
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

REVISIT SELF-DEBUGGING WITH SELF-GENERATED
TESTS FOR CODE GENERATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models (LLMs) have shown significant advancements in code
generation, but still face challenges on tasks beyond their basic capabilities. Re-
cently, the notion of self-debugging has been proposed to boost the performance of
code generation by leveraging execution feedback from tests. Despite its promise,
the availability of high-quality tests in real-world scenarios is limited. In this con-
text, self-debugging with self-generated tests is a promising solution but lacks a
full exploration of its limitations and practical potential. Therefore, we investigate
its efficacy on diverse programming problems. To deepen our understanding, we
propose two distinct paradigms for the process: post-execution and in-execution
self-debugging. Within the scope of self-contained Python programming tasks,
we find that post-execution self-debugging struggles on basic problems but shows
potential for improvement on competitive ones, due to the bias introduced by self-
generated tests. On the other hand, in-execution self-debugging enables LLMs to
mitigate the bias by solely leveraging intermediate states during execution, thereby
enhancing code generation.

1 INTRODUCTION

Large language models (LLMs) have demonstrated considerable progress in code generation, but
still face challenges to perform complex programming tasks beyond their basic capabilities. The
tasks require LLMs to understand the given natural language specifications and generate programs
that could pass all the private tests. Recently, self-debugging has emerged as a promising approach
to boost the performance of LLMs in code generation (Chen et al., 2024b; Jiang et al., 2023; Zhong
et al., 2024). This approach enables models to refine their own output through an iteration of genera-
tion and execution for the programs utilizing pre-built oracle tests. However, in real-world scenarios
of software development, oracle tests are not available for each code snippet.

To address this challenge, recent studies have introduced self-generated tests into self-debugging
process (Shinn et al., 2024; Huang et al., 2023; Ridnik et al., 2024). As illustrated in Figure 1,
in this framework, the model first generates an initial program and a suite of tests based on the
natural language specifications of the problem. The program is then executed on the self-generated
tests with an executor (e.g. code interpreter). If it raises any error, the signal or message will be
collected as execution feedback, which the model uses to generate a revised version of the program.
It helps reduce the reliance on external feedback from humans or stronger models and thus holds the
potential to be generally applied in various code generation tasks.

Nonetheless, the efficacy of self-debugging with self-generated tests remains underexplored. Reflex-
ion (Shinn et al., 2024) leverages feedback from self-generated tests to debug but evaluates the code
before repair with hidden oracle tests. AlphaCodium (Ridnik et al., 2024) first iterates on public
oracle tests and then on model-generated tests with a technique of test anchors. The improvements
observed using oracle tests do not accurately demonstrate the true self-debugging capabilities of
LLMs. This highlights the need for more transparent evaluation to better understand the inherent
debugging potential with self-generated tests. To study this, we first clarify the concept of self-
debugging in practice, a scenario wherein the model attempts to debug and repair its own programs
without reliance on human supervision or guidance from stronger models. Beyond leveraging the
model’s intrinsic capabilities, execution feedback from self-generated tests also serves as additional
signals to help LLMs identify bugs in its programs according to specifications. Depending on the ex-

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Problem

Tests

ProgramLLMs Executor

Execution Feedback

(1) (2)

(2)

(3)

(1)
Test Output

Execution Output

Match?

Post-Execution

In-Execution

Correct?

Runtime
States

Test Input

Test Input

Figure 1: Overview of self-debugging with execution feedback from self-generated tests. (1) The
model generates an initial program along with a suite of tests, based on the specifications of the
problem. (2) The program is executed by an executor on the self-generated tests. (3) The feedback
from execution is then utilized by the model to produce a revised version of the program.

ecution stage, there are different kinds of information that we can utilize. We propose two paradigms
for doing this: post-execution and in-execution self-debugging, as shown in Figure 1. Post-execution
self-debugging directly validates correctness by checking whether the output after execution matches
the test output or not. In-execution self-debugging allows LLMs to analyze the intermediate runtime
states during program execution without knowing the results from post-execution.

Contributions: In this paper, we investigate the efficacy of self-debugging with self-generated tests
applied to four advanced LLMs: GPT-4o (2024-05-13)1, Claude-3.5-Sonnet2, Llama-3-70B-
Intruct (Dubey et al., 2024) and Qwen2.5-Coder-7B-Instruct (Hui et al., 2024) for self-contained
Python programming problems taken from HumanEval (Chen et al., 2021), MBPP (Austin et al.,
2021) and LiveCodeBench (Jain et al., 2024). Specifically, we evaluate the models’ ability to reflect
upon and debug code using information obtained from post-execution and in-execution respectively.
We summarize our observations as follows:

• In the context of self-contained Python programming tasks, post-execution self-debugging strug-
gles with relatively basic problems, such as those in HumanEval and MBPP. However, it shows
potential for improvement on more challenging programming problems in LiveCodeBench.

• This discrepancy is attributed to the bias introduced by self-generated tests, which refers to the
misalignment between self-testing labels and true labels for the programs. In addition to the
impact of the bias, the efficacy of post-execution self-debugging relies not only on the model’s
ability to reflect upon feedback but also on the ability to recognize faulty feedback.

• Instead of using unreliable post-execution information, in-execution self-debugging minimizes the
bias by solely focusing on the intermediate states during the program execution. The experimental
results demonstrate promising improvements for both basic and competitive tasks.

Through our study, we aim to shed light on the practicality of self-debugging with self-generated
tests, contributing valuable insights into the future development of LLMs in code generation tasks.

2 RELATED WORK

Code Generation. Code generation is the automatic production of source code based on nat-
ural language descriptions. Large pre-trained language models like the GPT-4 series have shown
impressive capabilities in code generation. Researchers have proposed various approaches to en-
hance the quality of code generated by these models. Some works, like LLaMA series (Touvron
et al., 2023a;b; Dubey et al., 2024), focus on optimizing model training, while others aim to im-
prove code quality through post-processing techniques. For example, CodeT (Chen et al., 2022)

1https://openai.com/index/hello-gpt-4o/
2https://www.anthropic.com/news/claude-3-5-sonnet

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

generates a large number of code and test cases, using the dual agreement to filter the most promis-
ing code candidates. Other methods, such as coder-reviewer (Zhang et al., 2023b) and code-ranker
(Inala et al., 2022), apply ranking metrics to select optimal code from multiple candidates. Among
these post-processing techniques, methods that involve self-debugging have gained considerable at-
tention. Through feedback from execution results, self-debugging allows models to autonomously
debug and refine previously generated code, enhancing the final output. Self-debugging does not
require increasing the sample budget, making it a cost-effective solution for improving inference
efficiency (Zhang et al., 2023a). As a result, self-debugging has been integrated into various LLM-
based code generation methods (Yang et al., 2024; Zhang et al., 2024; Dong et al., 2023; Huang
et al., 2023). In this work, we revisit these techniques and assess the effectiveness of self-debugging
with self-generated tests on both basic and competitive programming benchmarks.

Self-Debug with LLMs. As LLMs have evolved, the idea of using models to refine their own
output has become more popular. In code generation, several techniques have explored how LLMs
can refine the code they generate. Most of these methods rely on prompting LLMs with execution
results to improve the code. These methods often rely on pre-existing or generated tests to execute
the code, capturing execution information that is then used to refine the output code (Olausson
et al. (2024); Wang et al. (2024); Dong et al. (2023); Madaan et al. (2023); Zhang et al. (2023a)).
Self-Debugging (Chen et al., 2024b) introduces a framework in which LLMs iteratively debug their
own generated code by utilizing execution results and self-generated explanations. Self-Edit (Zhang
et al., 2023a) builds on the example tests provided in programming problems for execution to help
the model correct its own output. LDB (Zhong et al., 2024) utilizes runtime execution information
to help debug generated programs. Jiang et al. (2024) enhance LLM self-debugging by training
on an automatically collected dataset for code refinement and explanation. Madaan et al. (2023)
conduct a broad evaluation of self-debugging in code models, highlighting that performance can be
improved with higher-quality feedback or human intervention. In this work, we aim to explore the
potential as well as limitations of execution-based self-debugging methods, particularly with self-
generated tests. We provide a detailed analysis of these methods and propose a unified framework
in the following Section 3.

3 SELF-DEBUGGING WITH SELF-GENERATED TESTS

We focus on evaluating the self-debugging capabilities of large language models (LLMs) through
execution on self-generated tests. Figure 1 provides a comprehensive overview of this process.
Given a problem with a natural language specification, the LLM (denoted as M) first generates an
initial program C along with a suite of test cases, denoted as {(Xi, Yi)}Ni=1, where Xi represents
the input and Yi represents the expected output for the i-th test. To enhance the model’s debug-
ging performance beyond its intrinsic reasoning capabilities, we utilize execution feedback as an
additional signal to help the model identify bugs in its generated program according to the problem
specification. Specifically, we employ an executor (denoted as E) to run the generated program on
the test suite and collect execution information as feedback.

There are various implementations for utilizing execution feedback, which we categorize into two
distinct paradigms: Post-Execution and In-Execution self-debugging. These paradigms reflect
the type of information employed in the self-debugging process. Post-execution information refers
to content obtained after the program’s execution, such as execution outputs or error messages. In
contrast, in-execution information refers to intermediate states observed during execution, providing
finer-grained insights into the program’s behavior. We now formally define these paradigms.

Post-Execution Self-Debugging. The paradigm leverages information obtained after the actual
execution of the program. A widely adopted implementation involves comparing the execution
output with the expected output (Olausson et al., 2024; Wang et al., 2024; Dong et al., 2023; Madaan
et al., 2023; Zhang et al., 2023a; Chen et al., 2024b; Jiang et al., 2024), as shown in Figure 1.
Consider an initial program C and a generated test set {(Xi, Yi)}Ni=1. An executor, denoted as E,
processes each input Xi, yielding the corresponding execution output Ỹi = E(C,Xi), i ∈ [1, N].
The executor then assesses whether the execution output Ỹi aligns with the expected output Yi to
determine if the test is passed. If a discrepancy occurs, the test is marked as failed. The system
then utilizes the failed test case (Xi, Yi), the execution output Ỹi, and any related error messages to

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

refine the program. This process encourages the model to generate a revised version of the program,
denoted as C̃ = M(C,Xi, Yi, Ỹi).

In-Execution Self-Debugging. Post-execution self-debugging typically overlooks the intermedi-
ate states of the program, which can provide valuable insights for program refinement. To address
this limitation, in-execution self-debugging leverages feedback from the intermediate states during
program execution (Zhong et al., 2024; Ni et al., 2024; Bouzenia et al., 2023). Formally, a program
C can be divided into multiple basic blocks, denoted as C = [B1, B2, ..., BK], where Bk represents
the k-th basic block and K is the total number of blocks in the execution trace. Each basic block is
defined as a linear sequence of program statements with a single entry and a single exit point.

Given a test input Xi, i ∈ [1, N], the executor E initializes the input as the initial variable set
V 1
i and executes it through the first block B1. The execution updates the variable set to V 2

i =
E(B1, V 1

i), where V 2
i denotes the set of variables after executing block B1. This process is repeated

iteratively, with the executor processing V k+1
i = E(Bk, V k

i) for each subsequent block Bk until the
program execution is complete. The sequence of intermediate states represented as the execution
trace T = [B1, V 1

i , ..., B
K , V K

i], provides a detailed view of how the program behaves over time.
By analyzing this trace, the LLM M identifies potential issues within specific blocks and refines the
program accordingly, resulting in the updated version C̃ = M(C,Xi, T).

4 EXPERIMENTS

In this section, we evaluate self-debugging capabilities of advanced LLMs using self-generated tests
on self-contained Python programming tasks. We carry out experiments to answer the following
research questions: (1) When self-debugging with post-execution information from self-generated
tests, what would the performance be like on basic programming problems? (2) Is the performance
of post-execution self-debugging consistent across different programming tasks? If not, what is the
reason behind it? (3) How does in-execution self-debugging perform when considering the settings
above? What is the difference between post-execution and in-execution self-debugging?

4.1 EXPERIMENTAL SETUP

Benchmarks. We select three popular code generation benchmarks covering basic and competi-
tive3 programming problems to comprehensively evaluate the efficacy of self-debugging, including:

• HumanEval and MBPP HumanEval (Chen et al., 2021) consists of 164 programming problems
written by humans. Each problem provides a Python function signature and a docstring as its spec-
ification. MBPP (Austin et al., 2021) includes 974 programming problems written by contributors
through crowdsourcing. Each of these problems features a problem statement, a function signa-
ture, and three example tests. To enhance the reliability and accuracy of evaluations, EvalPlus
(Liu et al., 2024) extends HumanEval into a more comprehensive version known as HumanEval+
with 80 times more tests than the original HumanEval. Similarly, MBPP+ is an augmentation of
the original MBPP, offering 35 times more tests. In our experiments, we use the latest version of
MBPP for both base and plus set, which consists of 378 programming problems.

• LiveCodeBench LiveCodeBench (Jain et al., 2024) is a contamination-free benchmark that con-
tinuously collects new problems from prominent competitive programming platforms. As of now,
LiveCodeBench features a collection of over 600 high-quality programming problems. These
problems encompass a wide range of difficulty levels and topics, providing a comprehensive eval-
uation for the coding capabilities of LLMs. In our experiments, we select 450 problems that were
published between September 2023 and September 2024.

Test Models and Setup. Generating high-quality tests poses significant challenges as it necessi-
tates a comprehensive understanding of natural language specifications as well as the capabilities of
code reasoning (Chen et al., 2024a). Therefore, we investigate the research questions with four ad-
vanced chat models: LLaMA-3-70B-Instruct (Dubey et al., 2024) and Qwen2.5-Coder-7B-Instruct

3In this work, we regard problems in HumanEval, MBPP as basic programming problems, and those in
LiveCodeBench as competitive ones according to overall complexity and difficulty.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Table 1: Pass rates after post-execution self-debugging with oracle tests on HumanEval and MBPP.
The values highlighted in green are increases relative to the initial generation (one-pass).

Model Method #Iteration HumanEval MBPP

Base Plus Base Plus

GPT-4o-2024-05-13

One-pass 0 92.1 87.8 91.5 76.5

Self-debug w/ label 1 93.3+1.2 89.0+1.2 92.6+1.1 80.2+3.7

2 94.5+2.4 90.2+2.4 93.4+1.9 81.2+4.7

Self-debug w/ detail 1 93.9+1.8 90.2+2.4 92.9+1.4 81.5+5.0

2 95.1+3.0 92.1+4.3 92.6+1.1 83.1+6.6

Claude-3.5-Sonnet

One-pass 0 94.5 89.0 92.6 77.0

Self-debug w/ label 1 95.1+0.6 92.1+3.1 93.7+1.1 82.5+5.5

2 96.3+1.8 92.7+3.7 93.4+0.8 83.3+6.3

Self-debug w/ detail 1 97.0+2.5 92.1+3.1 91.8−0.8 82.0+5.0

2 97.6+3.1 94.5+5.5 94.2+1.6 86.0+9.0

LLaMA-3-70B-Instruct

One-pass 0 79.9 73.8 84.4 71.2

Self-debug w/ label 1 81.7+1.8 77.4+3.6 85.7+1.3 74.9+3.7

2 86.0+6.1 81.1+7.3 86.8+2.4 75.9+4.7

Self-debug w/ detail 1 84.1+4.2 80.5+6.7 85.4+1.0 76.5+5.3

2 84.8+4.9 81.7+7.9 86.0+1.6 78.6+7.4

Qwen2.5-Coder-7B-Instruct

One-pass 0 86.0 81.7 84.7 70.6

Self-debug w/ label 1 86.0+0.0 82.9+1.2 86.8+2.1 73.8+3.2

2 86.0+0.0 82.9+1.2 86.8+2.1 73.8+3.2

Self-debug w/ detail 1 86.6+0.6 83.5+1.8 85.4+0.7 73.8+3.2

2 87.2+1.2 84.1+2.4 86.0+1.3 74.3+3.7

(Hui et al., 2024) with publicly accessible weights, API-served GPT-4o-2024-05-13 and Claude-3.5-
Sonnet. We employ a greedy decoding strategy (a temperature of zero) across all generation phases
of self-debugging. We design prompts for the initial program generation to ensure that no additional
information is introduced by subsequent prompts for program repair. This premise is crucial for us
to concentrate on investigating the true self-debugging capabilities of LLMs (Huang et al., 2024).
To generate a test suite for each problem, we prompt the model to write ten diverse and extensive
tests4 based on its corresponding natural language specification in a zero-shot manner. For a detailed
overview of the prompts used, please refer to the Appendix D.

4.2 RQ1: POST-EXECUTION SELF-DEBUGGING STRUGGLES ON BASIC PROBLEMS

In this subsection, we examine the performance of self-debugging techniques using self-generated
tests on basic programming problems and evaluate how it compares to self-debugging with oracle
tests. Consistent with implementations in most existing literature, we perform self-debugging by uti-
lizing post-execution information. In this process, program correctness is determined by comparing
the actual output with the expected output for a given test case. If the generated program successfully
passes all tests, the iterative process terminates, and no further self-debugging is conducted.

Feedback. To provide a comprehensive assessment, we consider two different types of feedback
that can be utilized from post-execution results. The first type is the correct label, which indicates
whether the model’s previous program was correct or not. If the program is incorrect, an instruction
for repair will be provided to the model. The second type is the detail of the failure, including the
test input, expected output, and execution output. In cases where the program raises an exception
during execution, the error message is incorporated into the detail in place of the execution output.

Results. We conduct experiments on problems from HumanEval and MBPP using self-generated
tests and compare the results to those obtained with oracle tests. Table 1 summarizes the pass
rates achieved through self-debugging with oracle tests, showcasing significant improvements as

4Refer to Appendix C for discussions on the effect of the number of generated tests.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Table 2: Pass rates after post-execution self-debugging with self-generated tests on HumanEval and
MBPP. The values highlighted in red are declines compared to the initial generation (one-pass).

Model Method #Iteration HumanEval MBPP

Base Plus Base Plus

GPT-4o-2024-05-13

One-pass 0 92.1 87.8 91.5 76.5

Self-debug w/ label 1 91.5−0.6 87.2−0.6 92.1+0.6 76.7+0.2

2 91.5−0.6 86.6−1.2 92.9+1.4 77.5+1.0

Self-debug w/ detail 1 89.0−3.1 84.1−3.7 91.3−0.2 76.2−0.3

2 91.5−0.6 85.4−2.4 92.6+1.1 76.5+0.0

Claude-3.5-Sonnet

One-pass 0 94.5 89.0 92.6 77.0

Self-debug w/ label 1 93.9−0.6 88.4−0.6 92.9+0.3 77.8+0.8

2 93.3−1.2 86.6−2.4 91.5−1.1 76.2−0.8

Self-debug w/ detail 1 87.2−7.3 81.1−7.9 90.5−2.1 72.8−4.2

2 87.2−7.3 79.3−9.7 92.1−0.5 75.4−1.6

LLaMA-3-70B-Instruct

One-pass 0 79.9 73.8 84.4 71.2

Self-debug w/ label 1 74.4−5.5 65.2−8.6 82.5−1.9 68.3−2.9

2 75.6−4.3 69.5−4.3 83.6−0.8 68.3−2.9

Self-debug w/ detail 1 74.4−5.5 66.5−7.3 82.3−2.1 64.8−6.4

2 73.8−6.1 67.1−6.7 80.2−4.2 63.8−7.4

Qwen2.5-Coder-7B-Instruct

One-pass 0 86.0 81.7 84.7 70.6

Self-debug w/ label 1 82.9−3.1 78.0−3.7 84.9+0.2 69.8−0.8

2 84.1−1.9 79.3−2.4 83.9−0.8 69.8−0.8

Self-debug w/ detail 1 84.1−1.9 76.2−5.5 84.7+0.0 68.0−2.6

2 83.5−2.5 75.6−6.1 85.4+0.7 69.0−1.6

Table 3: Accuracies of self-generated tests on HumanEval and MBPP. Test Input & Output are
evaluated case-by-case; A test Suite is deemed valid if all outputs within the suite are correct.

Model HumanEval MBPP

Input Output Suite Input Output Suite

GPT-4o-2024-05-13 97.63% 89.77% 59.15% 94.81% 85.60% 58.73%
Claude-3.5-Sonnet 97.68% 89.14% 56.71% 95.75% 87.37% 58.47%

LLaMA-3-70B-Instruct 94.53% 84.69% 49.39% 90.81% 82.08% 51.85%
Qwen2.5-Coder-7B-Instruct 97.19% 84.85% 44.50% 94.35% 77.33% 44.44%

iterations progress. On the other hand, Table 2 presents the results when using self-generated tests.
We noted declines across all benchmarks for Llama-3-70b-instruct and Qwen2.5-coder-7b-instruct.
For other models, it shows a consistent decrease on HumanEval. The performance on MBPP may
improve initially, but with more detailed feedback and iterations, it will ultimately become worse
than the initial generation.

Analysis on generated tests. To better understand the reliability of tests generated by the model
itself, we employ program contracts and canonical solutions provided by the benchmarks to evaluate
the validity of test inputs and outputs respectively. Program contracts consist of assertions that spec-
ify conditions necessary for a valid input. We place these contracts at the beginning of the function
and pass the generated test input to it. Please refer to Appendix B for detailed implementation. If
there is no assertion error, the test input is considered valid. For test output validation, we collect the
actual execution output using canonical solutions, given a valid input, to confirm if the output aligns
with the expected output. Furthermore, we calculate the overall accuracy for the entire test suite. A
test suite is deemed valid if all generated test outputs are correct for a given problem.

Table 3 summarizes the results. GPT-4o and Claude-3.5-sonnet demonstrate superior capability in
producing high-quality tests compared to others, yet they remain prone to generating unreliable tests

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 4: Pass rates after post-execution self-debugging with self-generated tests on LiveCodeBench.

Model Method #Iteration Easy Medium Hard Overall

GPT-4o-2024-05-13

One-pass 0 89.3 33.1 6.0 46.0

Self-debug w/ label 1 89.9+0.6 41.1+8.0 6.0+0.0 49.3+3.3

2 89.9+0.6 40.0+6.9 6.9+0.9 49.1+3.1

Self-debug w/ detail 1 85.5−3.8 36.0+2.9 8.6+2.6 46.4+0.4

2 87.4−1.9 38.3+5.2 8.6+2.6 48.0+2.0

Claude-3.5-Sonnet

One-pass 0 93.1 48.0 16.4 55.8

Self-debug w/ label 1 89.9−3.2 49.1+1.1 17.2+0.8 55.3−0.5

2 91.2−1.9 49.7+1.7 16.4+0.0 55.8+0.0

Self-debug w/ detail 1 89.9−3.2 49.1+1.1 13.8−2.6 54.4−1.2

2 85.5−7.6 43.3−4.7 8.6−7.8 49.3−6.5

LLaMA-3-70B-Instruct

One-pass 0 72.3 10.3 2.6 30.2

Self-debug w/ label 1 66.0−6.3 9.1−1.2 3.4+0.8 27.8−2.4

2 64.8−7.5 10.9+0.6 2.6+0.0 27.8−2.4

Self-debug w/ detail 1 56.6−15.7 10.9+0.6 4.3+1.7 25.3−4.9

2 63.5−8.8 12.0+1.7 2.6+0.0 27.8−2.4

Qwen2.5-Coder-7B-Instruct

One-pass 0 74.8 23.4 8.6 35.8

Self-debug w/ label 1 69.8−5.0 24.0+0.6 8.6+0.0 34.2−1.6

2 71.7−3.1 23.4+0.0 8.6+0.0 34.7−1.1

Self-debug w/ detail 1 69.2−5.6 20.0−3.4 8.6+0.0 32.4−3.4

2 66.7−8.1 21.1−2.3 8.6+0.0 32.0−3.8

based on natural language specifications. For all the models, predicting test outputs proves to be a
more challenging task than generating test inputs.

In post-execution settings, incorrect test outputs introduce ambiguity into the self-debugging pro-
cess. We present an example on HumanEval with GPT-4o in Figure 3 in Appendix A. When a test
fails, the model is expected to determine whether the failure is due to bugs in the program or errors
in the test. This uncertainty complicates the self-debugging process and necessitates a further in-
vestigation into the effects of testing on self-generated tests, as discussed in the following Section
4.3. Our experiments reveal that post-execution self-debugging struggles with basic programming
tasks like HumanEval and MBPP. While post-execution information with self-generated tests is
leveraged, self-debugging remains a bottleneck, limiting improvements beyond initial generation.

4.3 RQ2: BIAS FROM SELF-TESTING LEADS TO INCONSISTENCY ACROSS TASKS

To comprehensively evaluate the performance of self-debugging on diverse programming tasks, we
conducted post-execution self-debugging experiments using problems from LiveCodeBench. The
problems in LiveCodeBench are classified into three distinct difficulty levels: easy, medium, and
hard. We report the pass rate achieved at each level of difficulty, as well as the overall performance.

Results. Table 4 summarizes the results of post-execution self-debugging with self-generated tests
on LiveCodeBench. We observed that for GPT-4o, self-debugging using label feedback leads to
improvements across problems of all difficulty levels. This is notably in contrast to the perfor-
mance on HumanEval and MBPP. However, when detailed feedback is provided, there is a decline
in performance on easy problems. For other models including Claude-3.5-Sonnet, the overall per-
formance decreases due to significant declines on easy problems. Moreover, despite incorporating
more post-execution information, the overall performance with detailed feedback remains inferior
to that achieved with label feedback.

Analysis. To investigate the reasons behind the inconsistent results on basic and competitive pro-
gramming problems, we delve into the impact on testing programs with self-generated tests. We
acknowledge that the models even advanced LLMs are likely to generate inaccurate tests. There-
fore, a program that is actually correct might fail some of the generated tests, resulting in a false
negative (FN) label. On the other hand, a flawed program might pass all the test cases, leading to

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

54.3

9.8

2.4

33.5

51.2

8.5
2.4

37.8 37.2

22.6

3.1

37.2 36.0

13.4

4.3

46.3

0

10

20

30

40

50

60

70

TP TN FP FN

P
er

ce
n

ta
g
e

(%
)

52.4

15.3

7.4

24.9

53.2

15.1

7.4

24.3

43.4

22.2

6.1

28.3
34.9

23.5

5.6

36.0

0

10

20

30

40

50

60

70

TP TN FP FN

P
er

ce
n

ta
g
e(

%
)

13.6

51.8

2.2

32.4

15.6

43.3

0.9

40.2

5.8

68.4

1.3

24.4

5.6

63.1

1.1

30.2

0

10

20

30

40

50

60

70

TP TN FP FN

P
er

ce
n

ta
g
e(
%
)

HumanEval MBPP

LiveCodeBench

Qwen2.5-Coder-7B-InstructLLaMA-3-70B-InstructClaude-3.5-SonnetGPT-4o-2024-05-13

Figure 2: The label changes when evaluating the programs with self-generated tests on HumanEval,
MBPP and LiveCodeBench. True Positive (TP): correct programs pass tests; True Negative (TN):
incorrect programs fail tests; False Positive (FP): incorrect programs pass tests; False Negative (FN):
correct programs fail tests.

a false positive (FP) label. This could prevent necessary updates and prematurely present a buggy
program. The misalignment between self-testing labels and true labels highlights the bias introduced
by self-generated tests for program evaluation.

We present an analysis of label changes with generated tests after the first iteration of self-debugging,
as illustrated in Figure 2. Given the implementation of self-debugging, only programs identified with
negative labels during the iteration would perform further repair. Therefore, our focus is primarily
on the distribution of different negative labels. We observed that testing on self-generated tests
is more likely to result in false negative labels than true negative ones on both HumanEval and
MBPP. However, a different pattern emerges on LiveCodeBench, where false negatives are more
than true negatives. This discrepancy is primarily due to lower performance on more challenging
programming tasks, where negative labels from self-testing are more likely to align with the actual
labels of the generated programs. Relying solely on labels during self-debugging inadvertently
reduces the bias introduced by the self-generated tests, thereby increasing the prevalence of true
negative labels. However, when incorrect details are included in feedback, the performance declines
compared to using only the label for self-debugging.

Generating high-quality tests from natural language specifications continues to present a substantial
challenge in the field. When self-testing results in a false negative due to invalid tests, it is crucial
for the model to accurately identify the errors within the feedback and keep the original programs
intact. The efficacy of post-execution self-debugging, depends not only on the model’s ability to
identify the defects in its own programs when presented with true negative labels but also on its
ability to recognize the faulty execution feedback given false negatives.

4.4 RQ3: IN-EXECUTION REASONING HELPS SELF-DEBUGGING

In this subsection, we examine the efficacy of in-execution self-debugging across programming
benchmarks. Drawing inspiration from the implementation presented in LDB (Zhong et al., 2024),
we divide a program into basic blocks based on nodes in its control flow graph (CFG). Then we
collect the intermediate runtime states before and after these basic blocks during program execution
to facilitate in-execution self-debugging. However, the labels (whether the program is correct or
not) and details of the execution results, which we regard as post-execution information illustrated
in Section 4.2, are not accessible for the models. Therefore, the models must determine program
correctness merely based on the test input and corresponding intermediate states, analyzing each
block individually.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 5: Pass rates after in-execution self-debugging with self-generated tests on HumanEval and
MBPP.

Model Method #Iteration HumanEval MBPP

Base Plus Base Plus

GPT-4o-2024-05-13
One-pass 0 92.1 87.8 91.5 76.5

Self-debug w/ trace 1 93.3+1.2 89.0+1.2 92.1+0.6 77.8+1.3

2 93.3+1.2 88.4+0.6 92.9+1.4 79.1+2.6

Claude-3.5-Sonnet
One-pass 0 94.5 89.0 92.6 77.0

Self-debug w/ trace 1 93.9−0.6 89.6+0.6 95.0+2.4 77.2+0.2

2 93.9−0.6 87.2−1.8 93.9+1.3 76.2−0.8

LLaMA-3-70B-Instruct
One-pass 0 79.9 73.8 84.4 71.2

Self-debug w/ trace 1 81.1+1.2 70.1−3.7 84.7+0.3 69.6−1.6

2 83.5+3.6 74.4+0.6 84.4+0.0 69.6−1.6

Qwen2.5-Coder-7B-Instruct
One-pass 0 86.0 81.7 84.7 70.6

Self-debug w/ trace 1 86.6+0.6 82.3+0.6 84.9+0.2 71.4+0.8

2 86.6+0.6 82.3+0.6 85.2+0.5 72.0+1.4

Table 6: Pass rates after in-execution self-debugging with self-generated tests on LiveCodeBench.

Model Method #Iteration Easy Medium Hard Overall

GPT-4o-2024-05-13
One-pass 0 89.3 33.1 6.0 46.0

Self-debug w/ trace 1 91.2+1.9 34.9+1.8 6.0+0.0 47.3+1.3

2 91.8+2.5 34.9+1.8 6.0+0.0 47.6+1.6

Claude-3.5-Sonnet
One-pass 0 93.1 48.0 16.4 55.8

Self-debug w/ trace 1 95.0+1.9 49.1+1.1 17.2+0.8 57.1+1.3

2 93.7+0.6 48.6+0.6 17.2+0.8 56.4+0.6

LLaMA-3-70B-Instruct
One-pass 0 72.3 10.3 2.6 30.2

Self-debug w/ trace 1 73.0+0.7 11.4+1.1 3.4+0.8 31.1+0.9

2 71.1−1.2 12.0+1.7 3.4+0.8 30.7+0.5

Qwen2.5-Coder-7B-Instruct
One-pass 0 74.8 23.4 8.6 35.8

Self-debug w/ trace 1 75.5+0.7 24.0+0.6 8.6+0.0 36.2+0.4

2 76.1+1.3 24.0+0.6 8.6+0.0 36.4+0.6

Results. The results of in-execution self-debugging on HumanEval and MBPP are detailed in Table
5. We observe that self-debugging gains notable improvement for GPT-4o and Qwen2.5-coder-7b-
instruct when utilizing in-execution information. Specifically, GPT-4o’s pass rate increases continu-
ously from 76.5% to 79.1% after two iterations of self-debugging on MBPP. For Claude-3.5-Sonnet,
performance improves after the first iteration on both benchmarks and for Llama-3-70b-instruct, the
pass rate surpasses the baseline on HumanEval-plus after the second iteration. However, there is a
slight degradation in performance in certain tasks and iterations compared to the initial generation.
Furthermore, Table 6 summarizes the results on LiveCodeBench, which shows the effectiveness of
the in-execution self-debugging for all the models on competitive problems.

Analysis. Experimental results indicate that in-execution self-debug is a potentially effective way by
leveraging runtime execution information on both basic and competitive programming problems. It
segments a program into basic blocks and allows LLMs to delve into the precise intermediate states
during the execution process. The intermediate states serve as additional cues for program repair and
enhancement, significantly mitigating the bias introduced by self-generated tests. Nonetheless, self-
debugging with in-execution information depends heavily on the LLMs’ code reasoning capabilities
and lacks formal guarantees of success, as the pass rate drops for Llama-3-70b-instruct on MBPP.
We expect that improvements in LLM capabilities will enhance the efficacy of this paradigm.

To conclude, post-execution self-debugging utilizes final execution results to reflect upon and debug
programs. However, the unreliability of the self-generated tests could bias the model away from the

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

correct answer. Although this can provide some relief on challenging tasks, it is not a long-term so-
lution, especially when those competitive programming problems can also be solved well over time.
On the contrary, in-execution self-debugging allows the models to perform fine-grained feedback
solely on the intermediate states during the execution process, without knowing the information
from biased self-testing. It shows the potential to better align the programs with the requirements in
real-world scenarios. Please refer to Appendix A for a detailed comparison of these two paradigms.

5 DISCUSSION

Directions for future work. In this work, we demonstrate that post-execution self-debugging with
self-generated tests struggles on basic problems due to biased evaluations, despite the significant
potential shown by LLMs in automated test generation. This highlights the necessity for the re-
search community to focus on the quality of LLM-generated tests before utilizing execution feed-
back derived from them. Developing techniques that enhance high-quality test synthesis is crucial
to mitigate bias for post-execution self-debugging. It could be beneficial to implement an iterative
refinement process wherein execution information is leveraged to improve the tests. This could in-
volve using techniques like test-driven development where tests are continuously updated based on
code changes and debugging outcomes.

As demonstrated in Section 4.4, leveraging enriched runtime information from execution is a promis-
ing avenue for self-debugging. In particular, in-execution self-debugging has shown superior per-
formance compared to post-execution in certain tasks, suggesting that more nuanced and reliable
feedback leads to better performance. Designing more sophisticated methods for collecting and
analyzing runtime information is a promising direction for further enhancing self-debugging capa-
bilities. For instance, improving the intelligibility of execution trace representations for LLMs may
prove beneficial (Ni et al., 2024). Additionally, beyond variables, other types of runtime information,
such as code coverage and execution paths, may also be utilized effectively (Chen et al., 2024a).

Effective self-debugging with self-generated tests hinges on several core capabilities of LLMs. In
terms of refinement, the model should be capable of accurately recognizing and localizing faults
within the program. Additionally, more advanced reasoning capabilities are needed to analyze exe-
cution feedback thoroughly. The model should comprehend the relationship between the code logic
and the feedback, thereby deducing the runtime structure of program statements and variables.

Applications. Self-debugging opens up possibilities for developing more advanced LLMs without
reliance on human supervision or guidance from stronger models (Burns et al., 2023). Traditionally,
human-generated test cases serve as a strong supervisory signal for aligning code generation, but
the collection of such tests is labor-intensive, leading to a sparsity of labeled data for effective
code refinement. Self-generated tests, by contrast, offer a viable path for self-improvement (Tao
et al., 2024). They alleviate the burden of manual test generation and pave the way toward truly
autonomous self-correcting code generation systems (Chen et al., 2024b).

6 CONCLUSION

This paper investigates the concept of self-debugging in code generation for LLMs, with a focus
on leveraging self-generated tests. We establish a structured framework for self-debugging which
is essential for real-world applications where high-quality annotations and human supervision are
often unavailable. We introduce and formalize two distinct paradigms within the execution-then-
feedback process: post-execution and in-execution self-debugging. Through comprehensive experi-
ments on both basic and competitive programming tasks, our findings highlight the unique strengths
and weaknesses. Specifically, we observe that: 1) post-execution self-debugging encounters dif-
ficulties in basic tasks; 2) bias from self-generated tests can lead to inconsistency across different
levels of problems; and 3) in-execution self-debugging, which leverages intermediate runtime in-
formation, consistently outperforms post-execution approach on both basic and competitive tasks,
indicating significant potential for future development. Overall, our work provides valuable insights
into the mechanics of self-debugging using self-generated tests, paving the way toward more au-
tonomous and self-evolving code generation systems.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732, 2021.

Islem Bouzenia, Yangruibo Ding, Kexin Pei, Baishakhi Ray, and Michael Pradel. Tracefixer: Exe-
cution trace-driven program repair. arXiv preprint arXiv:2304.12743, 2023.

Collin Burns, Pavel Izmailov, Jan Hendrik Kirchner, Bowen Baker, Leo Gao, Leopold Aschenbren-
ner, Yining Chen, Adrien Ecoffet, Manas Joglekar, Jan Leike, et al. Weak-to-strong general-
ization: Eliciting strong capabilities with weak supervision. arXiv preprint arXiv:2312.09390,
2023.

Bei Chen, Fengji Zhang, Anh Nguyen, Daoguang Zan, Zeqi Lin, Jian-Guang Lou, and Weizhu
Chen. Codet: Code generation with generated tests. In The Eleventh International Conference on
Learning Representations, 2022.

Junkai Chen, Zhiyuan Pan, Xing Hu, Zhenhao Li, Ge Li, and Xin Xia. Reasoning runtime behavior
of a program with llm: How far are we? In 2025 IEEE/ACM 47th International Conference on
Software Engineering (ICSE), pp. 140–152. IEEE Computer Society, 2024a.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Xinyun Chen, Maxwell Lin, Nathanael Schärli, and Denny Zhou. Teaching large language models
to self-debug. In The Twelfth International Conference on Learning Representations, 2024b.

Yihong Dong, Xue Jiang, Zhi Jin, and Ge Li. Self-collaboration code generation via chatgpt. CoRR,
abs/2304.07590, 2023. doi: 10.48550/ARXIV.2304.07590. URL https://doi.org/10.
48550/arXiv.2304.07590.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Dong Huang, Qingwen Bu, Jie M Zhang, Michael Luck, and Heming Cui. Agentcoder: Multi-agent-
based code generation with iterative testing and optimisation. arXiv preprint arXiv:2312.13010,
2023.

Jie Huang, Xinyun Chen, Swaroop Mishra, Huaixiu Steven Zheng, Adams Wei Yu, Xinying Song,
and Denny Zhou. Large language models cannot self-correct reasoning yet. In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview.
net/forum?id=IkmD3fKBPQ.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
Bowen Yu, Keming Lu, et al. Qwen2. 5-coder technical report. arXiv preprint arXiv:2409.12186,
2024.

Jeevana Priya Inala, Chenglong Wang, Mei Yang, Andrés Codas, Mark Encarnación, Shuvendu K.
Lahiri, Madanlal Musuvathi, and Jianfeng Gao. Fault-aware neural code rankers. In Ad-
vances in Neural Information Processing Systems 35: Annual Conference on Neural Informa-
tion Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December
9, 2022, 2022. URL http://papers.nips.cc/paper_files/paper/2022/hash/
5762c579d09811b7639be2389b3d07be-Abstract-Conference.html.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando
Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free
evaluation of large language models for code. arXiv preprint arXiv:2403.07974, 2024.

Nan Jiang, Xiaopeng Li, Shiqi Wang, Qiang Zhou, Soneya Binta Hossain, Baishakhi Ray, Varun
Kumar, Xiaofei Ma, and Anoop Deoras. Training llms to better self-debug and explain code.
arXiv preprint arXiv:2405.18649, 2024.

11

https://doi.org/10.48550/arXiv.2304.07590
https://doi.org/10.48550/arXiv.2304.07590
https://openreview.net/forum?id=IkmD3fKBPQ
https://openreview.net/forum?id=IkmD3fKBPQ
http://papers.nips.cc/paper_files/paper/2022/hash/5762c579d09811b7639be2389b3d07be-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/5762c579d09811b7639be2389b3d07be-Abstract-Conference.html

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Shuyang Jiang, Yuhao Wang, and Yu Wang. Selfevolve: A code evolution framework via large
language models. arXiv preprint arXiv:2306.02907, 2023.

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. Is your code generated by chat-
gpt really correct? rigorous evaluation of large language models for code generation. Advances
in Neural Information Processing Systems, 36, 2024.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegr-
effe, Uri Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, Shashank Gupta, Bod-
hisattwa Prasad Majumder, Katherine Hermann, Sean Welleck, Amir Yazdanbakhsh, and
Peter Clark. Self-refine: Iterative refinement with self-feedback. In Advances in Neu-
ral Information Processing Systems 36: Annual Conference on Neural Information Pro-
cessing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16,
2023, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/
91edff07232fb1b55a505a9e9f6c0ff3-Abstract-Conference.html.

Ansong Ni, Miltiadis Allamanis, Arman Cohan, Yinlin Deng, Kensen Shi, Charles Sutton, and
Pengcheng Yin. NExt: Teaching large language models to reason about code execution. In Forty-
first International Conference on Machine Learning, 2024. URL https://openreview.
net/forum?id=B1W712hMBi.

Theo X. Olausson, Jeevana Priya Inala, Chenglong Wang, Jianfeng Gao, and Armando Solar-
Lezama. Is self-repair a silver bullet for code generation? In The Twelfth International Confer-
ence on Learning Representations, 2024. URL https://openreview.net/forum?id=
y0GJXRungR.

Tal Ridnik, Dedy Kredo, and Itamar Friedman. Code generation with alphacodium: From prompt
engineering to flow engineering. arXiv preprint arXiv:2401.08500, 2024.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion:
Language agents with verbal reinforcement learning. Advances in Neural Information Processing
Systems, 36, 2024.

Zhengwei Tao, Ting-En Lin, Xiancai Chen, Hangyu Li, Yuchuan Wu, Yongbin Li, Zhi Jin, Fei
Huang, Dacheng Tao, and Jingren Zhou. A survey on self-evolution of large language models.
arXiv preprint arXiv:2404.14387, 2024.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurélien Rodriguez, Ar-
mand Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation
language models. CoRR, abs/2302.13971, 2023a. doi: 10.48550/ARXIV.2302.13971. URL
https://doi.org/10.48550/arXiv.2302.13971.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher,
Cristian Canton-Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy
Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn,
Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel
Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya
Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar
Mishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan
Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen
Tan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan
Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurélien Rodriguez,
Robert Stojnic, Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-
tuned chat models. CoRR, abs/2307.09288, 2023b. doi: 10.48550/ARXIV.2307.09288. URL
https://doi.org/10.48550/arXiv.2307.09288.

Hanbin Wang, Zhenghao Liu, Shuo Wang, Ganqu Cui, Ning Ding, Zhiyuan Liu, and Ge Yu.
INTERVENOR: prompting the coding ability of large language models with the interactive
chain of repair. In Findings of the Association for Computational Linguistics, ACL 2024,
Bangkok, Thailand and virtual meeting, August 11-16, 2024, pp. 2081–2107, 2024. doi: 10.

12

http://papers.nips.cc/paper_files/paper/2023/hash/91edff07232fb1b55a505a9e9f6c0ff3-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/91edff07232fb1b55a505a9e9f6c0ff3-Abstract-Conference.html
https://openreview.net/forum?id=B1W712hMBi
https://openreview.net/forum?id=B1W712hMBi
https://openreview.net/forum?id=y0GJXRungR
https://openreview.net/forum?id=y0GJXRungR
https://doi.org/10.48550/arXiv.2302.13971
https://doi.org/10.48550/arXiv.2307.09288

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

18653/V1/2024.FINDINGS-ACL.124. URL https://doi.org/10.18653/v1/2024.
findings-acl.124.

John Yang, Carlos E. Jimenez, Alexander Wettig, Kilian Lieret, Shunyu Yao, Karthik Narasimhan,
and Ofir Press. Swe-agent: Agent-computer interfaces enable automated software engineering.
CoRR, abs/2405.15793, 2024. doi: 10.48550/ARXIV.2405.15793. URL https://doi.org/
10.48550/arXiv.2405.15793.

Kechi Zhang, Zhuo Li, Jia Li, Ge Li, and Zhi Jin. Self-edit: Fault-aware code editor for code
generation. In Proceedings of the 61st Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), ACL 2023, Toronto, Canada, July 9-14, 2023, pp. 769–787,
2023a. doi: 10.18653/V1/2023.ACL-LONG.45. URL https://doi.org/10.18653/v1/
2023.acl-long.45.

Kechi Zhang, Jia Li, Ge Li, Xianjie Shi, and Zhi Jin. Codeagent: Enhancing code generation with
tool-integrated agent systems for real-world repo-level coding challenges. In Proceedings of the
62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
ACL 2024, Bangkok, Thailand, August 11-16, 2024, pp. 13643–13658, 2024. doi: 10.18653/
V1/2024.ACL-LONG.737. URL https://doi.org/10.18653/v1/2024.acl-long.
737.

Tianyi Zhang, Tao Yu, Tatsunori Hashimoto, Mike Lewis, Wen-Tau Yih, Daniel Fried, and Sida
Wang. Coder reviewer reranking for code generation. In International Conference on Machine
Learning, ICML 2023, 23-29 July 2023, Honolulu, Hawaii, USA, pp. 41832–41846, 2023b. URL
https://proceedings.mlr.press/v202/zhang23av.html.

Li Zhong, Zilong Wang, and Jingbo Shang. Debug like a human: A large language model debugger
via verifying runtime execution step by step. In Findings of the Association for Computational
Linguistics ACL 2024, pp. 851–870, 2024.

13

https://doi.org/10.18653/v1/2024.findings-acl.124
https://doi.org/10.18653/v1/2024.findings-acl.124
https://doi.org/10.48550/arXiv.2405.15793
https://doi.org/10.48550/arXiv.2405.15793
https://doi.org/10.18653/v1/2023.acl-long.45
https://doi.org/10.18653/v1/2023.acl-long.45
https://doi.org/10.18653/v1/2024.acl-long.737
https://doi.org/10.18653/v1/2024.acl-long.737
https://proceedings.mlr.press/v202/zhang23av.html

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A CASE STUDY

In our experiments, we observe that in-execution self-debugging, which leverages runtime informa-
tion, consistently outperforms post-execution one across various levels of self-contained program-
ming tasks. To better understand the unique strengths and weaknesses of these two paradigms, we
provide an example involving GPT-4o in Figure 3. It illustrates different outcomes of post-execution
self-debugging with detailed test feedback and in-execution self-debugging with execution traces.

def can_arrange(arr):
"""Create a function which returns the largest index of an
element which is not greater than or equal to the element
immediately preceding it. If no such element exists then
return -1. The given array will not contain duplicate
values.

Examples:
can_arrange([1,2,4,3,5]) = 3
can_arrange([1,2,3]) = -1
"""

Please complete the `can_arrange` function and make sure that
it matches the specification and passes all tests. …

def can_arrange(arr):
 for i in range(len(arr) - 1, 0, -1):
 if arr[i] < arr[i - 1]:
 return i
 return -1

One-Pass

I see the issue. … In the case of a descending order array,
the function should return the first index where this
condition is met, which is `1` in the given test case.

To fix this, we need to iterate from the beginning of the
array to the end, and return the first index where the
condition is met. Here is the corrected code:

def can_arrange(arr):
 for i in range(1, len(arr)):
 if arr[i] < arr[i - 1]:
 return i
 return -1

This function now correctly iterates from the beginning of the
array to the end, and returns the first index where the
current element is less than the previous element. This should
pass all the given test cases.

But it failed in the following test case:
assert can_arrange([5, 4, 3, 2, 1]) == 1
Real Execution Output: 4

Please fix the bug in the `can_arrange` function … Think step
by step and provide the fixed code in one code block.

Post-Execution Self-Debugging w/ detail

Given an input for the function `can_arrange([5, 4, 3, 2, 1])`,
here is the code execution trace block by block with the
intermediate variable values:
[BLOCK-0]
 # arr = [5, 4, 3, 2, 1]
 for i in range(len(arr) - 1, 0, -1):
 # arr = [5, 4, 3, 2, 1] i = 4
[BLOCK-1]
 # arr = [5, 4, 3, 2, 1] i = 4
 if arr[i] < arr[i - 1]:
 # arr = [5, 4, 3, 2, 1] i = 4
[BLOCK-2]
 # arr = [5, 4, 3, 2, 1] i = 4
 return i
 # arr = [5, 4, 3, 2, 1] i = 4 _ret = 4

Please explain the execution … If it is incorrect, please fix
the bug and provide the fixed code in a code block.

[BLOCK-0]
```python
# arr = [5, 4, 3, 2, 1]
for i in range(len(arr) - 1, 0, -1):
# arr = [5, 4, 3, 2, 1] i = 4
```
Explanation:
- The array `arr` is `[5, 4, 3, 2, 1]`.
- The `for` loop is set to iterate from the last index
(`len(arr) - 1`, which is 4) to the first index (1),
decrementing by 1 each time.
- In the first iteration, `i` is initialized to 4.

…

[BLOCK-2]
```python
# arr = [5, 4, 3, 2, 1] i = 4
return i
# arr = [5, 4, 3, 2, 1] i = 4 _ret = 4
```
Explanation:
- Since the condition in [BLOCK-1] is true, the function
returns the current index `i`, which is 4.

Correctness:
- This block is correct. The function correctly returns the
index of the element that is not greater than or equal to the
element immediately preceding it.

Conclusion
The execution trace is correct and matches the expected
behavior of the function based on the given specifications and
samples. The function correctly identifies that the element at
index 4 (value 1) is less than the element at index 3 (value 2)
and returns the index 4. Here is the complete and correct code
in one Python code block: …

In-Execution Self-Debugging w/ trace

Figure 3: An example with GPT-4o performing both post and in-execution self-debugging on a prob-
lem from HumanEval (HumanEval/135) respectively. Post-execution self-debugging wrongly
corrects the program while in-execution self-debugging manages to keep the original answer.

In this example, the completion for the can arrange function is initially correct. However, it
is evaluated against an erroneous self-generated test that, according to the specification, should
return 4 instead of 1. This discrepancy makes the model alter its original correct interpretation
of the condition in the problem, thereby leading to a wrongly revised program. Feedback from
post-execution on erroneous self-generated tests biases the model away from the specification of
the problem. By contrast, in-execution self-debugging leverages test inputs and their corresponding
runtime information to assess program correctness. As depicted in Figure 3, this approach enables
the model to perform a fine-grained analysis on the execution trace block by block without access to
the potential biases introduced by self-generated tests. The model eventually confirms that the trace
aligns with the expected behavior of the function.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

B EXAMPLES OF PROGRAM CONTRACTS

HumanEval/21

def rescale_to_unit(numbers: List[float]) -> List[float]:
 """ Given list of numbers (of at least two elements), apply a linear transform to that list,
 such that the smallest number will become 0 and the largest will become 1
 >>> rescale_to_unit([1.0, 2.0, 3.0, 4.0, 5.0])
 [0.0, 0.25, 0.5, 0.75, 1.0]
 """

 assert all(type(x) in [int, float] for x in numbers), "invalid inputs" # $_CONTRACT_$
 assert len(numbers) >= 2, "invalid inputs" # $_CONTRACT_$
 assert max(numbers) > min(numbers), "invalid inputs" # $_CONTRACT_$

 ma, mi = max(numbers), min(numbers)
 k = 1 / (ma - mi)
 return list(map(lambda x: (x - mi) * k, numbers))

MBPP/439

"""
Write a function to join a list of multiple integers into a single integer.
assert multiple_to_single([11, 33, 50])==113350
"""

def multiple_to_single(L):

 assert isinstance(L, list), "invalid inputs" # $_CONTRACT_$
 assert len(L) > 0, "invalid inputs" # $_CONTRACT_$
 assert all(isinstance(item, int) for item in L), "invalid inputs" # $_CONTRACT_$
 assert all(item > 0 for item in L[1:]), "invalid inputs" # $_CONTRACT_$

 return int(''.join(map(str,L)))

Figure 4: Examples of program contracts in HumanEval and MBPP. Program contracts consist of
assertions that specify conditions necessary for a valid input.

C ANALYSIS ON THE NUMBER OF SELF-GENERATED TESTS

To investigate the effect of the number of self-generated tests, we employ GPT-4o-2024-05-13 to
generate increasing numbers of tests N = [10, 15, 20] for each programming problem in HumanEval
and MBPP. The accuracies of these generated tests are summarized in Table 7.

Table 7: Accuracies of increasing sizes of self-generated test suites on HumanEval and MBPP.

#Num of Tests HumanEval MBPP

Input Output Suite Input Output Suite

10 97.63% 89.77% 59.15% 94.81% 85.60% 58.73%
15 97.89% 88.86% 52.44% 94.96% 85.27% 53.70%
20 98.11% 86.01% 48.17% 95.10% 82.94% 50.53%

As the number of self-generated tests increases, the presence of more challenging edge cases also
rises, consequently reducing the accuracy of the test suites. Specifically, when the model generates
up to 20 tests per problem, the accuracy of the test suite decreases from 59.15% to 48.17% for
HumanEval and from 58.73% to 50.53% for MBPP. We further evaluate the performance of both
post-execution self-debugging with detailed feedback and in-execution self-debugging.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Table 8: Pass rates after post-execution self-debugging with detailed feedback and in-execution self-
debugging on HumanEval and MBPP when using different sizes of the self-generated test suite. The
values highlighted in red or green are changes relative to the initial generation (one-pass).

Method #Num of Tests HumanEval MBPP

Base Plus Base Plus

One-pass 0 92.1 87.8 91.5 76.5

Self-debug w/ detail
10 89.0−3.1 84.1−3.7 91.3−0.2 76.2−0.3

15 88.4−3.7 84.1−3.7 91.3−0.2 75.9−0.6

20 87.8−4.3 83.5−4.3 90.7−0.8 75.9−0.6

Self-debug w/ trace
10 93.3+1.2 89.0+1.2 92.1+0.6 77.8+1.3

15 92.7+0.6 88.4+0.6 92.1+0.6 78.0+1.5

20 93.3+1.2 88.4+0.6 91.8+0.3 77.2+0.7

The results in Table 8 indicate that with an increased number of self-generated tests, the performance
of post-execution self-debugging experiences a slight decline on both HumanEval and MBPP. It is
attributed to the lower test accuracy leading to a higher rate of false negatives, thereby hindering
the efficacy of post-execution self-debugging. Conversely, in-execution self-debugging leveraging
intermediate runtime traces shows a consistent improvement over the initial generation.

D PROMPTS

Here is the given code to do completion:
```python
{prompt}
```
Please complete the `{entry_point}` function and make sure that it matches the
specification and passes all tests. You are not allowed to modify the given function
signature. Think step by step and provide all completed codes in one code block.

Figure 5: Code generation prompt for HumanEval.

Here is the given problem to solve:
```python
{prompt}
```
Please implement the `{entry_point}` function and make sure that it matches the
specification and passes all tests. You are not allowed to modify the given function
name and arguments in the test examples. Think step by step and provide all completed
codes in one code block.

Figure 6: Code generation prompt for MBPP.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Here is the given programming problem to solve:
{content}

Please generate a correct python program that matches the specification and passes all
tests. Think step by step. You will use the following starter code to write the
solution to the problem and enclose your code within delimiters.
```python
{starter_code}
```

Figure 7: Code generation prompt for functional-input question in LiveCodeBench.

Here is the given programming problem to solve:
{content}

Please generate a correct python program that matches the specification and passes all
tests. Read the inputs from stdin solve the problem and write the answer to stdout (do
not directly test on the sample inputs). Think step by step and enclose your code
within delimiters as follows:
```python
# YOUR CODE HERE
```

Figure 8: Code generation prompt for stdin-input question in LiveCodeBench.

Here is the given code to do completion:
```python
{prompt}
```
Please provide ten comprehensive and valid test cases to verify whether the
`{entry_point}` function correctly solves the problem. You are not allowed to
implement the function. Think step by step and provide all test cases in one code
block.

The format of test cases should be:
```python
assert {entry_point}(input) == expected_output, "Test Case Description"
```

Figure 9: Test generation prompt for HumanEval.

Here is the given problem to solve:
```python
{prompt}
```
Please provide ten comprehensive and valid test cases to verify whether the
`{entry_point}` function correctly solves the problem. You are not allowed to
implement the function. Think step by step and provide all test cases in one code
block.

The format of test cases should be:
```python
assert {entry_point}(input) == expected_output, "Test Case Description"
```

Figure 10: Test generation prompt for MBPP.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Here is the given programming problem to solve:
{content}

Please provide ten comprehensive test samples based on the specification and follow
the format of the given sample.

Your response should be organized like below and no extra information is allowed
(including explanation):
[Input]
<your input here>
[Output]
<your output here>
[Input]
...

Figure 11: Test generation prompt for LiveCodeBench.

{error}Please fix the bug in the `{entry_point}` function and make sure that the fixed
code matches the specification and passes all tests. You are not allowed to modify the
given function signature. Think step by step and provide the fixed code in one code
block.

Figure 12: Debugging prompt for HumanEval.

{error}Please fix the bug in the `{entry_point}` function and make sure that the fixed
code matches the specification and passes all tests. You are not allowed to modify the
given function name and arguments in the test examples. Think step by step and provide
the fixed code in one code block.

Figure 13: Debugging prompt for MBPP.

{error}Please fix the bug in the code and make sure that the fixed code matches the
specification and passes all tests.
You will use the following starter code to write the solution to the problem and
enclose your code within delimiters.
```python
{starter_code}
```

Figure 14: Debugging prompt for functional-input question in LiveCodeBench.

{error}Please fix the bug in the code and make sure that the fixed code matches the
specification and passes all tests.
Read the inputs from stdin solve the problem and write the answer to stdout (do not
directly test on the sample inputs). Enclose your code within delimiters as follows.
```python
# YOUR CODE HERE
```

Figure 15: Debugging prompt for stdin-input question in LiveCodeBench.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Given an input for the function `{test}`, here is the code execution trace block by
block with the intermediate variable values as reference:
{trace}

Please explain the execution FOR EACH BLOCK and answer whether this program is correct
or not based on the specifications and given samples in the problem. If the program is
correct, please restate it in one python code block. If it is incorrect, please fix
the bug and provide the fixed code in a code block.

Figure 16: Prompt for in-execution self-debugging.

19

	Introduction
	Related Work
	Self-Debugging with Self-Generated tests
	Experiments
	Experimental Setup
	RQ1: Post-execution Self-Debugging Struggles on Basic Problems
	RQ2: Bias from Self-Testing Leads to Inconsistency across Tasks
	RQ3: In-Execution Reasoning Helps Self-Debugging

	Discussion
	Conclusion
	Case Study
	Examples of Program Contracts
	Analysis on the Number of Self-Generated Tests
	Prompts

