilistic chamfer loss to optimize the 
distances between keypoints of the input point cloud pairs. 
RSKDD-Net utilizes a random sampling extension group 
strategy to expand the receptive field of each sampled point 
for clustering neighboring points. Then, an attention 
mechanism is used to aggregate the positions and features of 
the neighboring points to obtain the keypoints. DDRNet [38] 
and HRegNet [39] are network architectures that have 
emerged in the past two years specifically for large-scale 
scene point cloud registration tasks. DDRNet utilizes a local-
spatially aware encoder to gather posture information 
comprising local and spatial features. It also incorporates an 
attentional weighting module, enabling the network to 
adaptively prioritize overlapping areas. HRegNet conducts 
registration on hierarchically extracted keypoints and 
descriptors. By combining dependable features from deeper 
layers with accurate position information from shallower 
layers, the framework achieves registration that is both robust 
and precise. However, both of the above methods require the 
use of ground truth trajectory data to train the network in a 
supervised manner, which limits their application in real-
world scenarios. 

III. METHODOLOGY 
In this section, we proposed an improved keypoints 

extracting method based on rotation compensation and a 
convolutional end-to-end unsupervised registration network 
for large-scale laser point cloud registration problems. The 
proposed approach, as illustrated in Fig. 1, extracts keypoints 
from the original point cloud using the improved keypoints 
extracting method, and extracts global features from the 
source keypoints cloud denoted as 𝑃𝑃𝑘𝑘𝑆𝑆 and the target keypoints 
cloud denoted as 𝑃𝑃𝑘𝑘𝑇𝑇  in the registration network. Then, an 
attentional weighting module and a symmetric MLPs encoder 
are used to predict the pose 𝑇𝑇𝑆𝑆→𝑇𝑇 ∈ 𝑆𝑆𝑆𝑆(3)  for point cloud 
registration. The pose is obtained by optimizing the weighted 
chamfer distance based on dynamic overlap ratio between the 
original non-ground point clouds denoted as 𝑃𝑃𝑞𝑞𝑆𝑆 and 𝑃𝑃𝑞𝑞𝑇𝑇 . We 
describe the detail of our network loss function in the last part 
of this section. 
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A. An Improved Keypoints Extracting Method Based on 
Rotation Compensation 

As for large-scale LIDAR point cloud, directly extracting 
features from the original point cloud using structures similar 
to PointNet [32] is unreliable and can result in loss of local 
information due to the sparsity of the original point cloud. 
Existing methods often choose to sample the original point 
cloud [35], [36]. After obtaining the sampled points, they 
extract corresponding local regions of the point cloud by 
finding neighboring points for each sampled point and recover 
global features from all the local geometric batches. Although 
this method of extracting global features from local geometric 
patches of the point cloud is effective, it has certain issues: 
 Low computational efficiency: Existing approaches 

mostly use FPS (Farthest Point Sampling) algorithm 
as the sampling method, which has a time complexity 
of 𝑂𝑂(𝑁𝑁2). 

 Increased network complexity: Extracting multi-scale 
features from each local geometric batches requires 
using multiple layers of PointNet extractors, which 
increases the overall complexity of the network. 

In order to address the mentioned issues, we draw 
inspiration from the keypoints extracting method in LOAM 
[18] and directly extracts global features from the keypoints 
cloud 𝑃𝑃𝑘𝑘. However, the original surf points and corner points 
extracting method in LOAM fails or produces inaccurate 
results when there is an inclination between the point cloud 
frame and the sensor's XOY plane 𝜙𝜙𝑋𝑋𝑋𝑋𝑋𝑋. To tackle this, we 
proposed an improved keypoints extracting method based on 
rotation compensation. The overall algorithm workflow is 
illustrated in Fig. 2. First, the ground reference plane 𝜙𝜙𝑅𝑅  is 
extracted from the original point cloud 𝑃𝑃𝑖𝑖  using a plane 
segmentation algorithm based on RANSAC, which is shown 
in Algorithm. 1. 

 
Fig. 2 Architecture of proposed registration network 
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Algorithm. 1 Point Cloud Plane Segmentation 
Input: Initial point cloud: 𝑃𝑃𝑁𝑁×3

𝑖𝑖  
 Down leafsize: 𝐿𝐿𝑠𝑠 
Output: The inplane point cloud: 𝑃𝑃𝑁𝑁𝑛𝑛×3

𝑛𝑛  
 The outplane point cloud: 𝑃𝑃𝑁𝑁𝑚𝑚×3

𝑚𝑚  
 The segment plane coefficients: 𝜉𝜉𝑖𝑖 
// Perform voxel downsampling on the original point cloud. 
1: 𝑃𝑃𝑁𝑁𝑑𝑑×3

𝑑𝑑  = VoxelGridDownsample (𝑃𝑃𝑁𝑁×3
𝑖𝑖 ); 

// Random sampling inliers to estimate the model of segment plane. 
2: 𝑄𝑄𝑁𝑁𝑠𝑠×3

𝑠𝑠  = RandomSample (𝑃𝑃𝑁𝑁𝑑𝑑×3
𝑑𝑑 );  

// Calculate the initial coefficients of segment plane. 
3: 𝜉𝜉𝑠𝑠𝑖𝑖 = Model ();  
// Substitute all points from 𝑃𝑃𝑁𝑁𝑑𝑑×3

𝑑𝑑  into the model and count the 
number 𝑁𝑁𝑖𝑖 of inliers. 
4: 𝑁𝑁𝑖𝑖 = CalInliers (𝑃𝑃𝑁𝑁𝑑𝑑×3

𝑑𝑑 )  
// When the change in the number of inliers exceeds the threshold 𝜀𝜀, 
iterate and update the optimal plane model with the current inliers, 
and update the number of inliers. 
5: While (∆𝑁𝑁𝑖𝑖 > 𝜀𝜀) do 
6:  𝜉𝜉𝑠𝑠𝑖𝑖 = Model (); 
7:  Optimization (𝑁𝑁𝑖𝑖 = CalInliersNum (𝑃𝑃𝑁𝑁𝑑𝑑×3

𝑑𝑑 )); 
8: 𝜉𝜉𝑖𝑖 = 𝜉𝜉𝑠𝑠𝑖𝑖; 

// Substitute 𝜉𝜉𝑖𝑖 to calculate 𝑃𝑃𝑁𝑁𝑛𝑛×3
𝑛𝑛  and 𝑃𝑃𝑁𝑁𝑚𝑚×3

𝑚𝑚  
9: 𝑃𝑃𝑁𝑁𝑛𝑛×3

𝑛𝑛 , 𝑃𝑃𝑁𝑁𝑚𝑚×3
𝑚𝑚  = ModelApply ();  

10: return 𝑃𝑃𝑁𝑁𝑛𝑛×3
𝑛𝑛 , 𝑃𝑃𝑁𝑁𝑚𝑚×3

𝑚𝑚 , 𝜉𝜉𝑖𝑖 
Then, the angle 𝜃𝜃𝑁𝑁 between the normal vector 𝑛𝑛�⃗ 𝑅𝑅 of 𝜙𝜙𝑅𝑅 and 

the normal vector 𝑛𝑛�⃗ 𝑋𝑋𝑋𝑋𝑋𝑋 of 𝜙𝜙𝑋𝑋𝑋𝑋𝑋𝑋 is calculated, along with the 
cross-product vector 𝑛𝑛�⃗ 𝑀𝑀. This allows for the computation of 
the compensation matrix 𝑇𝑇𝜙𝜙𝑅𝑅→𝜙𝜙𝑋𝑋𝑋𝑋𝑋𝑋 ∈ 𝑆𝑆𝑆𝑆(3), which represents 
the transformation from 𝜙𝜙𝑅𝑅  to 𝜙𝜙𝑋𝑋𝑋𝑋𝑋𝑋 . The point cloud 𝑃𝑃𝑖𝑖  is 
then transformed by applying the compensation 
transformation to obtain 𝑃𝑃𝑖𝑖′ , and the keypoints cloud 𝑃𝑃𝑘𝑘𝑖𝑖

′  is 
extracted from 𝑃𝑃𝑖𝑖′ . Finally, the inverse transformation 
𝑇𝑇𝜙𝜙𝑅𝑅→𝜙𝜙𝑋𝑋𝑋𝑋𝑋𝑋
′  is applied to the transformed  𝑃𝑃𝑘𝑘𝑖𝑖

′ to obtain the final 
keypoints cloud 𝑃𝑃𝑘𝑘𝑖𝑖 . Our approach not only reduces the time 
complexity of feature point sampling to 𝑂𝑂(𝑁𝑁)  but also 
decreases the overall complexity of the network, improving 
training efficiency. 

 
Fig. 3 The workflow of keypoints cloud extracting method based on rotation compensation 
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The encoder consists of two parts: a multi-layered 
perceptions (MLPs) and an attention layer. The MLPs is 
similar to the PointNet architecture having size 64, 64, 64, 
128, 1024. Both the 𝑃𝑃𝑘𝑘(𝑠𝑠/𝑐𝑐)

𝑠𝑠  (surf or corner points cloud from 
source 𝑃𝑃𝑠𝑠) and 𝑃𝑃𝑘𝑘(𝑠𝑠/𝑐𝑐)

𝑡𝑡  (surf or corner points cloud from target 
𝑃𝑃𝑡𝑡) are input to the MLPs, then we can get the corresponding 
keypoints global features as Eq. 1. 
 𝐹𝐹𝑘𝑘(𝑠𝑠/𝑐𝑐)

𝑔𝑔𝑠𝑠/𝑡𝑡
= 𝑀𝑀𝐿𝐿𝑃𝑃𝑀𝑀[3,64,64,64,128,1024] �𝑃𝑃𝑘𝑘(𝑠𝑠/𝑐𝑐)

𝑠𝑠/𝑡𝑡 � (1) 
After the keypoints global feature embedding, We designed 

an attention layer that adaptively learns the correlations 
between features, allowing the network to focus more on the 
similar regions between the keypoint point clouds. For the 
source 𝑃𝑃𝑠𝑠 and the target 𝑃𝑃𝑡𝑡, their corresponding extracted surf 
point cloud and corner point cloud already have a good level 
of matching. However, the inclusion of the attention layer 
further alleviates the problem of mismatch caused by the 
sparsity of point clouds. We used a linear function to a query 
vector and key vector denoted as 𝑄𝑄 and 𝐾𝐾. Then we computed 
the attention scores 𝑆𝑆 by Eq. 2. 

 𝑆𝑆𝑖𝑖𝑖𝑖 = �
𝑄𝑄𝑖𝑖 × 𝐾𝐾𝑖𝑖
𝑟𝑟𝑟𝑟𝑟𝑟(𝑄𝑄)�𝑖𝑖∈𝑁𝑁𝑘𝑘(𝑠𝑠/𝑐𝑐),𝑖𝑖∈𝑁𝑁𝑘𝑘(𝑠𝑠/𝑐𝑐)

 (2) 

where 𝑟𝑟𝑟𝑟𝑟𝑟(𝑄𝑄) denotes the size of query vector 𝑄𝑄,  𝑁𝑁𝑘𝑘(𝑠𝑠/𝑐𝑐) 
represents the size of keypoints cloud, and both the 𝑄𝑄 and 𝐾𝐾 
are learnable parameters which make the network put more 
attention to the similar regions of keypoints cloud. In order to 
get the attention weight matrix denoted as 𝑊𝑊 , we used the 
softmax function to normalize attention scores 𝑆𝑆 as Eq. 3. 
 𝑊𝑊 = 𝑀𝑀𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑆𝑆) (3) 

Finally, we used the attention weight matrix to modify the 
features computed by 𝑀𝑀𝐿𝐿𝑃𝑃𝑀𝑀, formulated as Eq. 4. 

 �
𝐹𝐹𝑘𝑘(𝑠𝑠/𝑐𝑐)
𝑔𝑔𝑠𝑠 = 𝐹𝐹𝑘𝑘(𝑠𝑠/𝑐𝑐)

𝑔𝑔𝑠𝑠 + �𝑊𝑊 × 𝐹𝐹𝑘𝑘(𝑠𝑠/𝑐𝑐)
𝑔𝑔𝑡𝑡 �

𝐹𝐹𝑘𝑘(𝑠𝑠/𝑐𝑐)
𝑔𝑔𝑡𝑡 = 𝐹𝐹𝑘𝑘(𝑠𝑠/𝑐𝑐)

𝑔𝑔𝑡𝑡 + �𝑊𝑊 × 𝐹𝐹𝑘𝑘(𝑠𝑠/𝑐𝑐)
𝑔𝑔𝑠𝑠 �

 (4) 
 

where the residual term 𝑊𝑊 × 𝐹𝐹𝑘𝑘(𝑠𝑠/𝑐𝑐)
𝑔𝑔𝑠𝑠/𝑡𝑡

 refers to the prior 
learned weighting region between the source keypoints cloud 
and the target keypoints cloud. 

2) Siamese architecture decoder 
For the purpose of aggregating all the keypoints global 

features, we chose to put them to a symmetric max-pooling 
function and make them concatenated, and then we got the 
aggregated global features. In order to predict the final pose, 
we designed the FC layers, which has six hidden layers, 2048, 
1024, 1024, 512, 512, 256, and an output layer of size 7 whose 
parameters represent the predicted pose 𝑇𝑇𝑓𝑓𝑖𝑖𝑛𝑛𝑓𝑓𝑓𝑓(1×7). The first 
four values of 𝑇𝑇𝑓𝑓𝑖𝑖𝑛𝑛𝑓𝑓𝑓𝑓(1×7)  denote the rotation quaternion 𝑞𝑞 ∈
ℝ4,𝑞𝑞𝑇𝑇𝑞𝑞 = 1, and last three denote the translation vector 𝑠𝑠 ∈
ℝ3. 

3) Dynamic overlap ratio weighted chamfer distance loss 
For supervised learning, the accuracy of registration 

network predictions can be optimized by setting the loss 
function as the L2 norm of the difference between the 
predicted pose and the ground truth. However, in real-world 
scenarios, acquiring accurate ground truth for network training 
is often challenging and complex. Therefore, for our 
unsupervised network, we have chosen the chamfer distance 
used for quality evaluation of point cloud reconstruction as the 
loss function. It aims to minimize the distance between all 
matched points in the non-ground point clouds denoted as 𝑃𝑃𝑞𝑞𝑆𝑆 
and 𝑃𝑃𝑞𝑞𝑇𝑇 from the source 𝑃𝑃𝑠𝑠 and target 𝑃𝑃𝑡𝑡, as the ground points 
represent the majority of unstable keypoints [40]. To ensure 
more robust and faster convergence during backpropagation 
optimization, we multiply the traditional chamfer distance loss 
by a correction coefficient based on the dynamic overlap ratio 
of the point clouds, formulated as Eq. 5. 

 

⎩
⎪
⎨

⎪
⎧𝐿𝐿𝑟𝑟𝑀𝑀𝑀𝑀�𝑃𝑃𝑞𝑞

𝑠𝑠𝑡𝑡𝑡𝑡𝑡𝑡𝑛𝑛𝑠𝑠 ,𝑃𝑃𝑞𝑞𝑡𝑡� = 𝛶𝛶 ∙ 𝑠𝑠𝑚𝑚𝑛𝑛𝜑𝜑:𝑃𝑃𝑞𝑞
𝑠𝑠𝑡𝑡𝑡𝑡𝑡𝑡𝑛𝑛𝑠𝑠→𝑃𝑃𝑞𝑞𝑡𝑡
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𝑀𝑀𝑚𝑚𝑠𝑠𝑠𝑠�𝑃𝑃𝑞𝑞
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𝑥𝑥∈𝑃𝑃𝑞𝑞
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𝑀𝑀𝑚𝑚𝑠𝑠𝑠𝑠�𝑃𝑃𝑞𝑞

𝑠𝑠𝑡𝑡𝑡𝑡𝑡𝑡𝑛𝑛𝑠𝑠�
𝑛𝑛𝑛𝑛𝑠𝑠𝑥𝑥∈𝑃𝑃𝑞𝑞

𝑠𝑠𝑡𝑡𝑡𝑡𝑡𝑡𝑛𝑛𝑠𝑠�𝑠𝑠 < 𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛(‖𝑠𝑠 − 𝜑𝜑(𝑠𝑠)‖2) + 𝑀𝑀𝑠𝑠𝑠𝑠(‖𝑠𝑠 − 𝜑𝜑(𝑠𝑠)‖2)�

 (5) 

Where 𝑃𝑃𝑞𝑞
𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡𝑛𝑛𝑠𝑠 is the non-ground cloud from source 𝑃𝑃𝑠𝑠 and 

transformed by the predicted pose 𝑇𝑇𝑓𝑓𝑖𝑖𝑛𝑛𝑓𝑓𝑓𝑓(1×7). The 𝜑𝜑 function 
finds the corresponding points between 𝑃𝑃𝑞𝑞

𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡𝑛𝑛𝑠𝑠  and 𝑃𝑃𝑞𝑞𝑇𝑇  based 
on nearest neighbor point rule. And the coefficient 𝛾𝛾 
represents the reciprocal of the ratio between the number of 
nearest neighbor matching distances that are smaller than the 
mean of the nearest neighbor matching distances plus the 
standard error and the total number of keypoints. 

IV. EXPERIMENTAL RESULTS AND ANALYSIS 
In this section, we used the KITTI [19] and PandaSet [20] 

large-scale outdoor datasets as the benchmark to evaluate our 
improved keypoints extracting method and the proposed 
convolutional end-to-end unsupervised registration network. 
Firstly, we evaluated the effectiveness and robustness of our 

improved keypoints extracting method separately in scenarios 
where the point cloud frame had and didn't have an inclination 
with respect to the sensor's XOY plane. Secondly, we 
compared the performance of the proposed registration 
network with existing state-of-the-art methods in terms of 
registration accuracy, efficiency, and recall rate. 

A. Evaluation of Improved Keypoints Extracting Method 
Due to the more prominent keypoints in the KITTI dataset's 

LiDAR point cloud, we chose to evaluate the improved 
keypoints extracting method based on the KITTI dataset. The 
KITTI odometry dataset is the one of the most widely used 
public dataset in the field of autonomous driving. It consists of 
various modalities, including calibrated and synchronized 
images, Velodyne HDL-64E LiDAR scans, high-precision 
GPS information, and IMU acceleration data. The dataset 
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contains 22 sequences covering urban streets, highways, and 
other scenarios. Among these sequences, sequences 00-10, 
totaling 11 sequences, come with ground truth pose, which can 
be used for training, validation, and testing of registration 
networks. 

To verify the effectiveness and robustness of the improved 
keypoints extracting method, we randomly selected one point 

cloud frame from 00-10 KITTI sequences. We applied a 
random rotation transformation to the selected frames, 
including pitch, roll, and yaw angles within the range of -45 to 
45 degrees. Then, we compared the results of the improved 
keypoints extracting method with the results obtained using 
the LOAM's method of extracting surf points and corner 
points, visualizing the keypoints for comparison. 

Sequence (a) (b) (c) (d) 

00 

    

01 

    

02 

    

03 

    

04 

    

05 

    

06 
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07 

    

08 

    

09 

    

10 

    
Fig. 4 (a) Visualization results of keypoints extracting on initial point cloud frames using the LOAM method. (b) Visualization results of 

keypoints extracting on point cloud frames that have been applied large-angle simulated transformations using the LOAM method. (c) 
Visualization results of keypoints extracting on initial point cloud frames using the improved method. (d) Visualization results of keypoints 

extracting on point cloud frames that have been applied large-angle simulated transformations using the improved method 
As illustrated in Fig. 3, when there is no significant angular 

distortion between the point cloud frame and the sensor's 
XOY plane, the results (a) (c) of the improved keypoints 
extracting method and the traditional LOAM keypoints 
extracting method are basically consistent, indicating the 
effectiveness of the improved method. However, when facing 
large angular distortion between the laser point cloud frame 
and the sensor's coordinate system, the keypoints extracting 
results (b) using LOAM method are inaccurate and sparse 
compared to (a), while the improved method can still extract 
globally valid keypoints shown as (d), and this indicates its 
good robustness. 

B. Registration Network Experiment Settings 
In this section, to evaluate the registration performance of 

our network when dealing with large-scale LIDAR point 
clouds, we utilized 11 KITTI odometry sequences and 103 
PandaSet sequences with ground truth. PandaSet datasets is an 
open-source dataset for L5 level autonomous driving, which 
includes 103 sequences, with each sequence representing data 
from different scenarios. Each sequence in PandaSet datasets 
contains 80 consecutive frames of LIDAR point clouds, 
images, and semantic segmentation annotation data. As for 
KITTI datasets, sequences 0-7 were used for training, 
sequence 8 for validation, and sequences 9-10 for testing, 
while as for PandaSet datasets, sequences 0-72 were used for 

training, sequence 73-87 for validation, and sequences 88-102 
for testing. The ground truth of both two datasets were only 
used to evaluate the accuracy of the registration results on the 
final test set and were not used as label data for network 
training. We selected consecutive frames from LIDAR scans 
as samples (source and target). For each frame, after extracting 
surf point clouds and corner point clouds, we sampled them 
with zero padding to 1280 and 640 points respectively. As for 
the non-planar point clouds extracted using plane 
segmentation algorithms, we sampled them with random 
sampling to 8192 points. For each sample, we applied rigid 
transformations to the preprocessed target frame (for each 
target frame, we pre-align it to the coordinate system of the 
source frame using a global registration algorithm, ensuring 
that all samples to be data-augmented have a consistent 
scale.), including yaw, pitch, and roll rotation angles in the 
range of 0-45°, and translation along the three axes in the 
range of -1.0 m-1.0 m to achieve data augmentation. The 
training of the entire network was completed on four NVIDIA 
1080ti GPUs, we used the Adam optimizer with an initial 
learning rate of 0.0001 and set the decay rate to 0.99 for 
exponential decay. The network was trained for a total of 200 
epochs, which is shown in Fig. 4. 

We compared the performance of our network with both 
classical registration methods and state-of-the-art learning-
based registration methods. The classical methods include ICP 
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(point to point and point to plane) [21], [23], RANSAC [30], 
FGR (Fast Global Registration) [41] and Go-ICP [24]. We 
implemented the first three methods using the Open3D library 
in Python, and we utilized the open-source library to 
implement Go-ICP. As for learning-based methods, we chose 
four representative one to compare: DGR (Deep Global 
Registration) [42], USIP [36], HRegNet [39], PCAM [43], 

SpinNet [44], DIP [45], GeDi [46] and BTreeNet [47]. We 
performed voxel downsampling with a voxel size of 0.1m on 
all point clouds used for testing, and randomly sampled them 
to 8192 points. All the aforementioned comparative methods 
and our network were implemented on the same platform and 
hardware environment. 

 
(a) 

 
(b) 

Fig. 5 (a) The training and validation’s loss curve. (b) The validation accuracy decrease during training 

C. Registration Experiments on KITTI Odometry Dataset 
1) Quantitative evaluation 
To evaluate the registration performance of our network, we 

selected three evaluation metrics: registration accuracy, 
efficiency, and recall rate. The accuracy evaluation includes 
the relative translation error (RTE) and the relative rotation 
error (RRE). RTE and RRE can be calculated by Eq. 6 and Eq. 
7, where 𝑠𝑠′  and 𝑅𝑅′  are the estimated results, and 𝑠𝑠 and 𝑅𝑅 are 
the translation and rotation matrices corresponding to the 
ground truth. 
 Γ𝑅𝑅𝑇𝑇𝑅𝑅 = ‖𝑠𝑠 − 𝑠𝑠′‖2 (6) 
 Γ𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑠𝑠𝑟𝑟𝑎𝑎𝑎𝑎𝑟𝑟𝑀𝑀(𝑇𝑇𝑟𝑟(𝑅𝑅′𝑅𝑅𝑇𝑇 − 1)/2) (7) 

The evaluation of registration efficiency can be achieved by 
comparing the time taken for registration of individual 
consecutive frames. The registration recall rate represents the 
success rate of the registration process. When both RTE and 
RRE are within a certain threshold 𝜀𝜀𝑅𝑅𝑇𝑇𝑅𝑅  and 𝜀𝜀𝑅𝑅𝑅𝑅𝑅𝑅 , the 
registration is considered effective. A higher recall rate 
indicates a stronger robustness of the registration method. In 
this evaluation, we set 𝜀𝜀𝑅𝑅𝑇𝑇𝑅𝑅 = 1𝑠𝑠  and 𝜀𝜀𝑅𝑅𝑅𝑅𝑅𝑅 = 5𝑠𝑠𝑠𝑠𝑑𝑑 
respectively. In Tab. 1, we list the experimental results of the 
comparative methods and our network, including the three 
metrics mentioned above, to help us conduct a more detailed 
analysis of the comparative results. 

Tab. 1 Registration performance on KITTI dataset 

Methods RTE (m) RRE (deg) Time (s) Recall Mean Std Mean Std 
ICP (p2point) [21] 0.258 0.374 0.169 0.388 0.491 92.3% 
ICP (p2plane) [23] 0.253 0.361 0.133 0.371 0.527 94.2% 

Go-ICP [24] 0.916 1.159 2.298 2.416 40.049 52.8% 
FGR [41] 0.121 0.459 0.219 0.239 4.241 98.8% 

RANSAC [30] 0.168 0.886 0.759 5.735 2.163 96.5% 
DGR [42] 0.358 0.316 0.415 0.448 1.389 96.3% 

USIP+RANSAC [30], [36] 0.152 0.186 0.586 0.405 2.526 97.3% 
HRegNet [39] 0.609 0.252 1.034 0.573 0.112 86.2% 

PCAM-soft+ICP [21], [43] 0.120 0.362 0.790 0.452 0.206 98.5% 
SpinNet [44] 0.125 0.182 0.760 0.680 0.317 86.7% 

DIP [45] 0.098 0.085 0.560 0.610 0.292 91.2% 
GeDi [46] 0.084 0.075 0.420 0.460 0.342 97.3% 

BTreeNet [47] 0.139 0.572 2.697 1.908 0.812 85.5% 
Ours 0.176 0.112 0.828 0.736 0.014 97.8% 

Ours+ICP 0.034 0.052 0.108 0.885 0.328 99.4% 
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As the results shown in Tab. 1 and Fig. 5, classical methods 
still have a certain level of reliability when dealing with large-
scale outdoor LiDAR point cloud registration problems like 
KITTI. Whether it is point-to-point or point-to-surface ICP 
algorithms, their registration accuracy metrics, such as RTE 
and RRE, are around 25cm and 0.15deg respectively, with 
registration recall rates exceeding 90%. FGR and RANSAC 
are the two best-performing traditional methods, as they utilize 
the idea of global registration, to avoid registration results 
getting trapped in local optima. Our method achieves a similar 
level of accuracy as FGR and RANSAC in three precision 
evaluation metrics but far surpasses them in terms of 
registration efficiency, with a single registration taking only 
13.5ms, much less than FGR's 4.241s and RANSAC's 2.163s. 
Furthermore, our method can provide stable initial values (the 
standard deviations metric Std for both RTE and RRE metrics 
are very small), by using the registration results from our 
method as initial values for ICP, we can further improve the 
registration accuracy, resulting in an RTE of 3.37cm and an 
RRE of 0.108deg, which are the best results in comparison, 
the efficiency also shows improvement compared to the 
original ICP. On the other hand, Go-ICP, a global registration 
algorithm based on branch and bound, fails to achieve 
satisfactory results in large-scale point cloud registration in the 
comparative experiments, with all its metrics being at a low 
level. Learning-based methods have received extensive 
attention in recent years, as shown in Tab. 1, DGR performs 
modestly in terms of registration accuracy but exhibits good 
recall rates. USIP+RANSAC, a learning-based strategy 

combining point cloud keypoints extraction and global 
registration, outperforms RANSAC in the experiments. 
HRegNet shows good performance in computing the 
transformation matrix between source point clouds and 
keyframes according to its paper but performs averagely in 
point cloud registration of consecutive frames in comparative 
experiments. GeDi is currently demonstrating the best 
performance among learning-based methods. However, our 
method combined with ICP achieves higher registration 
accuracy at a similar level of computational efficiency of 
GeDi. In addition, BTreeNet is the only unsupervised learning 
method among the comparative approaches specifically 
designed for large-scale 3D point cloud registration. This 
network features a novel forward propagation that separates 
the learning of rotation and translation features, avoiding 
interference between rotation and translation estimates within 
a single matrix. It utilizes Chamfer distance and Earth Mover's 
Distance as loss functions for unsupervised learning. 
BTreeNet demonstrates good generalization, manifested by 
small RTE, but it performs poorly in terms of RRE, indicating 
significant angular errors when applying this method to large-
scale point cloud registration. Fig. 5 demonstrates the 
application of our registration method in LiDAR odometry, 
where continuous registration results between point cloud 
frames are continuously outputted to achieve odometry 
estimation. Nevertheless, in practical applications, additional 
optimization and loop detection methods are still needed to 
address the issue of odometry error accumulation and drift. 

 
(a) 

 
(b) 

Fig. 6 The motion estimation using our network plus ICP on sequence 09 (a) and 10 (b) of the KITTI dataset 
To evaluate the performance of our network in registering 

consecutive point cloud frames with large rotation variation, 
we applied a Euclidean transformation to the original target 
frames in the test samples. This transformation included 
random variations of pitch, yaw, and roll angles between 0-

45°, as well as translations along the three axes between -1.0m 
to 1.0m. This was done to simulate scenarios where there are 
significant rotation variation between consecutive point cloud 
frames. The comparison results are shown in Tab. 2. 
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Tab. 2 Registration performance with large rotation variation in consecutive frames on KITTI dataset 

Methods RTE (m) RRE (deg) Time (s) Recall Mean Std Mean Std 
ICP (p2point) [21] 0.885 0.662 18.264 15.062 0.756 27.3% 
ICP (p2plane) [23] 1.056 0.814 21.216 16.492 2.933 23.3% 

FGR [41] 0.172 0.469 1.229 1.266 4.984 95.2% 
RANSAC [30] 0.289 0.731 2.471 10.714 3.371 84.5% 

DGR [42] 0.926 1.105 5.567 4.425 1.486 53.5% 
USIP+RANSAC [30], [36] 0.269 0.862 2.146 5.642 3.548 85.7% 

HRegNet [39] 1.107 1.224 8.926 6.735 0.156 35.2% 
PCAM-soft+ICP [21], [43] 0.164 0.516 0.844 0.558 0.327 98.1% 

SpinNet [44] 0.372 0.462 1.540 1.680 0.369 74.3% 
DIP [45] 0.353 0.372 0.983 0.829 0.324 75.6% 

GeDi [46] 0.324 0.432 0.906 0.846 0.371 80.2% 
BTreeNet [47] 0.245 0.705 3.132 2.544 0.932 79.7% 

Ours 0.323 0.111 1.359 0.732 0.014 93.6% 
Ours+ICP 0.038 0.063 0.152 1.036 0.283 99.2% 

According to the comparison results, when there is a large 
rotation variation between consecutive frames, the ICP can 
hardly compute effective registration results, with a 
registration recall rate of less than 30%. The performance of 
the FGR and RANSAC is somewhat satisfactory, but they also 
require increased computation time. As for the learning-based 
methods, the significant rotation variation between the source 
and target frames prevents them from obtaining reliable 
feature correspondences during the registration process, 
resulting in registration failures. Only RANSAC+USIP, 
PCAM-soft+ICP and the unsupervised method BTreeNet can 
achieve correct registration output in certain scenarios. 
Although our method shows a slight decrease in accuracy 
compared to the original scenes, both the RTE and RRE 

exhibit very small standard deviations, indicating excellent 
overall registration stability. Furthermore, by using the 
registration results obtained from our method as initial values 
input to ICP, significantly better registration results can be 
achieved compared to other methods. The good initial values 
also enable ICP to converge more quickly, enhancing the 
robustness of the registration. 

2) Qualitative evaluation 
For qualitative analysis of the registration, we chose to 

perform comparisons using visualizations. Fig. 6 presents two 
qualitative examples of our proposed registration method. The 
qualitative results demonstrate that our method can generate 
accurate point cloud correspondences even when facing large 
rotation variation between adjacent frame point clouds. 

Input Output 

  

  
Fig. 7 Qualitative visualization evaluation of the proposed registration method based on KITTI dataset. The left column consists of the source 

and target point clouds to be registered, while the right column shows the results after precise registration using the proposed method, including 
local point cloud alignment information. 
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D. Registration Experiments on PandaSet Dataset 
1) Quantitative evaluation 

In order to further evaluate the performance of our 
registration method in different large-scale outdoor scene 
point clouds, we used the PandaSet dataset. The PandaSet 
dataset consists of sequential data from 103 different scenes, 
with each sequence containing point cloud data collected by 
two types of LiDAR sensors. Each frame of point cloud data is 
associated with its corresponding pose. We selected point 
cloud data collected by the 360° rotating LiDAR sensor, 
Pandar64. We used sequences 0-72 for training, sequences 73-

87 for validation, and sequences 88-102 for testing. Similar to 
the handling of the KITTI dataset, for each sample, we 
performed zero-padding sampling on the extracted surf point 
clouds and corner point clouds, resulting in 1280 and 640 
points, respectively. As for the non-planar point clouds 
extracted using plane segmentation algorithms, we sampled 
them randomly to obtain 8192 points. We compared our 
network with ICP, FGR, RANSAC, DGR, USIP, HRegNet, 
PCAM, SpinNet, DIP, GeDi and BTreeNet in registering 
consecutive point cloud frames with large rotation variation. 
The comparison results are shown in Tab. 3. 

Tab. 3 Registration performance with large rotation variation in consecutive frames on PandaSet dataset 

Methods RTE (m) RRE (deg) Time (s) Recall Mean Std Mean Std 
ICP (p2point) [21] 1.198 0.671 21.942 14.683 0.308 18.9% 

FGR [41] 0.131 0.461 0.239 0.172 11.369 98.7% 
RANSAC [30] 0.110 0.352 0.279 0.181 5.854 98.2% 

DGR [42] 0.879 1.032 4.978 4.568 1.512 58.2% 
USIP+RANSAC [30], [36] 0.108 0.113 0.293 0.269 2.564 98.5% 

HRegNet [39] 1.032 1.178 6.793 5.325 0.132 37.6% 
PCAM-soft+ICP [21], [43] 0.138 0.423 0.678 0.546 0.337 98.4% 

SpinNet [44] 0.316 0.417 1.214 1.543 0.354 75.1% 
DIP [45] 0.295 0.358 0.842 0.674 0.311 76.4% 

GeDi [46] 0.273 0.383 0.789 0.743 0.357 82.3% 
BTreeNet [47] 0.227 0.675 2.762 2.112 0.894 80.5% 

Ours 0.276 0.209 0.581 0.565 0.025 97.6% 
Ours+ICP 0.034 0.179 0.117 0.463 0.217 99.8% 

By analyzing the results in Tab. 3, it is evident that when 
facing significant rotational variations between consecutive 
frames in the PandaSet dataset, relying solely on ICP results in 
almost registration failure. FGR and RANSAC demonstrate 
excellent registration accuracy and achieve a recall rate of 
over 98%. However, both methods incur further increases in 
the average registration time per frame, which may not meet 
the real-time requirements of practical applications. In the case 
of learning-based methods, the combinations of 
RANSAC+USIP and PCAM-soft+ICP both perform 
acceptably, while HRegNet continues to perform poorly. 
BTreeNet and GeDi also exhibit relatively stable performance. 
Our method, when compared to the computational results on 
the KITTI dataset, still exhibits outstanding performance on 

the PandaSet dataset. It not only provides more stable outputs 
in terms of metrics like RTE and RRE but also achieves a 
registration recall rate of 97.6%, making the proposed 
approach combined with ICP deliver the best performance. 

2) Qualitative evaluation 
Similar to the KITTI dataset, we conducted a qualitative 

analysis of the registration results based on the PandaSet 
dataset through visualization. Fig. 7 presents two qualitative 
examples of our proposed registration method. From the 
qualitative global and local visual results, it can be observed 
that our method is capable of generating accurate point cloud 
correspondences even when faced with large rotation variation 
between adjacent point cloud frames in the PandaSet dataset. 
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Fig. 8 Qualitative visualization evaluation of the proposed registration method based on PandaSet dataset. The left column consists of the 

source and target point clouds to be registered, while the right column shows the results after precise registration using the proposed method, 
including local point cloud alignment information.

V. CONCLUSION 
In this paper, a convolutional end-to-end unsupervised 

registration network is proposed for large-scale outdoor 
LiDAR point cloud registration, and it utilizes an improved 
keypoints extracting method based on rotation compensation 
and a dynamic overlap ratio weighted chamfer distance loss 
for efficient and robust registration of large-scale sparse point 
cloud. The improved point cloud keypoints extracting method 
utilizes our proposed rotation compensation technique to 
reliably extract features from point cloud frames with a 
significant tilt angle relative to the sensor coordinate system. 
Within the proposed end-to-end unsupervised registration 
network, we extract global features from the keypoint point 
clouds and learn the information about the overlapping regions 
of the point clouds through a spatial attention weight encoder. 
We achieve reliable convergence by employing an improved 
dynamic overlap ratio weighted chamfer distance loss. In the 
registration tests based on the KITTI and PandaSet dataset, it 
is concluded that our method demonstrates an enhanced 
performance in terms of accuracy and computational 
efficiency, when it is applied to either original consecutive 
frames or the case of simulating large angular variations in 
real-world scenarios between consecutive frames by randomly 
transforming the target frame. Furthermore, by combining our 
method with the precise registration method ICP, we achieve 
optimal accuracy and robustness for the registration of outdoor 
large-scale point clouds. 

Although our method performs excellently in registering 
large-scale outdoor LiDAR point clouds, it still has some 
limitations that require further research for resolution. Firstly, 
when applied independently, our method often does not yield 
ideal results for registering low-overlap large-scale point 
clouds. It may require the use of methods such as ICP or 
nonlinear optimization to further enhance accuracy. Secondly, 
since our method draws inspiration from 3D keypoints 
extraction in laser SLAM, it can be effectively applied to point 
cloud registration problems collected by multi-line LiDARs. 
However, when faced with the challenge of registering model 
point clouds in small indoor scenes, our method cannot be 
directly applied. In such cases, it may be beneficial to replace 
the existing keypoints extracting strategy with other excellent 
3D interest point extracting methods like USIP, allowing for 
the unified treatment of indoor and outdoor point cloud 

registration problems and improving the overall 
generalizability of our registration approach. 
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