
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

LOW-RANK INTERCONNECTED ADAPTATION ACROSS
LAYERS

Anonymous authors
Paper under double-blind review

ABSTRACT

Low-rank adaptation (LoRA) is a powerful parameter-efficient fine-tuning method
that utilizes low-rank projectors A and B to learn weight updates ∆W for adap-
tation targets W . However, while the low-rank structure of A and B enables
high hardware efficiency, it also restricts the overall weight update to be low-
rank, which limits the adaptation performance. In this paper, we propose low-rank
interconnected adaptation across layers (Lily). Specifically, we employ a hierar-
chical framework where low-dimensional projectors (LPs) retained for downward
projection at a particular level, while globally-shared high-dimensional projector
(HP) experts perform upward projection across all levels of layers. This intercon-
nected asymmetric structure makes the adaptation much more dynamic and breaks
the low-rank weight-update constraint of LoRA when using the same parameters
budget. Furthermore, Lily’s cross-layer connections facilitate the capture of in-
tricate information and dependencies across different layers, thereby enhancing
the model’s representational capabilities. Experiments across various modalities,
architectures, and model sizes underscore Lily’s great performance and efficiency.

1 INTRODUCTION

For foundation models like Transformers (Vaswani et al., 2017b), fine-tuning on downstream tasks is
a typical usage, but full fine-tuning (FFT) of large models like large language models (LLMs) incurs
huge computational and storage costs and risks forgetting previously learned knowledge (Biderman
et al., 2024). Linear probing, which fine-tunes only the final modules like classification heads, ad-
dresses these issues but leads to significant performance degradation since it doesn’t update weights
from the backbone. To tackle these challenges, parameter-efficient fine-tuning (PEFT) has received
significant attention. In PEFT, a model’s backbone weights are frozen, and lightweight trainable
modules are introduced to efficiently learn task-specific knowledge. Among all PEFT methods,
Low-rank Adaptation (LoRA (Hu et al., 2021)) is one of the most widely applied techniques, espe-
cially in LLMs. LoRA introduces a pair of low-rank projection matrices for each adaptation target,
consisting of a downward adapter A and an upward adapter B, to approximate ∆W in FFT. Due
to its low-rank nature, LoRA offers significant computational and storage savings, effectively alle-
viating the burdens of FFT while significantly outperforming linear probing by learning the weight
updates for backbone weight.

However, LoRA and many subsequent improvements to the method (Miles et al., 2024), (Zhang
et al., 2023), (Zhong et al., 2024) have a limitation: the overall learned weight updates ∆W are also
restricted to be low-rank because of its low-rank structure, which limits the model performance dur-
ing adaptation. We recognize that one of the problems lies in the fact that the source of information
is limited for each adaptation target in LoRA, as shown in Fig. 1. It can be observed that each layer
in LoRA receives information only from the very layer they are situated. This prompts a question:
How can we enable a more dynamic and expressive adaptation with high-rank weight-updates by
providing more sources of information for an adaptation target?

In this paper, we propose Low-rank interconnected adaptation across layers (Lily), a novel frame-
work for more expressive and performative PEFT. Specifically, we decouple the downward low-
dimensional projector (LP) and its corresponding upward high-dimensional projectors (HP), making
them not tightly-bonded. Each LP is connected to all the HPs, and vice versa, as shown in Fig. 1.
This results in a hierarchical structure where LPs are still retained at a particular level to perform

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

A

A

A

 LoRA

B

B

B
Layer 1

Layer 2

Layer N

Lily

LP

LP

LP

HP

HP

HP
Layer 1

Layer 2

R

R

R
Expert 1

Expert 2

Expert N2

Layer N1

Figure 1: Dynamics of LoRA and Lily. N is used to denote the number of layers in the model in the
LoRA setup. Meanwhile, N1 denotes the number of low-dimensional projectors and N2 denotes the
number of high-dimensional projector experts. R is representing the router from Lily. N1 and N2

can be flexibly set, independent of the number of layers.

downward projection, while all HPs are now globally shared by all the LPs, performing upward pro-
jection. Inspired by self-attention Vaswani et al. (2017a), which calculates the relationship between
a token and all tokens and obtains attention scores indicating the strength of their relationship, we
selectively connect an LP with the HPs based on layer features. The LP extracts features from the
current layer, and based on the extracted features, a data-dependent and selective combination of HPs
is performed. This is realized by utilizing a router (Shazeer et al., 2017) that outputs a unique weight
distribution for HP experts, depending on the current input feature, thereby exhibiting selectivity.

The adaptation process now is much more dynamic and flexible with intricate interaction between
the adapters. With strong empirical evidence, we find our design enables weight updates that have
a much more higher rank than LoRA. Furthermore, Lily enables a more comprehensive information
access by allowing adapters at each layer to access information from other layers, promoting an
interconnected and dynamic learning process, where the adapters can collaborate, share learned
knowledge and model dependencies across layers. Overall, our contributions include:

• We propose Lily, a novel PEFT framework that incorporates cross-layer connections of the
projection matrices, breaking the restriction of low-rank weight updates in LoRA.

• Lily utilizes routers to selectively connect an LP with multiple HP experts, enabling com-
prehensive information access and therefore expressive adaptation.

• Extensive experiments are conducted across various modalities, architectures, and model
sizes, highlighting Lily’s great performance and efficiency in diverse scenarios.

2 RELATED WORK

Parameter Efficient Fine-Tuning Typical usage of foundation models includes pre-training on
large datasets and fine-tuning on various downstream tasks. Parameter-efficient fine-tuning (PEFT)
thus emerges as a promising field, aiming to fine-tuning the model efficiently with minimal pa-
rameters while maintaining performance and preserving previously learned knowledge, addressing
drawbacks posed by conventional fine-tuning techniques like full fine-tuning or linear probing. Cur-
rent PEFT research can be mainly categorized into two types: 1) adapter-based methods (Hu et al.,
2021), (Chen et al., 2022), (Pfeiffer et al., 2020b), (Jie & Deng, 2023) (Houlsby et al., 2019b) and
2) prompt-based methods (Tu et al., 2023b) (Tu et al., 2023a). Adapter-based methods introduce
lightweight adapters into the Multi-Head Self-Attention (MHSA) or the Feed-Forward Network
(FFN) blocks within the Transformer architecture. On the other hand, prompt-based methods ap-
pend trainable tokens as prompts to the input sequence fed to certain parts of the model.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Among these various PEFT techniques, low-rank adaptation (LoRA (Hu et al., 2021)) stands out as
one of the most well-known methods. LoRA introduces a pair of projection matrices A and B per
adaptation target W . The low-dimension projector (LP) A projects input x to low-dimension space,
and the high-dimension projector (HP) B restores it to its original dimension. Multiplying these
projection matrices approximates the weight update ∆W in FFT. Recent work (Hao et al., 2024)
has shown that LoRA adapters are essentially performing random projection to the gradient using
a fixed matrix. This restricts the learned weight update to low-rank subspace and thus imitating
the model performance. Meanwhile, A and B are tightly coupled, therefore the adaptation process
only has information access from current layer, without an understanding of information from other
layers, which could be beneficial to modeling dependencies across various layers.

Mixture of Experts Mixture of Experts (MoE) is an active research area that has garnered significant
attention, especially in the field of large language models (LLMs). Conditional computation, where
different parts of the network are activated on a per-example basis, has been proposed to enhance
model capability without increasing computation (Davis & Arel, 2013) (Bengio et al., 2013) (Eigen
et al., 2013) (Almahairi et al., 2016). The sparsely-gated MoE layer is introduced to implement
this idea, consisting of numerous sub-networks (Shazeer et al., 2017). A trainable gating network,
known as a ”router”, determines the combination of experts for each example. There are already
PEFT methods like MoLORA (Zadouri et al., 2023) and MOLA (Gao et al., 2024a) which apply
the MoE design concept to PEFT. However, these methods simply treat the adapters combined in
LoRA as a single expert. A concurrent research Wu et al. (2024), utilizes LP and HP sub-spaces as
the experts but fails to overcome the limitation discussed in previous section. Another concurrent
work, HydraLoRA Tian et al. (2024) also explores an asymmetric design for LoRA. A fundamental
difference from our work is that we consider the interaction across layers from the model and deploy
an model-wide asymmetric design to allow cross-layer connection.

3 METHODOLOGY

3.1 DOWNWARD PROJECTION AND SELECTIVE WEIGHT ALLOCATION

The process is illustrated in the right half of Fig. 1. Initially, we use an LP to project the input
x ∈ RN×Cin into its low-dimensional representation x′ ∈ RN×d where N is the sequence length:

x′ = xPL (1)

The number of LPs can be flexibly set, as discussed in A. Inspired by the Mixture of Experts (MoE)
paradigm, we employ a router R ∈ RNe×d to selectively assign weights to all HP experts based on
their relationship to the current layer’s features (x′). The weight set S is obtained as:

S = softmax(

N∑
i=1

(x′RT)i) (2)

The router selectively combines experts based on the current layer’s features, enabling smart infor-
mation integration. For shallower inputs, the router increases attention for experts specializing in
shallow-layer knowledge, while deeper inputs favor experts learning deep-layer knowledge.

3.2 WEIGHTED COMBINATION OF EXPERTS AND UPWARD PROJECTION

Once we obtain the low-dimensional input x′ , we combine information from all layers using the
model-wide shared global HP module. One intuitive approach is to feed x′ into each HP expert
and combine their outputs to obtain the extra knowledge x∆ ∈ RN×Cout . However, to address
efficiency concerns discussed in Appendix A.2, we propose an alternative implementation that is
mathematically equivalent and significantly reduces computational burden, described as:

x∆ = x′(

Ne∑
i=1

Si · P i
H) (3)

where S ∈ RNe is the set of weight scores for HP experts, obtained through selective weight al-
location. Since each Si is a scalar value, the calculation in Eq. 3 is mathematically equivalent to

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Table 1: Commonsense reasoning results for Falcon-Mamba-7B across eight tasks. Bold represents
the highest performance for each dataset utilizing PEFT methods.

Model PEFT BoolQ PIQA SIQA HellaSwag WinoGrande ARC-e ARC-c OBQA Avg.
ChatGPT - 73.1 85.4 68.5 78.5 66.1 89.8 79.9 74.8 77.0

Falcon-Mamba-7B
LoRA 6.5 30.5 40.6 14.9 56.4 42.2 31.8 38.4 32.7

Lily (∆ + in) 44.9 66.8 65.0 10.5 57.1 78.7 64.6 68.2 57.0
Lily (in) 60.2 61.0 67.3 12.9 61.5 80.0 67.5 65.8 59.5

Table 2: Commonsense reasoning results for LLaMA3-8B across eight tasks. † represents results
taken from Liu et al. (2024) and (Wang et al., 2024). Bold denotes the highest performance scores
for each dataset among different PEFT methods.

Model PEFT BoolQ PIQA SIQA HellaSwag WinoGrande ARC-e ARC-c OBQA Avg.
ChatGPT - 73.1 85.4 68.5 78.5 66.1 89.8 79.9 74.8 77.0

LLaMA3-8B

LoRA† 70.8 85.2 79.9 91.7 84.3 84.2 71.2 79.0 80.8
PiSSA† 67.1 81.1 77.2 83.6 78.9 77.7 63.2 74.6 75.4

MiLoRA† 68.8 86.7 77.2 92.9 85.6 86.8 75.5 81.8 81.9
Lily 72.9 85.6 77.8 92.7 83.3 89.7 77.6 82.8 82.8

the intuitive implementation, but with significantly improved efficiency. Therefore, the whole com-
putation flow, with input x ∈ RN×Cin and output y ∈ RN×Cout , for an adaptation target module
is:

y = xW0 + s · x∆ (4)

= xW0 + s · xPL(

Ne∑
i=1

(softmax(

N∑
j=1

(xPLR
T)j))i · P i

H) (5)

where s is a scaling factor. By selectively allocating weights and combining HP experts, Lily en-
ables access to all levels of information during adaptation. Each layer’s target adaptation modules
could consider the status and knowledge from all other layers, resulting in a more expressive and
comprehensive adaptation. Meanwhile, thanks to its inter-connectivity and selectivity, Lily break the
low-rank update constraint of LoRA and enable high-rank updates, as discussed in preliminaries.

4 EXPERIMENTS

We validate the effectiveness of Lily across different domains, model sizes (from ViT to LLM),
and architectures (Transformers, Mamba), demonstrating its general strong adaptation capability.
Concurrently, we conduct a comprehensive analysis of Lily’s intrinsic mechanisms, providing a
thorough understanding of Lily. All experiments are conducted on a single RTX 4090 GPU. Addi-
tionally, multiple analysis are provided in Appendix C, D, E, F, G, H, I and J.

4.1 COMMON SENSE REASONING

Implementation We evaluate Lily on commonsense reasoning with LLMs. Regarding the imple-
mentation, we utilize LLaMA3-8B (AI@Meta, 2024) and Falcon-Mamba-7B (Zuo et al., 2024) as
backbones. LLaMA3 is a near-SOTA open-source large language model, while Falcon-Mamba is
the latest and only open-source large language model based on the Mamba architecture. Using these
models allows us to validate the effectiveness of Lily for fine-tuning LLMs and whether this effec-
tiveness can be transferred to architectures beyond Transformers (Mamba, in this case). We fine-tune
these models on Commonsense170K (Hu et al., 2023) and evaluate the adaptation results on eight
multiple-choice problem tasks, including BoolQ (Clark et al., 2019), PIQA (Bisk et al., 2020), SIQA
(Sap et al., 2019), HellaSwag (Zellers et al., 2019), WinoGrande (Sakaguchi et al., 2021), ARC-e,
ARC-c (Clark et al., 2018), and OBQA (Mihaylov et al., 2018). The compared methods are LoRA
for Falcon-Mamba and LoRA (Hu et al., 2021), PiSSA (Meng et al., 2024), and MiLoRA (Wang
et al., 2024) for LLaMA3. We only compare LoRA for Falcon-Mamba because tailored PEFT
methods for Mamba-based LLMs have not yet been proposed, which is beyond the scope of this
paper. Detailed hyper-parameter settings and datsets information are reported in Appendix B.1.1
and Appendix B.2.1.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Table 3: Various fine-tuning methods applied to RoBERTa Base and RoBERTa Large are evaluated
on 6 datasets from the GLUE benchmark. We present the Matthew’s correlation coefficient (MCC)
for CoLA, Pearson correlation coefficient (PCC) for STS-B, and accuracy (Acc.) for the remaining
tasks. The highest performance for each dataset is highlighted in bold, with all metrics favoring
higher values across the 6 datasets.

Model & Method # Trainable
Parameters

SST-2
(Acc.)

MRPC
(Acc.)

CoLA
(MCC)

QNLI
(Acc.)

RTE
(Acc.)

STS-B
(PCC) Avg.

RoBbase(FFT) 125M 94.8 90.2 63.6 92.8 78.7 91.2 85.2
RoBbase(BitFit) 0.1M 93.7 92.7 62 91.8 81.5 90.8 85.4
RoBbase(AdptD) 0.3M 94.2 88.5 60.8 93.1 71.5 89.7 83.0
RoBbase(AdptD) 0.9M 94.7 88.4 62.6 93.0 75.9 90.3 84.2
RoBbase(LoRA) 0.3M 95.1 89.7 63.4 93.3 78.4 91.5 85.2
RoBbase(AdaLoRA) 0.3M 94.5 88.7 62.0 93.1 81.0 90.5 85.0
RoBbase(DyLoRA) 0.3M 94.3 89.5 61.1 92.2 78.7 91.1 84.5
RoBbase(Lily) 0.3M 95.0 90.2 66.0 92.5 81.6 90.8 86.0
RoBlarge(FF) 356M 96.4 90.9 68 94.7 86.6 92.4 88.2
RoBlarge(AdptH) 0.8M 96.3 87.7 66.3 94.7 72.9 91.5 84.9
RoBlarge(LoRA) 0.8M 96.2 90.2 68.2 94.8 85.2 92.3 87.8
RoBlarge(Lily) 0.5M 95.6 90.9 68.4 94.8 88.4 91.9 88.4

Results We report the accuracy in the Table 2 and Table 1. Based on the results, it is evident that
Lily performs the best out of the compared PEFT methods. Lily surpasses LoRA by a significant
margin on Falcon-Mamba, and on LLaMA3, it outperforms LoRA and MiLoRA. This indicates
Lily’s superior adaptation capability and parameter efficiency dealing with commonsense reasoning
tasks. Additionally, while the performance on Falcon-Mamba is notably lower than the baseline and
LLaMA3, we believe this is due to the model’s limitations rather than Lily’s, as Lily still signifi-
cantly outperforms LoRA on Falcon-Mamba and demonstrates great performance on LLaMA3. This
sheds light on the current state of Mamba-based LLMs, showing that they generally have inferior
performance compared to Transformer-based LLMs like ChatGPT and LLaMA on many tasks.

4.2 NATURAL LANGUAGE UNDERSTANDING

Implementation We evaluate Lily on natural language understanding (NLU) tasks. For implemen-
tation, we use RoBERTa Base (Liu et al., 2019) and RoBERTa Large as the backbones and fine-tune
them on tasks from GLUE benchmark (General Language Understanding Evaluation (Wang et al.,
2018)), consisting of multiple NLU tasks including single-sentence classification tasks, similarity
and paraphrase tasks and natural language inference tasks. We compare Lily against several com-
petitive PEFT methods, including BitFit (Zaken et al., 2021), Adapter-Tuning (Rücklé et al., 2020)
(Houlsby et al., 2019a) (Lin et al., 2020) (Pfeiffer et al., 2020a), LoRA (Hu et al., 2021), DyLoRA
(Valipour et al., 2022) and AdaLoRA (Zhang et al., 2023). Additionally, we utilize full fine-tuning
(FFT) as the baseline. Specific hyper-parameters and datasets information are provide in Appendix
B.1.2 and B.2.2.

Results The results are shown in Table. 3, from which we can clearly observe that Lily surpass
all of the compared PEFT methods by a significant margin, demonstrating its capability of tackling
NLU tasks. Among the 6 given tasks, Lily surpasses FFT in 4 of them using RoBERTa-Base and
RoBERTa-Large, showcasing its strong approximation ability with high-level parameter-efficiency.

4.3 SUBJECT-DRIVEN IMAGE GENERATION

Implementation We conduct experiments on fine-tuning text-to-image diffusion models for the
subject-driven generation task (Ruiz et al., 2023). For backbone, we use SDXL and we fine-tune it
using LoRA and Lily. We first fine-tune the model with images associated with text prompts (e.g., A
photo of a [v] duck toy), in which a unique identifier is provided. After that, text prompts containing
the identifier could be used to generate customized images.

Results The results are presented in Fig. 2 following the format in Gao et al. (2024b) and Wu et al.
(2024), from which we can observe that images generated by Lily generally align better with the

5

https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Input images A [v] duck toy floating on top of water

LoRA Lily
A [v] duck toy on top of the sidewalk

 in a crowded street

LoRA Lily

Input images

Input images A [v] wolf plushie in the jungle

A [v] wolf plushie in the snow

LoRA Lily

A [v] robot toy on a cobble stone street

LilyLoRA

LoRA

A [v] robot toy on a beach

Lily

Input images
A [v] monster toy with

a city in the background

LoRA Lily

LoRA Lily

A purple [v] monster toy

LoRA Lily

Figure 2: Results of subject-driven generation. Lily’s results align better with prompts, featuring
more accurate color, environment, and shape.

Table 4: Full results of Lily on ViT-B pre-trained on ImageNet-21K for the VTAB-1K benchmark,
with averages computed based on group-wise results. Bold indicates the best performance.

Natural Specialized Structured

Pa
ra

m
s(

M
)

A
ve

ra
ge

C
ifa

r1
00

C
al

te
ch

10
1

D
T

D

Fl
ow

er
s1

02

Pe
ts

SV
H

N

Su
n3

97

C
am

el
yo

n

E
ur

oS
AT

R
es

is
c4

5

R
et

in
op

at
hy

C
le

vr
-C

ou
nt

C
le

vr
-D

is
t

D
M

L
ab

K
IT

T
I-

D
is

t

dS
pr

-L
oc

dS
pr

-O
ri

sN
O

R
B

-A
zi

m

sN
O

R
B

-E
le

Conventional Fine-Tuning
FFT 86 68.9 68.9 87.7 64.3 97.2 86.9 87.4 38.8 79.7 95.7 84.2 73.9 56.3 58.6 41.7 65.5 57.5 46.7 25.7 29.1
LP 0 57.6 64.4 85.0 63.2 97.0 86.3 36.6 51.0 78.5 87.5 68.5 74.0 34.3 30.6 33.2 55.4 12.5 20.0 9.6 19.2
PEFT methods
AdaptFormer 0.588 76.8 74.0 92.2 71.7 99.3 91.7 88.9 56.4 87.2 95.1 85.7 75.9 84.2 62.2 53.0 81.0 87.1 53.6 35.3 42.3
Bi-LoRA 1.180 76.7 72.1 91.7 71.2 99.1 91.4 90.2 55.8 87.0 95.4 85.5 75.5 83.1 64.1 52.2 81.3 86.4 53.5 36.7 44.4
LoRA 1.180 76.4 72.5 91.5 71.9 99.1 91.4 89.6 56.0 87.6 95.3 84.0 75.0 83.6 64.3 51.6 80.9 86.0 51.8 36.8 42.3
FourierFT 0.936 72.7 69.1 88.8 71.9 99.0 91.0 79.0 55.6 84.9 93.0 83.2 74.9 70.7 61.1 45.2 74.8 78.0 53.0 24.8 30.8
MoRA 1.058 75.4 72.1 90.0 71.7 99.2 91.1 90.1 56.0 87.1 94.8 85.1 75.4 76.7 62.3 49.7 78.3 83.1 53.0 34.5 34.5
Lily 0.318 77.3 73.9 93.0 72.9 99.3 91.6 89.0 56.6 87.9 95.2 84.9 75.7 83.9 65.4 53.4 81.6 88.2 54.5 37.0 45.4

text prompts. For instance, when asked to generate a duck toy floating on top of water, Lily’s image
accurately depicts the designated environment, whereas LoRA’s does not. Additionally, when asked
to generate a wolf plushie in snow, Lily precisely depicts the snow around the wolf, while LoRA
fails to do so. These observations demonstrate Lily’s excellent ability in the domain of text-to-image
generation with more expressive adaptation. More generated results are in Appendix I.

4.4 VISUAL ADAPTATION BENCHMARK

Implementation We assess Lily on the Visual Task Adaptation Benchmark (VTAB-1K Zhai et al.
(2019)), a suite of 19 visual tasks spanning diverse domains and semantics, to test its general visual
adaptation capability. Tasks are categorized into Natural, Specialized, and Structured, all formulated
as classification problems for consistent model evaluation. We conduct two sets of experiments: one
focusing on the adaptation effectiveness on Vision Transformer (ViT (Dosovitskiy et al., 2020)) and
the other on Vision Mamba (Vim (Zhu et al., 2024)), demonstrating Lily’s architecture-agnostic ca-
pabilities. For ViT, we use ViT-B pre-trained on ImageNet-21K (Deng et al., 2009), and for Vim,
Vim-s pre-trained on ImageNet-1K. To fairly compare ViT and Vim architectures, we implement
LoRA (Hu et al., 2021) and AdaptFormer (Chen et al., 2022) on ViT-B pre-trained on ImageNet-
1K. In ViT experiments, we compare Lily with LoRA, AdaptFormer, FourierFT (Gao et al., 2024b),

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 5: Full results of Lily on Vim-S pre-trained on ImageNet-1K for the VTAB-1K benchmark,
with averages calculated within each group. * denotes linear probing results from Tu et al. (2023b).
For fair comparison, we also use ViT-B pre-trained on ImageNet-1K. Bold indicates best perfor-
mance among Vim-based PEFT methods.

Natural Specialized Structured

Pa
ra

m
s(

M
)

A
ve

ra
ge

C
ifa

r1
00

C
al

te
ch

10
1

D
T

D

Fl
ow

er
s1

02

Pe
ts

SV
H

N

Su
n3

97

C
am

el
yo

n

E
ur

oS
AT

R
es

is
c4

5

R
et

in
op

at
hy

C
le

vr
-C

ou
nt

C
le

vr
-D

is
t

D
M

L
ab

K
IT

T
I-

D
is

t

dS
pr

-L
oc

dS
pr

-O
ri

sN
O

R
B

-A
zi

m

sN
O

R
B

-E
le

Conventional Fine-Tuning
FFT-Vim 26 70.1 47.7 89.4 64.2 89.0 87.7 90.6 35.1 84.5 93.9 81.0 74.5 67.5 52.9 47.3 78.9 75.3 53.9 33.3 29.4
FFT-ViT 86 69.9 49.4 89.3 65.5 91.7 89.1 91.4 33.5 85.9 93.6 85.4 74.3 54.7 55.2 48.7 79.7 68.2 49.7 31.5 27.7
LP-Vim 0 55.3 40.9 83.3 57.3 66.3 86.3 38.4 34.6 79.0 87.6 65.0 73.6 36.3 35.1 33.3 64.8 23.0 21.6 15.1 21.7
LP-ViT 0 66.4 50.6 85.6 61.4 79.5 86.5 40.8 38.0 79.7 91.5 71.7 65.5 41.4 34.4 34.1 55.4 18.1 26.4 16.5 24.8
PEFT on ViT
AdaptFormer 0.147 72.4 56.2 89.6 67.2 91.2 91.1 85.9 42.1 85.4 94.6 84.0 74.3 75.8 58.6 48.6 79.6 81.6 53.7 29.6 35.2
LoRA 0.295 72.5 56.4 89.0 66.9 91.2 90.4 86.9 41.5 85.4 95.1 84.1 75.2 75.8 61.7 47.7 80.5 80.4 52.0 29.4 35.7
PEFT on Vim
LoRA 0.054 70.1 57.5 87.7 64.4 86.0 90.0 85.7 39.8 82.2 93.8 79.6 72.5 78.6 56.5 42.0 80.5 71.8 51.0 28.4 32.6
Lily-S 0.074 71.4 58.2 88.5 65.6 87.1 90.7 87.5 40.4 83.3 94.1 79.7 73.8 81.2 57.3 44.1 80.9 79.3 54.1 30.0 33.7
Lily-L 0.196 72.3 57.8 89.4 66.2 87.8 90.5 88.1 40.5 84.1 94.3 81.3 75.1 81.6 57.8 46.5 81.0 82.9 55.2 32.1 34.8

and MoRA (Jiang et al., 2024); in Vim experiments, we focus on contrasting architectures differ-
ence, therefore only using LoRA as the baseline. All experiments include FFT and linear probing
as baselines. For Vim, we implement two versions: Lily-S (Small) and Lily-L (Large) of Lily,
with different hyperparameter settings to either reduce the parameter count (Lily-S) or maximize
performance (Lily-L). For Lily on ViT, the reported results are obtained from adapting both the
self attention and the MLP module in Transformer. For the performance w.r.t the fine-tuned mod-
ule, we conduct additional experiments in Appendix D. Detailed experimental settings and datasets
information are provide in Appendix B.1.3 and B.2.3.

Results Results are shown in Table 4 and Table 5. For ViT, Lily significantly outperforms all com-
pared PEFT methods with improved parameter efficiency. For Vim, results on ViT generally surpass
those on Vim. For instance, LoRA on ViT performs better than LoRA on Vim. We argue that this is
due to differences in architecture designs and general model sizes. However, Lily’s strong adapta-
tion performance allows it to match or exceed PEFT methods on ViT and significantly outperform
LoRA on Vim (Lily-S and Lily-L surpass LoRA by a significant margin). This demonstrates Lily’s
architecture-agnostic capability, highlighting its potential across various model architectures. In
general, Lily has achieved great visual adaptation capability with an advantage of being architecture-
agnostic and enjoying excellent parameter-efficiency.

4.5 UNDERSTANDING LILY

4.5.1 DOES LILY HAS HIGH-RANK WEIGHT UPDATES?

We state that Lily achieves weight updates that with higher rank than LoRA. To validate our claim,
we provide an empirical analysis as shown in Fig. 3. Specifically, we run 4 tasks from the NLU
experiment and test the rank of the weight updates for Wq in the first three layers. We uses small
number of LPs and HPs (2 or 3) to demonstrate the efficiency and to match the parameter count.
Specific hyperparameter settings can be found in Appendix B.1.2.

From the results, we can observe that the rank of weight updates from Lily generally is notably
larger than LoRA when using a similar amount of parameters. Meanwhile, weight updates from
Lily still have higher rank compared to LoRA even when using 16.7% of the parameters of LoRA.
This empirical analysis essentially validate our claim that Lily achieves high-rank updates with the
same parameter budget. We credit it to the model-wide sharing mechanism and the cross-layer
asymmetric design, which facilitates dynamic and expressive adaptation.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Layer 1 Layer 2 Layer 3

50

100

150

200

ra
nk

MRPC

LoRA (param 0.3M)
Lily (param 0.3M)
Lily (param 0.05M)

Layer 1 Layer 2 Layer 3

50

100

150

200

250

300

ra
nk

COLA

LoRA (param 0.3M)
Lily (param 0.3M)
Lily (param 0.05M)

Layer 1 Layer 2 Layer 3

50

100

150

200

ra
nk

STS-B

LoRA (param 0.3M)
Lily (param 0.3M)
Lily (param 0.05M)

Layer 1 Layer 2 Layer 3

100

200

300

ra
nk

SST-2

LoRA (param 0.3M)
Lily (param 0.3M)
Lily (param 0.05M)

Figure 3: Actual rank of the weight updates. We run 20 epochs for COLA, MRPC and STS-B and 3
epochs for SST-2. It can be easily observed that weight updates from Lily have notably higher rank
than LoRA.

Lily

LoRA

Lily

LoRA

Input Layer 1 Layer 6 Layer 9 Input Layer 6Layer 1 Layer 9

Figure 4: Attention maps of Lily and LoRA. The input images for the example here are taken from
Caltech101 datasets from VTAB-1K benchmark. It can be observed that features from a certain
layer have more similarity to those in other layers in Lily than in LoRA.

4.5.2 FROM A FEATURE MERGING PERSPECTIVE

Apart from having higher-rank weight updates than LoRA, Lily also enables comprehensive infor-
mation access across layers. Lily enables access to information or features from all other layers
when adapting a target module at a specific layer thanks to the inter-connectivity of the adapters.
We aim to understand how Lily achieves this comprehensive information access from the perspec-
tive of visual tasks as shown in Fig. 4. We can observe that, in Lily, the distinctness of the attention
maps between layers is not as pronounced as in LoRA. This validates Lily’s ability to enable all-
level information access, since adaptation at each layer takes into account features from other layers.
Additionally, we specifically visualize the actual feature differences between different layers in Fig.
5. We observe that Lily has more points with low feature differences (blue color) than LoRA, in-
dicating that the distinctness of features between layers in Lily is generally lower than in LoRA.
This further demonstrates Lily’s ability to enable comprehensive information access. Although we
enable all-level information access, what prevents the features from becoming completely identical
is the selectivity introduced by Lily, which we specify in the following section.

4.5.3 WHAT’S THE INFLUENCE OF ATTENTION GRANULARITY?

The number of experts in the model-wide HP module can be freely set, and the number of LPs can
also be flexibly set by sharing across the same level of layers introduced in Appendix A.1. Therefore,

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Lily LoRA Lily LoRA

Layer 6 to 1 Layer 6 to 9

Figure 5: Feature difference measured in absolute distance for each element. We compare Lily and
LoRA in terms of the difference between features from different layers. In this example image taken
from Caltech101, we visualize the feature difference between layers 6 and 1, as well as between
layers 6 and 9.

2 3 4 6
ne

0.735

0.736

0.737

0.738

0.739

Ac
c

(%
)

Cifar100

2 3 4 6
ne

0.915

0.920

0.925

0.930

Ac
c

(%
)

Caltech101

2 3 4 6
ne

0.715

0.720

0.725

Ac
c

(%
)

DTD

2 3 4 6
ne

0.99200

0.99225

0.99250

0.99275

0.99300

0.99325

0.99350

Ac
c

(%
)

Flower102

2 3 4 6
ne

0.872

0.874

0.876

0.878

0.880

Ac
c

(%
)

Camelyon

2 3 4 6
ne

0.9510

0.9512

0.9514

0.9516

0.9518

0.9520

Ac
c

(%
)

EuroSAT

2 3 4 6
ne

0.845

0.846

0.847

0.848

Ac
c

(%
)

Resisc45

2 3 4 6
ne

0.753

0.754

0.755

0.756

0.757

0.758

Ac
c

(%
)

Retinopathy

2 3 4 6
ne

0.806

0.808

0.810

0.812

0.814

0.816

Ac
c

(%
)

KITTI-Dist

2 3 4 6
ne

0.8814

0.8816

0.8818

0.8820

0.8822
Ac

c
(%

)
dSpr-Loc

2 3 4 6
ne

0.345

0.350

0.355

0.360

0.365

0.370

Ac
c

(%
)

sNORB-Azim

2 3 4 6
ne

0.43

0.44

0.45

Ac
c

(%
)

sNORB-Ele

Figure 6: Impact of attention granularity (i.e., the choice of how many LPs and HPs) on the perfor-
mance. We choose 12 out of 19 tasks from VTAB-1K for a comprehensive understanding.

we analyze the impact of these choices on performance. We denote the number of LP experts and HP
experts as ne 1 and ne 2, respectively. For simplicity, we make them identical in the experiments,
denoted as ne. We refer to the number of layers each expert attends to as attention granularity. As
the value of ne increases, the attention granularity becomes finer. As shown in Fig. 6, the results
from the VTAB-1K benchmark indicate different patterns. For instance, on the DTD dataset, the
best performance is achieved when ne is 4, while on sNORB-Azim, performance increases with the
increase in ne. Increasing ne leads to more parameters and finer attention granularity. However,
finer attention granularity does not necessarily lead to better overall performance. For example, on
Resisc45, DTD, Cifar100, sNORB-Ele, dsPr-LoC, Flowers102, and EuroSAT, the negative impact
of increasingly finer attention granularity eventually outweighs the benefits of increased parameters,
leading to a decrease in overall performance. In other tasks, different patterns may occur because the
positive effect of attention granularity on performance is consistently strong, or its negative effect is
not enough to offset the benefits of increased parameters, resulting in a generally increasing perfor-
mance with ne. This phenomenon provides an important insight: for most tasks, simply increasing
parameters may not lead to better performance. Instead, only when attention granularity and the
number of parameters reach a good tradeoff can we achieve the best performance.

4.5.4 DOES LILY EXHIBIT SELECTIVITY?

Lily uses routers to assign varying weights to different HP experts, thereby achieving selective in-
formation combination. We illustrate this selectivity in Fig. 8. We use a setup with three HP experts
and select three layer levels (1, 13, 22) to calculate the total weight assigned to each expert. The
results reveal a clear selectivity: for different layers, the router assigns significantly different weights
to different HP experts. For instance, on Cifar100, the middle layer is predominantly dominated by
HP 2, whereas the deep layer is primarily dominated by HP 1 and HP 2. In contrast, on Retinopathy,
both the middle and deep layers are dominated by HP 3. This selectivity ensures that, even when dif-
ferent layers share information, the inherent differences between layers are still taken into account,
making the adaptation more flexible and comprehensive.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

LoRA Lily FFT
Method

35

40

45

50

55

Tr
ai

ni
ng

 T
im

e
(s

ec
)

Hardware Efficiency in COLA

LoRA Lily (+ in) Lily (in)
Method

3.7

3.8

3.9

4.0

4.1

Tr
ai

ni
ng

 T
im

e
(h

ou
rs

)

Hardware Efficiency in Commonsense Reasoning

3000

3200

3400

3600

3800

4000

4200

4400

M
em

or
y

(M
iB

)

20.0

20.2

20.4

20.6

20.8

M
em

or
y

(G
iB

)

Figure 7: Hardware efficiency of Lily compared to LoRA. We run 10 epochs for COLA. We report
the training time and memory consumption. It can be observed that Lily generally performs on par
with LoRA in terms of hardware efficiency.

2 13 22

HP1

HP2

HP3

Cifar100

2 13 22

HP1

HP2

HP3

Caltech101

2 13 22

HP1

HP2

HP3

EuroSAT

2 13 22

HP1

HP2

HP3

sNORB-Azim

2 13 22

HP1

HP2

HP3

sNORB-Ele

2 13 22

HP1

HP2

HP3

Flower102

2 13 22

HP1

HP2

HP3

KITTI-Dist

2 13 22

HP1

HP2

HP3

Retinopathy

Figure 8: Visualization of accumulated assigned weight for HP experts by a router across various
layers. Example here uses layer of index 2, 13 and 22 to represent shallow, middle and deep layers.

4.5.5 WHAT’S THE HARDWARE EFFICIENCY OF LILY?

The dynamic of Lily obviously introduces complexity onto the design of LoRA. In this section, we
analyses how does this affect the hardware efficiency of Lily compared to LoRA. We use the COLA
task from the NLU experiments using RoBERTa-Base and run 10 epochs. Additionally, we also
report the runtime and GPU memory consumption in the Falcon-Mamba experiment.

The results are shown in Fig. 7, from which we can observe that the hardware efficiency of Lily is
comparable to LoRA. Specifically, Lily slightly under-perform LoRA in the NLU experiment but
performs on par with LoRA in the LLM experiment. In generally, the introduced complexity of Lily
does not prevent it from being a effective PEFT method that is hardware-friendly.

5 CONCLUSION

In this paper, we propose low-rank interconnected adaptation (Lily), a novel framework for efficient
fine-tuning via inter-connectivity of adapters. Lily enables each layer to access information from
others during adaptation through a hierarchical structure. Additionally, it successfully overcome the
low-rank update limitation of LoRA, enabling high-rank update and therefore better adaptation capa-
bility. Our approach consistently improves performance across various modalities, model sizes, and
architectures, surpassing existing methods with enhanced efficiency. In summary, Lily’s versatility
and efficiency make it a promising approach for a wide range of applications.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

AI@Meta. Llama 3 model card. 2024. URL https://github.com/meta-llama/
llama3/blob/main/MODEL_CARD.md.

Amjad Almahairi, Nicolas Ballas, Tim Cooijmans, Yin Zheng, Hugo Larochelle, and Aaron
Courville. Dynamic capacity networks. In International Conference on Machine Learning, pp.
2549–2558. PMLR, 2016.

Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating gradients
through stochastic neurons for conditional computation. arXiv preprint arXiv:1308.3432, 2013.

Dan Biderman, Jose Gonzalez Ortiz, Jacob Portes, Mansheej Paul, Philip Greengard, Connor Jen-
nings, Daniel King, Sam Havens, Vitaliy Chiley, Jonathan Frankle, et al. Lora learns less and
forgets less. arXiv preprint arXiv:2405.09673, 2024.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about physical com-
monsense in natural language. In Proceedings of the AAAI conference on artificial intelligence,
volume 34, pp. 7432–7439, 2020.

Shoufa Chen, Chongjian Ge, Zhan Tong, Jiangliu Wang, Yibing Song, Jue Wang, and Ping Luo.
Adaptformer: Adapting vision transformers for scalable visual recognition. Advances in Neural
Information Processing Systems, 35:16664–16678, 2022.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. BoolQ: Exploring the surprising difficulty of natural yes/no questions. In Jill Burstein,
Christy Doran, and Thamar Solorio (eds.), Proceedings of the 2019 Conference of the North Amer-
ican Chapter of the Association for Computational Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), pp. 2924–2936, Minneapolis, Minnesota, June 2019.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Andrew Davis and Itamar Arel. Low-rank approximations for conditional feedforward computation
in deep neural networks. arXiv preprint arXiv:1312.4461, 2013.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
erarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

David Eigen, Marc’Aurelio Ranzato, and Ilya Sutskever. Learning factored representations in a deep
mixture of experts. arXiv preprint arXiv:1312.4314, 2013.

Chongyang Gao, Kezhen Chen, Jinmeng Rao, Baochen Sun, Ruibo Liu, Daiyi Peng, Yawen Zhang,
Xiaoyuan Guo, Jie Yang, and VS Subrahmanian. Higher layers need more lora experts. arXiv
preprint arXiv:2402.08562, 2024a.

Ziqi Gao, Qichao Wang, Aochuan Chen, Zijing Liu, Bingzhe Wu, Liang Chen, and Jia Li.
Parameter-efficient fine-tuning with discrete fourier transform. arXiv preprint arXiv:2405.03003,
2024b.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752, 2023.

Yongchang Hao, Yanshuai Cao, and Lili Mou. Flora: Low-rank adapters are secretly gradient
compressors. arXiv preprint arXiv:2402.03293, 2024.

11

https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe, An-
drea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for nlp.
In International Conference on Machine Learning, pp. 2790–2799. PMLR, 2019a.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe, An-
drea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for nlp.
In International conference on machine learning, pp. 2790–2799. PMLR, 2019b.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

Zhiqiang Hu, Lei Wang, Yihuai Lan, Wanyu Xu, Ee-Peng Lim, Lidong Bing, Xing Xu, Soujanya
Poria, and Roy Lee. LLM-adapters: An adapter family for parameter-efficient fine-tuning of large
language models. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), Proceedings of the 2023
Conference on Empirical Methods in Natural Language Processing, pp. 5254–5276, Singapore,
December 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.
319. URL https://aclanthology.org/2023.emnlp-main.319.

Ting Jiang, Shaohan Huang, Shengyue Luo, Zihan Zhang, Haizhen Huang, Furu Wei, Weiwei Deng,
Feng Sun, Qi Zhang, Deqing Wang, et al. Mora: High-rank updating for parameter-efficient fine-
tuning. arXiv preprint arXiv:2405.12130, 2024.

Shibo Jie and Zhi-Hong Deng. Fact: Factor-tuning for lightweight adaptation on vision transformer.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 37, pp. 1060–1068,
2023.

Shibo Jie, Haoqing Wang, and Zhi-Hong Deng. Revisiting the parameter efficiency of adapters
from the perspective of precision redundancy. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 17217–17226, 2023.

Zhaojiang Lin, Andrea Madotto, and Pascale Fung. Exploring versatile generative language model
via parameter-efficient transfer learning. arXiv preprint arXiv:2004.03829, 2020.

Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank Wang, Kwang-
Ting Cheng, and Min-Hung Chen. Dora: Weight-decomposed low-rank adaptation. arXiv
preprint arXiv:2402.09353, 2024.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019.

Sourab Mangrulkar, Sylvain Gugger, Lysandre Debut, Younes Belkada, Sayak Paul, and Benjamin
Bossan. Peft: State-of-the-art parameter-efficient fine-tuning methods. https://github.
com/huggingface/peft, 2022.

Fanxu Meng, Zhaohui Wang, and Muhan Zhang. Pissa: Principal singular values and singular
vectors adaptation of large language models. arXiv preprint arXiv:2404.02948, 2024.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering. arXiv preprint arXiv:1809.02789,
2018.

Roy Miles, Pradyumna Reddy, Ismail Elezi, and Jiankang Deng. Velora: Memory efficient training
using rank-1 sub-token projections. arXiv preprint arXiv:2405.17991, 2024.

Jonas Pfeiffer, Aishwarya Kamath, Andreas Rücklé, Kyunghyun Cho, and Iryna Gurevych. Adapter-
fusion: Non-destructive task composition for transfer learning. arXiv preprint arXiv:2005.00247,
2020a.

Jonas Pfeiffer, Aishwarya Kamath, Andreas Rücklé, Kyunghyun Cho, and Iryna Gurevych. Adapter-
fusion: Non-destructive task composition for transfer learning. arXiv preprint arXiv:2005.00247,
2020b.

12

https://aclanthology.org/2023.emnlp-main.319
https://github.com/huggingface/peft
https://github.com/huggingface/peft

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Andreas Rücklé, Gregor Geigle, Max Glockner, Tilman Beck, Jonas Pfeiffer, Nils Reimers, and
Iryna Gurevych. Adapterdrop: On the efficiency of adapters in transformers. arXiv preprint
arXiv:2010.11918, 2020.

Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch, Michael Rubinstein, and Kfir Aber-
man. Dreambooth: Fine tuning text-to-image diffusion models for subject-driven generation.
In IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2023, Vancouver,
BC, Canada, June 17-24, 2023, pp. 22500–22510. IEEE, 2023. doi: 10.1109/CVPR52729.2023.
02155. URL https://doi.org/10.1109/CVPR52729.2023.02155.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adver-
sarial winograd schema challenge at scale. Communications of the ACM, 64(9):99–106, 2021.

Maarten Sap, Hannah Rashkin, Derek Chen, Ronan Le Bras, and Yejin Choi. Social IQa: Com-
monsense reasoning about social interactions. In Kentaro Inui, Jing Jiang, Vincent Ng, and Xi-
aojun Wan (eds.), Proceedings of the 2019 Conference on Empirical Methods in Natural Lan-
guage Processing and the 9th International Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pp. 4463–4473, Hong Kong, China, November 2019. Association for Com-
putational Linguistics. doi: 10.18653/v1/D19-1454. URL https://aclanthology.org/
D19-1454.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton,
and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer.
arXiv preprint arXiv:1701.06538, 2017.

Chunlin Tian, Zhan Shi, Zhijiang Guo, Li Li, and Chengzhong Xu. Hydralora: An asymmetric lora
architecture for efficient fine-tuning. arXiv preprint arXiv:2404.19245, 2024.

Cheng-Hao Tu, Zheda Mai, and Wei-Lun Chao. Visual query tuning: Towards effective usage of
intermediate representations for parameter and memory efficient transfer learning. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7725–7735,
2023a.

Cheng-Hao Tu, Zheda Mai, and Wei-Lun Chao. Visual query tuning: Towards effective usage of
intermediate representations for parameter and memory efficient transfer learning. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7725–7735,
2023b.

Mojtaba Valipour, Mehdi Rezagholizadeh, Ivan Kobyzev, and Ali Ghodsi. Dylora: Parameter effi-
cient tuning of pre-trained models using dynamic search-free low-rank adaptation. arXiv preprint
arXiv:2210.07558, 2022.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017a.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017b.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman.
Glue: A multi-task benchmark and analysis platform for natural language understanding. arXiv
preprint arXiv:1804.07461, 2018.

Hanqing Wang, Zeguan Xiao, Yixia Li, Shuo Wang, Guanhua Chen, and Yun Chen. Milora:
Harnessing minor singular components for parameter-efficient llm finetuning. arXiv preprint
arXiv:2406.09044, 2024.

Taiqiang Wu, Jiahao Wang, Zhe Zhao, and Ngai Wong. Mixture-of-subspaces in low-rank adapta-
tion. 2024. URL arxiv.org/abs/2406.11909.

Ted Zadouri, Ahmet Üstün, Arash Ahmadian, Beyza Ermiş, Acyr Locatelli, and Sara Hooker. Push-
ing mixture of experts to the limit: Extremely parameter efficient moe for instruction tuning.
arXiv preprint arXiv:2309.05444, 2023.

13

https://doi.org/10.1109/CVPR52729.2023.02155
https://aclanthology.org/D19-1454
https://aclanthology.org/D19-1454
arxiv.org/abs/2406.11909

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Elad Ben Zaken, Shauli Ravfogel, and Yoav Goldberg. Bitfit: Simple parameter-efficient fine-tuning
for transformer-based masked language-models. arXiv preprint arXiv:2106.10199, 2021.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-
chine really finish your sentence? arXiv preprint arXiv:1905.07830, 2019.

Xiaohua Zhai, Joan Puigcerver, Alexander Kolesnikov, Pierre Ruyssen, Carlos Riquelme, Mario
Lucic, Josip Djolonga, Andre Susano Pinto, Maxim Neumann, Alexey Dosovitskiy, et al. The
visual task adaptation benchmark. 2019.

Qingru Zhang, Minshuo Chen, Alexander Bukharin, Pengcheng He, Yu Cheng, Weizhu Chen, and
Tuo Zhao. Adaptive budget allocation for parameter-efficient fine-tuning. In International Con-
ference on Learning Representations. Openreview, 2023.

Zihan Zhong, Zhiqiang Tang, Tong He, Haoyang Fang, and Chun Yuan. Convolution meets lora:
Parameter efficient finetuning for segment anything model. arXiv preprint arXiv:2401.17868,
2024.

Lianghui Zhu, Bencheng Liao, Qian Zhang, Xinlong Wang, Wenyu Liu, and Xinggang Wang. Vi-
sion mamba: Efficient visual representation learning with bidirectional state space model. arXiv
preprint arXiv:2401.09417, 2024.

Jingwei Zuo, Maksim Velikanov, Dhia Eddine Rhaiem, Ilyas Chahed, Younes Belkada, Guillaume
Kunsch, and Hakim Hacid. Falcon mamba: The first competitive attention-free 7b language
model. 2024.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

APPENDIX

A MORE DISCUSSION ABOUT LILY

A.1 MODEL STRUCTURE AND DESIGN INTUITION OF LILY

Within the overall framework of Lily, we delve into specific implementation details and model
design insights. First, we have established the relationship between LPs and HP: LP is confined
to specific levels of layers, capturing features that enable the router to selectively assign weights to
the HP experts. In contrast, HP is a model-wide module comprising multiple experts, each of which
contains information from a particular level of layers. We highlight several key aspects which are
not heavily discussed in the methodology section:

A.1.1 NUMBER OF LPS

Since LP is limited to specific layers, the simplest approach would be to place an LP at each layer
of the module to be adapted (e.g., the query transformation in MHSA). However, this setup may
not be necessary: the importance of each layer varies, and many layers have significantly lower
importance than others (Zhang et al., 2023). To achieve greater parameter efficiency, we can set up
fewer LPs, with each LP focusing on a level of layers rather than a single layer. For example, an
LP can focus on shallow layers (e.g., layers 0, 1, 2, etc.) or deep layers. To enable a single LP to
handle multiple layers, we can share an LP across multiple layers. By doing so, we eliminate the
redundancy of having an LP at each layer, reduce the number of parameters, and increase efficiency.
This is exactly the strategy adopted by most of the experiments.

A.1.2 NUMBER OF HP EXPERTS

Regarding HP, the number of experts can be arbitrarily set, enabling more flexible configurations.
In our experiments, for the sake of simplicity, we set the number of HP experts equal to the number
of LPs, thereby equating the granularity of LP and HP.

A.1.3 ROUTERS SETUP

There are also different settings that can be employed for the router. First, we can bind the router to
HP, resulting in only one router per model. However, since the number of parameters in the router is
relatively small, having only one router per model may not lead to significant selectivity. Therefore,
we can also bind the router to LP, configuring a separate router for each LP. Most of our experiments
use the latter setup, but in the vision experiments on Vim, we use the single-router and no-lp-sharing
setup to verify its effectiveness. From the results, we can see that this setup also performs well. As
future work, we can verify the effectiveness of using the latter setup on Vim, which may potentially
lead to superior performance.

A.1.4 HYPERPARAMETERS

We detail the hyperparameters used in Lily. Specifically, we use Lily r to represent the hidden-
dimension of the projectors: LPs and HPs. It serves the same function as r in LoRA. We use Lily s
to represent the scaling factor used by Lily. It is mostly searched within the range of {0.01, 0.1, 1.0,
10.0, 100.0}. We use ne 1 to represent the number of LPs used in the model. Since the LPs can be
shared as discussed in the previous section, ne 1 does not need to equal the number of layers in the
model. We use ne 2 to represent the number of HP experts in the model-wide HP module. In our
experiments, we set ne 1 = ne 2 to improve parameter-efficiency and simplicity.

A.1.5 DESIGN INTUITION

Lily employs a hierarchical structure to enable updates with higher-ranks than LoRA. However,
simply equally connecting all the HPs to the LPs can not achieve the best performance. From the
perspective of feature and information utilization across layers, simply aggregating all HPs for an LP
ignores the distinctness of the features from current layers. Meanwhile, it reduced the variability of
the combinations of gradient projection matrices (Si and Ci,j are constants now), making the rank of

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

the weight update higher than that of LoRA (since multiple distinct random matrices are used), but
still not high enough for the best performance because of the lack of variability during combination.
Therefore, we introduce selectivity into the inter-connectivity as well as discussed below, making
the combination of HPs data-dependent so that each Si is unique across the time-steps, enabling
updates with even higher ranks. The approach has similarity to Hao et al. (2024), where random
matrix is constantly resampled to ensure updates with higher ranks. We further conduct an analysis
in Appendix G.

A.2 EFFICIENT IMPLEMENTATION FOR WEIGHTED COMBINATION

One intuitive implementation of the weighted combination in Lily is make the inputs go through all
the experts and then sum the results up, from which we could observe that it perform Ne times of
matrix multiplication, Ne times of scalar multiplication and Ne times of matrix addition. Therefore,
despite its intuitive nature, the computational burden of this approach is quite formidable.

However, Eq. 3 which is adopted in Lily only utilize Ne times of scalar multiplication, Ne times
of matrix addition and 1 time of matrix multiplication. This saves roughly Ne times of matrix
multiplication, which can be significant as the size of the model and number of adaptation targets
increases. For a x′ size of RN×d and a PH ∈ Rd×C , the floating-point operation (FLOPs) of these
two implementation are:

FLOPs =
Ne∑
1

(2NdC) +

Ne∑
1

(dC) +

Ne∑
1

(NC)

= Ne × (2NdC + dC +NC) (Intuitive)

FLOPs = 2

Ne∑
i=1

(dC) + 2NdC

= 2dC × (N +Ne) (Lily)

(6)

from which we can easily observe that the approach adopted by Lily requires less computation and
therefore provides more speed and efficiency during the fine-tuning process. Under the setting of
N = 1024, d = 16, C = 768, Ne = 4, the FLOPs of the intuitive approach would be 0.104 GFLOPs
while in Lily it is merely 0.025 GFLOPs, which could potentially lead to a 4X increase in speed.

A.3 ACTUAL IMPLEMENTATION OF LILY

We present the actual implementation of Lily in Fig. 9. For the example here, we choose the imple-
mentation from visual adaptation tasks (i.e., VTAB-1K benchmark). For LLM, the implementation
is a bit more complicated because of modifications to the huggingface PEFT library (Mangrulkar
et al., 2022), but the fundamental adaptation process is the same. Specifically, given an input, we
first use the corresponding LP of the current layer to project it to a low-dimensional representa-
tion. After that, we use the low-dimensional representation to selectively assign weights for the HP
experts. Once we obtain all the weights for the experts, we set out to combine these HP experts
accordingly, as discussed in Appendix A.2. After the weighted combination, we use the obtained
combined HP to project the low-dimensional representation to high-dimension, therefore acquiring
the extra knowledge gained through adaptation.

B EXPERIMENTAL SETTINGS

B.1 HYPER-PARAMETERS

A detailed description of the hyper-parameters used in Lily is in Appendix A.1.

B.1.1 COMMONSENSE REASONING

The hyper-parameters used in commonsense reasoning experiments for MiLoRA, PiSSA are pro-
vided in Table 7, 6. Settings for Lily and LoRA using Falcon-Mamba as the backbone are provided
in Table. 9 and 8. It can be noticed that Lily achieves the best performance by merely adapting the

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

PRIME AI paper

1 class lily_adapter(nn.Module):
2 """
3 Implementation of a Lily adapter for an adaptable target. For symplicity, we assume that the

number of hp expert is equal to the number of LPs.↪→
4

5 args:
6 hidden_dim: hidden dimension
7 ne: number of experts
8 lp: low-dimensioanl projector
9 hps: high-dimensioanl projector experts

10 mlp: whether the adpatation target is located in MLP
11 """
12 def __init__(self, hidden_dim, ne, lp, hps, mlp=False):
13 super().__init__()
14 self.hps = hps
15 self.ne = ne
16 self.lp = lp
17 self.router = nn.Linear(hidden_dim, ne, bias=False)
18 if mlp:
19 self.non_linear = nn.ReLU()
20 else:
21 self.non_linear = nn.Identity()
22 def forward(self, x):
23 hidden = self.non_linear(self.lp(x))
24 router_logits = self.router(hidden) # [B, N, num_of_experts]
25 router_probability = F.softmax(router_logits, dim=-1) # [B, N, ne]
26 expert_probabilities = router_probability.mean(dim=(0, 1))
27 combined_hp = torch.einsum("e,eio->io", expert_probabilities, self.hps)
28 return torch.matmul(hidden, combined_hp)

1

Figure 9: Implementation of Lily in VTAB-1K benchmark.

multi-head self attention module (MHSA) in LLaMA3-8B, while other compared methods adapt all
the modules including MLP. Meanwhile, Lily employs the least amount of parameters, showcasing
its excellent adaptation at low parameter-budget scenarios.

Table 6: Hyperparameter configuration from the MiLoRA paper.

MiLoRA hyperparameters
Rank r 32

α of LoRA 64
α of PiSSA 32

Dropout 0.05
Optimizer AdamW

LR 3e-4
LR Scheduler Linear

Batch Size 16
Warmup Steps 100

Epochs 3
Placement query, key, value, MLP up, MLP down

B.1.2 NATURAL LANGUAGE UNDERSTANDING

Specific hyper-parameter settings of Lily on GLUE benchmark are provided in Table 10. We fix
the learning rate of both the backbone and the head as 5E-3 and tune the scaling factor Lily s
∈ {0.01, 0.1, 1.0} instead. For the rank r we fix it to 32 and the seed to 0. The baseline results are
taken from FourierFT Gao et al. (2024b).

B.1.3 VISUAL ADAPTATION BENCHMARK

We provide the hyper-parameter for Lily on VTAB-1K benchmark in Table 11. Specifically, we fix
the learning rate at 1E-3 with a weight decay of 1E-4. For ViT, we tune the scaling factor Lily s
∈ {0.01, 0.1, 1.0, 10.0} to maximize the performance, following Jie et al. (2023), Jie & Deng (2023).

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table 7: Hyperparameter configuration from the PiSSA paper.

PiSSA hyperparameters
α Same as rank r

Dropout 0.0
Optimizer AdamW

LR 2e-5
LR Scheduler cosine

Batch Size 128
Warmup Ratio 0.03

Epochs 1
Placement query, key, value, output, gate, MLP up, MLP down

Table 8: Hyperparameter configuration for LoRA using Falcon-Mamba as backbone.

LoRA hyperparameters
Rank r 2

α 16
Dropout 0.05

Optimizer AdamW
LR 3e-4

LR Scheduler Linear
Batch Size 16

Epochs 1
Placement input, delta

For Vim, we fix Lily s to 1.0. Additionally, we search for the hyper-parameters ne 1 and ne 2 within
the range {2, 3, 4}, as these numbers can divide the number of layers in the ViT model (12 in ViT-
B). For vim, we use the implementation discussed in section A.1, which does not share LPs across
layers. Therefore, ne 1 in this setting is fixed to number of layers in Vim (22 in this case), while we
search ne 2 in {3,6} and {5,6,17} separately for Lily-S and Lily-L. Note that ne is only set for input
projection in Vim. For delta transformation, we only use a single HP expert to reduce the parameter
cost. In the experiments of ViT, the rank r is fixed at 16. Meanwhile in Vim’s setting, we tune the
ranks r for the delta transformation module and the input projection module separately. We use 4, 4
and 4, 8 separately for Lily-S and Lily-L.

B.2 DATASETS

B.2.1 COMMONSENSE REASONING

We provide a short description of each datasets used in commonsense reasoning experiments in
Table 12.

B.2.2 NATURAL LANGUAGE UNDERSTANDING

We provide detailed information about datasets in the GLUE benchmark in Table 13.

B.2.3 VISUAL ADAPTATION BENCHMARK

We provide detailed information about all the tasks from VTAB-1K benchmark in Table 14.

C DOES SHARING LP RESULTS IN INFERIOR PERFORMANCE?

As mentioned earlier, we adopted a strategy of sharing the LP across most of our experiments,
ensuring that the number of LP and HP experts is consistent. This approach offers two benefits:

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Table 9: Best Hyperparameter configuration for Lily using Falcon-Mamba and LLaMA3 as back-
bones.

Falcon-Mamba LLaMA3
Rank r 40 16
ne 1 4 4
ne 2 4 4

Dropout 0 0
Optimizer AdamW AdamW

LR 3e-4 3e-4
LR Scheduler Linear Linear

Batch Size 16 16
Epochs 1 3

Placement input query, key, value

Table 10: Hyperparameter of Lily on GLUE benchmark.

Hyperparameter STS-B RTE MRPC CoLA SST-2 QNLI MNLI QQP

Optimizer AdamW
LR Schedule Linear
Learning Rate (Lily) 5e-3
Learning Rate (Head) 5e-3
Max Seq. Len 512 512 512 512 512 512 512 512
Lily s 0.1 0.1 0.1 0.01 0.01 0.01 0 0
ne 1 2 3 2 4 2 2 0 0
ne 2 2 3 2 4 2 2 0 0
Batch Size 64 32 50 64 32 32 0 0

simplicity and enhanced parameter efficiency. By sharing the LP, we eliminate the need to set a
separate LP for each layer, thereby reducing the overall parameter count.

Our decision to share the LP is based on the observation of overall redundancy among layers. Specif-
ically, different layers have varying levels of importance (Zhang et al., 2023), and some less impor-
tant layers do not require a dedicated LP. By not setting a separate LP for these layers, we avoid
introducing extra parameter overhead while having a negligible impact on performance. To test that
whether sharing LP results in inferior performance, we conduct experiments with no LP sharing
on VTAB-1K. The results are shown in Table 15, from which we can observe that the best over-
all performance (77.3%) is the same as that in the LP-sharing setting. This indicates that even if
we employ one LP for each layer, the performance gain is negligible and many of the parameters
are actually redundant. However, not sharing LPs results in extra parameter overhead and damages
the parameter-efficiency of Lily. Therefore, LP-sharing is a great strategy to eliminate redundancy
among LPs and boost the parameter-efficiency of Lily.

D WHERE TO APPLY LILY IN TRANSFORMERS?

PEFT methods have been predominantly explored on the Transformer architecture, which consists
of multi-head self-attention (MHSA) and multi-layer perceptron (MLP) as its core modules. In this
section, we analyze the impact of fine-tuned modules on performance using Lily. Specifically, we
compare Lily’s performance on the VTAB-1K benchmark under four settings:

• Applying Lily solely to the query and value transformation module in MHSA (denoted as
”qv”).

• Applying Lily solely to the MLP module (denoted as ”mlp”).

• Applying Lily to both the query and value transformation module in MHSA and the MLP
module (denoted as ”qvmlp”).

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Table 11: Hyperparameter configuration for Lily on VTAB-1K benchmark.

Vision Transformer Vision Mamba
Optimizer AdamW AdamW
Batch Size 64 64

Learning Rate 1E-3 1E-2
Weight Decay 1E-4 1E-3

Epochs 100 100
LR Decay cosine cosine

Table 12: Details of the datasets used in our commonsense reasoning tasks.

Benchmark Description # Test Questions
ARC-c Multiple-choice science 2376
ARC-e Multiple-choice science 1172
OBQA Multi-step reasoning 500
SIQA Social implications 1954
WinoG Fill-in-a-blank 1267
PIQA Physical commonsense 1830
BoolQ Yes/no questions 3270
HellaS Commonsense NLI 10042

Table 13: Information about datasets in the GLUE benchmark, with STS-B being a regression task
and all other tasks falling into the categories of single-sentence or sentence-pair classification.

Corpus Metrics Task # Train # Val # Test # Labels
Single-Sentence Tasks

CoLA Matthews Corr. Acceptability 8.55k 1.04k 1.06k 2
SST-2 Accuracy Sentiment 67.3k 872 1.82k 2

Similarity and Paraphrase Tasks

MRPC Accuracy/F1 Paraphrase 3.67k 408 1.73k 2
STS-B Pearson/Spearman Corr. Sentence similarity 5.75k 1.5k 1.38k 1
QQP Accuracy/F1 Paraphrase 364k 40.4k 391k 2

Inference Tasks

MNLI Accuracy NLI 393k 19.65k 19.65k 3
QNLI Accuracy QA/NLI 105k 5.46k 5.46k 2
RTE Accuracy NLI 2.49k 277 3k 2

• Applying Lily to both the key and value transformation module in MHSA and the MLP
module (denoted as ”kvmlp”).

To ensure a fair comparison, we tune the hyperparameters to maintain a similar parameter count
across all settings. Additionally, to further investigate whether sharing the low-rank projection (LP)
affects performance, we do not share the LP in this experiment. The results are presented in Table
15. We observe that the ”kvmlp” setting achieves the best performance, with an average accuracy
of 77.3%. In contrast, adapting only the MHSA module (”qv”) yields the worst performance. Fur-
thermore, we note that adapting both the MHSA and MLP modules (qvmlp and kvmlp) generally
leads to superior results compared to adapting only one specific module (qv and mlp). This suggests
that both MLP and MHSA play crucial roles in the overall model performance, and adapting both is
essential for effective adaptation.

Notably, even when applying Lily solely to the MHSA module, which results in the worst perfor-
mance among the four settings (76.9%), it still outperforms LoRA by a significant margin (0.5%).
This underscores the efficiency of Lily, as it uses fewer parameters than LoRA even without LP
sharing.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Table 14: Detailed information about the datasets in VTAB-1K benchmark.

Dataset Train Val Test #Classes

VTAB-1k

CIFAR100

800/1,000 200

10,000 100
Caltech101 6,084 102
DTD 1,880 47
Oxford-Flowers102 6,149 102
Oxford-Pets 3,669 37
SVHN 26,032 10
Sun397 21,750 397
Patch Camelyon 32,768 2
EuroSAT 5,400 10
Resisc45 6,300 45
Retinopathy 42,670 5
Clevr/count 15,000 8
Clevr/distance 15,000 6
DMLab 22,735 6
KITTI-Dist 711 4
dSprites/location 73,728 16
dSprites/orientation 73,728 16
SmallNORB/azimuth 12,150 18
SmallNORB/elevation 12,150 18

Table 15: Performance on VTAB-1K benchmark when applying Lily to various modules in Trans-
former. The implementation here does not share LP for simplicity (i.e., each layer has one LP).

Natural Specialized Structured

A
ve

ra
ge

C
ifa

r1
00

C
al

te
ch

10
1

D
T

D

Fl
ow

er
s1

02

Pe
ts

SV
H

N

Su
n3

97

C
am

el
yo

n

E
ur

oS
AT

R
es

is
c4

5

R
et

in
op

at
hy

C
le

vr
-C

ou
nt

C
le

vr
-D

is
t

D
M

L
ab

K
IT

T
I-

D
is

t

dS
pr

-L
oc

dS
pr

-O
ri

sN
O

R
B

-A
zi

m

sN
O

R
B

-E
le

qv 76.9 73.2 92.3 72.2 99.3 91.4 89.0 56.5 87.6 95.2 84.8 75.9 83.7 65.8 52.8 81.2 87.6 52.4 36.3 43.4
mlp 77.0 74.0 92.6 72.2 99.4 91.5 89.0 55.9 88.2 95.5 85.4 76.0 83.3 63.1 53.0 81.4 86.5 53.8 35.6 43.3
qvmlp 77.1 73.9 93.2 72.7 99.4 91.6 89.7 56.5 87.9 95.3 85.0 76.1 84.6 65.2 53.0 82.1 86.7 53.0 36.0 42.8
kvmlp 77.3 74.0 92.3 72.6 99.3 91.5 89.2 56.7 88.2 95.4 85.3 76.0 84.6 64.9 53.4 81.7 87.5 52.9 36.9 45.2

E WHERE TO APPLY LILY IN MAMBA?

Nearly all previous PEFT method studies have been centered around Transformers, while Mamba
is a relatively new architecture, so there has been little research on PEFT methods on Mamba.
In this section, we briefly analyze the pros and cons of adapting Mamba’s modules. In brief, a
Mamba block consists of regular linear projection layers and a core component SSM module (Gu
& Dao, 2023) (Zhu et al., 2024). Specifically in SSM module, Mamba utilize parameters (∆, A,
B, C) to transform an input sequence x(t) to an output sequence y(t) using a hidden state h(t).
The discretization process converts A and B into Ā and B̄, respectively, using the time step size
parameter ∆. Structured state space models, inspired by continuous systems, can be computed
similarly to RNNs or in the form of global convolution due to their linear time invariance (LTI)
property. Mamba introduces a selective property to structured state space model, tying parameters
to the current input, which breaks the LTI property and hinders parallel training. To address this,
Mamba employs a hardware-aware algorithm, enabling its SSM module to possess the selective
property and perform parallel training. To be specific, the discretization process can be expressed
as:

Ā = exp(∆A)

B̄ = (∆A)−1(exp(∆A)− I) ·∆B
(7)

After that, the calculation in Mamba can be expressed as:

ht = Āht−1 + B̄xt

yt = Cht
(8)

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Table 16: Commonsense reasoning results of Lily under various leanring rates.

Model Lr BoolQ PIQA SIQA HellaSwag WinoGrande ARC-e ARC-c OBQA Avg.

LLaMA3-8B

1e-3 70.7 84.6 77.6 87.8 77.3 88.5 74.1 80.8 80.2
5e-4 71.8 86.5 77.9 82.8 83.1 88.6 76.8 81.4 81.1
3e-4 72.9 85.6 77.8 92.7 83.3 89.7 77.6 82.8 82.8PRIME AI paper

1 class lily_adapter_monoscale(nn.Module):
2

3 def __init__(self, hidden_dim, ne, lp, hps, mlp=False):
4 super().__init__()
5 self.hps = hps
6 self.ne = ne
7 self.lp = lp
8 self.scale = 1 / ne
9 if mlp:

10 self.non_linear = nn.ReLU()
11 else:
12 self.non_linear = nn.Identity()
13 def forward(self, x):
14 hidden = self.non_linear(self.lp(x))
15 combined_hp = torch.sum(self.hps, 0) * self.scale
16 return torch.matmul(hidden, combined_hp)

1

Figure 10: Implementation of Lily with no selectivity.

where ht is the hidden state at time t and xt is the corresponding input token. Delta projection is a
module in SSM that’s learnable and tasked with transforming the parameter ∆. Since adapting the
delta projection alone can indirectly adapt the entire SSM module (i.e., Ā and B̄ are all determined
by ∆), it is the most critical component of the SSM module.

We investigate the performance of two adaptation strategies: adapting only the input linear projec-
tion layer (denoted as ”in”) and adapting both the input linear projection layer and SSM (denoted
as ”∆ + in” since we only adapt delta projection in SSM module). Our results, as shown in Table
1, indicate that applying Lily solely to the input projection yields better performance than applying
it to both the input and delta projection modules. This suggests that when adapting Mamba-based
models under the paradigm of low-rank adaptation, it is optimal to adapt only the input projection
module outside the SSM module. These findings highlight the need for further research into the
impact of fine-tuned modules in Mamba on overall performance. Additionally, developing PEFT
methods specifically tailored to Mamba-based models, whether for vision or language foundation
models, is also a promising direction for future work.

F PERFORMANCE WITH DIFFERENT LEARNING RATES

Since we only tuned the learning rate in the commonsense reasoning experiment, we provide the
performance of commonsense reasoning under different learning rates in Table 16.

G DOES SELECTIVITY HELP?

Lily introduced selective weight combination to selectively incorporate information from other lay-
ers. To verify the effectiveness of this selectivity, we remove the router from Lily and evaluate the
impact. The modified algorithm without the router is presented in Fig. 10. We conduct experiments
on commonsense reasoning to investigate the effect of removing selectivity from Lily.

As shown in Table 17, removing selectivity from Lily results in generally poorer performance com-
pared to vanilla Lily. This is likely because the lack of selectivity causes Lily to simply aggregate
all the HP expert, leading to inferior performance. This validates the design choice of using routers
in Lily to selectively allocate weights to HP experts, rather than simply summing them.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Table 17: Commonsense reasoning results of Lily without selectivity. We provide results using two
learning rates.

Model Lr BoolQ PIQA SIQA HellaSwag WinoGrande ARC-e ARC-c OBQA Avg.

LLaMA3-8B
3e-4 64.0 82.6 78.5 77.0 79.6 88.4 74.5 82.0 78.3
5e-4 71.3 85.5 78.1 84.3 79.6 86.4 76.1 79.0 79.8

321684
r

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

Ac
c

BoolQ

321684
r

0.74

0.76

0.78

0.80

0.82

0.84

0.86

Ac
c

PIQA

321684
r

0.55

0.60

0.65

0.70

0.75

Ac
c

SIQA

321684
r

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Ac
c

HellaSwag

321684
r

0.79

0.80

0.81

0.82

0.83

Ac
c

WinoGrande

321684
r

0.870

0.875

0.880

0.885

0.890

0.895

Ac
c

ARC-e

321684
r

0.750

0.755

0.760

0.765

0.770

0.775

Ac
c

ARC-c

321684
r

0.77

0.78

0.79

0.80

0.81

0.82

0.83

0.84

Ac
c

OBQA

321684
r

0.650

0.675

0.700

0.725

0.750

0.775

0.800

0.825

Ac
c

Avg

Figure 11: Results on commonsense reasoning tasks when applying different settings of rank. The
hyperparameter ne is specifically tuned to maintain the same amount of parameter count for a fair
comparison.

H HOW TO ALLOCATE PARAMETERS?

Since Lily alters the traditional LoRA’s layer-bound setup, increasing the parameters of Lily can
be achieved through two approaches: 1) increasing ne, i.e., increasing the number of LP and HP
experts, and 2) increasing the rank, i.e., increasing the parameter size of each individual LP or
HP expert. In this section, we investigate which factor has the greatest impact on performance.
We conduct experiments on the commonsense reasoning task. Specifically, we maintain the same
parameter count and learning rate, and achieve the same parameter count by setting different ranks
and adjusting the corresponding ne (e.g., r=16, ne=4 versus r=8, ne=8). The results are shown in
Fig. 11, from which we observe that more LP and HP experts with smaller rank (i.e., bigger ne
and smaller rank) generally performs worse. We argue that this is because, although increasing the
attention granularity allows for finer details, the resulting performance gain is not as significant as the
gain obtained by increasing the rank, i.e., increasing the model’s capacity to learn more information.
This gives us an insight that, in Lily, increasing ne to increase the parameters is less effective than
directly increasing the rank in terms of potential performance gain.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

I MORE ON SUBJECT-DRIVEN GENERATION

We provide more results on subject-driven generation in Fig. 12 and Fig. 13.

Prompts:
1. A [v] grey sloth plushie floating on top

 of water

2. A [v] grey sloth plushie in the snow

3. A [v] grey sloth plushie on a cobblestone
 street

4. A [v] grey sloth plushie on top of a dirt
 road

5. A [v] grey sloth plushie on top of a white
 rug

6. A [v] grey sloth plushie on top of a wooden
 floor

Input images (not all included)

1

2

3

4

5

6

Input images (not all included)

1

2

3

4

5

6

Prompts:
1. A [v] bear plushie floating on top

 of water

2. A [v] bear plushie in the snow

3. A [v] bear plushie on a cobblestone
 street

4. A [v] bear plushie on top of a dirt
 road

5. A [v] bear plushie on top of a white
 rug

6. A [v] bear plushie on top of a wooden
 floor

LoRA Lily

Figure 12: More subject-driven generation results for unreported subjects.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

LoRA Lily

Prompts:

1. A [v] {} on top of a dirt
 road

2. A [v] {} on top of a white
 rug

3. A [v] {} with a tree and
 autumn leaves in the background

4. A [v] {} with a
 wheat field in the background

5. A {} with the Eiffel
 Tower in the background

1

2

3

4

5

1

2

3

4

5

subject = duck toy

subject = wolf plushie

Figure 13: More subject-driven generation results for subjects that are reported in the experiment
section.

J MORE ON ATTENTION MAPS OF LILY AND LORA

We provide more visualization results of the attention map from both LoRA and Lily on Caltech101
dataset from VTAB-1K benchmark in Fig. 14.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Lily

LoRA

Lily

LoRA

Lily

LoRA

Lily

Lily

LoRA

LoRA

Input Image Layer1 Layer6 Layer9

Figure 14: More results of attention maps from LoRA and Lily. All images are taken from Cal-
tech101 dataset.

26

	Introduction
	Related Work
	Methodology
	Downward Projection and Selective Weight Allocation
	Weighted Combination of Experts and Upward Projection

	Experiments
	Common Sense Reasoning
	Natural Language Understanding
	Subject-driven Image Generation
	Visual Adaptation Benchmark
	Understanding Lily
	Does Lily Has High-Rank Weight Updates?
	From a Feature Merging Perspective
	What's the Influence of Attention Granularity?
	Does Lily Exhibit Selectivity?
	What's the Hardware Efficiency of Lily?

	Conclusion
	More discussion about Lily
	Model Structure and Design Intuition of Lily
	Number of LPs
	Number of HP Experts
	Routers Setup
	Hyperparameters
	Design Intuition

	Efficient Implementation for Weighted Combination
	Actual implementation of Lily

	Experimental settings
	Hyper-parameters
	Commonsense Reasoning
	Natural Language Understanding
	Visual Adaptation Benchmark

	Datasets
	Commonsense Reasoning
	Natural Language Understanding
	Visual Adaptation Benchmark

	Does Sharing LP Results in Inferior Performance?
	Where to Apply Lily in Transformers?
	Where to Apply Lily in Mamba?
	Performance with Different Learning Rates
	Does Selectivity Help?
	How to Allocate Parameters?
	More on Subject-driven Generation
	More on Attention Maps of Lily and LoRA

