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ABSTRACT

Low-rank adaptation (LoRA) is a powerful parameter-efficient fine-tuning method
that utilizes low-rank projectors A and B to learn weight updates ∆W for adap-
tation targets W . However, while the low-rank structure of A and B enables
high hardware efficiency, it also restricts the overall weight update to be low-
rank, which limits the adaptation performance. In this paper, we propose low-rank
interconnected adaptation across layers (Lily). Specifically, we employ a hierar-
chical framework where low-dimensional projectors (LPs) retained for downward
projection at a particular level, while globally-shared high-dimensional projector
(HP) experts perform upward projection across all levels of layers. This intercon-
nected asymmetric structure makes the adaptation much more dynamic and breaks
the low-rank weight-update constraint of LoRA when using the same parameters
budget. Furthermore, Lily’s cross-layer connections facilitate the capture of in-
tricate information and dependencies across different layers, thereby enhancing
the model’s representational capabilities. Experiments across various modalities,
architectures, and model sizes underscore Lily’s great performance and efficiency.

1 INTRODUCTION

For foundation models like Transformers (Vaswani et al., 2017b), fine-tuning on downstream tasks is
a typical usage, but full fine-tuning (FFT) of large models like large language models (LLMs) incurs
huge computational and storage costs and risks forgetting previously learned knowledge (Biderman
et al., 2024). Linear probing, which fine-tunes only the final modules like classification heads, ad-
dresses these issues but leads to significant performance degradation since it doesn’t update weights
from the backbone. To tackle these challenges, parameter-efficient fine-tuning (PEFT) has received
significant attention. In PEFT, a model’s backbone weights are frozen, and lightweight trainable
modules are introduced to efficiently learn task-specific knowledge. Among all PEFT methods,
Low-rank Adaptation (LoRA (Hu et al., 2021)) is one of the most widely applied techniques, espe-
cially in LLMs. LoRA introduces a pair of low-rank projection matrices for each adaptation target,
consisting of a downward adapter A and an upward adapter B, to approximate ∆W in FFT. Due
to its low-rank nature, LoRA offers significant computational and storage savings, effectively alle-
viating the burdens of FFT while significantly outperforming linear probing by learning the weight
updates for backbone weight.

However, LoRA and many subsequent improvements to the method (Miles et al., 2024), (Zhang
et al., 2023), (Zhong et al., 2024) have a limitation: the overall learned weight updates ∆W are also
restricted to be low-rank because of its low-rank structure, which limits the model performance dur-
ing adaptation. We recognize that one of the problems lies in the fact that the source of information
is limited for each adaptation target in LoRA, as shown in Fig. 1. It can be observed that each layer
in LoRA receives information only from the very layer they are situated. This prompts a question:
How can we enable a more dynamic and expressive adaptation with high-rank weight-updates by
providing more sources of information for an adaptation target?

In this paper, we propose Low-rank interconnected adaptation across layers (Lily), a novel frame-
work for more expressive and performative PEFT. Specifically, we decouple the downward low-
dimensional projector (LP) and its corresponding upward high-dimensional projectors (HP), making
them not tightly-bonded. Each LP is connected to all the HPs, and vice versa, as shown in Fig. 1.
This results in a hierarchical structure where LPs are still retained at a particular level to perform
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Figure 1: Dynamics of LoRA and Lily. N is used to denote the number of layers in the model in the
LoRA setup. Meanwhile, N1 denotes the number of low-dimensional projectors and N2 denotes the
number of high-dimensional projector experts. R is representing the router from Lily. N1 and N2

can be flexibly set, independent of the number of layers.

downward projection, while all HPs are now globally shared by all the LPs, performing upward pro-
jection. Inspired by self-attention Vaswani et al. (2017a), which calculates the relationship between
a token and all tokens and obtains attention scores indicating the strength of their relationship, we
selectively connect an LP with the HPs based on layer features. The LP extracts features from the
current layer, and based on the extracted features, a data-dependent and selective combination of HPs
is performed. This is realized by utilizing a router (Shazeer et al., 2017) that outputs a unique weight
distribution for HP experts, depending on the current input feature, thereby exhibiting selectivity.

The adaptation process now is much more dynamic and flexible with intricate interaction between
the adapters. With strong empirical evidence, we find our design enables weight updates that have
a much more higher rank than LoRA. Furthermore, Lily enables a more comprehensive information
access by allowing adapters at each layer to access information from other layers, promoting an
interconnected and dynamic learning process, where the adapters can collaborate, share learned
knowledge and model dependencies across layers. Overall, our contributions include:

• We propose Lily, a novel PEFT framework that incorporates cross-layer connections of the
projection matrices, breaking the restriction of low-rank weight updates in LoRA.

• Lily utilizes routers to selectively connect an LP with multiple HP experts, enabling com-
prehensive information access and therefore expressive adaptation.

• Extensive experiments are conducted across various modalities, architectures, and model
sizes, highlighting Lily’s great performance and efficiency in diverse scenarios.

2 RELATED WORK

Parameter Efficient Fine-Tuning Typical usage of foundation models includes pre-training on
large datasets and fine-tuning on various downstream tasks. Parameter-efficient fine-tuning (PEFT)
thus emerges as a promising field, aiming to fine-tuning the model efficiently with minimal pa-
rameters while maintaining performance and preserving previously learned knowledge, addressing
drawbacks posed by conventional fine-tuning techniques like full fine-tuning or linear probing. Cur-
rent PEFT research can be mainly categorized into two types: 1) adapter-based methods (Hu et al.,
2021), (Chen et al., 2022), (Pfeiffer et al., 2020b), (Jie & Deng, 2023) (Houlsby et al., 2019b) and
2) prompt-based methods (Tu et al., 2023b) (Tu et al., 2023a). Adapter-based methods introduce
lightweight adapters into the Multi-Head Self-Attention (MHSA) or the Feed-Forward Network
(FFN) blocks within the Transformer architecture. On the other hand, prompt-based methods ap-
pend trainable tokens as prompts to the input sequence fed to certain parts of the model.
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Among these various PEFT techniques, low-rank adaptation (LoRA (Hu et al., 2021)) stands out as
one of the most well-known methods. LoRA introduces a pair of projection matrices A and B per
adaptation target W . The low-dimension projector (LP) A projects input x to low-dimension space,
and the high-dimension projector (HP) B restores it to its original dimension. Multiplying these
projection matrices approximates the weight update ∆W in FFT. Recent work (Hao et al., 2024)
has shown that LoRA adapters are essentially performing random projection to the gradient using
a fixed matrix. This restricts the learned weight update to low-rank subspace and thus imitating
the model performance. Meanwhile, A and B are tightly coupled, therefore the adaptation process
only has information access from current layer, without an understanding of information from other
layers, which could be beneficial to modeling dependencies across various layers.

Mixture of Experts Mixture of Experts (MoE) is an active research area that has garnered significant
attention, especially in the field of large language models (LLMs). Conditional computation, where
different parts of the network are activated on a per-example basis, has been proposed to enhance
model capability without increasing computation (Davis & Arel, 2013) (Bengio et al., 2013) (Eigen
et al., 2013) (Almahairi et al., 2016). The sparsely-gated MoE layer is introduced to implement
this idea, consisting of numerous sub-networks (Shazeer et al., 2017). A trainable gating network,
known as a ”router”, determines the combination of experts for each example. There are already
PEFT methods like MoLORA (Zadouri et al., 2023) and MOLA (Gao et al., 2024a) which apply
the MoE design concept to PEFT. However, these methods simply treat the adapters combined in
LoRA as a single expert. A concurrent research Wu et al. (2024), utilizes LP and HP sub-spaces as
the experts but fails to overcome the limitation discussed in previous section. Another concurrent
work, HydraLoRA Tian et al. (2024) also explores an asymmetric design for LoRA. A fundamental
difference from our work is that we consider the interaction across layers from the model and deploy
an model-wide asymmetric design to allow cross-layer connection.

3 METHODOLOGY

3.1 DOWNWARD PROJECTION AND SELECTIVE WEIGHT ALLOCATION

The process is illustrated in the right half of Fig. 1. Initially, we use an LP to project the input
x ∈ RN×Cin into its low-dimensional representation x′ ∈ RN×d where N is the sequence length:

x′ = xPL (1)

The number of LPs can be flexibly set, as discussed in A. Inspired by the Mixture of Experts (MoE)
paradigm, we employ a router R ∈ RNe×d to selectively assign weights to all HP experts based on
their relationship to the current layer’s features (x′). The weight set S is obtained as:

S = softmax(

N∑
i=1

(x′RT )i) (2)

The router selectively combines experts based on the current layer’s features, enabling smart infor-
mation integration. For shallower inputs, the router increases attention for experts specializing in
shallow-layer knowledge, while deeper inputs favor experts learning deep-layer knowledge.

3.2 WEIGHTED COMBINATION OF EXPERTS AND UPWARD PROJECTION

Once we obtain the low-dimensional input x′ , we combine information from all layers using the
model-wide shared global HP module. One intuitive approach is to feed x′ into each HP expert
and combine their outputs to obtain the extra knowledge x∆ ∈ RN×Cout . However, to address
efficiency concerns discussed in Appendix A.2, we propose an alternative implementation that is
mathematically equivalent and significantly reduces computational burden, described as:

x∆ = x′(

Ne∑
i=1

Si · P i
H) (3)

where S ∈ RNe is the set of weight scores for HP experts, obtained through selective weight al-
location. Since each Si is a scalar value, the calculation in Eq. 3 is mathematically equivalent to

3
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Table 1: Commonsense reasoning results for Falcon-Mamba-7B across eight tasks. Bold represents
the highest performance for each dataset utilizing PEFT methods.

Model PEFT BoolQ PIQA SIQA HellaSwag WinoGrande ARC-e ARC-c OBQA Avg.
ChatGPT - 73.1 85.4 68.5 78.5 66.1 89.8 79.9 74.8 77.0

Falcon-Mamba-7B
LoRA 6.5 30.5 40.6 14.9 56.4 42.2 31.8 38.4 32.7

Lily (∆ + in) 44.9 66.8 65.0 10.5 57.1 78.7 64.6 68.2 57.0
Lily (in) 60.2 61.0 67.3 12.9 61.5 80.0 67.5 65.8 59.5

Table 2: Commonsense reasoning results for LLaMA3-8B across eight tasks. † represents results
taken from Liu et al. (2024) and (Wang et al., 2024). Bold denotes the highest performance scores
for each dataset among different PEFT methods.

Model PEFT BoolQ PIQA SIQA HellaSwag WinoGrande ARC-e ARC-c OBQA Avg.
ChatGPT - 73.1 85.4 68.5 78.5 66.1 89.8 79.9 74.8 77.0

LLaMA3-8B

LoRA† 70.8 85.2 79.9 91.7 84.3 84.2 71.2 79.0 80.8
PiSSA† 67.1 81.1 77.2 83.6 78.9 77.7 63.2 74.6 75.4

MiLoRA† 68.8 86.7 77.2 92.9 85.6 86.8 75.5 81.8 81.9
Lily 72.9 85.6 77.8 92.7 83.3 89.7 77.6 82.8 82.8

the intuitive implementation, but with significantly improved efficiency. Therefore, the whole com-
putation flow, with input x ∈ RN×Cin and output y ∈ RN×Cout , for an adaptation target module
is:

y = xW0 + s · x∆ (4)

= xW0 + s · xPL(

Ne∑
i=1

(softmax(

N∑
j=1

(xPLR
T )j))i · P i

H) (5)

where s is a scaling factor. By selectively allocating weights and combining HP experts, Lily en-
ables access to all levels of information during adaptation. Each layer’s target adaptation modules
could consider the status and knowledge from all other layers, resulting in a more expressive and
comprehensive adaptation. Meanwhile, thanks to its inter-connectivity and selectivity, Lily break the
low-rank update constraint of LoRA and enable high-rank updates, as discussed in preliminaries.

4 EXPERIMENTS

We validate the effectiveness of Lily across different domains, model sizes (from ViT to LLM),
and architectures (Transformers, Mamba), demonstrating its general strong adaptation capability.
Concurrently, we conduct a comprehensive analysis of Lily’s intrinsic mechanisms, providing a
thorough understanding of Lily. All experiments are conducted on a single RTX 4090 GPU. Addi-
tionally, multiple analysis are provided in Appendix C, D, E, F, G, H, I and J.

4.1 COMMON SENSE REASONING

Implementation We evaluate Lily on commonsense reasoning with LLMs. Regarding the imple-
mentation, we utilize LLaMA3-8B (AI@Meta, 2024) and Falcon-Mamba-7B (Zuo et al., 2024) as
backbones. LLaMA3 is a near-SOTA open-source large language model, while Falcon-Mamba is
the latest and only open-source large language model based on the Mamba architecture. Using these
models allows us to validate the effectiveness of Lily for fine-tuning LLMs and whether this effec-
tiveness can be transferred to architectures beyond Transformers (Mamba, in this case). We fine-tune
these models on Commonsense170K (Hu et al., 2023) and evaluate the adaptation results on eight
multiple-choice problem tasks, including BoolQ (Clark et al., 2019), PIQA (Bisk et al., 2020), SIQA
(Sap et al., 2019), HellaSwag (Zellers et al., 2019), WinoGrande (Sakaguchi et al., 2021), ARC-e,
ARC-c (Clark et al., 2018), and OBQA (Mihaylov et al., 2018). The compared methods are LoRA
for Falcon-Mamba and LoRA (Hu et al., 2021), PiSSA (Meng et al., 2024), and MiLoRA (Wang
et al., 2024) for LLaMA3. We only compare LoRA for Falcon-Mamba because tailored PEFT
methods for Mamba-based LLMs have not yet been proposed, which is beyond the scope of this
paper. Detailed hyper-parameter settings and datsets information are reported in Appendix B.1.1
and Appendix B.2.1.
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Table 3: Various fine-tuning methods applied to RoBERTa Base and RoBERTa Large are evaluated
on 6 datasets from the GLUE benchmark. We present the Matthew’s correlation coefficient (MCC)
for CoLA, Pearson correlation coefficient (PCC) for STS-B, and accuracy (Acc.) for the remaining
tasks. The highest performance for each dataset is highlighted in bold, with all metrics favoring
higher values across the 6 datasets.

Model & Method # Trainable
Parameters

SST-2
(Acc.)

MRPC
(Acc.)

CoLA
(MCC)

QNLI
(Acc.)

RTE
(Acc.)

STS-B
(PCC) Avg.

RoBbase(FFT) 125M 94.8 90.2 63.6 92.8 78.7 91.2 85.2
RoBbase(BitFit) 0.1M 93.7 92.7 62 91.8 81.5 90.8 85.4
RoBbase(AdptD) 0.3M 94.2 88.5 60.8 93.1 71.5 89.7 83.0
RoBbase(AdptD) 0.9M 94.7 88.4 62.6 93.0 75.9 90.3 84.2
RoBbase(LoRA) 0.3M 95.1 89.7 63.4 93.3 78.4 91.5 85.2
RoBbase(AdaLoRA) 0.3M 94.5 88.7 62.0 93.1 81.0 90.5 85.0
RoBbase(DyLoRA) 0.3M 94.3 89.5 61.1 92.2 78.7 91.1 84.5
RoBbase(Lily) 0.3M 95.0 90.2 66.0 92.5 81.6 90.8 86.0
RoBlarge(FF) 356M 96.4 90.9 68 94.7 86.6 92.4 88.2
RoBlarge(AdptH) 0.8M 96.3 87.7 66.3 94.7 72.9 91.5 84.9
RoBlarge(LoRA) 0.8M 96.2 90.2 68.2 94.8 85.2 92.3 87.8
RoBlarge(Lily) 0.5M 95.6 90.9 68.4 94.8 88.4 91.9 88.4

Results We report the accuracy in the Table 2 and Table 1. Based on the results, it is evident that
Lily performs the best out of the compared PEFT methods. Lily surpasses LoRA by a significant
margin on Falcon-Mamba, and on LLaMA3, it outperforms LoRA and MiLoRA. This indicates
Lily’s superior adaptation capability and parameter efficiency dealing with commonsense reasoning
tasks. Additionally, while the performance on Falcon-Mamba is notably lower than the baseline and
LLaMA3, we believe this is due to the model’s limitations rather than Lily’s, as Lily still signifi-
cantly outperforms LoRA on Falcon-Mamba and demonstrates great performance on LLaMA3. This
sheds light on the current state of Mamba-based LLMs, showing that they generally have inferior
performance compared to Transformer-based LLMs like ChatGPT and LLaMA on many tasks.

4.2 NATURAL LANGUAGE UNDERSTANDING

Implementation We evaluate Lily on natural language understanding (NLU) tasks. For implemen-
tation, we use RoBERTa Base (Liu et al., 2019) and RoBERTa Large as the backbones and fine-tune
them on tasks from GLUE benchmark (General Language Understanding Evaluation (Wang et al.,
2018)), consisting of multiple NLU tasks including single-sentence classification tasks, similarity
and paraphrase tasks and natural language inference tasks. We compare Lily against several com-
petitive PEFT methods, including BitFit (Zaken et al., 2021), Adapter-Tuning (Rücklé et al., 2020)
(Houlsby et al., 2019a) (Lin et al., 2020) (Pfeiffer et al., 2020a), LoRA (Hu et al., 2021), DyLoRA
(Valipour et al., 2022) and AdaLoRA (Zhang et al., 2023). Additionally, we utilize full fine-tuning
(FFT) as the baseline. Specific hyper-parameters and datasets information are provide in Appendix
B.1.2 and B.2.2.

Results The results are shown in Table. 3, from which we can clearly observe that Lily surpass
all of the compared PEFT methods by a significant margin, demonstrating its capability of tackling
NLU tasks. Among the 6 given tasks, Lily surpasses FFT in 4 of them using RoBERTa-Base and
RoBERTa-Large, showcasing its strong approximation ability with high-level parameter-efficiency.

4.3 SUBJECT-DRIVEN IMAGE GENERATION

Implementation We conduct experiments on fine-tuning text-to-image diffusion models for the
subject-driven generation task (Ruiz et al., 2023). For backbone, we use SDXL and we fine-tune it
using LoRA and Lily. We first fine-tune the model with images associated with text prompts (e.g., A
photo of a [v] duck toy), in which a unique identifier is provided. After that, text prompts containing
the identifier could be used to generate customized images.

Results The results are presented in Fig. 2 following the format in Gao et al. (2024b) and Wu et al.
(2024), from which we can observe that images generated by Lily generally align better with the
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Input images A [v] duck toy floating on top of water

LoRA Lily
A [v] duck toy on top of the sidewalk

 in a crowded street

LoRA Lily

Input images

Input images A [v] wolf plushie in the jungle

A [v] wolf plushie in the snow

LoRA Lily

A [v] robot toy on a cobble stone street

LilyLoRA

LoRA

A [v] robot toy on a beach

Lily

Input images
A [v] monster toy with

a city in the background

LoRA Lily

LoRA Lily

A purple [v] monster toy

LoRA Lily

Figure 2: Results of subject-driven generation. Lily’s results align better with prompts, featuring
more accurate color, environment, and shape.

Table 4: Full results of Lily on ViT-B pre-trained on ImageNet-21K for the VTAB-1K benchmark,
with averages computed based on group-wise results. Bold indicates the best performance.
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Conventional Fine-Tuning
FFT 86 68.9 68.9 87.7 64.3 97.2 86.9 87.4 38.8 79.7 95.7 84.2 73.9 56.3 58.6 41.7 65.5 57.5 46.7 25.7 29.1
LP 0 57.6 64.4 85.0 63.2 97.0 86.3 36.6 51.0 78.5 87.5 68.5 74.0 34.3 30.6 33.2 55.4 12.5 20.0 9.6 19.2
PEFT methods
AdaptFormer 0.588 76.8 74.0 92.2 71.7 99.3 91.7 88.9 56.4 87.2 95.1 85.7 75.9 84.2 62.2 53.0 81.0 87.1 53.6 35.3 42.3
Bi-LoRA 1.180 76.7 72.1 91.7 71.2 99.1 91.4 90.2 55.8 87.0 95.4 85.5 75.5 83.1 64.1 52.2 81.3 86.4 53.5 36.7 44.4
LoRA 1.180 76.4 72.5 91.5 71.9 99.1 91.4 89.6 56.0 87.6 95.3 84.0 75.0 83.6 64.3 51.6 80.9 86.0 51.8 36.8 42.3
FourierFT 0.936 72.7 69.1 88.8 71.9 99.0 91.0 79.0 55.6 84.9 93.0 83.2 74.9 70.7 61.1 45.2 74.8 78.0 53.0 24.8 30.8
MoRA 1.058 75.4 72.1 90.0 71.7 99.2 91.1 90.1 56.0 87.1 94.8 85.1 75.4 76.7 62.3 49.7 78.3 83.1 53.0 34.5 34.5
Lily 0.318 77.3 73.9 93.0 72.9 99.3 91.6 89.0 56.6 87.9 95.2 84.9 75.7 83.9 65.4 53.4 81.6 88.2 54.5 37.0 45.4

text prompts. For instance, when asked to generate a duck toy floating on top of water, Lily’s image
accurately depicts the designated environment, whereas LoRA’s does not. Additionally, when asked
to generate a wolf plushie in snow, Lily precisely depicts the snow around the wolf, while LoRA
fails to do so. These observations demonstrate Lily’s excellent ability in the domain of text-to-image
generation with more expressive adaptation. More generated results are in Appendix I.

4.4 VISUAL ADAPTATION BENCHMARK

Implementation We assess Lily on the Visual Task Adaptation Benchmark (VTAB-1K Zhai et al.
(2019)), a suite of 19 visual tasks spanning diverse domains and semantics, to test its general visual
adaptation capability. Tasks are categorized into Natural, Specialized, and Structured, all formulated
as classification problems for consistent model evaluation. We conduct two sets of experiments: one
focusing on the adaptation effectiveness on Vision Transformer (ViT (Dosovitskiy et al., 2020)) and
the other on Vision Mamba (Vim (Zhu et al., 2024)), demonstrating Lily’s architecture-agnostic ca-
pabilities. For ViT, we use ViT-B pre-trained on ImageNet-21K (Deng et al., 2009), and for Vim,
Vim-s pre-trained on ImageNet-1K. To fairly compare ViT and Vim architectures, we implement
LoRA (Hu et al., 2021) and AdaptFormer (Chen et al., 2022) on ViT-B pre-trained on ImageNet-
1K. In ViT experiments, we compare Lily with LoRA, AdaptFormer, FourierFT (Gao et al., 2024b),
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Table 5: Full results of Lily on Vim-S pre-trained on ImageNet-1K for the VTAB-1K benchmark,
with averages calculated within each group. * denotes linear probing results from Tu et al. (2023b).
For fair comparison, we also use ViT-B pre-trained on ImageNet-1K. Bold indicates best perfor-
mance among Vim-based PEFT methods.
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Conventional Fine-Tuning
FFT-Vim 26 70.1 47.7 89.4 64.2 89.0 87.7 90.6 35.1 84.5 93.9 81.0 74.5 67.5 52.9 47.3 78.9 75.3 53.9 33.3 29.4
FFT-ViT 86 69.9 49.4 89.3 65.5 91.7 89.1 91.4 33.5 85.9 93.6 85.4 74.3 54.7 55.2 48.7 79.7 68.2 49.7 31.5 27.7
LP-Vim 0 55.3 40.9 83.3 57.3 66.3 86.3 38.4 34.6 79.0 87.6 65.0 73.6 36.3 35.1 33.3 64.8 23.0 21.6 15.1 21.7
LP-ViT 0 66.4 50.6 85.6 61.4 79.5 86.5 40.8 38.0 79.7 91.5 71.7 65.5 41.4 34.4 34.1 55.4 18.1 26.4 16.5 24.8
PEFT on ViT
AdaptFormer 0.147 72.4 56.2 89.6 67.2 91.2 91.1 85.9 42.1 85.4 94.6 84.0 74.3 75.8 58.6 48.6 79.6 81.6 53.7 29.6 35.2
LoRA 0.295 72.5 56.4 89.0 66.9 91.2 90.4 86.9 41.5 85.4 95.1 84.1 75.2 75.8 61.7 47.7 80.5 80.4 52.0 29.4 35.7
PEFT on Vim
LoRA 0.054 70.1 57.5 87.7 64.4 86.0 90.0 85.7 39.8 82.2 93.8 79.6 72.5 78.6 56.5 42.0 80.5 71.8 51.0 28.4 32.6
Lily-S 0.074 71.4 58.2 88.5 65.6 87.1 90.7 87.5 40.4 83.3 94.1 79.7 73.8 81.2 57.3 44.1 80.9 79.3 54.1 30.0 33.7
Lily-L 0.196 72.3 57.8 89.4 66.2 87.8 90.5 88.1 40.5 84.1 94.3 81.3 75.1 81.6 57.8 46.5 81.0 82.9 55.2 32.1 34.8

and MoRA (Jiang et al., 2024); in Vim experiments, we focus on contrasting architectures differ-
ence, therefore only using LoRA as the baseline. All experiments include FFT and linear probing
as baselines. For Vim, we implement two versions: Lily-S (Small) and Lily-L (Large) of Lily,
with different hyperparameter settings to either reduce the parameter count (Lily-S) or maximize
performance (Lily-L). For Lily on ViT, the reported results are obtained from adapting both the
self attention and the MLP module in Transformer. For the performance w.r.t the fine-tuned mod-
ule, we conduct additional experiments in Appendix D. Detailed experimental settings and datasets
information are provide in Appendix B.1.3 and B.2.3.

Results Results are shown in Table 4 and Table 5. For ViT, Lily significantly outperforms all com-
pared PEFT methods with improved parameter efficiency. For Vim, results on ViT generally surpass
those on Vim. For instance, LoRA on ViT performs better than LoRA on Vim. We argue that this is
due to differences in architecture designs and general model sizes. However, Lily’s strong adapta-
tion performance allows it to match or exceed PEFT methods on ViT and significantly outperform
LoRA on Vim (Lily-S and Lily-L surpass LoRA by a significant margin). This demonstrates Lily’s
architecture-agnostic capability, highlighting its potential across various model architectures. In
general, Lily has achieved great visual adaptation capability with an advantage of being architecture-
agnostic and enjoying excellent parameter-efficiency.

4.5 UNDERSTANDING LILY

4.5.1 DOES LILY HAS HIGH-RANK WEIGHT UPDATES?

We state that Lily achieves weight updates that with higher rank than LoRA. To validate our claim,
we provide an empirical analysis as shown in Fig. 3. Specifically, we run 4 tasks from the NLU
experiment and test the rank of the weight updates for Wq in the first three layers. We uses small
number of LPs and HPs (2 or 3) to demonstrate the efficiency and to match the parameter count.
Specific hyperparameter settings can be found in Appendix B.1.2.

From the results, we can observe that the rank of weight updates from Lily generally is notably
larger than LoRA when using a similar amount of parameters. Meanwhile, weight updates from
Lily still have higher rank compared to LoRA even when using 16.7% of the parameters of LoRA.
This empirical analysis essentially validate our claim that Lily achieves high-rank updates with the
same parameter budget. We credit it to the model-wide sharing mechanism and the cross-layer
asymmetric design, which facilitates dynamic and expressive adaptation.
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Figure 3: Actual rank of the weight updates. We run 20 epochs for COLA, MRPC and STS-B and 3
epochs for SST-2. It can be easily observed that weight updates from Lily have notably higher rank
than LoRA.

Lily

LoRA

Lily

LoRA

Input Layer 1 Layer 6 Layer 9 Input Layer 6Layer 1 Layer 9

Figure 4: Attention maps of Lily and LoRA. The input images for the example here are taken from
Caltech101 datasets from VTAB-1K benchmark. It can be observed that features from a certain
layer have more similarity to those in other layers in Lily than in LoRA.

4.5.2 FROM A FEATURE MERGING PERSPECTIVE

Apart from having higher-rank weight updates than LoRA, Lily also enables comprehensive infor-
mation access across layers. Lily enables access to information or features from all other layers
when adapting a target module at a specific layer thanks to the inter-connectivity of the adapters.
We aim to understand how Lily achieves this comprehensive information access from the perspec-
tive of visual tasks as shown in Fig. 4. We can observe that, in Lily, the distinctness of the attention
maps between layers is not as pronounced as in LoRA. This validates Lily’s ability to enable all-
level information access, since adaptation at each layer takes into account features from other layers.
Additionally, we specifically visualize the actual feature differences between different layers in Fig.
5. We observe that Lily has more points with low feature differences (blue color) than LoRA, in-
dicating that the distinctness of features between layers in Lily is generally lower than in LoRA.
This further demonstrates Lily’s ability to enable comprehensive information access. Although we
enable all-level information access, what prevents the features from becoming completely identical
is the selectivity introduced by Lily, which we specify in the following section.

4.5.3 WHAT’S THE INFLUENCE OF ATTENTION GRANULARITY?

The number of experts in the model-wide HP module can be freely set, and the number of LPs can
also be flexibly set by sharing across the same level of layers introduced in Appendix A.1. Therefore,
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Lily LoRA Lily LoRA

Layer 6 to 1 Layer 6 to 9

Figure 5: Feature difference measured in absolute distance for each element. We compare Lily and
LoRA in terms of the difference between features from different layers. In this example image taken
from Caltech101, we visualize the feature difference between layers 6 and 1, as well as between
layers 6 and 9.
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Figure 6: Impact of attention granularity (i.e., the choice of how many LPs and HPs) on the perfor-
mance. We choose 12 out of 19 tasks from VTAB-1K for a comprehensive understanding.

we analyze the impact of these choices on performance. We denote the number of LP experts and HP
experts as ne 1 and ne 2, respectively. For simplicity, we make them identical in the experiments,
denoted as ne. We refer to the number of layers each expert attends to as attention granularity. As
the value of ne increases, the attention granularity becomes finer. As shown in Fig. 6, the results
from the VTAB-1K benchmark indicate different patterns. For instance, on the DTD dataset, the
best performance is achieved when ne is 4, while on sNORB-Azim, performance increases with the
increase in ne. Increasing ne leads to more parameters and finer attention granularity. However,
finer attention granularity does not necessarily lead to better overall performance. For example, on
Resisc45, DTD, Cifar100, sNORB-Ele, dsPr-LoC, Flowers102, and EuroSAT, the negative impact
of increasingly finer attention granularity eventually outweighs the benefits of increased parameters,
leading to a decrease in overall performance. In other tasks, different patterns may occur because the
positive effect of attention granularity on performance is consistently strong, or its negative effect is
not enough to offset the benefits of increased parameters, resulting in a generally increasing perfor-
mance with ne. This phenomenon provides an important insight: for most tasks, simply increasing
parameters may not lead to better performance. Instead, only when attention granularity and the
number of parameters reach a good tradeoff can we achieve the best performance.

4.5.4 DOES LILY EXHIBIT SELECTIVITY?

Lily uses routers to assign varying weights to different HP experts, thereby achieving selective in-
formation combination. We illustrate this selectivity in Fig. 8. We use a setup with three HP experts
and select three layer levels (1, 13, 22) to calculate the total weight assigned to each expert. The
results reveal a clear selectivity: for different layers, the router assigns significantly different weights
to different HP experts. For instance, on Cifar100, the middle layer is predominantly dominated by
HP 2, whereas the deep layer is primarily dominated by HP 1 and HP 2. In contrast, on Retinopathy,
both the middle and deep layers are dominated by HP 3. This selectivity ensures that, even when dif-
ferent layers share information, the inherent differences between layers are still taken into account,
making the adaptation more flexible and comprehensive.
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Figure 7: Hardware efficiency of Lily compared to LoRA. We run 10 epochs for COLA. We report
the training time and memory consumption. It can be observed that Lily generally performs on par
with LoRA in terms of hardware efficiency.
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Figure 8: Visualization of accumulated assigned weight for HP experts by a router across various
layers. Example here uses layer of index 2, 13 and 22 to represent shallow, middle and deep layers.

4.5.5 WHAT’S THE HARDWARE EFFICIENCY OF LILY?

The dynamic of Lily obviously introduces complexity onto the design of LoRA. In this section, we
analyses how does this affect the hardware efficiency of Lily compared to LoRA. We use the COLA
task from the NLU experiments using RoBERTa-Base and run 10 epochs. Additionally, we also
report the runtime and GPU memory consumption in the Falcon-Mamba experiment.

The results are shown in Fig. 7, from which we can observe that the hardware efficiency of Lily is
comparable to LoRA. Specifically, Lily slightly under-perform LoRA in the NLU experiment but
performs on par with LoRA in the LLM experiment. In generally, the introduced complexity of Lily
does not prevent it from being a effective PEFT method that is hardware-friendly.

5 CONCLUSION

In this paper, we propose low-rank interconnected adaptation (Lily), a novel framework for efficient
fine-tuning via inter-connectivity of adapters. Lily enables each layer to access information from
others during adaptation through a hierarchical structure. Additionally, it successfully overcome the
low-rank update limitation of LoRA, enabling high-rank update and therefore better adaptation capa-
bility. Our approach consistently improves performance across various modalities, model sizes, and
architectures, surpassing existing methods with enhanced efficiency. In summary, Lily’s versatility
and efficiency make it a promising approach for a wide range of applications.
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APPENDIX

A MORE DISCUSSION ABOUT LILY

A.1 MODEL STRUCTURE AND DESIGN INTUITION OF LILY

Within the overall framework of Lily, we delve into specific implementation details and model
design insights. First, we have established the relationship between LPs and HP: LP is confined
to specific levels of layers, capturing features that enable the router to selectively assign weights to
the HP experts. In contrast, HP is a model-wide module comprising multiple experts, each of which
contains information from a particular level of layers. We highlight several key aspects which are
not heavily discussed in the methodology section:

A.1.1 NUMBER OF LPS

Since LP is limited to specific layers, the simplest approach would be to place an LP at each layer
of the module to be adapted (e.g., the query transformation in MHSA). However, this setup may
not be necessary: the importance of each layer varies, and many layers have significantly lower
importance than others (Zhang et al., 2023). To achieve greater parameter efficiency, we can set up
fewer LPs, with each LP focusing on a level of layers rather than a single layer. For example, an
LP can focus on shallow layers (e.g., layers 0, 1, 2, etc.) or deep layers. To enable a single LP to
handle multiple layers, we can share an LP across multiple layers. By doing so, we eliminate the
redundancy of having an LP at each layer, reduce the number of parameters, and increase efficiency.
This is exactly the strategy adopted by most of the experiments.

A.1.2 NUMBER OF HP EXPERTS

Regarding HP, the number of experts can be arbitrarily set, enabling more flexible configurations.
In our experiments, for the sake of simplicity, we set the number of HP experts equal to the number
of LPs, thereby equating the granularity of LP and HP.

A.1.3 ROUTERS SETUP

There are also different settings that can be employed for the router. First, we can bind the router to
HP, resulting in only one router per model. However, since the number of parameters in the router is
relatively small, having only one router per model may not lead to significant selectivity. Therefore,
we can also bind the router to LP, configuring a separate router for each LP. Most of our experiments
use the latter setup, but in the vision experiments on Vim, we use the single-router and no-lp-sharing
setup to verify its effectiveness. From the results, we can see that this setup also performs well. As
future work, we can verify the effectiveness of using the latter setup on Vim, which may potentially
lead to superior performance.

A.1.4 HYPERPARAMETERS

We detail the hyperparameters used in Lily. Specifically, we use Lily r to represent the hidden-
dimension of the projectors: LPs and HPs. It serves the same function as r in LoRA. We use Lily s
to represent the scaling factor used by Lily. It is mostly searched within the range of {0.01, 0.1, 1.0,
10.0, 100.0}. We use ne 1 to represent the number of LPs used in the model. Since the LPs can be
shared as discussed in the previous section, ne 1 does not need to equal the number of layers in the
model. We use ne 2 to represent the number of HP experts in the model-wide HP module. In our
experiments, we set ne 1 = ne 2 to improve parameter-efficiency and simplicity.

A.1.5 DESIGN INTUITION

Lily employs a hierarchical structure to enable updates with higher-ranks than LoRA. However,
simply equally connecting all the HPs to the LPs can not achieve the best performance. From the
perspective of feature and information utilization across layers, simply aggregating all HPs for an LP
ignores the distinctness of the features from current layers. Meanwhile, it reduced the variability of
the combinations of gradient projection matrices (Si and Ci,j are constants now), making the rank of
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the weight update higher than that of LoRA (since multiple distinct random matrices are used), but
still not high enough for the best performance because of the lack of variability during combination.
Therefore, we introduce selectivity into the inter-connectivity as well as discussed below, making
the combination of HPs data-dependent so that each Si is unique across the time-steps, enabling
updates with even higher ranks. The approach has similarity to Hao et al. (2024), where random
matrix is constantly resampled to ensure updates with higher ranks. We further conduct an analysis
in Appendix G.

A.2 EFFICIENT IMPLEMENTATION FOR WEIGHTED COMBINATION

One intuitive implementation of the weighted combination in Lily is make the inputs go through all
the experts and then sum the results up, from which we could observe that it perform Ne times of
matrix multiplication, Ne times of scalar multiplication and Ne times of matrix addition. Therefore,
despite its intuitive nature, the computational burden of this approach is quite formidable.

However, Eq. 3 which is adopted in Lily only utilize Ne times of scalar multiplication, Ne times
of matrix addition and 1 time of matrix multiplication. This saves roughly Ne times of matrix
multiplication, which can be significant as the size of the model and number of adaptation targets
increases. For a x′ size of RN×d and a PH ∈ Rd×C , the floating-point operation (FLOPs) of these
two implementation are:

FLOPs =
Ne∑
1

(2NdC) +

Ne∑
1

(dC) +

Ne∑
1

(NC)

= Ne × (2NdC + dC +NC) (Intuitive)

FLOPs = 2

Ne∑
i=1

(dC) + 2NdC

= 2dC × (N +Ne) (Lily)

(6)

from which we can easily observe that the approach adopted by Lily requires less computation and
therefore provides more speed and efficiency during the fine-tuning process. Under the setting of
N = 1024, d = 16, C = 768, Ne = 4, the FLOPs of the intuitive approach would be 0.104 GFLOPs
while in Lily it is merely 0.025 GFLOPs, which could potentially lead to a 4X increase in speed.

A.3 ACTUAL IMPLEMENTATION OF LILY

We present the actual implementation of Lily in Fig. 9. For the example here, we choose the imple-
mentation from visual adaptation tasks (i.e., VTAB-1K benchmark). For LLM, the implementation
is a bit more complicated because of modifications to the huggingface PEFT library (Mangrulkar
et al., 2022), but the fundamental adaptation process is the same. Specifically, given an input, we
first use the corresponding LP of the current layer to project it to a low-dimensional representa-
tion. After that, we use the low-dimensional representation to selectively assign weights for the HP
experts. Once we obtain all the weights for the experts, we set out to combine these HP experts
accordingly, as discussed in Appendix A.2. After the weighted combination, we use the obtained
combined HP to project the low-dimensional representation to high-dimension, therefore acquiring
the extra knowledge gained through adaptation.

B EXPERIMENTAL SETTINGS

B.1 HYPER-PARAMETERS

A detailed description of the hyper-parameters used in Lily is in Appendix A.1.

B.1.1 COMMONSENSE REASONING

The hyper-parameters used in commonsense reasoning experiments for MiLoRA, PiSSA are pro-
vided in Table 7, 6. Settings for Lily and LoRA using Falcon-Mamba as the backbone are provided
in Table. 9 and 8. It can be noticed that Lily achieves the best performance by merely adapting the
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PRIME AI paper

1 class lily_adapter(nn.Module):
2 """
3 Implementation of a Lily adapter for an adaptable target. For symplicity, we assume that the

number of hp expert is equal to the number of LPs.↪→
4

5 args:
6 hidden_dim: hidden dimension
7 ne: number of experts
8 lp: low-dimensioanl projector
9 hps: high-dimensioanl projector experts

10 mlp: whether the adpatation target is located in MLP
11 """
12 def __init__(self, hidden_dim, ne, lp, hps, mlp=False):
13 super().__init__()
14 self.hps = hps
15 self.ne = ne
16 self.lp = lp
17 self.router = nn.Linear(hidden_dim, ne, bias=False)
18 if mlp:
19 self.non_linear = nn.ReLU()
20 else:
21 self.non_linear = nn.Identity()
22 def forward(self, x):
23 hidden = self.non_linear(self.lp(x))
24 router_logits = self.router(hidden) # [B, N, num_of_experts]
25 router_probability = F.softmax(router_logits, dim=-1) # [B, N, ne]
26 expert_probabilities = router_probability.mean(dim=(0, 1))
27 combined_hp = torch.einsum("e,eio->io", expert_probabilities, self.hps)
28 return torch.matmul(hidden, combined_hp)

1

Figure 9: Implementation of Lily in VTAB-1K benchmark.

multi-head self attention module (MHSA) in LLaMA3-8B, while other compared methods adapt all
the modules including MLP. Meanwhile, Lily employs the least amount of parameters, showcasing
its excellent adaptation at low parameter-budget scenarios.

Table 6: Hyperparameter configuration from the MiLoRA paper.

MiLoRA hyperparameters
Rank r 32

α of LoRA 64
α of PiSSA 32

Dropout 0.05
Optimizer AdamW

LR 3e-4
LR Scheduler Linear

Batch Size 16
Warmup Steps 100

Epochs 3
Placement query, key, value, MLP up, MLP down

B.1.2 NATURAL LANGUAGE UNDERSTANDING

Specific hyper-parameter settings of Lily on GLUE benchmark are provided in Table 10. We fix
the learning rate of both the backbone and the head as 5E-3 and tune the scaling factor Lily s
∈ {0.01, 0.1, 1.0} instead. For the rank r we fix it to 32 and the seed to 0. The baseline results are
taken from FourierFT Gao et al. (2024b).

B.1.3 VISUAL ADAPTATION BENCHMARK

We provide the hyper-parameter for Lily on VTAB-1K benchmark in Table 11. Specifically, we fix
the learning rate at 1E-3 with a weight decay of 1E-4. For ViT, we tune the scaling factor Lily s
∈ {0.01, 0.1, 1.0, 10.0} to maximize the performance, following Jie et al. (2023), Jie & Deng (2023).
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Table 7: Hyperparameter configuration from the PiSSA paper.

PiSSA hyperparameters
α Same as rank r

Dropout 0.0
Optimizer AdamW

LR 2e-5
LR Scheduler cosine

Batch Size 128
Warmup Ratio 0.03

Epochs 1
Placement query, key, value, output, gate, MLP up, MLP down

Table 8: Hyperparameter configuration for LoRA using Falcon-Mamba as backbone.

LoRA hyperparameters
Rank r 2

α 16
Dropout 0.05

Optimizer AdamW
LR 3e-4

LR Scheduler Linear
Batch Size 16

Epochs 1
Placement input, delta

For Vim, we fix Lily s to 1.0. Additionally, we search for the hyper-parameters ne 1 and ne 2 within
the range {2, 3, 4}, as these numbers can divide the number of layers in the ViT model (12 in ViT-
B). For vim, we use the implementation discussed in section A.1, which does not share LPs across
layers. Therefore, ne 1 in this setting is fixed to number of layers in Vim (22 in this case), while we
search ne 2 in {3,6} and {5,6,17} separately for Lily-S and Lily-L. Note that ne is only set for input
projection in Vim. For delta transformation, we only use a single HP expert to reduce the parameter
cost. In the experiments of ViT, the rank r is fixed at 16. Meanwhile in Vim’s setting, we tune the
ranks r for the delta transformation module and the input projection module separately. We use 4, 4
and 4, 8 separately for Lily-S and Lily-L.

B.2 DATASETS

B.2.1 COMMONSENSE REASONING

We provide a short description of each datasets used in commonsense reasoning experiments in
Table 12.

B.2.2 NATURAL LANGUAGE UNDERSTANDING

We provide detailed information about datasets in the GLUE benchmark in Table 13.

B.2.3 VISUAL ADAPTATION BENCHMARK

We provide detailed information about all the tasks from VTAB-1K benchmark in Table 14.

C DOES SHARING LP RESULTS IN INFERIOR PERFORMANCE?

As mentioned earlier, we adopted a strategy of sharing the LP across most of our experiments,
ensuring that the number of LP and HP experts is consistent. This approach offers two benefits:
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Table 9: Best Hyperparameter configuration for Lily using Falcon-Mamba and LLaMA3 as back-
bones.

Falcon-Mamba LLaMA3
Rank r 40 16
ne 1 4 4
ne 2 4 4

Dropout 0 0
Optimizer AdamW AdamW

LR 3e-4 3e-4
LR Scheduler Linear Linear

Batch Size 16 16
Epochs 1 3

Placement input query, key, value

Table 10: Hyperparameter of Lily on GLUE benchmark.

Hyperparameter STS-B RTE MRPC CoLA SST-2 QNLI MNLI QQP

Optimizer AdamW
LR Schedule Linear
Learning Rate (Lily) 5e-3
Learning Rate (Head) 5e-3
Max Seq. Len 512 512 512 512 512 512 512 512
Lily s 0.1 0.1 0.1 0.01 0.01 0.01 0 0
ne 1 2 3 2 4 2 2 0 0
ne 2 2 3 2 4 2 2 0 0
Batch Size 64 32 50 64 32 32 0 0

simplicity and enhanced parameter efficiency. By sharing the LP, we eliminate the need to set a
separate LP for each layer, thereby reducing the overall parameter count.

Our decision to share the LP is based on the observation of overall redundancy among layers. Specif-
ically, different layers have varying levels of importance (Zhang et al., 2023), and some less impor-
tant layers do not require a dedicated LP. By not setting a separate LP for these layers, we avoid
introducing extra parameter overhead while having a negligible impact on performance. To test that
whether sharing LP results in inferior performance, we conduct experiments with no LP sharing
on VTAB-1K. The results are shown in Table 15, from which we can observe that the best over-
all performance (77.3%) is the same as that in the LP-sharing setting. This indicates that even if
we employ one LP for each layer, the performance gain is negligible and many of the parameters
are actually redundant. However, not sharing LPs results in extra parameter overhead and damages
the parameter-efficiency of Lily. Therefore, LP-sharing is a great strategy to eliminate redundancy
among LPs and boost the parameter-efficiency of Lily.

D WHERE TO APPLY LILY IN TRANSFORMERS?

PEFT methods have been predominantly explored on the Transformer architecture, which consists
of multi-head self-attention (MHSA) and multi-layer perceptron (MLP) as its core modules. In this
section, we analyze the impact of fine-tuned modules on performance using Lily. Specifically, we
compare Lily’s performance on the VTAB-1K benchmark under four settings:

• Applying Lily solely to the query and value transformation module in MHSA (denoted as
”qv”).

• Applying Lily solely to the MLP module (denoted as ”mlp”).

• Applying Lily to both the query and value transformation module in MHSA and the MLP
module (denoted as ”qvmlp”).
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Table 11: Hyperparameter configuration for Lily on VTAB-1K benchmark.

Vision Transformer Vision Mamba
Optimizer AdamW AdamW
Batch Size 64 64

Learning Rate 1E-3 1E-2
Weight Decay 1E-4 1E-3

# Epochs 100 100
LR Decay cosine cosine

Table 12: Details of the datasets used in our commonsense reasoning tasks.

Benchmark Description # Test Questions
ARC-c Multiple-choice science 2376
ARC-e Multiple-choice science 1172
OBQA Multi-step reasoning 500
SIQA Social implications 1954
WinoG Fill-in-a-blank 1267
PIQA Physical commonsense 1830
BoolQ Yes/no questions 3270
HellaS Commonsense NLI 10042

Table 13: Information about datasets in the GLUE benchmark, with STS-B being a regression task
and all other tasks falling into the categories of single-sentence or sentence-pair classification.

Corpus Metrics Task # Train # Val # Test # Labels
Single-Sentence Tasks

CoLA Matthews Corr. Acceptability 8.55k 1.04k 1.06k 2
SST-2 Accuracy Sentiment 67.3k 872 1.82k 2

Similarity and Paraphrase Tasks

MRPC Accuracy/F1 Paraphrase 3.67k 408 1.73k 2
STS-B Pearson/Spearman Corr. Sentence similarity 5.75k 1.5k 1.38k 1
QQP Accuracy/F1 Paraphrase 364k 40.4k 391k 2

Inference Tasks

MNLI Accuracy NLI 393k 19.65k 19.65k 3
QNLI Accuracy QA/NLI 105k 5.46k 5.46k 2
RTE Accuracy NLI 2.49k 277 3k 2

• Applying Lily to both the key and value transformation module in MHSA and the MLP
module (denoted as ”kvmlp”).

To ensure a fair comparison, we tune the hyperparameters to maintain a similar parameter count
across all settings. Additionally, to further investigate whether sharing the low-rank projection (LP)
affects performance, we do not share the LP in this experiment. The results are presented in Table
15. We observe that the ”kvmlp” setting achieves the best performance, with an average accuracy
of 77.3%. In contrast, adapting only the MHSA module (”qv”) yields the worst performance. Fur-
thermore, we note that adapting both the MHSA and MLP modules (qvmlp and kvmlp) generally
leads to superior results compared to adapting only one specific module (qv and mlp). This suggests
that both MLP and MHSA play crucial roles in the overall model performance, and adapting both is
essential for effective adaptation.

Notably, even when applying Lily solely to the MHSA module, which results in the worst perfor-
mance among the four settings (76.9%), it still outperforms LoRA by a significant margin (0.5%).
This underscores the efficiency of Lily, as it uses fewer parameters than LoRA even without LP
sharing.
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Table 14: Detailed information about the datasets in VTAB-1K benchmark.

Dataset Train Val Test #Classes

VTAB-1k

CIFAR100

800/1,000 200

10,000 100
Caltech101 6,084 102
DTD 1,880 47
Oxford-Flowers102 6,149 102
Oxford-Pets 3,669 37
SVHN 26,032 10
Sun397 21,750 397
Patch Camelyon 32,768 2
EuroSAT 5,400 10
Resisc45 6,300 45
Retinopathy 42,670 5
Clevr/count 15,000 8
Clevr/distance 15,000 6
DMLab 22,735 6
KITTI-Dist 711 4
dSprites/location 73,728 16
dSprites/orientation 73,728 16
SmallNORB/azimuth 12,150 18
SmallNORB/elevation 12,150 18

Table 15: Performance on VTAB-1K benchmark when applying Lily to various modules in Trans-
former. The implementation here does not share LP for simplicity (i.e., each layer has one LP).
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E WHERE TO APPLY LILY IN MAMBA?

Nearly all previous PEFT method studies have been centered around Transformers, while Mamba
is a relatively new architecture, so there has been little research on PEFT methods on Mamba.
In this section, we briefly analyze the pros and cons of adapting Mamba’s modules. In brief, a
Mamba block consists of regular linear projection layers and a core component SSM module (Gu
& Dao, 2023) (Zhu et al., 2024). Specifically in SSM module, Mamba utilize parameters (∆, A,
B, C) to transform an input sequence x(t) to an output sequence y(t) using a hidden state h(t).
The discretization process converts A and B into Ā and B̄, respectively, using the time step size
parameter ∆. Structured state space models, inspired by continuous systems, can be computed
similarly to RNNs or in the form of global convolution due to their linear time invariance (LTI)
property. Mamba introduces a selective property to structured state space model, tying parameters
to the current input, which breaks the LTI property and hinders parallel training. To address this,
Mamba employs a hardware-aware algorithm, enabling its SSM module to possess the selective
property and perform parallel training. To be specific, the discretization process can be expressed
as:

Ā = exp(∆A)

B̄ = (∆A)−1(exp(∆A)− I) ·∆B
(7)

After that, the calculation in Mamba can be expressed as:

ht = Āht−1 + B̄xt

yt = Cht
(8)
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Table 16: Commonsense reasoning results of Lily under various leanring rates.

Model Lr BoolQ PIQA SIQA HellaSwag WinoGrande ARC-e ARC-c OBQA Avg.

LLaMA3-8B

1e-3 70.7 84.6 77.6 87.8 77.3 88.5 74.1 80.8 80.2
5e-4 71.8 86.5 77.9 82.8 83.1 88.6 76.8 81.4 81.1
3e-4 72.9 85.6 77.8 92.7 83.3 89.7 77.6 82.8 82.8PRIME AI paper

1 class lily_adapter_monoscale(nn.Module):
2

3 def __init__(self, hidden_dim, ne, lp, hps, mlp=False):
4 super().__init__()
5 self.hps = hps
6 self.ne = ne
7 self.lp = lp
8 self.scale = 1 / ne
9 if mlp:

10 self.non_linear = nn.ReLU()
11 else:
12 self.non_linear = nn.Identity()
13 def forward(self, x):
14 hidden = self.non_linear(self.lp(x))
15 combined_hp = torch.sum(self.hps, 0) * self.scale
16 return torch.matmul(hidden, combined_hp)

1

Figure 10: Implementation of Lily with no selectivity.

where ht is the hidden state at time t and xt is the corresponding input token. Delta projection is a
module in SSM that’s learnable and tasked with transforming the parameter ∆. Since adapting the
delta projection alone can indirectly adapt the entire SSM module (i.e., Ā and B̄ are all determined
by ∆), it is the most critical component of the SSM module.

We investigate the performance of two adaptation strategies: adapting only the input linear projec-
tion layer (denoted as ”in”) and adapting both the input linear projection layer and SSM (denoted
as ”∆ + in” since we only adapt delta projection in SSM module). Our results, as shown in Table
1, indicate that applying Lily solely to the input projection yields better performance than applying
it to both the input and delta projection modules. This suggests that when adapting Mamba-based
models under the paradigm of low-rank adaptation, it is optimal to adapt only the input projection
module outside the SSM module. These findings highlight the need for further research into the
impact of fine-tuned modules in Mamba on overall performance. Additionally, developing PEFT
methods specifically tailored to Mamba-based models, whether for vision or language foundation
models, is also a promising direction for future work.

F PERFORMANCE WITH DIFFERENT LEARNING RATES

Since we only tuned the learning rate in the commonsense reasoning experiment, we provide the
performance of commonsense reasoning under different learning rates in Table 16.

G DOES SELECTIVITY HELP?

Lily introduced selective weight combination to selectively incorporate information from other lay-
ers. To verify the effectiveness of this selectivity, we remove the router from Lily and evaluate the
impact. The modified algorithm without the router is presented in Fig. 10. We conduct experiments
on commonsense reasoning to investigate the effect of removing selectivity from Lily.

As shown in Table 17, removing selectivity from Lily results in generally poorer performance com-
pared to vanilla Lily. This is likely because the lack of selectivity causes Lily to simply aggregate
all the HP expert, leading to inferior performance. This validates the design choice of using routers
in Lily to selectively allocate weights to HP experts, rather than simply summing them.
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Table 17: Commonsense reasoning results of Lily without selectivity. We provide results using two
learning rates.

Model Lr BoolQ PIQA SIQA HellaSwag WinoGrande ARC-e ARC-c OBQA Avg.

LLaMA3-8B
3e-4 64.0 82.6 78.5 77.0 79.6 88.4 74.5 82.0 78.3
5e-4 71.3 85.5 78.1 84.3 79.6 86.4 76.1 79.0 79.8
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Figure 11: Results on commonsense reasoning tasks when applying different settings of rank. The
hyperparameter ne is specifically tuned to maintain the same amount of parameter count for a fair
comparison.

H HOW TO ALLOCATE PARAMETERS?

Since Lily alters the traditional LoRA’s layer-bound setup, increasing the parameters of Lily can
be achieved through two approaches: 1) increasing ne, i.e., increasing the number of LP and HP
experts, and 2) increasing the rank, i.e., increasing the parameter size of each individual LP or
HP expert. In this section, we investigate which factor has the greatest impact on performance.
We conduct experiments on the commonsense reasoning task. Specifically, we maintain the same
parameter count and learning rate, and achieve the same parameter count by setting different ranks
and adjusting the corresponding ne (e.g., r=16, ne=4 versus r=8, ne=8). The results are shown in
Fig. 11, from which we observe that more LP and HP experts with smaller rank (i.e., bigger ne
and smaller rank) generally performs worse. We argue that this is because, although increasing the
attention granularity allows for finer details, the resulting performance gain is not as significant as the
gain obtained by increasing the rank, i.e., increasing the model’s capacity to learn more information.
This gives us an insight that, in Lily, increasing ne to increase the parameters is less effective than
directly increasing the rank in terms of potential performance gain.
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I MORE ON SUBJECT-DRIVEN GENERATION

We provide more results on subject-driven generation in Fig. 12 and Fig. 13.

Prompts:
1. A [v] grey sloth plushie floating on top

 of water

2. A [v] grey sloth plushie in the snow

3. A [v] grey sloth plushie on a cobblestone
 street

4. A [v] grey sloth plushie on top of a dirt
 road

5. A [v] grey sloth plushie on top of a white
 rug

6. A [v] grey sloth plushie on top of a wooden
 floor

Input images (not all included)

1

2

3

4

5

6

Input images (not all included)

1

2

3

4

5

6

Prompts:
1. A [v] bear plushie floating on top

 of water

2. A [v] bear plushie in the snow

3. A [v] bear plushie on a cobblestone
 street

4. A [v] bear plushie on top of a dirt
 road

5. A [v] bear plushie on top of a white
 rug

6. A [v] bear plushie on top of a wooden
 floor

LoRA Lily

Figure 12: More subject-driven generation results for unreported subjects.
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LoRA Lily

Prompts:

1. A [v] {} on top of a dirt
 road

2. A [v] {} on top of a white
 rug

3. A [v] {} with a tree and
 autumn leaves in the background

4. A [v] {} with a
 wheat field in the background

5. A {} with the Eiffel
 Tower in the background

1

2

3

4

5

1

2

3

4

5

subject = duck toy

subject = wolf plushie

Figure 13: More subject-driven generation results for subjects that are reported in the experiment
section.

J MORE ON ATTENTION MAPS OF LILY AND LORA

We provide more visualization results of the attention map from both LoRA and Lily on Caltech101
dataset from VTAB-1K benchmark in Fig. 14.
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Lily

LoRA

Lily

LoRA

Lily

LoRA

Lily

Lily

LoRA

LoRA

Input Image Layer1 Layer6 Layer9

Figure 14: More results of attention maps from LoRA and Lily. All images are taken from Cal-
tech101 dataset.
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