
Token Assorted: Mixing Latent and Text Tokens for
Improved Language Model Reasoning

DiJia Su 1 Hanlin Zhu * 2 Yingchen Xu * 1 3 Jiantao Jiao 2 Yuandong Tian† 1 Qinqing Zheng† 1

Abstract
Large Language Models (LLMs) excel at rea-
soning and planning when trained on chain-
of-thought (CoT) data, where the step-by-step
thought process is explicitly outlined by text to-
kens. However, this results in lengthy inputs
where many words support textual coherence
rather than core reasoning information, and pro-
cessing these inputs consumes substantial com-
putation resources. In this work, we propose a
hybrid representation of the reasoning process,
where we partially abstract away the initial rea-
soning steps using latent discrete tokens generated
by VQ-VAE, significantly reducing the length of
reasoning traces. We explore the use of latent
trace abstractions in two scenarios: 1) training the
model from scratch for the Keys-Finding Maze
problem, 2) fine-tuning LLMs on this hybrid data
with an extended vocabulary including unseen
latent tokens, for both logical and mathematical
reasoning problems. To facilitate effective learn-
ing, we introduce a simple training procedure that
randomly mixes latent and text tokens, which en-
ables fast adaptation to new latent tokens. Our
approach consistently outperforms the baselines
methods in various benchmarks, such as Math
(+4.2%, Llama-3.2-1B), GSM8K (+4.1%, Llama-
3.2-3B), and Fresh-Gaokao-Math-2023 (+13.3%,
Llama-3.1-8B) with an average reduction of 17%
in reasoning trace’s length.

1 Introduction
Reasoning capabilities are increasingly recognized as a crit-
ical component of Artificial General Intelligence (AGI) sys-
tems. Recent research has demonstrated that Large Lan-

*Equal contribution †Equal advising 1Meta AI 2UC Berkeley
3UCL. Correspondence to: DiJia Su, Yuandong Tian, Qinqing
Zheng.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

guage Models (LLMs) can exhibit sophisticated reasoning
and planning abilities using chain-of-thought (CoT) method-
ologies, including prompting LLMs with examples where
complex problems are broken down into explicit reason-
ing steps (Wei et al., 2022b; Chen et al., 2022a; Yao et al.,
2024). More recently, a number of studies have further
shown that when models are trained to articulate the inter-
mediate steps of a reasoning process (Nye et al., 2021b;
Lehnert et al., 2024), they achieve significantly higher ac-
curacy. The effectiveness of this approach has been demon-
strated across multiple domains, including mathematical
problem-solving (Yue et al., 2023; Gandhi et al., 2024; Yu
et al., 2023; Tong et al., 2024), logical inference (Lin et al.,
2024; Dziri et al., 2024), multistep planning tasks (Lehnert
et al., 2024; Su et al., 2024), etc.

However, training with explicit reasoning traces in text space
comes with notable computational costs (Deng et al., 2023;
2024), as the models must process lengthy input sequences.
In fact, much of the text serves primarily to maintain lin-
guistic coherence, rather than conveying core reasoning
information. Several works have attempted to mitigate this
issue. For example, Hao et al. (2024) investigate reason-
ing in continuous latent space as a means of compressing
the reasoning trace, and Deng et al. (2024) explore inter-
nalizing the intermediate steps through iterative CoT elim-
inations, see Section 2 for more examples. Nonetheless,
these approaches rely on multi-stage training procedures
that resemble curriculum learning, which still incur signifi-
cant computational costs, and their final performances fall
behind models trained with complete reasoning traces.

To tackle this challenge, we propose to use discrete la-
tent tokens to abstract the initial steps of the reasoning
traces. These latent tokens, obtained through a vector-
quantized variational autoencoder (VQ-VAE), provide a
compressed representation of the reasoning process by con-
densing surface-level details. More precisely, we replace the
text tokens with their corresponding latent abstractions from
left to right until a pre-set location, leaving the remaining
tokens unchanged. We then fine-tune LLMs with reason-
ing traces with such assorted tokens, allowing the models
to learn from both abstract representations of the thinking
process and detailed textual descriptions. One technical

1

Token Assorted: Mixing Latent and Text Tokens for Improved Language Model Reasoning

challenge posed for the fine-tuning is that the vocabulary
is now extended and contains unseen latent tokens. To fa-
cilitate quick adaptation to those new tokens, we employ a
randomized replacement strategy: during training, we ran-
domly vary the number of text tokens being substituted by
latent tokens for each sample. Our experiments confirm that
this simple strategy leads to straightforward accommodation
of unseen latent tokens.

We conduct a comprehensive evaluation of our approach
on a diverse range of benchmarks spanning multiple do-
mains. Specifically, we assess its performance on multi-
step planning tasks (Keys-Finding Maze) and logical rea-
soning benchmarks (ProntoQA (Saparov & He, 2022),
ProsQA (Hao et al., 2024)) for training T5 or GPT-2
models from scratch. In addition, we fine-tune different
sizes of LLama-3.1 and LLama-3.2 models using our ap-
proach and evaluate them on a number of mathematical
reasoning benchmarks, including GSM8K (Cobbe et al.,
2021a), Math (Hendrycks et al., 2021), and OlympiadBench-
Math (He et al., 2024), see Section 4.2 for more details.
Across all these tasks and model architectures, our models
consistently outperform baseline models trained with text-
only reasoning traces, demonstrating the effectiveness of
compressing the reasoning process with assorted tokens.

2 Related Work
Explicit Chain-of-Thought Prompting. The first line
of work in Chain-of-Thought (CoT) use the traditional
chain of prompt in text tokens (Wei et al., 2022a; Nye
et al., 2021a). Research works demonstrated that by adding
few-shot examples to the input prompt or even zero-shot,
the model can perform better in question answering (Chen
et al., 2022b; Kojima et al., 2022; Chung et al., 2024). To
further improve the model reasoning performance, there has
been research effort into prompting with self-consistency
(Wang et al., 2022). Here the model is prompted to generate
multiple responses and select the best one based on majority
voting. On the other hand, research has shown that top-k
alternative tokens in the beginning of the prompt can
also improve the model’s reasoning capability (Wang &
Zhou, 2024). On top of these empirical results, there has
been research on theoretical understanding of why CoT
improves the model’s performance through the lens of
expressivity (Feng et al., 2024; Li et al., 2024) or training
dynamics (Zhu et al., 2024). In a nutshell, CoT improves
the model’s effective depth because the generated output is
being fed back to the original input. CoT is also important
for LLMs to perform multi-hop reasoning according to the
analysis of training dynamics (Zhu et al., 2024).

Learning with CoT Data. In addition to the success of
CoT prompting, an emerging line of works have explored

training LLMs on data with high-quality reasoning traces,
for example, the works of Nye et al. (2021b); Azerbayev
et al. (2023); Lehnert et al. (2024); Su et al. (2024); Yu
et al. (2024); Yang et al. (2024); Deng et al. (2023; 2024).
There is also a surge of interest in synthesizing datasets with
diverse intermediate steps for solving problems in various
domains, see, e.g., the works of Kim et al. (2023); Tong
et al. (2024); Yu et al. (2023); Yue et al. (2023); Lozhkov
et al. (2024). Wen et al. (2024) also theoretically studies
how training with reasoning trace can improve the sample
complexity of certain tasks.

LLM Reasoning in Latent Space. There has been research
investigating LLM reasoning in the latent space. Hao et al.
(2024) have proposed to use the last hidden state of a lan-
guage model as the next input embeddings, allowing the
model to continue reasoning within a continuous latent
space. The authors show that this approach effectively cap-
tures multiple reasoning paths simultaneously, mimicking a
breadth-first-search strategy. Goyal et al. (2023) proposes
to insert learnable pause tokens into the original text, in
order to delay the generation. As a result, the model can
leverage additional computation before providing the final
answer. Parallel to this, Pfau et al. (2024) have explored
filler tokens, which are used to solve computational tasks
that are otherwise unattainable without intermediate token
generation. In addition, Liu et al. (2024) propose a latent
coprocessor method that operates on the transformer’s key-
value cache to improve the LLM performance. Nevertheless,
none of these methods have shown good performance when
integrated into modern-sized LLMs and tested on real-world
LLM datasets instead of synthetic ones. Also, Wang et al.
(2023) proposed to use the planning token at the start of
generation. Orthogonal to these works, Pagnoni et al. (2024)
proposes a tokenization-free architecture that encodes input
bytes into continuous patch representations, which is then
used to train a latent Transformer, and Barrault et al. (2024)
perform autoregressive sentence prediction in an embedding
space. While these two works both leverage continuous
latent spaces, our work focuses on the direct use of discrete
latent tokens.

3 Methodology
In this section, we describe our methodology to enable
LLMs to reason with discrete latent tokens. The notations
are summarized in Appendix B. Let X = P ⊕ C ⊕ S
denote a sample input, where P = (p1, p2, . . . , ptp) are the
prompt tokens, C = (c1, c2, . . . , ctc) are the reasoning step
(chain-of-thought) tokens, S = (s1, s2, . . . , sts) are the
solution tokens, and ⊕ denotes concatenation. Our training
procedure consists of two stages:

1. Learning latent discrete tokens to abstract the rea-

2

Token Assorted: Mixing Latent and Text Tokens for Improved Language Model Reasoning

[eoLatent]z2z1[boLatent]

[boLatent] Special delimiters that encode the start / end of the latent tokens

z Discrete latent tokens

CoT N The n-th CoT textual tokens

[eoLatent]

Prompt CoT 1 CoT 2 CoT 32… CoT 33 … CoT N Solution

Prompt CoT 33 CoT N Solution…

X

Figure 3.1: An example illustrating our replacement strategy. With chunk size L = 16 and compression rate r = 16, we
encode 32 textual CoT tokens into 2 discrete latent tokens from left to right. The other CoT tokens will remain in their
original forms.

soning steps, where we train a model to convert C into
a sequence of latent tokens Z = (z1, z2, . . . , ztz) such
that tz < tc. The compression rate r = tc/tz controls
the level of abstraction.

2. Training the LLM with a partial and high-level ab-
stract of the reasoning steps, where we construct a
modified input X̃ by replacing the first m tokens of C
by the corresponding latent abstractions:

X̃ = P ⊕ [z1, . . . , zm
r
, cm+1, . . . , ctc]⊕ S. (1)

Figure 3.1 illustrates this replacement strategy. We ran-
domize the value of m during training.

3.1 Learning Latent Abstractions

We employ a vector-quantized variable autoencoder (VQ-
VAE) (Van Den Oord et al., 2017) type of architecture to
map CoT tokens C into discrete latent tokens Z. To enhance
abstraction performance, our VQ-VAE is trained on the
whole input sequence X , but only applied to C in the next
stage. Following Jiang et al. (2022; 2023), we split X into
chunks of length L and encode each chunk into L

r latent
codes, where r is a preset compression rate. More precisely,
our architecture consists of the following five components:

• E : a codebook containing |E| vectors in Rd.

• fenc : VL 7→ Rd×L
r that encodes a sequence of

L text tokens to L
r latent embedding vectors X̄ =

x̄1, . . . , x̄L
r

, where V is the vocabulary of text tokens.

• q : Rd 7→ E : the quantization operator that replaces
the encoded embedding x̄ by the nearest neighbor in
E : q(x̄) = argminei∈E ∥ei − x̄∥22.

• g : VK 7→ Rd that maps K text tokens to a d-
dimensional embedding vector. We use g to generate a
continuous embedding of the prompt P .

Solution

Codebook

…

Reconstructed X

Prompt CoT

Figure 3.2: A graphical illustration of our VQ-VAE. fenc
encodes the text tokens into latent embeddings, which are
quantized by checking the nearest neighbors in the code-
book. fdec decodes those quantized embeddings back to text
tokens. When applying the VQ-VAE to compress the text
tokens, the discrete latent tokens Z are essentially the index
of corresponding embeddings in the codebook.

• fdec : Rd×L
r × Rk 7→ VL that decodes latent em-

beddings back to text tokens, conditioned on prompt
embedding.

In particular, each continuous vector e ∈ E in the codebook
has an associated latent token z, which we use to construct
the latent reasoning steps Z1.

For simplicity, we assume the lengths of the input X and the
prompt P are L and K exactly. Similar to Van Den Oord

1To decode a latent token z, we look up the corresponding
embedding e ∈ E and feed it to fdec.

3

Token Assorted: Mixing Latent and Text Tokens for Improved Language Model Reasoning

et al. (2017), we use an objective L composed of 3 terms:

L(X) = log p(X|fdec(q(X̄)|g(P)))︸ ︷︷ ︸
reconstruction loss

+

L∑
i=1

∥sg[X̄i]− q(X̄i)∥22︸ ︷︷ ︸
VQ loss

+β∥X̄i − sg[q(X̄i)]∥22︸ ︷︷ ︸
commitment loss

,
(2)

where X̄ = fenc(X), sg[·] is the stop-gradient operator, and
β is a hyperparameter controlling the strength of the com-
mitment loss. The VQ loss and the commitment loss ensure
that the encoder outputs remain close to the codebook, while
the reconstruction loss concerns with the decoding efficacy.
As standard for VQ-VAE, we pass the gradient ∇fdec(L)
unaltered to fenc directly as the quantization operator q(·) is
non-differentiable. Figure 3.2 illustrates our architecture. In
practice, we use a causal Transformer for both fenc and fdec,
the model details are discussed in Appendix A.

Thus far we obtain a latent representation both semantically
meaningful and conducive to reconstruction, setting the
stage for the subsequent training phase where the LLM is
trained to perform reasoning with abstractions.

3.2 Reasoning with Discrete Latent Tokens

In this second stage, we apply the obtained VQ-VAE to
form modifed samples X̃ with latent abstractions as in Equa-
tion (1), then train an LLM to perform next token prediction.
Below, we outline the major design choices that are key to
our model’s performance, and ablate them in Section 4.3.

Partial Replacement. Unlike previous planning
works (Jiang et al., 2022; 2023) that project the whole
input sequence onto a compact latent space, we only re-
place m < tc CoT tokens with their latent abstractions,
leaving the remaining tokens unchanged. We delimit the
latent tokens by injecting a special <boLatent> and
<eoLatent> tokens to encapsulate them.

Left-to-Right (AR) Replacement. We replace the leftmost
m tokens of C, rather than subsampling tokens at different
locations.

Mixing Samples with Varying Values of m. For fine-
tuning an existing LLM on the reasoning dataset with latent
tokens, one remarkable challenge is to deal with the ex-
tended vocabulary. As the LLM is pretrained with trillions
of tokens, it is very hard for it to quickly adapt to tokens
(and corresponding embeddings) beyond the original vo-
cabulary. Previous works that aim to replace or eliminate
CoT tokens (Deng et al., 2024; Hao et al., 2024) employ a
multistage curriculum training approach, where those op-
erations are gradually applied to the entire input sequence.
In the context of our approach, this means we increase the
values of m in each stage until it reaches a pre-set cap value.
However, such training procedure is complex and compu-

tationally inefficient, where dedicated optimization tuning
is needed. In this work, we employ a simple single stage
training approach where the value of m is randomly set for
each sample. Surprisingly, this not only makes our training
more efficient, but also leads to enhanced performance.

Note that we use a VQVAE with a size of 50M, adding
minimal parameter overhead. In addition, it is used only
once during data preparation (to convert training data into
discrete latent code), not during LLM training or inference.
During inference, the LLM directly generates latent tokens
without any use of VQVAE.

4 Experiments
We empirically evaluate our approach on two categories of
benchmarks:

(1) Synthetic datasets including the Keys-Finding Maze,
ProntoQA (Saparov & He, 2022), and ProsQA (Hao
et al., 2024), where we pretrain T5 or GPT-2 models
from scratch using the method in Section 3;

(2) Real-world mathematic reasoning problems, where
we fine-tune Llama models (Dubey et al., 2024)
on the MetaMathQA (Yu et al., 2023) or the Dart-
MATH (Tong et al., 2024) dataset, and then test on in-
domain datasets Math and GSM-8K, along with out-of-
domain datasets including Fresh-Gaokao-Math-2023,
DeepMind-Math, College-Math, OlympiaBench-Math,
and TheoremQA.

The detailed setup is introduced in Section 4.1.

We compare our approach to the following baselines:
Sol-Only: the model is trained with samples that only con-
tains questions and solutions, without any reasoning steps;

CoT: the model is trained with samples with complete CoT
tokens;

iCoT (Deng et al., 2024): a method that utilizes curriculum
learning to gradually eliminate the need of CoT tokens in
reasoning;

Pause Token (Goyal et al., 2023): a method that injects a
learnable pause token into the sample during training, in
order to offer extra computation before giving out the final
answer.

4.1 Benchmarks

4.1.1 SYNTHETIC BENCHMARKS

Keys-Finding Maze is a complex navigation environment
designed to evaluate an agent’s planning capabilities. The
agent is randomly positioned within a maze comprising 4
3× 3 interconnected rooms, with the objective of reaching
a randomly placed goal destination. To successfully reach

4

Token Assorted: Mixing Latent and Text Tokens for Improved Language Model Reasoning

the destination, the agent must collect keys (designated with
green, red, and blue colors) that correspond to matching col-
ored doors. These keys are randomly distributed among the
rooms, requiring the agent to develop sophisticated planning
strategies for key acquisition and door traversal. The agent
is only allowed to take one key at a time. This environment
poses a substantial cognitive challenge, as the agent must
identify which keys are necessary for reaching the desti-
nation, and optimize the order of key collection and door
unlocking to establish the most efficient path to the goal.
Following Lehnert et al. (2024); Su et al. (2024), we gen-
erate intermediate search traces using the nondeterministic
A* algorithm (Hart et al., 1968). The dataset contains 100k
training samples. See Appendix A.2 for more information
and graphical illustrations.

ProntoQA (Saparov & He, 2022) is a dataset consists of
9000 logical reasoning problems derived from ontologies
- formal representations of relationships between concepts.
Each problem in the dataset is constructed to have exactly
one correct proof or reasoning path. One distinctive feature
of this dataset is its consistent grammatical and logical struc-
ture, which enables researchers to systematically analyze
and evaluate how LLMs approach reasoning tasks.

ProsQA (Hao et al., 2024) is a more difficult benchmark
building on top of ProntoQA. It contains 17,886 logical
problems curated by randomly generated directed acyclic
graphs. It has larger size of distracting reasoning paths in
the ontology, and thus require more complex reasoning and
planning capabilities.

4.1.2 MATHEMATICAL REASONING

We fine-tune pretrained LLMs using the MetaMathQA (Yu
et al., 2023) or the Dart-MATH (Tong et al., 2024) dataset.
MetaMathQA is a curated dataset that augments the existing
Math (Hendrycks et al.) and GSM8K (Cobbe et al., 2021b)
datasets by various ways of question bootstrapping, such
as (i) rephrasing the question and generating the reasoning
path; (ii) generating backward questions, self-verification
questions, FOBAR questions (Jiang et al., 2024), etc. This
dataset contains 395k samples in total, where 155k sam-
ples are bootstrapped from Math and the remaining 240k
come from GSM8K. We rerun the MetaMath data pipeline by
using Llama-3.1-405B-Inst to generate the response. Dart-
MATH (Tong et al., 2024) also synthesizes responses for
questions in Math and GSM8K, with the focus on difficult
questions via difficulty-aware rejection tuning. For evalua-
tion, we test the models on the original Math and GSM8K
datasets, which are in-domain, and also the following out-
of-domain benchmarks:

• College-Math (Tang et al., 2024) consists of 2818 college-
level math problems taken from 9 textbooks. These prob-
lems cover over 7 different areas such as linear algebra,

differential equations, and so on. They are designed to
evaluate how well the language model can handle compli-
cated mathematical reasoning problems in different field
of study.

• DeepMind-Math (Saxton et al., 2019) consists of 1000
problems based on the national school math curriculum
for students up to 16 years old. It examines the basic
mathematics and reasoning skills across different topics.

• OlympiaBench-Math (He et al., 2024) is a text-only En-
glish subset of Olympiad-Bench focusing on advanced
level mathematical reasoning. It contains 675 highly diffi-
cult math problems from competitions.

• TheoremQA (Chen et al., 2023) contains 800 problems
focuses on solving problems in STEM fields (such as
math, physics, and engineering) using mathematical theo-
rems.

• Fresh-Gaokao-Math-2023 (Tang et al., 2024) contains
30 math questions coming from Gaokao, or the National
College Entrance Examination, which is a national stan-
dardized test that plays a crucial role in the college admis-
sions process.

4.2 Main Results

We employ a consistent strategy for training VQ-VAE and re-
placing CoT tokens with latent discrete codes across all our
experiments, as outlined below. The specific model archi-
tecture and key hyperparameters used for LLM training are
presented alongside the results for each category of bench-
marks. All the other details are deferred to Appendix A.

VQ-VAE Training For each benchmark, we train a VQ-
VAE for 100k steps using the Adam optimizer, with learning
rate 10−5 and batch size 32. We use a codebook of size 1024
and compress every chunk of L = 16 tokens into a single
latent token (i.e., the compression rate r = 16).

Randomized Latent Code Replacement We introduce
a stochastic procedure for partially replacing CoT tokens
with latent codes. Specifically, we define a set of prede-
termined numbers M = {0, 72, 128, 160, 192, 224, 256},
which are all multipliers of L = 16. For each training ex-
ample, we first sample mmax ∈ M then sample an integer
m ∈ [0, 16, 32, . . . ,mmax] uniformly at random. The first
m CoT tokens are replaced by their corresponding latent
discrete codes, while the later ones remain as raw text. This
stochastic replacement mechanism exposes the model to a
wide range of latent-text mixtures, enabling it to effectively
learn from varying degrees of latent abstraction.

4.2.1 SYNTHETIC BENCHMARKS

Hyperparameters and Evaluation Metric For our experi-
ments on the ProntoQA and ProsQA datasets, we fine-tune

5

Token Assorted: Mixing Latent and Text Tokens for Improved Language Model Reasoning

Model Keys-Finding Maze ProntoQA ProsQA

1-Feasible-10 (%) Num. Tokens Accuracy Num. Tokens Accuracy Num. Tokens

Sol-Only 3 645 93.8 3.0 76.7 8.2
CoT 43 1312.0 98.8 92.5 77.5 49.4
Latent (ours) 62.8 (↑ +19.8) 374.6 100 (↑ +1.2) 7.7 96.2 (↑ +18.7) 10.9

Table 4.1: Our latent approach surpasses the other baselines on Keys-Finding Maze, ProntoQA and ProsQA with a large
margin . We use top-k (k = 10) decoding for Keys-Finding Maze and greedy decoding for ProntoQA and ProsQA. In terms
of token efficiency, our latent approach also generates much shorter reasoning traces than the CoT baseline, closely tracking
or even outperforming the Sol-Only approach. Bold: best results. Underline: second best results. (↑ +Performance gain
compared with the second best result.)

Model In-Domain Out-of-Domain Average

Math GSM8K Gaokao-Math-2023 DM-Math College-Math Olympia-Math TheoremQA All Datasets

Llama-3.2-1B

Sol-Only 4.7 6.8 0.0 10.4 5.3 1.3 3.9 4.6
CoT 10.5 42.7 10.0 3.4 17.1 1.5 9.8 14.1
iCoT 8.2 10.5 3.3 11.3 7.6 2.1 10.7 7.7
Pause Token 5.1 5.3 2.0 1.4 0.5 0.0 0.6 2.1
Latent (ours) 14.7 (↑ +4.2) 48.7 (↑ +6) 10.0 14.6 (↑ +3.3) 20.5 (↑ +3.4) 1.8 11.3 (↑ +0.6) 17.8 (↑ +3.7)

Llama-3.2-3B

Sol-Only 6.1 8.1 3.3 14.0 7.0 1.8 6.8 6.7
CoT 21.9 69.7 16.7 27.3 30.9 2.2 11.6 25.2
iCoT 12.6 17.3 3.3 16.0 14.2 4.9 13.9 11.7
Pause Token 25.2 53.7 4.1 7.4 11.8 0.7 1.0 14.8
Latent (ours) 26.1 (↑ +4.2) 73.8 (↑ +4.1) 23.3 (↑ +6.6) 27.1 32.9 (↑ +2) 4.2 13.5 28.1 (↑ +2.9)

Llama-3.1-8B

Sol-Only 11.5 11.8 3.3 17.4 13.0 3.8 6.7 9.6
CoT 32.9 80.1 16.7 39.3 41.9 7.3 15.8 33.4
iCoT 17.8 29.6 16.7 20.3 21.3 7.6 14.8 18.3
Pause Token 39.6 79.5 6.1 25.4 25.1 1.3 4.0 25.9
Latent (ours) 37.2 84.1 (↑ +4.0) 30.0 (↑ +13.3) 41.3 (↑ +2) 44.0 (↑ +2.1) 10.2 (↑ +2.6) 18.4 (↑ +2.6) 37.9 (↑ +4.5)

Table 4.2: Our latent approach outperforms the baselines on various types of mathematical reasoning benchmarks. The
models are fine-tuned on the MetaMathQA (Yu et al., 2023) dataset. The Math and GSM8K are in-domain datasets since they
are used to generate MetaMathQA, while the others are out-of-domain. Bold: best results. Underscore: second best results.
↑ +: Performance gain compared with the second best result.

the pretrained GPT-2 model (Radford et al., 2019) for 16k
steps, where we use a learning rate of 10−4 with linear
warmup for 100 steps, and the batch size is set to 128. To
evaluate the models, we use greedy decoding and check the
exact match with the ground truth.

For Keys-Finding Maze, due to its specific vocabulary, we
trained a T5 model (Raffel et al., 2020) from scratch for
100k steps with a learning rate of 7.5 × 10−4 and a batch
size of 1024. We evaluate the models by the 1-Feasible-
10 metric. Namely, for each evaluation task, we randomly
sample 10 responses with top-k (k=10) decoding and check
if any of them is feasible and reaches the goal location.

Results As shown in Table 4.1, our latent approach per-
forms better than the baselines for both the Keys-Finding
Maze and ProntoQA tasks. Notably, the absolute improve-
ment is 15% for the Keys-Finding Maze problem, and
we reach 100% accuracy on the relatively easy ProntoQA
dataset. For the more difficult ProsQA, the CoT baseline
only obtains 77.5% accuracy, the latent approach achieves
17.5% performance gain.

4.2.2 MATHEMATICAL REASONING

Hyperparameters and Evaluation Metrics We consid-
ered 3 different sizes of LLMs from the LLaMa herd: Llama-
3.2-1B, Llama-3.2-3B and Llama-3.1-8B models. For all the
models, we fine-tune them on the MetaMathQA dataset for 1
epoch. To maximize training efficiency, we use a batch size
of 32 with a sequence packing of 4096. We experiment with
different learning rates 10−5, 2.5 × 10−5, 5 × 10−5, 10−4

and select the one with the lowest validation error. The final
choices are 10−5 for the 8B model and 2.5× 10−5 for the
others. For all the experiments, we use greedy decoding for
evaluation.

Accuracy Comparison Table 4.2 presents the results. Our
latent approach consistently outperforms all the baselines
across nearly all the tasks, for models of different sizes. For
tasks on which we do not observe improvement, our ap-
proach is also comparable to the best performance. The
gains are more pronounced in specific datasets such as
Gaokao-Math-2023. On average, we are observing a +5.3
points improvement for the 8B model, +2.9 points improve-
ment for the 3B model, and +3.7 points improvement for

6

Token Assorted: Mixing Latent and Text Tokens for Improved Language Model Reasoning

Model In-Domain (# of tokens) Out-of-Domain (# of tokens) Average

Math GSM8K Gaokao-Math-2023 DM-Math College-Math Olympia-Math TheoremQA All Datasets

Llama-3.2-1B

Sol-Only 4.7 6.8 0.0 10.4 5.3 1.3 3.9 4.6
CoT 646.1 190.3 842.3 578.7 505.6 1087.0 736.5 655.2
iCoT 328.4 39.8 354.0 170.8 278.7 839.4 575.4 369.5
Pause Token 638.8 176.4 416.1 579.9 193.8 471.9 988.1 495
Latent (ours) 501.6 (↓ -22%) 181.3 (↓ -5%) 760.5 (↓ -11%) 380.1 (↓ -34%) 387.3 (↓ -23%) 840.0 (↓ -22%) 575.5 (↓ -22%) 518 (↓ -21%)

Llama-3.2-3B

Sol-Only 6.1 8.1 3.3 14.0 7.0 1.8 6.8 6.7
CoT 649.9 212.1 823.3 392.8 495.9 1166.7 759.6 642.9
iCoT 344.4 60.7 564.0 154.3 224.9 697.6 363.6 344.2
Pause Token 307.9 162.3 108.9 251.5 500.96 959.5 212.8 354.7
Latent (ours) 516.7 (↓ -20%) 198.8 (↓ -6%) 618.5 (↓ -25%) 340.0 (↓ -13%) 418.0 (↓ -16%) 832.8 (↓ -29%) 670.2 (↓ -12%) 513.6 (↓ -20%)

Llama-3.1-8B

Sol-Only 11.5 11.8 3.3 17.4 13.0 3.8 6.7 9.6
CoT 624.3 209.5 555.9 321.8 474.3 1103.3 760.1 578.5
iCoT 403.5 67.3 444.8 137.0 257.1 797.1 430.9 362.5
Pause Token 469.4 119.0 752.6 413.4 357.3 648.2 600.1 480
Latent (ours) 571.9 (↓ -9 %) 193.9 (↓ -8 %) 545.8 (↓ -2 %) 292.1 (↓ -10%) 440.3 (↓ -8%) 913.7 (↓ -17 %) 637.2 (↓ -16 %) 513.7 (↓ -10%)

Table 4.3: The average number of tokens in the generated responses. Compared with the CoT baseline, our latent approach
achieves an 17% reduction in response length on average, while surpassing it in final performance according to Table 4.2.
The iCoT method generates shorter responses than our approach, yet performs significantly worse, see Table 4.2. ↓ -: Trace
length reduction rate compared with CoT.

Model In-Domain Out-of-Domain Average

math GSM8K Fresh-Gaokao-Math-2023 DeepMind-Mathematics College-Math Olympia-Math TheoremQA All Datasets

Llama-3.2-1B
All-Replace 6.7 4.2 0.0 11.8 6.0 2.1 8.5 5.6
Curriculum-Replace 7.1 9.8 3.3 13.0 7.9 2.4 10.5 7.8
Poisson-Replace 13.9 49.5 10.0 12.2 18.9 2.3 9.0 15.1
Latent-AR (ours) 14.7 48.7 10.0 14.6 20.5 1.8 11.3 17.8

Llama-3.2-3B
All-Replace 10.7 12.8 10.0 19.4 12.8 5.3 11.8 11.8
Curriculum-Replace 10.2 14.9 3.3 16.8 12.9 3.9 14.4 10.9
Poisson-Replace 23.6 65.9 13.3 17.9 28.9 2.9 11.2 20.5
Latent (ours) 26.1 73.8 23.3 27.1 32.9 4.2 13.5 28.1

Llama-3.1-8B
All-Replace 15.7 19.9 6.7 21.1 19.5 5.0 17.5 15.0
Curriculum-Replace 14.6 23.1 13.3 20.3 18.7 3.9 16.6 15.8
Possion-Replace 37.9 83.6 16.6 42.7 44.7 9.9 19.1 36.3
Latent (ours) 37.2 84.1 30.0 41.3 44.0 10.2 18.4 37.9

Table 4.4: Our latent token replacement strategy significantly outperforms the alternative choices: All-Replace (where all
the textual CoT tokens are replaced by latent tokens at once), Curriculum-Replace (where we gradually replace the text
tokens for the entire CoT subsequence by latent tokens over the course of training) and Poisson-Replace (where individual
chunks of text tokens are replaced with probabilities 0.5).

the 1B model.

Tokens Efficiency Comparison Alongside the accuracy,
we also report the number of tokens contained in the gener-
ated responses in Table 4.3, which is the dominating factor
of the inference efficiency. Our first observation is that for
all the approaches, the model size has little influence on the
length of generated responses. Overall, the CoT method
outputs the longest responses, while the Sol-Only method
outputs the least number of tokens, since it is trained to gen-
erate the answer directly. The iCoT method generates short
responses as well (42.8% reduction compared to CoT), as
the CoT data has been iteratively eliminated in its training
procedure. However, this comes at the cost of significantly
degraded model performance compared with CoT, as shown
in Table 4.2. Our latent approach shows an average 17%
reduction in token numbers compared with CoT while sur-
passing it in prediction accuracy.

4.3 Ablation & Understanding Studies

Replacement Strategies Our latent approach partially re-
places the leftmost m CoT tokens, where the value of m
varies for each sample. We call such replacement strategies
AR-Replace. Here we consider three alternative strategies:

(1) All-Replace: all the text CoT tokens are replaced by
the latent tokens.

(2) Curriculum-Replace: the entire CoT subsequence are
gradually replaced over the course of training, simi-
lar to the training procedure used by iCoT and CO-
CONUT (Hao et al., 2024). We train the model for
8 epochs. Starting from the original dataset, in each
epoch we construct a new training dataset whether we
further replace the leftmost 16 textual CoT tokens by a
discrete latent token.

(3) Poisson-Replace: instead of replacing tokens from

7

Token Assorted: Mixing Latent and Text Tokens for Improved Language Model Reasoning

left to right, we conduct a Poisson sampling process to
select CoT tokens to be replaced: we split the reasoning
traces into chunks consisting of 16 consecutive text
tokens, where each chunk is randomly replaced by the
latent token with probability 0.5.

Table 4.4 reports the results. Our AR-Replace strategy
demonstrate strong performance, outperforming the other
two strategies with large performance gap. Our intuition is
as follows. When all the textual tokens are removed, the
model struggles to align the latent tokens with the linguistic
and semantic structures it learned during pretraining.

In contrast, partial replacement offers the model a bridge
connecting text and latent spaces: the remaining text tokens
serve as anchors, helping the model interpret and integrate
the latent representations more effectively. Interestingly, the
curriculum learning strategy is bridging the two spaces very
well, where All-Replace and Curriculum-Replace exhibit
similar performance. This is similar to our observation that
iCoT performs remarkably worse than CoT for mathemat-
ical reasoning problems. Poisson-Replace demonstrates
performance marginally worse to our AR-Replace strategy
on the 1B and 8B models, but significantly worse on the
3B model. Our intuition is that having a fix pattern of re-
placement (starting from the beginning and left to right) is
always easier for the model to learn. This might be due to
the limited finetuning dataset size and model capacity.

Attention Weights Analysis To understand the reason why
injecting latent tokens enhanced the model’s reasoning per-
formance, we randomly selected two questions from the
Math and Collegue-Math dataset and generate responses,
then analyze the attention weights over the input prompt
tokens:

1. What is the positive difference
between $120%$ of 30 and $130%$ of
20?

2. Mark has $50 in his bank account.
He earns $10 per day at his work.
If he wants to buy a bike that
costs $300, how many days does Mark
have to save his money?

Specifically, we take the last attention layer, compute the
average attention weights over different attention heads and
show its relative intensity over the prompt tokens2. We com-

2We first compute the average attention weights across multi-
ple heads. This gives us a single lower triangular matrix. Then,
we take the column sum of this matrix to get an aggregated at-
tention weights for each token. Last, we normalize the weights
by their average to obtain the relative intensity. A one line pseu-
docode is: column sum(avg(attention matrices)) /
avg(column sum(avg(attention matrices))).

(a) Prompt: What is the positive difference
between $120%$ of 30 and $130%$ of 20?

(b) Prompt: Mark has $50 in his bank account.
He earns $10 per day at his work. If he
wants to buy a bike that costs $300, how
many days does Mark have to save his money?

Figure 4.1: Comparing with the CoT model, our latent
approach have high attention weights on numbers and text
tokens representing mathematical operations.

pare the averaged attention weights of our model with the
CoT model in Figure 4.1. Interestingly, our model learns
to grasp a stronger attention to numbers and words rep-
resenting mathematical operations. Both Figure 4.1a and
Figure 4.1b show that the latent model focus more on the
numbers, such as 120, 30, and 130 for the first question.
For the second question, our latent model shows a larger
attention weights on numbers including 50, 10, and 300,
and also tokens semantically related to mathematical oper-
ations such as earns (means addition) and cost (means
subtraction). This suggests that, by partially compressing
the reasoning trace into a mix of latent and text tokens, we
allow the model to effectively focus on important tokens
that build the internal logical flow. See Appendix C.1 for
the exact response generated by our approach and the CoT
baseline.

4.4 Ablations on the Latent r parameters

Throughout this paper we have been using r (or the com-
pression ratio) to be 16, in this section, we will be ablating
how would r affects the performance of the downstream
Math tasks if we vary this parameter.

To this end, we vary this parameter on the Llama-3.2-3B
model. Our result is summarized in Table.4.5. A graphical
illustration is shown in Figure.4.2. A key takeaway is that

8

Token Assorted: Mixing Latent and Text Tokens for Improved Language Model Reasoning

Table 4.5: The Table blow illustrates a clear trend on Llama-3.2-3B model where increasing the compression rate reduces
the number of generated tokens due to higher data compression. Notably, a compression rate of 2 shows some improvements
over the CoT baseline. Furthermore, there appears to be an optimal ’sweet spot’ where the data is neither overly compressed
(rate = 32) nor minimally compressed (rate = 2), optimizing both efficiency and accuracy.

Model In-Domain Out-of-Domain Average

math GSM8K
Fresh-Gaokao-

Math-2023
DeepMind-

Mathematics
College-

Math
Olympia-

Math TheoremQA
All

Datasets

L
la

m
a-

3.
2-

3B

CoT (baseline) (Acc.) 21.9 69.7 16.7 27.3 30.9 2.2 11.6 25.2
of Tokens 649.9 212.1 823.3 392.8 495.9 1166.7 759.6 642.9

Latent-r = 2 (Acc.) 24.3 71.7 16.7 25.4 32.0 4.7 14.8 27.08
of Tokens 586.0 207.6 739.6 415.3 471 1036 714 595.6

Latent r = 16 (Acc.) 26.1 73.8 23.3 27.1 32.9 4.2 13.5 28.1
of Tokens 516.7 198.8 618.5 340.0 418.0 832.8 670.2 513.6

Latent r = 32 (Acc.) 25.2 71.5 23.3 26.3 33.3 4.9 14.1 27.9
of Tokens 496.5 183.3 577.3 311.0 395.2 821.0 585.6 481.4

our latent approach comes out ahead of the CoT baseline for
all r settings in terms of fewer tokens (better efficiency) and
higher accuracy. This is a strong signal that the shift to a
latent representation itself is fundamentally beneficial. In ad-
dition, we see that when the r (compression ratio) increases,
we expect each latent token to encode more information
(higher compression). As a result, we see that, on aver-
age, the number of tokens reduces as r increases. However,
in terms of the accuracy metric, we see that the model in-
creases initially from 25.2 (overall accuracy) to 27.1 (when
r = 2). It further boosts up to 28.1 at r = 16, and then it
goes down to 27.9 when r = 32. This indicates a sweet spot
that r = 16, it is neither overly-compressed (which implies
information loss), nor under-compressed (which implies
information is not encoded abstractly enough). This study
indicates an interesting trade-off between accuracy and to-
kens efficiency in our latent approach. So, r = 16 appears
to strike an optimal balance between compact representation
and the preservation of task-critical information.

4.5 Additional Examples and Interpretability Result

We provide 4 additional example responses for questions
in the Math and TheoremQA datasets in Appendix D. In
Appendix F, we compare all the approaches when the model
is trained on the DART-MATH (Tong et al., 2024) dataset,
where similar trends are observed.

We also provide interpretable examples in the Appendix E.

5 Conclusion
We present a novel approach to improve the reasoning ca-
pabilities of LLMs, by compressing the initial steps of the
reasoning traces using discrete latent tokens obtained from
VQ-VAE. By integrating both abstract representation and

Figure 4.2: A graphical illustration of the compression rate
r trade-off between the accuracy and the token efficiency
on the Llama-3.2-3B model.

textual details of the reasoning process into training, our
approach enables LLMs to capture essential reasoning in-
formation with improved token efficiency. Furthermore, by
randomizing the number of text tokens to be compressed
during training, we unlock fast adaptation to unseen latent
tokens. Our comprehensive evaluation demonstrates the
effectiveness across multiple domains, outperforming stan-
dard methods that rely on complete textual reasoning traces.

Impact Statement
This paper presents a method to enhance the reasoning ca-
pability of Large Language Models (LLMs) by combining
latent and text tokens in the reasoning trace. In terms of
society impact, while reasoning with (opaque) latent tokens
may trigger safety concerns, our approach provides a VQ-
VAE decoder that can decode the latent tokens into human
readable format, mitigating such concerns.

9

Token Assorted: Mixing Latent and Text Tokens for Improved Language Model Reasoning

References
Azerbayev, Z., Schoelkopf, H., Paster, K., Santos, M. D.,

McAleer, S., Jiang, A. Q., Deng, J., Biderman, S., and
Welleck, S. Llemma: An open language model for math-
ematics. arXiv preprint arXiv:2310.10631, 2023.

Barrault, L., Duquenne, P.-A., Elbayad, M., Kozhevnikov,
A., Alastruey, B., Andrews, P., Coria, M., Couairon, G.,
Costa-jussà, M. R., Dale, D., et al. Large concept models:
Language modeling in a sentence representation space.
arXiv e-prints, pp. arXiv–2412, 2024.

Chen, W., Ma, X., Wang, X., and Cohen, W. W. Program
of thoughts prompting: Disentangling computation from
reasoning for numerical reasoning tasks. arXiv preprint
arXiv:2211.12588, 2022a.

Chen, W., Ma, X., Wang, X., and Cohen, W. W. Program
of thoughts prompting: Disentangling computation from
reasoning for numerical reasoning tasks. arXiv preprint
arXiv:2211.12588, 2022b.

Chen, W., Yin, M., Ku, M., Lu, P., Wan, Y., Ma, X., Xu,
J., Wang, X., and Xia, T. Theoremqa: A theorem-driven
question answering dataset. In Proceedings of the 2023
Conference on Empirical Methods in Natural Language
Processing, pp. 7889–7901, 2023.

Chung, H. W., Hou, L., Longpre, S., Zoph, B., Tay, Y., Fe-
dus, W., Li, Y., Wang, X., Dehghani, M., Brahma, S., et al.
Scaling instruction-finetuned language models. Journal
of Machine Learning Research, 25(70):1–53, 2024.

Cobbe, K., Kosaraju, V., Bavarian, M., Chen, M., Jun, H.,
Kaiser, L., Plappert, M., Tworek, J., Hilton, J., Nakano,
R., et al. Training verifiers to solve math word problems.
arXiv preprint arXiv:2110.14168, 2021a.

Cobbe, K., Kosaraju, V., Bavarian, M., Chen, M., Jun, H.,
Kaiser, L., Plappert, M., Tworek, J., Hilton, J., Nakano,
R., et al. Training verifiers to solve math word problems.
arXiv preprint arXiv:2110.14168, 2021b.

Deng, Y., Prasad, K., Fernandez, R., Smolensky, P., Chaud-
hary, V., and Shieber, S. Implicit chain of thought
reasoning via knowledge distillation. arXiv preprint
arXiv:2311.01460, 2023.

Deng, Y., Choi, Y., and Shieber, S. From explicit cot to
implicit cot: Learning to internalize cot step by step.
arXiv preprint arXiv:2405.14838, 2024.

Dubey, A., Jauhri, A., Pandey, A., Kadian, A., Al-Dahle,
A., Letman, A., Mathur, A., Schelten, A., Yang, A., Fan,
A., et al. The llama 3 herd of models. arXiv preprint
arXiv:2407.21783, 2024.

Dziri, N., Lu, X., Sclar, M., Li, X. L., Jian, L., Lin, B. Y.,
West, P., Bhagavatula, C., Bras, R. L., Hwang, J. D.,
Sanyal, S., Welleck, S., Ren, X., Ettinger, A., Harchaoui,
Z., and Choi, Y. Faith and fate: Limits of transformers
on compositionality. Advances in Neural Information
Processing Systems, 36, 2024.

Feng, G., Zhang, B., Gu, Y., Ye, H., He, D., and Wang, L.
Towards revealing the mystery behind chain of thought: a
theoretical perspective. Advances in Neural Information
Processing Systems, 36, 2024.

Gandhi, K., Lee, D., Grand, G., Liu, M., Cheng, W., Sharma,
A., and Goodman, N. D. Stream of search (sos): Learning
to search in language. arXiv preprint arXiv:2404.03683,
2024.

Goyal, S., Ji, Z., Rawat, A. S., Menon, A. K., Kumar,
S., and Nagarajan, V. Think before you speak: Train-
ing language models with pause tokens. arXiv preprint
arXiv:2310.02226, 2023.

Hao, S., Sukhbaatar, S., Su, D., Li, X., Hu, Z., Weston,
J., and Tian, Y. Training large language models to
reason in a continuous latent space. arXiv preprint
arXiv:2412.06769, 2024.

Hart, P. E., Nilsson, N. J., and Raphael, B. A formal basis
for the heuristic determination of minimum cost paths.
IEEE transactions on Systems Science and Cybernetics,
4(2):100–107, 1968.

He, C., Luo, R., Bai, Y., Hu, S., Thai, Z. L., Shen, J., Hu, J.,
Han, X., Huang, Y., Zhang, Y., et al. Olympiadbench: A
challenging benchmark for promoting agi with olympiad-
level bilingual multimodal scientific problems. arXiv
preprint arXiv:2402.14008, 2024.

Hendrycks, D., Burns, C., Kadavath, S., Arora, A., Basart,
S., Tang, E., Song, D., and Steinhardt, J. Measuring
mathematical problem solving with the math dataset. In
Thirty-fifth Conference on Neural Information Processing
Systems Datasets and Benchmarks Track (Round 2).

Hendrycks, D., Burns, C., Kadavath, S., Arora, A., Basart,
S., Tang, E., Song, D., and Steinhardt, J. Measuring math-
ematical problem solving with the math dataset. NeurIPS,
2021.

Jiang, W., Shi, H., Yu, L., Liu, Z., Zhang, Y., Li, Z., and
Kwok, J. Forward-backward reasoning in large language
models for mathematical verification. In Findings of the
Association for Computational Linguistics ACL 2024, pp.
6647–6661, 2024.

Jiang, Z., Zhang, T., Janner, M., Li, Y., Rocktäschel, T.,
Grefenstette, E., and Tian, Y. Efficient planning in a com-
pact latent action space. arXiv preprint arXiv:2208.10291,
2022.

10

Token Assorted: Mixing Latent and Text Tokens for Improved Language Model Reasoning

Jiang, Z., Xu, Y., Wagener, N., Luo, Y., Janner, M., Grefen-
stette, E., Rocktäschel, T., and Tian, Y. H-gap: Hu-
manoid control with a generalist planner. arXiv preprint
arXiv:2312.02682, 2023.

Kim, S., Joo, S. J., Kim, D., Jang, J., Ye, S., Shin, J., and
Seo, M. The cot collection: Improving zero-shot and few-
shot learning of language models via chain-of-thought
fine-tuning. arXiv preprint arXiv:2305.14045, 2023.

Kojima, T., Gu, S. S., Reid, M., Matsuo, Y., and Iwasawa,
Y. Large language models are zero-shot reasoners. Ad-
vances in neural information processing systems, 35:
22199–22213, 2022.

Lehnert, L., Sukhbaatar, S., Su, D., Zheng, Q., McVay, P.,
Rabbat, M., and Tian, Y. Beyond a*: Better planning with
transformers via search dynamics bootstrapping. In First
Conference on Language Modeling, 2024. URL https:
//openreview.net/forum?id=SGoVIC0u0f.

Li, Z., Liu, H., Zhou, D., and Ma, T. Chain of
thought empowers transformers to solve inherently serial
problems, 2024. URL https://arxiv.org/abs/
2402.12875.

Lin, B. Y., Bras, R. L., and Choi, Y. Zebralogic: Bench-
marking the logical reasoning ability of language models,
2024. URL https://huggingface.co/spaces/
allenai/ZebraLogic.

Liu, L., Pfeiffer, J., Wu, J., Xie, J., and Szlam, A. Deliber-
ation in latent space via differentiable cache augmenta-
tion. 2024. URL https://arxiv.org/abs/2412.
17747.

Lozhkov, A., Ben Allal, L., Bakouch, E., von Werra, L., and
Wolf, T. Finemath: the finest collection of mathematical
content, 2024. URL https://huggingface.co/
datasets/HuggingFaceTB/finemath.

Nye, M., Andreassen, A. J., Gur-Ari, G., Michalewski, H.,
Austin, J., Bieber, D., Dohan, D., Lewkowycz, A., Bosma,
M., Luan, D., et al. Show your work: Scratchpads for
intermediate computation with language models. arXiv
preprint arXiv:2112.00114, 2021a.

Nye, M., Andreassen, A. J., Gur-Ari, G., Michalewski, H.,
Austin, J., Bieber, D., Dohan, D., Lewkowycz, A., Bosma,
M., Luan, D., et al. Show your work: Scratchpads for
intermediate computation with language models. arXiv
preprint arXiv:2112.00114, 2021b.

Pagnoni, A., Pasunuru, R., Rodriguez, P., Nguyen, J.,
Muller, B., Li, M., Zhou, C., Yu, L., Weston, J., Zettle-
moyer, L., Ghosh, G., Lewis, M., Holtzman, A., and Iyer,
S. Byte latent transformer: Patches scale better than
tokens. 2024. URL https://arxiv.org/abs/
2412.09871.

Pfau, J., Merrill, W., and Bowman, S. R. Let’s think dot by
dot: Hidden computation in transformer language models.
arXiv preprint arXiv:2404.15758, 2024.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D.,
Sutskever, I., et al. Language models are unsupervised
multitask learners. OpenAI blog, 1(8):9, 2019.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang,
S., Matena, M., Zhou, Y., Li, W., and Liu, P. J. Ex-
ploring the limits of transfer learning with a unified
text-to-text transformer. Journal of Machine Learning
Research, 21(140):1–67, 2020. URL http://jmlr.
org/papers/v21/20-074.html.

Saparov, A. and He, H. Language models are greedy rea-
soners: A systematic formal analysis of chain-of-thought.
arXiv preprint arXiv:2210.01240, 2022.

Saxton, D., Grefenstette, E., Hill, F., and Kohli, P. Analysing
mathematical reasoning abilities of neural models. arXiv
preprint arXiv:1904.01557, 2019.

Su, D., Sukhbaatar, S., Rabbat, M., Tian, Y., and Zheng,
Q. Dualformer: Controllable fast and slow thinking by
learning with randomized reasoning traces. arXiv preprint
arXiv:2410.09918, 2024.

Tang, Z., Zhang, X., Wang, B., and Wei, F. Mathscale:
Scaling instruction tuning for mathematical reasoning.
arXiv preprint arXiv:2403.02884, 2024.

Tong, Y., Zhang, X., Wang, R., Wu, R., and He, J. Dart-
math: Difficulty-aware rejection tuning for mathemati-
cal problem-solving. arXiv preprint arXiv:2407.13690,
2024.

Van Den Oord, A., Vinyals, O., et al. Neural discrete rep-
resentation learning. Advances in neural information
processing systems, 30, 2017.

Wang, X. and Zhou, D. Chain-of-thought reasoning without
prompting. 2024. URL https://arxiv.org/abs/
2402.10200.

Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang,
S., Chowdhery, A., and Zhou, D. Self-consistency im-
proves chain of thought reasoning in language models.
arXiv preprint arXiv:2203.11171, 2022.

Wang, X., Caccia, L., Ostapenko, O., Yuan, X., Wang, W. Y.,
and Sordoni, A. Guiding language model reasoning with
planning tokens. arXiv preprint arXiv:2310.05707, 2023.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi,
E., Le, Q. V., Zhou, D., et al. Chain-of-thought prompting
elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837,
2022a.

11

https://openreview.net/forum?id=SGoVIC0u0f
https://openreview.net/forum?id=SGoVIC0u0f
https://arxiv.org/abs/2402.12875
https://arxiv.org/abs/2402.12875
https://huggingface.co/spaces/allenai/ZebraLogic
https://huggingface.co/spaces/allenai/ZebraLogic
https://arxiv.org/abs/2412.17747
https://arxiv.org/abs/2412.17747
https://huggingface.co/datasets/HuggingFaceTB/finemath
https://huggingface.co/datasets/HuggingFaceTB/finemath
https://arxiv.org/abs/2412.09871
https://arxiv.org/abs/2412.09871
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://arxiv.org/abs/2402.10200
https://arxiv.org/abs/2402.10200

Token Assorted: Mixing Latent and Text Tokens for Improved Language Model Reasoning

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi,
E., Le, Q. V., Zhou, D., et al. Chain-of-thought prompting
elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837,
2022b.

Wen, K., Zhang, H., Lin, H., and Zhang, J. From sparse
dependence to sparse attention: Unveiling how chain-of-
thought enhances transformer sample efficiency. arXiv
preprint arXiv:2410.05459, 2024.

Yang, A., Yang, B., Zhang, B., Hui, B., Zheng, B., Yu,
B., Li, C., Liu, D., Huang, F., Wei, H., et al. Qwen2. 5
technical report. arXiv preprint arXiv:2412.15115, 2024.

Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T., Cao, Y.,
and Narasimhan, K. Tree of thoughts: Deliberate problem
solving with large language models. Advances in Neural
Information Processing Systems, 36, 2024.

Yu, L., Jiang, W., Shi, H., Yu, J., Liu, Z., Zhang, Y., Kwok,
J. T., Li, Z., Weller, A., and Liu, W. Metamath: Boot-
strap your own mathematical questions for large language
models. arXiv preprint arXiv:2309.12284, 2023.

Yu, P., Xu, J., Weston, J., and Kulikov, I. Distilling system
2 into system 1. arXiv preprint arXiv:2407.06023, 2024.

Yue, X., Qu, X., Zhang, G., Fu, Y., Huang, W., Sun, H., Su,
Y., and Chen, W. Mammoth: Building math generalist
models through hybrid instruction tuning. arXiv preprint
arXiv:2309.05653, 2023.

Zhu, H., Huang, B., Zhang, S., Jordan, M., Jiao, J., Tian, Y.,
and Russell, S. Towards a theoretical understanding of
the’reversal curse’via training dynamics. arXiv preprint
arXiv:2405.04669, 2024.

12

Token Assorted: Mixing Latent and Text Tokens for Improved Language Model Reasoning

A Experiment Details

A.1 VQ-VAE Model Details

The codebook size |E| is 64 for ProntoQA and ProsQA, 512 for the Keys-Finding Maze, and 1024 for math reasoning
problems. For both encoder fenc and decoder fdec, we use a 2-layer transformer with 4 heads, where the embedding size is
512 and the block size is 512. We set the max sequence to be 2048 for the synthetic dataset experiments and 256 for the
math reasoning experiments.

A.2 Keys-Finding Maze

A.2.1 ENVIRONMENT DETAILS

In this section, we introduce our synthetic keys-finding maze environment. Figure A.1 shows an example maze that consists
of m×m rooms, where the size of each room is n× n (m = 3 and n = 5). The goal of the agent (represented by the black
circle) is to reach the gold diamond using the minimum number of steps. The agent cannot cross the wall. Also, there are
three doors (represented by squares) of different colors (i.e., red, green, and blue) which are closed initially. The agent have
to pick up keys to open the door in the same color. Note that the agent can not carry more than one key at the same time.

Figure A.2 shows an example optimal trajectory of the maze in Figure A.1. The agent first picks up the blue key and opens
the blue door to obtain the red key. Then the agent navigates to the red door and opens it. Finally the agent is able to reach
the objective.

Figure A.1: An example of the keys-finding maze environment.

(a) Phase 1 (b) Phase 2 (c) Phase 3 (d) Phase 4

Figure A.2: An (optimal) trajectory of the maze in Figure A.1. Phase 1: the agent picks up the blue key; Phase 2: the agent
opens the blue door to obtain the red key; Phase 3: the agent carries the red key to the red door; Phase 4: the agent opens the
red door and reaches the objective.

A.2.2 DATASET DETAILS

Our dataset consists of 100k training data points, 500 validation data points, and 300 data points for testing. For each data
point, the structure of the prompt and response is as follows:

13

Token Assorted: Mixing Latent and Text Tokens for Improved Language Model Reasoning

• [Prompt]:
maze size: M ×M
agent: (xa0, ya0),
walls: (x1, y1), (x2, y2), . . .
objective: (xo, yo),
keys: [red key]: (xrk, yrk), . . .
doors: [red door]: (xrd, yrd), . . .

• [Response]:
create-node (xa1, ya1, fa1, ha1),
create-node (xa2, ya2, fa2, ha2),
. . .
agent (xa1, ya1), (xa2, ya2), . . . , (xaT , yaT),

Below, we show the prompt and response for an example training data pint.

Prompt

initial state: maze size: 19x19 wall: (0,0), (0,1), (0,2), (0,3), (0,4), (0,5), (0,6), (0,7), (0,8), (0,9), (0,10), (0,11),
(0,12), (0,13), (0,14), (0,15), (0,16), (0,17), (0,18), (1,0), (1,6), (1,12), (1,18), (2,0), (2,6), (2,12), (2,18), (3,0), (3,6),
(3,12), (3,18), (4,0), (4,6), (4,12), (4,18), (5,0), (5,6), (5,12), (5,18), (6,0), (6,1), (6,3), (6,4), (6,5), (6,6), (6,7), (6,8),
(6,9), (6,10), (6,11), (6,12), (6,13), (6,14), (6,15), (6,16), (6,17), (6,18), (7,0), (7,12), (7,18), (8,0), (8,6), (8,12),
(8,18), (9,0), (9,6), (9,12), (9,18), (10,0), (10,6), (10,12), (10,18), (11,0), (11,6), (11,12), (11,18), (12,0), (12,1),
(12,2), (12,3), (12,4), (12,6), (12,8), (12,9), (12,10), (12,11), (12,12), (12,13), (12,14), (12,15), (12,16), (12,17),
(12,18), (13,0), (13,12), (13,18), (14,0), (14,6), (14,12), (14,18), (15,0), (15,6), (15,12), (15,18), (16,0), (16,6),
(16,12), (16,18), (17,0), (17,6), (17,12), (17,18), (18,0), (18,1), (18,2), (18,3), (18,4), (18,5), (18,6), (18,7), (18,8),
(18,9), (18,10), (18,11), (18,12), (18,13), (18,14), (18,15), (18,16), (18,17), (18,18), agent: (11,5), objective: (1,1),
[red key]: (16,1), [green key]: (16,9), [blue key]: (7,2), [red door]: (12,5), [green door]: (6,2), [blue door]: (12,7)

14

Token Assorted: Mixing Latent and Text Tokens for Improved Language Model Reasoning

Response (CoT and Answer)

create-node: (11,5), heuristics: 14, cost: 0 create-node: (11,4), heuristics: 13, cost: 1 create-node: (11,3), heuristics: 12, cost: 2 create-node: (10,3), heuristics: 11, cost: 3 create-node: (9,3),
heuristics: 10, cost: 4 create-node: (9,2), heuristics: 9, cost: 5 create-node: (8,2), heuristics: 8, cost: 6 create-node: (7,2), heuristics: 7, cost: 7 create-node: (7,2), heuristics: 7, cost: 8 create-node:
(7,3), heuristics: 8, cost: 9 create-node: (7,4), heuristics: 9, cost: 10 create-node: (7,5), heuristics: 10, cost: 11 create-node: (7,6), heuristics: 11, cost: 12 create-node: (7,7), heuristics: 12, cost:
13 create-node: (8,7), heuristics: 13, cost: 14 create-node: (9,7), heuristics: 14, cost: 15 create-node: (10,7), heuristics: 15, cost: 16 create-node: (11,7), heuristics: 16, cost: 17 create-node:
(11,7), heuristics: 16, cost: 18 create-node: (12,7), heuristics: 17, cost: 19 create-node: (13,7), heuristics: 18, cost: 20 create-node: (14,7), heuristics: 19, cost: 21 create-node: (14,8), heuristics:
20, cost: 22 create-node: (15,8), heuristics: 21, cost: 23 create-node: (15,9), heuristics: 22, cost: 24 create-node: (16,9), heuristics: 23, cost: 25 create-node: (16,9), heuristics: 23, cost: 26
create-node: (16,8), heuristics: 22, cost: 27 create-node: (16,7), heuristics: 21, cost: 28 create-node: (15,7), heuristics: 20, cost: 29 create-node: (14,7), heuristics: 19, cost: 30 create-node:
(13,7), heuristics: 18, cost: 31 create-node: (12,7), heuristics: 17, cost: 32 create-node: (11,7), heuristics: 16, cost: 33 create-node: (10,7), heuristics: 15, cost: 34 create-node: (9,7), heuristics:
14, cost: 35 create-node: (8,7), heuristics: 13, cost: 36 create-node: (7,7), heuristics: 12, cost: 37 create-node: (7,6), heuristics: 11, cost: 38 create-node: (7,5), heuristics: 10, cost: 39 create-node:
(7,4), heuristics: 9, cost: 40 create-node: (7,3), heuristics: 8, cost: 41 create-node: (7,2), heuristics: 7, cost: 42 create-node: (7,2), heuristics: 7, cost: 43 create-node: (6,2), heuristics: 6, cost: 44
create-node: (5,2), heuristics: 5, cost: 45 create-node: (5,1), heuristics: 4, cost: 46 create-node: (4,1), heuristics: 3, cost: 47 create-node: (3,1), heuristics: 2, cost: 48 create-node: (2,1), heuristics:
1, cost: 49 create-node: (1,1), heuristics: 0, cost: 50 agent: (11,5), current key: none, remaining key: [red key]: [green key]: [blue key]: remaining door: [red door]: [green door]: [blue door]:
agent: (11,4), current key: none, remaining key: [red key]: [green key]: [blue key]: remaining door: [red door]: [green door]: [blue door]: agent: (11,3), current key: none, remaining key:
[red key]: [green key]: [blue key]: remaining door: [red door]: [green door]: [blue door]: agent: (10,3), current key: none, remaining key: [red key]: [green key]: [blue key]: remaining door:
[red door]: [green door]: [blue door]: agent: (9,3), current key: none, remaining key: [red key]: [green key]: [blue key]: remaining door: [red door]: [green door]: [blue door]: agent: (9,2),
current key: none, remaining key: [red key]: [green key]: [blue key]: remaining door: [red door]: [green door]: [blue door]: agent: (8,2), current key: none, remaining key: [red key]:
[green key]: [blue key]: remaining door: [red door]: [green door]: [blue door]: agent: (7,2), current key: none, remaining key: [red key]: [green key]: [blue key]: remaining door: [red door]:
[green door]: [blue door]: agent: (7,2), current key: [blue key], remaining key: [red key]: [green key]: remaining door: [red door]: [green door]: [blue door]: agent: (7,3), current key:
[blue key], remaining key: [red key]: [green key]: remaining door: [red door]: [green door]: [blue door]: agent: (7,4), current key: [blue key], remaining key: [red key]: [green key]:
remaining door: [red door]: [green door]: [blue door]: agent: (7,5), current key: [blue key], remaining key: [red key]: [green key]: remaining door: [red door]: [green door]: [blue door]:
agent: (7,6), current key: [blue key], remaining key: [red key]: [green key]: remaining door: [red door]: [green door]: [blue door]: agent: (7,7), current key: [blue key], remaining key:
[red key]: [green key]: remaining door: [red door]: [green door]: [blue door]: agent: (8,7), current key: [blue key], remaining key: [red key]: [green key]: remaining door: [red door]:
[green door]: [blue door]: agent: (9,7), current key: [blue key], remaining key: [red key]: [green key]: remaining door: [red door]: [green door]: [blue door]: agent: (10,7), current key:
[blue key], remaining key: [red key]: [green key]: remaining door: [red door]: [green door]: [blue door]: agent: (11,7), current key: [blue key], remaining key: [red key]: [green key]:
remaining door: [red door]: [green door]: [blue door]: agent: (11,7), current key: none, remaining key: [red key]: [green key]: remaining door: [red door]: [green door]: agent: (12,7),
current key: none, remaining key: [red key]: [green key]: remaining door: [red door]: [green door]: agent: (13,7), current key: none, remaining key: [red key]: [green key]: remaining door:
[red door]: [green door]: agent: (14,7), current key: none, remaining key: [red key]: [green key]: remaining door: [red door]: [green door]: agent: (14,8), current key: none, remaining key:
[red key]: [green key]: remaining door: [red door]: [green door]: agent: (15,8), current key: none, remaining key: [red key]: [green key]: remaining door: [red door]: [green door]:
agent: (15,9), current key: none, remaining key: [red key]: [green key]: remaining door: [red door]: [green door]: agent: (16,9), current key: none, remaining key: [red key]: [green key]:
remaining door: [red door]: [green door]: agent: (16,9), current key: [green key], remaining key: [red key]: remaining door: [red door]: [green door]: agent: (16,8), current key: [green key],
remaining key: [red key]: remaining door: [red door]: [green door]: agent: (16,7), current key: [green key], remaining key: [red key]: remaining door: [red door]: [green door]: agent: (15,7),
current key: [green key], remaining key: [red key]: remaining door: [red door]: [green door]: agent: (14,7), current key: [green key], remaining key: [red key]: remaining door: [red door]:
[green door]: agent: (13,7), current key: [green key], remaining key: [red key]: remaining door: [red door]: [green door]: agent: (12,7), current key: [green key], remaining key: [red key]:
remaining door: [red door]: [green door]: agent: (11,7), current key: [green key], remaining key: [red key]: remaining door: [red door]: [green door]: agent: (10,7), current key: [green key],
remaining key: [red key]: remaining door: [red door]: [green door]: agent: (9,7), current key: [green key], remaining key: [red key]: remaining door: [red door]: [green door]: agent: (8,7),
current key: [green key], remaining key: [red key]: remaining door: [red door]: [green door]: agent: (7,7), current key: [green key], remaining key: [red key]: remaining door: [red door]:
[green door]: agent: (7,6), current key: [green key], remaining key: [red key]: remaining door: [red door]: [green door]: agent: (7,5), current key: [green key], remaining key: [red key]:
remaining door: [red door]: [green door]: agent: (7,4), current key: [green key], remaining key: [red key]: remaining door: [red door]: [green door]: agent: (7,3), current key: [green key],
remaining key: [red key]: remaining door: [red door]: [green door]: agent: (7,2), current key: [green key], remaining key: [red key]: remaining door: [red door]: [green door]: agent: (7,2),
current key: none, remaining key: [red key]: remaining door: [red door]: agent: (6,2), current key: none, remaining key: [red key]: remaining door: [red door]: agent: (5,2), current key: none,
remaining key: [red key]: remaining door: [red door]: agent: (5,1), current key: none, remaining key: [red key]: remaining door: [red door]: agent: (4,1), current key: none, remaining key:
[red key]: remaining door: [red door]: agent: (3,1), current key: none, remaining key: [red key]: remaining door: [red door]: agent: (2,1), current key: none, remaining key: [red key]:
remaining door: [red door]: agent: (1,1), current key: none, remaining key: [red key]: remaining door: [red door]:

The prompt describes the maze in a structured language. The maze size M = m(n + 1) + 1 (e.g., in Figure A.1, the
maze size M = 19). The positions of walls are (x1, y1), (x2, y2), . . ., and so on. The position of the agent in time step t is
(xat, yat), where t = 0 corresponds to the initial position The position of the objective is (xo, yo), and the position of keys
and doors in color c (where c = r, g, b) are (xck, yck) and (xcd, ycd), respectively. The response describes an optimal path
(i.e., with minimal total times steps T) for the agent to reach the objective.

A.2.3 MODEL DETAILS

Following Su et al. (2024); Lehnert et al. (2024), we employ a similar encode-decoder transformer architecture with rotary
embeddings and no drop-out. Our model consisted of 6 layers with 3 attention heads, and the embedding size is 64.

A.3 ProntoQA and ProsQA

We used the pretrained GPT-2 model which has the following parameters:

Parameter Value

Number of Layers (Transformer Blocks) 12
Hidden Size (Embedding Size) 768
Number of Attention Heads 12
Vocabulary Size 50,257
Total Number of Parameters 117 million

Table A.1: Hyperparameters of the pretrained GPT-2 model used for ProntoQA and ProsQA.

15

Token Assorted: Mixing Latent and Text Tokens for Improved Language Model Reasoning

A.4 LLM experiments

We use the Llama Cookbook3 codebase to fine-tune the Llama models.

As described in Section 4.2, we use a batch size of 32 with a sequence packing of 4096. We experiment with different
learning rates 10−5, 2.5× 10−5, 5× 10−5, 10−4 and select the one with the lowest validation error. The final choices are
10−5 for Llama-3.2-8B and 2.5× 10−5 for Llama-3.2-1B and Llama-3.2-3B.

B Notations
Table B.1 summarizes the notations we used throughout the paper.

X = P ⊕ C ⊕ S input text sample where ⊕ means concatenation
P prompt of length tp
pi the i-th token of prompt (in text)
C reasoning trace of length tc
ci the i-th token of trace (in text)
S solution of length ts
si the i-th token of solution (in text)
Z the complete latent reasoning traces of length tz
zi the i-th token of latent trace
r = tc/tz compression rate
m number of trace tokens to be replaced by latent tokens during training
X̃ modified input with mixed text and latent tokens

E codebook of VQ-VAE
ei the i-th vector in the codebook, which corresponds to the i-th latent token
d dimension of eis
V vocabulary of text tokens
L chunk size
fenc(·) encodes a chunk of L text tokens to L

r embedding vectors
X̄ = x̄1, . . . , x̄L

r
embedding vectors of X outputted by fenc(·)

q(·) quantization operator that replaces, e.g., x̄1 by its nearest neighbor in E :
g(x̄1) = argminei∈E ∥ei − x̄1∥2

g(·) maps prompt to a d-dimensional embedding vector
fdec(·, ·) decodes L/r quantized embedding vectors in E back to text tokens,

conditioning on prompt embedding generated by g(·)

Table B.1: Mathematical notations used throughout the paper.

3https://github.com/meta-llama/llama-cookbook

16

https://github.com/meta-llama/llama-cookbook

Token Assorted: Mixing Latent and Text Tokens for Improved Language Model Reasoning

C Details of Attention Weights Analysis

C.1 Generated Responses

Question 1

Prompt: What is the positive difference between $120%$ of 30 and $130%$ of 20?

Response of Our Latent Approach:
<boLatent><Latent-code-278> <Latent-code-416><eoLatent> % of 30 and $130%$ of 20. First,
let’s calculate $120%$ of 30: $120%$ of 30 = 1.2 x 30 = 36. Next, let’s calculate $130%$ of 20: $130%$ of 20 =
1.3 x 20 = 26. Now, let’s find the positive difference between 36 and 26: 36 - 26 = 10
The answer is 10.

Response of Baseline (CoT): To find the positive difference between 120% of 30 and 130% of 20, we need to
calculate each value first. 120% of 30 is calculated as 1.2 * 30 = 36. 130% of 20 is calculated as 1.3 * 20 = 26. Now,
we need to find the positive difference between these two values. To do this, we subtract the smaller value from the
larger value: 36 - 26 = 10.
The final answer is 10.

Question 2

Prompt: Mark has $50 in his bank account. He earns $10 per day at his work. If he wants to buy a bike that costs
$300, how many days does Mark have to save his money?

Response of Our Latent Approach: <boLatent> <Latent-code-123> <eoLatent> need to calculate
how much more money he needs to buy the bike and then divide that amount by his daily earnings. The bike costs
$300, and Mark already has $50. So, he needs: $300 (bike cost) - $50 (current savings) = $250 (more money needed)
Mark earns $10 per day. To find out how many days he needs to save, we divide the amount he needs by his daily
earnings: $250 (more money needed) / $10 (daily earnings) = 25 days.
The answer is 25.

Response of Baseline (CoT): To find out how many days Mark needs to save his money, we need to subtract the
cost of the bike from the amount of money he has, then divide the result by the amount he earns per day. Mark has
$50 and wants to buy a bike that costs $300. First, subtract the cost of the bike from the amount of money Mark has:
$50 - $300 = -$250 Since Mark can’t have a negative amount of money, we need to convert the negative amount to a
positive one by adding the cost of the bike to the amount of money Mark has: $50 + $300 = $350 Now, divide the
result by the amount Mark earns per day: $350 / $10 = 35
The final answer is 35.

17

Token Assorted: Mixing Latent and Text Tokens for Improved Language Model Reasoning

D Other Text Generation Examples

Example Generation of Our Latent Approach

Prompt: Evaluate the expression a3 · a2 if a = 5
Generated Text:
<boLatent><Latent-code-130><eoLatent>We can use the rule of exponents that states am·an = am+n.
So, a3 · a2 = a3+2 = a5. Now, we substitute a = 5 into the expression: 55. 55 = 5 · 5 · 5 · 5 · 5 = 3125. The answer
is 3125.

Example Generation of Our Latent Approach

Prompt: Compute
(
15

2

)
.

Generated Text: <boLatent> <Latent-code-888> <Latent-code-744> <Latent-code-196>
<Latent-code-92> <Latent-code-557> <eoLatent> 15!

2!(15−2)! =
15!
2!13! To simplify this expression, we

can cancel out the common factors in the numerator and denominator:
(
15

2

)
= 15×14

2 = 105. The answer is 105.

Example Generation of Our Latent Approach

Question: How many vertical asymptotes does the graph of y = 2
x2+x−6 have?

Answer: <boLatent><Latent-code-773> <Latent-code-514> <eoLatent> the denominator,
which is x2 + x − 6. We can factor this quadratic expression as (x + 3)(x − 2). Now, we can see that the
denominator will be equal to zero when either (x+3) = 0 or (x− 2) = 0. Solving for these values, we get x = −3
or x = 2. Therefore, the vertical asymptotes of the graph of y =
frac2x2 + x− 6 are x = −3 and x = 2. Since there are two distinct values of x that make the denominator equal
to zero, the graph has 2 vertical asymptotes. The answer is 2.

Example Generation of Our Latent Approach

Question: If there exists an ordered numbering of the nodes such that for each node there are no links going to a
lower-numbered node, then there are no directed cycles in a directed graph. True or false?

Answer: <boLatent><Latent-code-526> <eoLatent> a directed graph. A directed cycle is a sequence
of nodes in a graph, where each node is connected to the next node by a directed edge, and the last node is connected
back to the first node by a directed edge. Now, let’s consider the given condition: ”If there exists an ordered
numbering of the nodes such that for each node there are no links going to a lower-numbered node, then there are no
directed cycles in a directed graph.” This condition essentially means that if we number the nodes in a specific way,
and there are no links going to a lower-numbered node, then there are no directed cycles in the graph. To see why
this is true, let’s consider what would happen if there were a directed cycle in the graph. If there were a directed
cycle, then there would be a sequence of nodes where each node is connected to the next node by a directed edge,
and the last node is connected back to the first node by a directed edge. However, if we number the nodes in the way
described, and there are no links going to a lower-numbered node, then this directed cycle would be impossible. This
is because the last node in the cycle would have to be connected to a lower-numbered node, which would violate the
condition. Therefore, if we number the nodes in this way, then there can be no directed cycles in the graph. The
answer is True.

18

Token Assorted: Mixing Latent and Text Tokens for Improved Language Model Reasoning

E Interpreability Examples
To examine the interpretability of the latent-codes, we use the decoder from the trained VQ-VAE to convert the latent-code
back to the text space. In general, it is interpretable. We bolded the decoded part of the text from the latent code, which is
delimited by the <boLatent> ... <eoLatent> tags. In general, we find the latent tokens capture long/verbose sentences
which may trigger useful follow-up thinking pattern.

Example Generation of Our Latent Approach

Prompt: In a 8 fluid ounce bottle of Vitamin Water, there are 125 calories. How many calories would be contained
in a 12 fluid ounce bottle? Express your answer in decimal form.
Generated Text:
<boLatent> To convert the number from in in a 8 ounces <eoLatent> we need to find the ratio of calories
to fluid ounces in the 8 fluid ounce bottle and then multiply it by 12.
First, let’s find the ratio of calories to fluid ounces in the 8 fluid ounce bottle:
Calories per fluid ounce = Total calories / Total fluid ounces
= 125 calories / 8 fluid ounces
= 15.625 calories per fluid ounce
Now, let’s multiply this ratio by 12 fluid ounces to find the total calories in the 12 fluid ounce bottle:
Total calories in 12 fluid ounces = Calories per fluid ounce * Total fluid ounces
= 15.625 calories per fluid ounce * 12 fluid ounces
= 187.5 calories
The answer is 187.5.

Here, in the example above, the decoded latent token ”To convert the number from in in a 8 ounces” captures the core
concept of proportional conversion from the 8-ounce bottle to the 12-ounce bottle. Despite its grammar mistake, it still
precisely states the mathematical operation needed to solve the problem.

Example Generation of Our Latent Approach

Prompt: What is the greatest common divisor of 315 and 108?
Generated Text:
<boLatent>We find the greatest of CD of::63 common find <eoLatent>we can use the Euclidean algorithm.
Here’s how to do it:
1. Divide 315 by 108: 315 = 108 × 2 + 99
2. Divide 108 by 99: 108 = 99 × 1 + 9
3. Divide 99 by 9: 99 = 9 × 11 + 0
Since the remainder is 0, the GCD is the divisor in the last step, which is 9.
The answer is 9.

Here, in the example above, the decoded latent token ”We find the greatest of CD of::63 common find” abstracts the initiation
of the Euclidean algorithm, leading directly into the process that determines the GCD.

19

Token Assorted: Mixing Latent and Text Tokens for Improved Language Model Reasoning

F Additional Experiments
We present results of different approaches for fine-tuning a Llama-3.1-8B model on the DART-MATH (Tong et al., 2024)
dataset. The observations are similar to those we presented in Section 4.2.

Model (Dart-Math) In-Domain Out-of-Domain Average

math GSM8K Fresh-Gaokao-Math-2023 DeepMind-Mathematics College-Math Olympia-Math TheoremQA All Datasets

Llama-3.1-8B
Sol-only 13.3 16.4 0.0 18.2 15.9 4.7 16.9 12.2
CoT 43.1 84.5 30.7 47.8 45.7 10.1 21.2 40.4
iCoT 35.2 61.8 30.0 30.6 37.6 8.3 19.5 31.8
Latent (Ours) 43.2 (↑ +0.1) 83.9 33.3 (↑ +2.6) 44.7 47.1 (↑ +1.4) 13.3 (↑ +3.2) 20.3 40.8 (↑ +0.4)

Table F.1: Our approach surpasses the iCoT and Sol-Only baseline when trained on the DART-MATH dataset (Tong et al.,
2024), while marginally outperforming the CoT baseline.

Model (Dart-Math) In-Domain (# of tokens) Out-of-Domain (# of tokens) Average (# of tokens)

math GSM8K Fresh-Gaokao-Math-2023 DeepMind-Mathematics College-Math Olympia-Math TheoremQA All Datasets

Llama-3.1-8B
Sol-only 10.9 8.1 10.2 8.4 11.2 16.1 16.13 11.6
CoT 522.7 181.0 628.8 343.2 486.3 893.7 648.3 529.1
iCoT 397.1 118.6 440.8 227.9 321.9 614.4 485.7 372.3
Latent (Ours) 489.1(↓ -6.4%) 163.5 (↓ -9.7%) 462.1(↓ -26.5%) 265.6 (↓ -22.6%) 396.3 (↓ -18.5%) 801.3 (↓ -10.3%) 591.3 452.7 (↓ -16%)

Table F.2: The average number of tokens in the generated responses. Our approach generates shorter reasoning traces then
the CoT baseline. ↓ -: Trace length reduction rate compared with CoT.

20

