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ABSTRACT

Large language models (LLMs) have shown significant advancements in code
generation, but still face challenges on tasks beyond their basic capabilities. Re-
cently, the notion of self-debugging has been proposed to boost the performance of
code generation by leveraging execution feedback from tests. Despite its promise,
the availability of high-quality tests in real-world scenarios is limited. In this con-
text, self-debugging with self-generated tests is a promising solution but lacks a
full exploration of its limitations and practical potential. Therefore, we investigate
its efficacy on diverse programming problems. To deepen our understanding, we
propose two distinct paradigms for the process: post-execution and in-execution
self-debugging. Within the scope of self-contained Python programming tasks,
we find that post-execution self-debugging struggles on basic problems but shows
potential for improvement on competitive ones, due to the bias introduced by self-
generated tests. On the other hand, in-execution self-debugging enables LLMs to
mitigate the bias by solely leveraging intermediate states during execution, thereby
enhancing code generation.

1 INTRODUCTION

Large language models (LLMs) have demonstrated considerable progress in code generation, but
still face challenges to perform complex programming tasks beyond their basic capabilities. The
tasks require LLMs to understand the given natural language specifications and generate programs
that could pass all the private tests. Recently, self-debugging has emerged as a promising approach
to boost the performance of LLMs in code generation (Chen et al., 2024b; Jiang et al., 2023; Zhong
et al., 2024). This approach enables models to refine their own output through an iteration of genera-
tion and execution for the programs utilizing pre-built oracle tests. However, in real-world scenarios
of software development, oracle tests are not available for each code snippet.

To address this challenge, recent studies have introduced self-generated tests into self-debugging
process (Shinn et al., 2024; Huang et al., 2023; Ridnik et al., 2024). As illustrated in Figure 1,
in this framework, the model first generates an initial program and a suite of tests based on the
natural language specifications of the problem. The program is then executed on the self-generated
tests with an executor (e.g. code interpreter). If it raises any error, the signal or message will be
collected as execution feedback, which the model uses to generate a revised version of the program.
It helps reduce the reliance on external feedback from humans or stronger models and thus holds the
potential to be generally applied in various code generation tasks.

Nonetheless, the efficacy of self-debugging with self-generated tests remains underexplored. Reflex-
ion (Shinn et al., 2024) leverages feedback from self-generated tests to debug but evaluates the code
before repair with hidden oracle tests. AlphaCodium (Ridnik et al., 2024) first iterates on public
oracle tests and then on model-generated tests with a technique of test anchors. The improvements
observed using oracle tests do not accurately demonstrate the true self-debugging capabilities of
LLMs. This highlights the need for more transparent evaluation to better understand the inherent
debugging potential with self-generated tests. To study this, we first clarify the concept of self-
debugging in practice, a scenario wherein the model attempts to debug and repair its own programs
without reliance on human supervision or guidance from stronger models. Beyond leveraging the
model’s intrinsic capabilities, execution feedback from self-generated tests also serves as additional
signals to help LLMs identify bugs in its programs according to specifications. Depending on the ex-
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Figure 1: Overview of self-debugging with execution feedback from self-generated tests. (1) The
model generates an initial program along with a suite of tests, based on the specifications of the
problem. (2) The program is executed by an executor on the self-generated tests. (3) The feedback
from execution is then utilized by the model to produce a revised version of the program.

ecution stage, there are different kinds of information that we can utilize. We propose two paradigms
for doing this: post-execution and in-execution self-debugging, as shown in Figure 1. Post-execution
self-debugging directly validates correctness by checking whether the output after execution matches
the test output or not. In-execution self-debugging allows LLMs to analyze the intermediate runtime
states during program execution without knowing the results from post-execution.

Contributions: In this paper, we investigate the efficacy of self-debugging with self-generated tests
applied to four advanced LLMs: GPT-4o (2024-05-13)1, Claude-3.5-Sonnet2, Llama-3-70B-
Intruct (Dubey et al., 2024) and Qwen2.5-Coder-7B-Instruct (Hui et al., 2024) for self-contained
Python programming problems taken from HumanEval (Chen et al., 2021), MBPP (Austin et al.,
2021) and LiveCodeBench (Jain et al., 2024). Specifically, we evaluate the models’ ability to reflect
upon and debug code using information obtained from post-execution and in-execution respectively.
We summarize our observations as follows:

• In the context of self-contained Python programming tasks, post-execution self-debugging strug-
gles with relatively basic problems, such as those in HumanEval and MBPP. However, it shows
potential for improvement on more challenging programming problems in LiveCodeBench.

• This discrepancy is attributed to the bias introduced by self-generated tests, which refers to the
misalignment between self-testing labels and true labels for the programs. In addition to the
impact of the bias, the efficacy of post-execution self-debugging relies not only on the model’s
ability to reflect upon feedback but also on the ability to recognize faulty feedback.

• Instead of using unreliable post-execution information, in-execution self-debugging minimizes the
bias by solely focusing on the intermediate states during the program execution. The experimental
results demonstrate promising improvements for both basic and competitive tasks.

Through our study, we aim to shed light on the practicality of self-debugging with self-generated
tests, contributing valuable insights into the future development of LLMs in code generation tasks.

2 RELATED WORK

Code Generation. Code generation is the automatic production of source code based on nat-
ural language descriptions. Large pre-trained language models like the GPT-4 series have shown
impressive capabilities in code generation. Researchers have proposed various approaches to en-
hance the quality of code generated by these models. Some works, like LLaMA series (Touvron
et al., 2023a;b; Dubey et al., 2024), focus on optimizing model training, while others aim to im-
prove code quality through post-processing techniques. For example, CodeT (Chen et al., 2022)

1https://openai.com/index/hello-gpt-4o/
2https://www.anthropic.com/news/claude-3-5-sonnet
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generates a large number of code and test cases, using the dual agreement to filter the most promis-
ing code candidates. Other methods, such as coder-reviewer (Zhang et al., 2023b) and code-ranker
(Inala et al., 2022), apply ranking metrics to select optimal code from multiple candidates. Among
these post-processing techniques, methods that involve self-debugging have gained considerable at-
tention. Through feedback from execution results, self-debugging allows models to autonomously
debug and refine previously generated code, enhancing the final output. Self-debugging does not
require increasing the sample budget, making it a cost-effective solution for improving inference
efficiency (Zhang et al., 2023a). As a result, self-debugging has been integrated into various LLM-
based code generation methods (Yang et al., 2024; Zhang et al., 2024; Dong et al., 2023; Huang
et al., 2023). In this work, we revisit these techniques and assess the effectiveness of self-debugging
with self-generated tests on both basic and competitive programming benchmarks.

Self-Debug with LLMs. As LLMs have evolved, the idea of using models to refine their own
output has become more popular. In code generation, several techniques have explored how LLMs
can refine the code they generate. Most of these methods rely on prompting LLMs with execution
results to improve the code. These methods often rely on pre-existing or generated tests to execute
the code, capturing execution information that is then used to refine the output code (Olausson
et al. (2024); Wang et al. (2024); Dong et al. (2023); Madaan et al. (2023); Zhang et al. (2023a)).
Self-Debugging (Chen et al., 2024b) introduces a framework in which LLMs iteratively debug their
own generated code by utilizing execution results and self-generated explanations. Self-Edit (Zhang
et al., 2023a) builds on the example tests provided in programming problems for execution to help
the model correct its own output. LDB (Zhong et al., 2024) utilizes runtime execution information
to help debug generated programs. Jiang et al. (2024) enhance LLM self-debugging by training
on an automatically collected dataset for code refinement and explanation. Madaan et al. (2023)
conduct a broad evaluation of self-debugging in code models, highlighting that performance can be
improved with higher-quality feedback or human intervention. In this work, we aim to explore the
potential as well as limitations of execution-based self-debugging methods, particularly with self-
generated tests. We provide a detailed analysis of these methods and propose a unified framework
in the following Section 3.

3 SELF-DEBUGGING WITH SELF-GENERATED TESTS

We focus on evaluating the self-debugging capabilities of large language models (LLMs) through
execution on self-generated tests. Figure 1 provides a comprehensive overview of this process.
Given a problem with a natural language specification, the LLM (denoted as M) first generates an
initial program C along with a suite of test cases, denoted as {(Xi, Yi)}Ni=1, where Xi represents
the input and Yi represents the expected output for the i-th test. To enhance the model’s debug-
ging performance beyond its intrinsic reasoning capabilities, we utilize execution feedback as an
additional signal to help the model identify bugs in its generated program according to the problem
specification. Specifically, we employ an executor (denoted as E) to run the generated program on
the test suite and collect execution information as feedback.

There are various implementations for utilizing execution feedback, which we categorize into two
distinct paradigms: Post-Execution and In-Execution self-debugging. These paradigms reflect
the type of information employed in the self-debugging process. Post-execution information refers
to content obtained after the program’s execution, such as execution outputs or error messages. In
contrast, in-execution information refers to intermediate states observed during execution, providing
finer-grained insights into the program’s behavior. We now formally define these paradigms.

Post-Execution Self-Debugging. The paradigm leverages information obtained after the actual
execution of the program. A widely adopted implementation involves comparing the execution
output with the expected output (Olausson et al., 2024; Wang et al., 2024; Dong et al., 2023; Madaan
et al., 2023; Zhang et al., 2023a; Chen et al., 2024b; Jiang et al., 2024), as shown in Figure 1.
Consider an initial program C and a generated test set {(Xi, Yi)}Ni=1. An executor, denoted as E,
processes each input Xi, yielding the corresponding execution output Ỹi = E(C,Xi), i ∈ [1, N ].
The executor then assesses whether the execution output Ỹi aligns with the expected output Yi to
determine if the test is passed. If a discrepancy occurs, the test is marked as failed. The system
then utilizes the failed test case (Xi, Yi), the execution output Ỹi, and any related error messages to
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refine the program. This process encourages the model to generate a revised version of the program,
denoted as C̃ = M(C,Xi, Yi, Ỹi).

In-Execution Self-Debugging. Post-execution self-debugging typically overlooks the intermedi-
ate states of the program, which can provide valuable insights for program refinement. To address
this limitation, in-execution self-debugging leverages feedback from the intermediate states during
program execution (Zhong et al., 2024; Ni et al., 2024; Bouzenia et al., 2023). Formally, a program
C can be divided into multiple basic blocks, denoted as C = [B1, B2, ..., BK ], where Bk represents
the k-th basic block and K is the total number of blocks in the execution trace. Each basic block is
defined as a linear sequence of program statements with a single entry and a single exit point.

Given a test input Xi, i ∈ [1, N ], the executor E initializes the input as the initial variable set
V 1
i and executes it through the first block B1. The execution updates the variable set to V 2

i =
E(B1, V 1

i ), where V 2
i denotes the set of variables after executing block B1. This process is repeated

iteratively, with the executor processing V k+1
i = E(Bk, V k

i ) for each subsequent block Bk until the
program execution is complete. The sequence of intermediate states represented as the execution
trace T = [B1, V 1

i , ..., B
K , V K

i ], provides a detailed view of how the program behaves over time.
By analyzing this trace, the LLM M identifies potential issues within specific blocks and refines the
program accordingly, resulting in the updated version C̃ = M(C,Xi, T ).

4 EXPERIMENTS

In this section, we evaluate self-debugging capabilities of advanced LLMs using self-generated tests
on self-contained Python programming tasks. We carry out experiments to answer the following
research questions: (1) When self-debugging with post-execution information from self-generated
tests, what would the performance be like on basic programming problems? (2) Is the performance
of post-execution self-debugging consistent across different programming tasks? If not, what is the
reason behind it? (3) How does in-execution self-debugging perform when considering the settings
above? What is the difference between post-execution and in-execution self-debugging?

4.1 EXPERIMENTAL SETUP

Benchmarks. We select three popular code generation benchmarks covering basic and competi-
tive3 programming problems to comprehensively evaluate the efficacy of self-debugging, including:

• HumanEval and MBPP HumanEval (Chen et al., 2021) consists of 164 programming problems
written by humans. Each problem provides a Python function signature and a docstring as its spec-
ification. MBPP (Austin et al., 2021) includes 974 programming problems written by contributors
through crowdsourcing. Each of these problems features a problem statement, a function signa-
ture, and three example tests. To enhance the reliability and accuracy of evaluations, EvalPlus
(Liu et al., 2024) extends HumanEval into a more comprehensive version known as HumanEval+
with 80 times more tests than the original HumanEval. Similarly, MBPP+ is an augmentation of
the original MBPP, offering 35 times more tests. In our experiments, we use the latest version of
MBPP for both base and plus set, which consists of 378 programming problems.

• LiveCodeBench LiveCodeBench (Jain et al., 2024) is a contamination-free benchmark that con-
tinuously collects new problems from prominent competitive programming platforms. As of now,
LiveCodeBench features a collection of over 600 high-quality programming problems. These
problems encompass a wide range of difficulty levels and topics, providing a comprehensive eval-
uation for the coding capabilities of LLMs. In our experiments, we select 450 problems that were
published between September 2023 and September 2024.

Test Models and Setup. Generating high-quality tests poses significant challenges as it necessi-
tates a comprehensive understanding of natural language specifications as well as the capabilities of
code reasoning (Chen et al., 2024a). Therefore, we investigate the research questions with four ad-
vanced chat models: LLaMA-3-70B-Instruct (Dubey et al., 2024) and Qwen2.5-Coder-7B-Instruct

3In this work, we regard problems in HumanEval, MBPP as basic programming problems, and those in
LiveCodeBench as competitive ones according to overall complexity and difficulty.
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Table 1: Pass rates after post-execution self-debugging with oracle tests on HumanEval and MBPP.
The values highlighted in green are increases relative to the initial generation (one-pass).

Model Method #Iteration HumanEval MBPP

Base Plus Base Plus

GPT-4o-2024-05-13

One-pass 0 92.1 87.8 91.5 76.5

Self-debug w/ label 1 93.3+1.2 89.0+1.2 92.6+1.1 80.2+3.7

2 94.5+2.4 90.2+2.4 93.4+1.9 81.2+4.7

Self-debug w/ detail 1 93.9+1.8 90.2+2.4 92.9+1.4 81.5+5.0

2 95.1+3.0 92.1+4.3 92.6+1.1 83.1+6.6

Claude-3.5-Sonnet

One-pass 0 94.5 89.0 92.6 77.0

Self-debug w/ label 1 95.1+0.6 92.1+3.1 93.7+1.1 82.5+5.5

2 96.3+1.8 92.7+3.7 93.4+0.8 83.3+6.3

Self-debug w/ detail 1 97.0+2.5 92.1+3.1 91.8−0.8 82.0+5.0

2 97.6+3.1 94.5+5.5 94.2+1.6 86.0+9.0

LLaMA-3-70B-Instruct

One-pass 0 79.9 73.8 84.4 71.2

Self-debug w/ label 1 81.7+1.8 77.4+3.6 85.7+1.3 74.9+3.7

2 86.0+6.1 81.1+7.3 86.8+2.4 75.9+4.7

Self-debug w/ detail 1 84.1+4.2 80.5+6.7 85.4+1.0 76.5+5.3

2 84.8+4.9 81.7+7.9 86.0+1.6 78.6+7.4

Qwen2.5-Coder-7B-Instruct

One-pass 0 86.0 81.7 84.7 70.6

Self-debug w/ label 1 86.0+0.0 82.9+1.2 86.8+2.1 73.8+3.2

2 86.0+0.0 82.9+1.2 86.8+2.1 73.8+3.2

Self-debug w/ detail 1 86.6+0.6 83.5+1.8 85.4+0.7 73.8+3.2

2 87.2+1.2 84.1+2.4 86.0+1.3 74.3+3.7

(Hui et al., 2024) with publicly accessible weights, API-served GPT-4o-2024-05-13 and Claude-3.5-
Sonnet. We employ a greedy decoding strategy (a temperature of zero) across all generation phases
of self-debugging. We design prompts for the initial program generation to ensure that no additional
information is introduced by subsequent prompts for program repair. This premise is crucial for us
to concentrate on investigating the true self-debugging capabilities of LLMs (Huang et al., 2024).
To generate a test suite for each problem, we prompt the model to write ten diverse and extensive
tests4 based on its corresponding natural language specification in a zero-shot manner. For a detailed
overview of the prompts used, please refer to the Appendix D.

4.2 RQ1: POST-EXECUTION SELF-DEBUGGING STRUGGLES ON BASIC PROBLEMS

In this subsection, we examine the performance of self-debugging techniques using self-generated
tests on basic programming problems and evaluate how it compares to self-debugging with oracle
tests. Consistent with implementations in most existing literature, we perform self-debugging by uti-
lizing post-execution information. In this process, program correctness is determined by comparing
the actual output with the expected output for a given test case. If the generated program successfully
passes all tests, the iterative process terminates, and no further self-debugging is conducted.

Feedback. To provide a comprehensive assessment, we consider two different types of feedback
that can be utilized from post-execution results. The first type is the correct label, which indicates
whether the model’s previous program was correct or not. If the program is incorrect, an instruction
for repair will be provided to the model. The second type is the detail of the failure, including the
test input, expected output, and execution output. In cases where the program raises an exception
during execution, the error message is incorporated into the detail in place of the execution output.

Results. We conduct experiments on problems from HumanEval and MBPP using self-generated
tests and compare the results to those obtained with oracle tests. Table 1 summarizes the pass
rates achieved through self-debugging with oracle tests, showcasing significant improvements as

4Refer to Appendix C for discussions on the effect of the number of generated tests.
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Table 2: Pass rates after post-execution self-debugging with self-generated tests on HumanEval and
MBPP. The values highlighted in red are declines compared to the initial generation (one-pass).

Model Method #Iteration HumanEval MBPP

Base Plus Base Plus

GPT-4o-2024-05-13

One-pass 0 92.1 87.8 91.5 76.5

Self-debug w/ label 1 91.5−0.6 87.2−0.6 92.1+0.6 76.7+0.2

2 91.5−0.6 86.6−1.2 92.9+1.4 77.5+1.0

Self-debug w/ detail 1 89.0−3.1 84.1−3.7 91.3−0.2 76.2−0.3

2 91.5−0.6 85.4−2.4 92.6+1.1 76.5+0.0

Claude-3.5-Sonnet

One-pass 0 94.5 89.0 92.6 77.0

Self-debug w/ label 1 93.9−0.6 88.4−0.6 92.9+0.3 77.8+0.8

2 93.3−1.2 86.6−2.4 91.5−1.1 76.2−0.8

Self-debug w/ detail 1 87.2−7.3 81.1−7.9 90.5−2.1 72.8−4.2

2 87.2−7.3 79.3−9.7 92.1−0.5 75.4−1.6

LLaMA-3-70B-Instruct

One-pass 0 79.9 73.8 84.4 71.2

Self-debug w/ label 1 74.4−5.5 65.2−8.6 82.5−1.9 68.3−2.9

2 75.6−4.3 69.5−4.3 83.6−0.8 68.3−2.9

Self-debug w/ detail 1 74.4−5.5 66.5−7.3 82.3−2.1 64.8−6.4

2 73.8−6.1 67.1−6.7 80.2−4.2 63.8−7.4

Qwen2.5-Coder-7B-Instruct

One-pass 0 86.0 81.7 84.7 70.6

Self-debug w/ label 1 82.9−3.1 78.0−3.7 84.9+0.2 69.8−0.8

2 84.1−1.9 79.3−2.4 83.9−0.8 69.8−0.8

Self-debug w/ detail 1 84.1−1.9 76.2−5.5 84.7+0.0 68.0−2.6

2 83.5−2.5 75.6−6.1 85.4+0.7 69.0−1.6

Table 3: Accuracies of self-generated tests on HumanEval and MBPP. Test Input & Output are
evaluated case-by-case; A test Suite is deemed valid if all outputs within the suite are correct.

Model HumanEval MBPP

Input Output Suite Input Output Suite

GPT-4o-2024-05-13 97.63% 89.77% 59.15% 94.81% 85.60% 58.73%
Claude-3.5-Sonnet 97.68% 89.14% 56.71% 95.75% 87.37% 58.47%

LLaMA-3-70B-Instruct 94.53% 84.69% 49.39% 90.81% 82.08% 51.85%
Qwen2.5-Coder-7B-Instruct 97.19% 84.85% 44.50% 94.35% 77.33% 44.44%

iterations progress. On the other hand, Table 2 presents the results when using self-generated tests.
We noted declines across all benchmarks for Llama-3-70b-instruct and Qwen2.5-coder-7b-instruct.
For other models, it shows a consistent decrease on HumanEval. The performance on MBPP may
improve initially, but with more detailed feedback and iterations, it will ultimately become worse
than the initial generation.

Analysis on generated tests. To better understand the reliability of tests generated by the model
itself, we employ program contracts and canonical solutions provided by the benchmarks to evaluate
the validity of test inputs and outputs respectively. Program contracts consist of assertions that spec-
ify conditions necessary for a valid input. We place these contracts at the beginning of the function
and pass the generated test input to it. Please refer to Appendix B for detailed implementation. If
there is no assertion error, the test input is considered valid. For test output validation, we collect the
actual execution output using canonical solutions, given a valid input, to confirm if the output aligns
with the expected output. Furthermore, we calculate the overall accuracy for the entire test suite. A
test suite is deemed valid if all generated test outputs are correct for a given problem.

Table 3 summarizes the results. GPT-4o and Claude-3.5-sonnet demonstrate superior capability in
producing high-quality tests compared to others, yet they remain prone to generating unreliable tests

6
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Table 4: Pass rates after post-execution self-debugging with self-generated tests on LiveCodeBench.

Model Method #Iteration Easy Medium Hard Overall

GPT-4o-2024-05-13

One-pass 0 89.3 33.1 6.0 46.0

Self-debug w/ label 1 89.9+0.6 41.1+8.0 6.0+0.0 49.3+3.3

2 89.9+0.6 40.0+6.9 6.9+0.9 49.1+3.1

Self-debug w/ detail 1 85.5−3.8 36.0+2.9 8.6+2.6 46.4+0.4

2 87.4−1.9 38.3+5.2 8.6+2.6 48.0+2.0

Claude-3.5-Sonnet

One-pass 0 93.1 48.0 16.4 55.8

Self-debug w/ label 1 89.9−3.2 49.1+1.1 17.2+0.8 55.3−0.5

2 91.2−1.9 49.7+1.7 16.4+0.0 55.8+0.0

Self-debug w/ detail 1 89.9−3.2 49.1+1.1 13.8−2.6 54.4−1.2

2 85.5−7.6 43.3−4.7 8.6−7.8 49.3−6.5

LLaMA-3-70B-Instruct

One-pass 0 72.3 10.3 2.6 30.2

Self-debug w/ label 1 66.0−6.3 9.1−1.2 3.4+0.8 27.8−2.4

2 64.8−7.5 10.9+0.6 2.6+0.0 27.8−2.4

Self-debug w/ detail 1 56.6−15.7 10.9+0.6 4.3+1.7 25.3−4.9

2 63.5−8.8 12.0+1.7 2.6+0.0 27.8−2.4

Qwen2.5-Coder-7B-Instruct

One-pass 0 74.8 23.4 8.6 35.8

Self-debug w/ label 1 69.8−5.0 24.0+0.6 8.6+0.0 34.2−1.6

2 71.7−3.1 23.4+0.0 8.6+0.0 34.7−1.1

Self-debug w/ detail 1 69.2−5.6 20.0−3.4 8.6+0.0 32.4−3.4

2 66.7−8.1 21.1−2.3 8.6+0.0 32.0−3.8

based on natural language specifications. For all the models, predicting test outputs proves to be a
more challenging task than generating test inputs.

In post-execution settings, incorrect test outputs introduce ambiguity into the self-debugging pro-
cess. We present an example on HumanEval with GPT-4o in Figure 3 in Appendix A. When a test
fails, the model is expected to determine whether the failure is due to bugs in the program or errors
in the test. This uncertainty complicates the self-debugging process and necessitates a further in-
vestigation into the effects of testing on self-generated tests, as discussed in the following Section
4.3. Our experiments reveal that post-execution self-debugging struggles with basic programming
tasks like HumanEval and MBPP. While post-execution information with self-generated tests is
leveraged, self-debugging remains a bottleneck, limiting improvements beyond initial generation.

4.3 RQ2: BIAS FROM SELF-TESTING LEADS TO INCONSISTENCY ACROSS TASKS

To comprehensively evaluate the performance of self-debugging on diverse programming tasks, we
conducted post-execution self-debugging experiments using problems from LiveCodeBench. The
problems in LiveCodeBench are classified into three distinct difficulty levels: easy, medium, and
hard. We report the pass rate achieved at each level of difficulty, as well as the overall performance.

Results. Table 4 summarizes the results of post-execution self-debugging with self-generated tests
on LiveCodeBench. We observed that for GPT-4o, self-debugging using label feedback leads to
improvements across problems of all difficulty levels. This is notably in contrast to the perfor-
mance on HumanEval and MBPP. However, when detailed feedback is provided, there is a decline
in performance on easy problems. For other models including Claude-3.5-Sonnet, the overall per-
formance decreases due to significant declines on easy problems. Moreover, despite incorporating
more post-execution information, the overall performance with detailed feedback remains inferior
to that achieved with label feedback.

Analysis. To investigate the reasons behind the inconsistent results on basic and competitive pro-
gramming problems, we delve into the impact on testing programs with self-generated tests. We
acknowledge that the models even advanced LLMs are likely to generate inaccurate tests. There-
fore, a program that is actually correct might fail some of the generated tests, resulting in a false
negative (FN) label. On the other hand, a flawed program might pass all the test cases, leading to
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Figure 2: The label changes when evaluating the programs with self-generated tests on HumanEval,
MBPP and LiveCodeBench. True Positive (TP): correct programs pass tests; True Negative (TN):
incorrect programs fail tests; False Positive (FP): incorrect programs pass tests; False Negative (FN):
correct programs fail tests.

a false positive (FP) label. This could prevent necessary updates and prematurely present a buggy
program. The misalignment between self-testing labels and true labels highlights the bias introduced
by self-generated tests for program evaluation.

We present an analysis of label changes with generated tests after the first iteration of self-debugging,
as illustrated in Figure 2. Given the implementation of self-debugging, only programs identified with
negative labels during the iteration would perform further repair. Therefore, our focus is primarily
on the distribution of different negative labels. We observed that testing on self-generated tests
is more likely to result in false negative labels than true negative ones on both HumanEval and
MBPP. However, a different pattern emerges on LiveCodeBench, where false negatives are more
than true negatives. This discrepancy is primarily due to lower performance on more challenging
programming tasks, where negative labels from self-testing are more likely to align with the actual
labels of the generated programs. Relying solely on labels during self-debugging inadvertently
reduces the bias introduced by the self-generated tests, thereby increasing the prevalence of true
negative labels. However, when incorrect details are included in feedback, the performance declines
compared to using only the label for self-debugging.

Generating high-quality tests from natural language specifications continues to present a substantial
challenge in the field. When self-testing results in a false negative due to invalid tests, it is crucial
for the model to accurately identify the errors within the feedback and keep the original programs
intact. The efficacy of post-execution self-debugging, depends not only on the model’s ability to
identify the defects in its own programs when presented with true negative labels but also on its
ability to recognize the faulty execution feedback given false negatives.

4.4 RQ3: IN-EXECUTION REASONING HELPS SELF-DEBUGGING

In this subsection, we examine the efficacy of in-execution self-debugging across programming
benchmarks. Drawing inspiration from the implementation presented in LDB (Zhong et al., 2024),
we divide a program into basic blocks based on nodes in its control flow graph (CFG). Then we
collect the intermediate runtime states before and after these basic blocks during program execution
to facilitate in-execution self-debugging. However, the labels (whether the program is correct or
not) and details of the execution results, which we regard as post-execution information illustrated
in Section 4.2, are not accessible for the models. Therefore, the models must determine program
correctness merely based on the test input and corresponding intermediate states, analyzing each
block individually.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 5: Pass rates after in-execution self-debugging with self-generated tests on HumanEval and
MBPP.

Model Method #Iteration HumanEval MBPP

Base Plus Base Plus

GPT-4o-2024-05-13
One-pass 0 92.1 87.8 91.5 76.5

Self-debug w/ trace 1 93.3+1.2 89.0+1.2 92.1+0.6 77.8+1.3

2 93.3+1.2 88.4+0.6 92.9+1.4 79.1+2.6

Claude-3.5-Sonnet
One-pass 0 94.5 89.0 92.6 77.0

Self-debug w/ trace 1 93.9−0.6 89.6+0.6 95.0+2.4 77.2+0.2

2 93.9−0.6 87.2−1.8 93.9+1.3 76.2−0.8

LLaMA-3-70B-Instruct
One-pass 0 79.9 73.8 84.4 71.2

Self-debug w/ trace 1 81.1+1.2 70.1−3.7 84.7+0.3 69.6−1.6

2 83.5+3.6 74.4+0.6 84.4+0.0 69.6−1.6

Qwen2.5-Coder-7B-Instruct
One-pass 0 86.0 81.7 84.7 70.6

Self-debug w/ trace 1 86.6+0.6 82.3+0.6 84.9+0.2 71.4+0.8

2 86.6+0.6 82.3+0.6 85.2+0.5 72.0+1.4

Table 6: Pass rates after in-execution self-debugging with self-generated tests on LiveCodeBench.

Model Method #Iteration Easy Medium Hard Overall

GPT-4o-2024-05-13
One-pass 0 89.3 33.1 6.0 46.0

Self-debug w/ trace 1 91.2+1.9 34.9+1.8 6.0+0.0 47.3+1.3

2 91.8+2.5 34.9+1.8 6.0+0.0 47.6+1.6

Claude-3.5-Sonnet
One-pass 0 93.1 48.0 16.4 55.8

Self-debug w/ trace 1 95.0+1.9 49.1+1.1 17.2+0.8 57.1+1.3

2 93.7+0.6 48.6+0.6 17.2+0.8 56.4+0.6

LLaMA-3-70B-Instruct
One-pass 0 72.3 10.3 2.6 30.2

Self-debug w/ trace 1 73.0+0.7 11.4+1.1 3.4+0.8 31.1+0.9

2 71.1−1.2 12.0+1.7 3.4+0.8 30.7+0.5

Qwen2.5-Coder-7B-Instruct
One-pass 0 74.8 23.4 8.6 35.8

Self-debug w/ trace 1 75.5+0.7 24.0+0.6 8.6+0.0 36.2+0.4

2 76.1+1.3 24.0+0.6 8.6+0.0 36.4+0.6

Results. The results of in-execution self-debugging on HumanEval and MBPP are detailed in Table
5. We observe that self-debugging gains notable improvement for GPT-4o and Qwen2.5-coder-7b-
instruct when utilizing in-execution information. Specifically, GPT-4o’s pass rate increases continu-
ously from 76.5% to 79.1% after two iterations of self-debugging on MBPP. For Claude-3.5-Sonnet,
performance improves after the first iteration on both benchmarks and for Llama-3-70b-instruct, the
pass rate surpasses the baseline on HumanEval-plus after the second iteration. However, there is a
slight degradation in performance in certain tasks and iterations compared to the initial generation.
Furthermore, Table 6 summarizes the results on LiveCodeBench, which shows the effectiveness of
the in-execution self-debugging for all the models on competitive problems.

Analysis. Experimental results indicate that in-execution self-debug is a potentially effective way by
leveraging runtime execution information on both basic and competitive programming problems. It
segments a program into basic blocks and allows LLMs to delve into the precise intermediate states
during the execution process. The intermediate states serve as additional cues for program repair and
enhancement, significantly mitigating the bias introduced by self-generated tests. Nonetheless, self-
debugging with in-execution information depends heavily on the LLMs’ code reasoning capabilities
and lacks formal guarantees of success, as the pass rate drops for Llama-3-70b-instruct on MBPP.
We expect that improvements in LLM capabilities will enhance the efficacy of this paradigm.

To conclude, post-execution self-debugging utilizes final execution results to reflect upon and debug
programs. However, the unreliability of the self-generated tests could bias the model away from the
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correct answer. Although this can provide some relief on challenging tasks, it is not a long-term so-
lution, especially when those competitive programming problems can also be solved well over time.
On the contrary, in-execution self-debugging allows the models to perform fine-grained feedback
solely on the intermediate states during the execution process, without knowing the information
from biased self-testing. It shows the potential to better align the programs with the requirements in
real-world scenarios. Please refer to Appendix A for a detailed comparison of these two paradigms.

5 DISCUSSION

Directions for future work. In this work, we demonstrate that post-execution self-debugging with
self-generated tests struggles on basic problems due to biased evaluations, despite the significant
potential shown by LLMs in automated test generation. This highlights the necessity for the re-
search community to focus on the quality of LLM-generated tests before utilizing execution feed-
back derived from them. Developing techniques that enhance high-quality test synthesis is crucial
to mitigate bias for post-execution self-debugging. It could be beneficial to implement an iterative
refinement process wherein execution information is leveraged to improve the tests. This could in-
volve using techniques like test-driven development where tests are continuously updated based on
code changes and debugging outcomes.

As demonstrated in Section 4.4, leveraging enriched runtime information from execution is a promis-
ing avenue for self-debugging. In particular, in-execution self-debugging has shown superior per-
formance compared to post-execution in certain tasks, suggesting that more nuanced and reliable
feedback leads to better performance. Designing more sophisticated methods for collecting and
analyzing runtime information is a promising direction for further enhancing self-debugging capa-
bilities. For instance, improving the intelligibility of execution trace representations for LLMs may
prove beneficial (Ni et al., 2024). Additionally, beyond variables, other types of runtime information,
such as code coverage and execution paths, may also be utilized effectively (Chen et al., 2024a).

Effective self-debugging with self-generated tests hinges on several core capabilities of LLMs. In
terms of refinement, the model should be capable of accurately recognizing and localizing faults
within the program. Additionally, more advanced reasoning capabilities are needed to analyze exe-
cution feedback thoroughly. The model should comprehend the relationship between the code logic
and the feedback, thereby deducing the runtime structure of program statements and variables.

Applications. Self-debugging opens up possibilities for developing more advanced LLMs without
reliance on human supervision or guidance from stronger models (Burns et al., 2023). Traditionally,
human-generated test cases serve as a strong supervisory signal for aligning code generation, but
the collection of such tests is labor-intensive, leading to a sparsity of labeled data for effective
code refinement. Self-generated tests, by contrast, offer a viable path for self-improvement (Tao
et al., 2024). They alleviate the burden of manual test generation and pave the way toward truly
autonomous self-correcting code generation systems (Chen et al., 2024b).

6 CONCLUSION

This paper investigates the concept of self-debugging in code generation for LLMs, with a focus
on leveraging self-generated tests. We establish a structured framework for self-debugging which
is essential for real-world applications where high-quality annotations and human supervision are
often unavailable. We introduce and formalize two distinct paradigms within the execution-then-
feedback process: post-execution and in-execution self-debugging. Through comprehensive experi-
ments on both basic and competitive programming tasks, our findings highlight the unique strengths
and weaknesses. Specifically, we observe that: 1) post-execution self-debugging encounters dif-
ficulties in basic tasks; 2) bias from self-generated tests can lead to inconsistency across different
levels of problems; and 3) in-execution self-debugging, which leverages intermediate runtime in-
formation, consistently outperforms post-execution approach on both basic and competitive tasks,
indicating significant potential for future development. Overall, our work provides valuable insights
into the mechanics of self-debugging using self-generated tests, paving the way toward more au-
tonomous and self-evolving code generation systems.
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A CASE STUDY

In our experiments, we observe that in-execution self-debugging, which leverages runtime informa-
tion, consistently outperforms post-execution one across various levels of self-contained program-
ming tasks. To better understand the unique strengths and weaknesses of these two paradigms, we
provide an example involving GPT-4o in Figure 3. It illustrates different outcomes of post-execution
self-debugging with detailed test feedback and in-execution self-debugging with execution traces.

def can_arrange(arr):
"""Create a function which returns the largest index of an 
element which is not greater than or equal to the element 
immediately preceding it. If no such element exists then 
return -1. The given array will not contain duplicate 
values.

Examples:
can_arrange([1,2,4,3,5]) = 3
can_arrange([1,2,3]) = -1
"""

Please complete the `can_arrange` function and make sure that 
it matches the specification and passes all tests. …

def can_arrange(arr):
    for i in range(len(arr) - 1, 0, -1):
        if arr[i] < arr[i - 1]:
            return i
    return -1

One-Pass

I see the issue. … In the case of a descending order array, 
the function should return the first index where this 
condition is met, which is `1` in the given test case.

To fix this, we need to iterate from the beginning of the 
array to the end, and return the first index where the 
condition is met. Here is the corrected code:

def can_arrange(arr):
    for i in range(1, len(arr)):
        if arr[i] < arr[i - 1]:
            return i
    return -1

This function now correctly iterates from the beginning of the 
array to the end, and returns the first index where the 
current element is less than the previous element. This should 
pass all the given test cases.

But it failed in the following test case:
assert can_arrange([5, 4, 3, 2, 1]) == 1
# Real Execution Output: 4

Please fix the bug in the `can_arrange` function … Think step 
by step and provide the fixed code in one code block.

Post-Execution Self-Debugging w/ detail

Given an input for the function `can_arrange([5, 4, 3, 2, 1])`, 
here is the code execution trace block by block with the 
intermediate variable values:
[BLOCK-0]
    # arr = [5, 4, 3, 2, 1]
    for i in range(len(arr) - 1, 0, -1):
    # arr = [5, 4, 3, 2, 1] i = 4
[BLOCK-1]
        # arr = [5, 4, 3, 2, 1] i = 4
        if arr[i] < arr[i - 1]:
        # arr = [5, 4, 3, 2, 1] i = 4
[BLOCK-2]
            # arr = [5, 4, 3, 2, 1] i = 4
            return i
            # arr = [5, 4, 3, 2, 1] i = 4 _ret = 4

Please explain the execution … If it is incorrect, please fix 
the bug and provide the fixed code in a code block.

### [BLOCK-0]
```python
# arr = [5, 4, 3, 2, 1]
for i in range(len(arr) - 1, 0, -1):
# arr = [5, 4, 3, 2, 1] i = 4
```
**Explanation:**
- The array `arr` is `[5, 4, 3, 2, 1]`.
- The `for` loop is set to iterate from the last index 
(`len(arr) - 1`, which is 4) to the first index (1), 
decrementing by 1 each time.
- In the first iteration, `i` is initialized to 4.

…

### [BLOCK-2]
```python
# arr = [5, 4, 3, 2, 1] i = 4
return i
# arr = [5, 4, 3, 2, 1] i = 4 _ret = 4
```
**Explanation:**
- Since the condition in [BLOCK-1] is true, the function 
returns the current index `i`, which is 4.

**Correctness:**
- This block is correct. The function correctly returns the 
index of the element that is not greater than or equal to the 
element immediately preceding it.

### Conclusion
The execution trace is correct and matches the expected 
behavior of the function based on the given specifications and 
samples. The function correctly identifies that the element at 
index 4 (value 1) is less than the element at index 3 (value 2) 
and returns the index 4. Here is the complete and correct code 
in one Python code block: …

In-Execution Self-Debugging w/ trace

Figure 3: An example with GPT-4o performing both post and in-execution self-debugging on a prob-
lem from HumanEval (HumanEval/135) respectively. Post-execution self-debugging wrongly
corrects the program while in-execution self-debugging manages to keep the original answer.

In this example, the completion for the can arrange function is initially correct. However, it
is evaluated against an erroneous self-generated test that, according to the specification, should
return 4 instead of 1. This discrepancy makes the model alter its original correct interpretation
of the condition in the problem, thereby leading to a wrongly revised program. Feedback from
post-execution on erroneous self-generated tests biases the model away from the specification of
the problem. By contrast, in-execution self-debugging leverages test inputs and their corresponding
runtime information to assess program correctness. As depicted in Figure 3, this approach enables
the model to perform a fine-grained analysis on the execution trace block by block without access to
the potential biases introduced by self-generated tests. The model eventually confirms that the trace
aligns with the expected behavior of the function.
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B EXAMPLES OF PROGRAM CONTRACTS

# HumanEval/21

def rescale_to_unit(numbers: List[float]) -> List[float]:
    """ Given list of numbers (of at least two elements), apply a linear transform to that list,
    such that the smallest number will become 0 and the largest will become 1
    >>> rescale_to_unit([1.0, 2.0, 3.0, 4.0, 5.0])
    [0.0, 0.25, 0.5, 0.75, 1.0]
    """
    
    assert all(type(x) in [int, float] for x in numbers), "invalid inputs" # $_CONTRACT_$
    assert len(numbers) >= 2, "invalid inputs" # $_CONTRACT_$
    assert max(numbers) > min(numbers), "invalid inputs" # $_CONTRACT_$
    
    
    ma, mi = max(numbers), min(numbers)
    k = 1 / (ma - mi)
    return list(map(lambda x: (x - mi) * k, numbers))

# MBPP/439

"""
Write a function to join a list of multiple integers into a single integer.
assert multiple_to_single([11, 33, 50])==113350
"""

def multiple_to_single(L):
    
    assert isinstance(L, list), "invalid inputs" # $_CONTRACT_$
    assert len(L) > 0, "invalid inputs" # $_CONTRACT_$
    assert all(isinstance(item, int) for item in L), "invalid inputs" # $_CONTRACT_$
    assert all(item > 0 for item in L[1:]), "invalid inputs" # $_CONTRACT_$
    
    return int(''.join(map(str,L)))

Figure 4: Examples of program contracts in HumanEval and MBPP. Program contracts consist of
assertions that specify conditions necessary for a valid input.

C ANALYSIS ON THE NUMBER OF SELF-GENERATED TESTS

To investigate the effect of the number of self-generated tests, we employ GPT-4o-2024-05-13 to
generate increasing numbers of tests N = [10, 15, 20] for each programming problem in HumanEval
and MBPP. The accuracies of these generated tests are summarized in Table 7.

Table 7: Accuracies of increasing sizes of self-generated test suites on HumanEval and MBPP.

#Num of Tests HumanEval MBPP

Input Output Suite Input Output Suite

10 97.63% 89.77% 59.15% 94.81% 85.60% 58.73%
15 97.89% 88.86% 52.44% 94.96% 85.27% 53.70%
20 98.11% 86.01% 48.17% 95.10% 82.94% 50.53%

As the number of self-generated tests increases, the presence of more challenging edge cases also
rises, consequently reducing the accuracy of the test suites. Specifically, when the model generates
up to 20 tests per problem, the accuracy of the test suite decreases from 59.15% to 48.17% for
HumanEval and from 58.73% to 50.53% for MBPP. We further evaluate the performance of both
post-execution self-debugging with detailed feedback and in-execution self-debugging.
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Table 8: Pass rates after post-execution self-debugging with detailed feedback and in-execution self-
debugging on HumanEval and MBPP when using different sizes of the self-generated test suite. The
values highlighted in red or green are changes relative to the initial generation (one-pass).

Method #Num of Tests HumanEval MBPP

Base Plus Base Plus

One-pass 0 92.1 87.8 91.5 76.5

Self-debug w/ detail
10 89.0−3.1 84.1−3.7 91.3−0.2 76.2−0.3

15 88.4−3.7 84.1−3.7 91.3−0.2 75.9−0.6

20 87.8−4.3 83.5−4.3 90.7−0.8 75.9−0.6

Self-debug w/ trace
10 93.3+1.2 89.0+1.2 92.1+0.6 77.8+1.3

15 92.7+0.6 88.4+0.6 92.1+0.6 78.0+1.5

20 93.3+1.2 88.4+0.6 91.8+0.3 77.2+0.7

The results in Table 8 indicate that with an increased number of self-generated tests, the performance
of post-execution self-debugging experiences a slight decline on both HumanEval and MBPP. It is
attributed to the lower test accuracy leading to a higher rate of false negatives, thereby hindering
the efficacy of post-execution self-debugging. Conversely, in-execution self-debugging leveraging
intermediate runtime traces shows a consistent improvement over the initial generation.

D PROMPTS

Here is the given code to do completion:
```python
{prompt}
```
Please complete the `{entry_point}` function and make sure that it matches the 
specification and passes all tests. You are not allowed to modify the given function 
signature. Think step by step and provide all completed codes in one code block.

Figure 5: Code generation prompt for HumanEval.

Here is the given problem to solve:
```python
{prompt}
```
Please implement the `{entry_point}` function and make sure that it matches the 
specification and passes all tests. You are not allowed to modify the given function 
name and arguments in the test examples. Think step by step and provide all completed 
codes in one code block.

Figure 6: Code generation prompt for MBPP.
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Here is the given programming problem to solve:
{content}

Please generate a correct python program that matches the specification and passes all 
tests. Think step by step. You will use the following starter code to write the 
solution to the problem and enclose your code within delimiters.
```python
{starter_code}
```

Figure 7: Code generation prompt for functional-input question in LiveCodeBench.

Here is the given programming problem to solve:
{content}

Please generate a correct python program that matches the specification and passes all 
tests. Read the inputs from stdin solve the problem and write the answer to stdout (do 
not directly test on the sample inputs). Think step by step and enclose your code 
within delimiters as follows:
```python
# YOUR CODE HERE
```

Figure 8: Code generation prompt for stdin-input question in LiveCodeBench.

Here is the given code to do completion:
```python
{prompt}
```
Please provide ten comprehensive and valid test cases to verify whether the 
`{entry_point}` function correctly solves the problem. You are not allowed to 
implement the function. Think step by step and provide all test cases in one code 
block.

The format of test cases should be:
```python
assert {entry_point}(input) == expected_output, "Test Case Description"
```

Figure 9: Test generation prompt for HumanEval.

Here is the given problem to solve:
```python
{prompt}
```
Please provide ten comprehensive and valid test cases to verify whether the 
`{entry_point}` function correctly solves the problem. You are not allowed to 
implement the function. Think step by step and provide all test cases in one code 
block.

The format of test cases should be:
```python
assert {entry_point}(input) == expected_output, "Test Case Description"
```

Figure 10: Test generation prompt for MBPP.
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Here is the given programming problem to solve:
{content}

Please provide ten comprehensive test samples based on the specification and follow 
the format of the given sample.

Your response should be organized like below and no extra information is allowed 
(including explanation):
[Input]
<your input here>
[Output]
<your output here>
[Input]
...

Figure 11: Test generation prompt for LiveCodeBench.

{error}Please fix the bug in the `{entry_point}` function and make sure that the fixed 
code matches the specification and passes all tests. You are not allowed to modify the 
given function signature. Think step by step and provide the fixed code in one code 
block. 

Figure 12: Debugging prompt for HumanEval.

{error}Please fix the bug in the `{entry_point}` function and make sure that the fixed 
code matches the specification and passes all tests. You are not allowed to modify the 
given function name and arguments in the test examples. Think step by step and provide 
the fixed code in one code block. 

Figure 13: Debugging prompt for MBPP.

{error}Please fix the bug in the code and make sure that the fixed code matches the 
specification and passes all tests. 
You will use the following starter code to write the solution to the problem and 
enclose your code within delimiters.
```python
{starter_code}
```

Figure 14: Debugging prompt for functional-input question in LiveCodeBench.

{error}Please fix the bug in the code and make sure that the fixed code matches the 
specification and passes all tests. 
Read the inputs from stdin solve the problem and write the answer to stdout (do not 
directly test on the sample inputs). Enclose your code within delimiters as follows.
```python
# YOUR CODE HERE
```

Figure 15: Debugging prompt for stdin-input question in LiveCodeBench.
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Given an input for the function `{test}`, here is the code execution trace block by 
block with the intermediate variable values as reference:
{trace}

Please explain the execution FOR EACH BLOCK and answer whether this program is correct 
or not based on the specifications and given samples in the problem. If the program is 
correct, please restate it in one python code block. If it is incorrect, please fix 
the bug and provide the fixed code in a code block.

Figure 16: Prompt for in-execution self-debugging.
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