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Abstract

In constraint-based causal discovery, the existing
algorithms systematically use a series of condi-
tional independence (CI) relations observed in
the data to recover an equivalence class of causal
graphs in the large sample limit. One limitation
of these algorithms is that CI tests lose statistical
power as conditioning set size increases with fi-
nite samples. Recent research proposes to limit the
conditioning set size for robust causal discovery.
However, the existing algorithms require exhaus-
tive testing of all CI relations with conditioning set
sizes up to a certain integer k. This becomes prob-
lematic in practice when variables with large sup-
port are present, as it makes CI tests less reliable
due to near-deterministic relationships, thereby vi-
olating the faithfulness assumption. To address this
issue, we propose a causal discovery algorithm that
only uses CI tests where the conditioning sets are
restricted to a given set of conditioning sets includ-
ing the empty set C. We call such set of CI relations
IC conditionally closed. We define the notion of
C-Markov equivalence: two causal graphs are C-
Markov equivalent if they entail the same set of CI
constraints from IC . We propose a graphical rep-
resentation of C-Markov equivalence and charac-
terize such equivalence between two causal graphs.
Our proposed algorithm called the C-PC algorithm
is sound for learning the C-Markov equivalence
class. We demonstrate the utility of the proposed
algorithm via synthetic and real-world experiments
in scenarios where variables with large support or
high correlation are present in the data. Our source
code is available online at github.com/kenneth-lee-
ch/cpc.

1 INTRODUCTION

Causal inference has played a vital role in many scientific
fields such as biology (Chang et al., 2014; Pearl and Macken-
zie, 2018), economics (Varian, 2016; Hair Jr and Sarstedt,
2021), epidemiology (VanderWeele and Robinson, 2014;
Reinhart et al., 2021) and medical sciences (Rizzi and Ped-
ersen, 1992; Feuerriegel et al., 2024). A flurry of work has
been proposed in machine learning and artificial intelligence
literature to address issues such as fairness (Kusner et al.,
2017; Chiappa, 2019; Wu et al., 2019), generalization (Pe-
ters et al., 2016; Subbaswamy et al., 2019; Ilse et al., 2021;
Von Kügelgen et al., 2021), interpretability (Jung et al.,
2022; Rohekar et al., 2024), and data privacy (Binkyte et al.,
2024) by formalizing the data-generating process as a struc-
tural causal model (SCM) (Pearl, 2009a). Directed acyclic
graphs (DAGs), also known as causal graphs, are used to
model causal relations among a set of random variables.
Particularly, an SCM induces a causal graph by assigning a
set of endogenous variables as the parents for each observed
variable. The significance of causal inference lies in its abil-
ity to elucidate the effects of interventions or treatments
(Pearl, 1995; Shpitser and Pearl, 2008; ?; Bareinboim and
Pearl, 2016). Estimating these effects from observational
data hinges on the causal relationships among variables
within a system, necessitating a causal graph for effectively
addressing most causal inference tasks.

There are many ways to discover a causal graph about a
system. The golden standard is to conduct randomized con-
trolled trials (Keum et al., 2019; Cloyd et al., 2020; Prete
et al., 2018). However, randomized experiments may not
be feasible or may even be unethical. For instance, there
may not be enough interventional samples (Harris et al.,
2006). Some experiments may pose risks of concern; for in-
stance, death, irreversible damage, and temporary disability
(Miller and Brody, 2002). For a small and well-established
domain, expert knowledge may still be feasible. However,
solely relying on domain knowledge can be prohibitively
expensive in large and complex systems (Yang et al., 2023).
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Also, observational data is usually more accessible than ex-
perimental data in many domains. Hence, learning a causal
graph about the variables in a system from observational
data is important.

Related work. Causal discovery aims to recover causal
graphs from observational data. Constraint-based causal
discovery algorithms utilize a series of conditional indepen-
dence (CI) tests with graphical orientation rules to learn
a representation known as the Markov equivalence class,
which represents a set of causal graphs that have the same
CI constraints in the large sample limit (Spirtes et al., 2001;
Zhang and Spirtes, 2003; Cai et al., 2022). Alternatively,
other methods are available, such as exploiting asymmetry
in the distributions (Shimizu et al., 2006, 2011), learning ex-
ogenous variables with minimum entropy (Kocaoglu et al.,
2017; Compton et al., 2020), and score-based methods that
greedily search the space of possible DAGs. The score-
based methods output a DAG within a Markov equivalence
class by optimizing a regularized score function (Chicker-
ing, 2002, 2020; Claassen and Bucur, 2022). Additionally,
hybrid algorithms blend constraint-based and score-based
approaches (Tsamardinos et al., 2006; Gasse et al., 2014;
Raskutti and Uhler, 2018; Lam et al., 2022; Guo et al., 2022),
while gradient-based methods formulate causal discovery
as a continuous optimization problem (Zheng et al., 2018;
Yu et al., 2019; Ng et al., 2020, 2022). Order-based meth-
ods cast causal discovery as learning the optimal ordering
of variables to reduce search space (Schmidt et al., 2007;
Xiang and Kim, 2013; Bühlmann et al., 2014; Wang et al.,
2021). Each type of method has its limitations. For instance,
a significant issue with score-based approaches is that the
search space can grow exponentially with the number of
variables, especially if the models computed are complex.
Meanwhile, gradient-based methods struggle with solving
nonconvex optimization problems. Constraint-based meth-
ods struggle with limited data as CI tests are prone to have a
high false positive rate, especially when the conditioning set
is large (Wille and Bühlmann, 2006; Shah and Peters, 2020).
Due to the sensitivity of CI tests to sample noise, several
ideas have been proposed to enhance the accuracy of the
algorithm outputs, including ensuring the output’s indepen-
dence from the sequence of CI tests conducted (Colombo
et al., 2014), relaxing model assumptions (Ramsey et al.,
2006), ensuring the consistency of conditioning sets used in
CI tests (Li et al., 2019), and characterizing and learning of
causal graphs based on small conditioning sets (Wienöbst
and Liskiewicz, 2020; Kocaoglu, 2023). Building on pre-
vious research that explores learning causal graphs with
small conditioning sets, our paper aims to further relax the
requirement of exhausting all CI relations up to degree k.
We achieve this by employing a set of conditionally closed
CI tests, which is based on a specified collection of condi-
tioning sets C, including the empty set.

To underscore the importance of learning causal graphs

from a flexibly chosen set of CI relations, we note the preva-
lence of scenarios where variables with large support and
high correlation are present in the data. For example, when
discrete variables in the observed data have large support
(e.g., numerous states), performing CI tests on the entire
dataset essentially slices the dataset according to the states
of the variables in the conditioning set. This fragmenta-
tion can rapidly diminish statistical power, making some CI
tests unreliable. Another issue in using CI tests for learn-
ing causal graphs is the problem of high correlation. For
instance, when multicollinearity is present in the data, con-
ducting a Fisher’s Z test on X and Y given Z where X and
Z are highly correlated can lead to incorrect conclusions
about the dependence between X and Y . Learning causal
graphs with a specific set of conditioning sets allows the
flexibility to bypass unreliable CI tests, which can be antici-
pated by examining the correlations or the number of states
of the variables in the data beforehand. Motivated by these
examples, this paper aims to characterize and learn causal
graphs using a collection of conditioning sets.

Our results. In this paper, we propose learning causal
graphs using CI tests based on a collection of condition-
ing sets C, allowing us to flexibly ignore some CI tests. This
flexibility helps address unreliable CI tests in finite samples
or with variables having large support, particularly when
near-deterministic relationships in the data may violate the
faithfulness assumption. We call CI constraints where the
conditioning sets are restricted to C the conditionally closed
CI constraints. Two causal graphs are said to be C-Markov
equivalent if they entail the same conditionally closed CI
constraints. We propose the C-closure graphs that entail the
same conditionally closed CI constraints and preserve the
ancestral causal relations as the causal graph. We propose a
sound constraint-based causal discovery algorithm for learn-
ing the C-Markov equivalence class from observational data.
We present a graphical representation called C-essential
graph to represent this equivalence class. We demonstrate
the utility of the proposed algorithm via both synthetic and
real-world experiments in scenarios where variables with
large support and high correlation are present.

2 BACKGROUND

In this section, we give the most relevant definitions and
relevant assumptions from graphical causal models literature
(Pearl, 2009b). We leave the basic graph terminology in
Appendix B. We use boldface capital letters to denote a set
of variables. We assume that there is no latent confounder
or selection bias relative to the set of observed variables.

Definition 2.1 (d-separation). In a DAG D, a path p be-
tween vertices X and Y is d-connecting (active) relative to
a set of vertices Z(X,Y ̸∈ Z) if (i) every non-collider on p
is not in Z and (ii) every collider on p is an ancestor of some
Z ∈ Z. If there is no d-connecting path between X and Y



relative to Z, we say X and Y are d-separated relative to Z,
denoted as (X ⊥⊥ Y |Z)D and all paths between X and Y
are blocked by Z.

Let P be a joint probability distribution over a set of random
variables V. Let X, Y, and Z be subsets of V . We use the
notation (X ⊥⊥ Y |Z )P to denote that X is conditionally
independent of Y given Z in P .

Assumption 2.2 (Causal Markov condition). Given a set
of variables whose causal structure can be represented by a
DAG D, every variable is probablistically independent of
its non-descendants conditional on its parents in D.

Assumptions 2.2 give us the following relation between
d-separation and conditional independence (Pearl, 2009b;
Spirtes et al., 2001; Heckerman et al., 1999).

Proposition 2.3 (Pearl (2009b)). Let P be a joint distribu-
tion over a set of variables V on a causal graph D. For any
subsets X,Y,Z ⊆ V, X and Y are d-separated relative to
Z in D implies X is conditionally independent of Y given
Z in P , i.e.

(X ⊥⊥ Y |Z )D ⇒ (X ⊥⊥ Y |Z )P (1)

Assumption 2.4 (Causal faithfulness assumption). A distri-
bution P is called faithful to a causal graph D = (V,E) if
and only if for disjoint subsets X,Y,Z ⊂ V

(X ⊥⊥ Y |Z )P ⇒ (X ⊥⊥ Y |Z )D (2)

Assumption 2.4 is a typical assumption in constraint-based
causal discovery. It assumes only the CI relations induced
by d-separation are observed from data. Some existing al-
gorithms have relaxed this assumption (Raskutti and Uhler,
2018; Wienöbst and Liskiewicz, 2020; Kocaoglu, 2023).
Later, we will also weaken this assumption as we are only
given a collection of conditioning sets for learning causal
graphs. In general, constraint-based algorithms can only
learn up to an equivalence class of models, a set of DAGs
that induce the same conditional independencies via d-
separation, which gives the following definition.

Definition 2.5 (Markov equivalence). Two DAGs D1, D2

with the same set of vertices are Markov equivalent if for
any three disjoint set of vertices X,Y,Z, X and Y are d-
separated by Z in D1 if and only if X and Y are d-separated
by Z in D2. The set of DAGs that encode the same set
of conditional independence induced only by the causal
Markov assumption is called the Markov equivalence class.

Kocaoglu (2023) extended the notion of Markov equiva-
lence to k-Markov equivalence by restricting the cardinality
of the conditioning set Z up to some integer k, i.e., |Z| ≤ k.
The set of DAGs that belong to the same k-Markov equiv-
alence class entails the same set of CI statements up to

Q1 Q2 Q3 Q4 Q5

0 10 1 5 1

1 10 1 5 0

1 10 0 5 0

1 10 0 5 1

0 10 1 5 0

0 10 1 5 0

. . . . . . . . . . . . . . .

Figure 1: An example where learning causal graphs from a collec-
tion of conditioning sets is desired. A survey dataset consists of
some categorical variables, e.g. Q2, Q4, that show most partici-
pants respond in the same way, creating highly correlated variables
that pose challenges in testing conditional independence.

degree k. Kocaoglu (2023) proposed an algorithm called
k-PC to learn the k-Markov equivalence class of DAGs.
They showed that this problem is equivalent to learning the
Markov equivalence class of a related graphical representa-
tion known as k-closure graphs. At a high level, a k-closure
graph is a mixed graph constructed from a DAG to capture
CI statements of order up to k. The Markov equivalence
class of k-closure graphs is represented by a k-essential
graph. Since our work builds on k-PC, we briefly review its
core ideas. k-PC begins with a complete undirected graph
with circle marks on both ends of each edge. Each circle
mark represents that there exists a k-closure graph with a
tail mark and another k-closure graph with an arrowhead.
k-PC then proceeds to test every conditional independence
relation up to order k. Note that k-closure graph is a max-
imal ancestral graph (MAG) according to Lemma 3.8 in
Kocaoglu (2023). Then, it orients the unshielded collider
for all unshielded triples whenever the middle node Z in the
triple is not found in any conditioning set Z of the CI state-
ments that involve the other two variables X,Y e.g., Z ̸∈ Z
for any (X ⊥⊥ Y |Z)P . Then, k-PC will apply some of the
orientation rules that are used in the well-celebrated FCI
algorithm Zhang (2008b). Finally, k-PC applies some new
orientation rules that are specifically designed for learning a
k-essential graph, as shown by Algorithm 4 in Appendix A.

3 LEARNING CAUSAL GRAPHS FROM A
CONDITIONALLY CLOSED SET OF CI
RELATIONS

We begin by presenting an example to showcase the util-
ity of learning causal graphs from a conditionally closed
set of CI relations. Consider a scenario in which survey re-
sults have been collected to analyze the causal relationships
among observed variables. As shown by Figure 1, the survey
primarily consists of categorical variables. Some questions,
such as Q2, Q4, involve many choices for participants to
choose from and the majority of the participants tend to



select the same answer. This results in a dataset that consists
of variables with large support and high correlation, pos-
ing challenges for testing conditional independence. Similar
challenges arise in other domains, such as bioinformatics
(Ahmed et al., 2018) and finance (Ledoit and Wolf, 2003).
Hence, it is desirable to choose which variable to condition
on for constraint-based causal discovery.

To take the first step in tackling this challenge, we define a
set of CI relations being conditionally closed by restricting
the conditioning sets to a collection of conditioning sets C.

Definition 3.1 (Conditionally Closed Sets of CIs). For a
DAG D = (V,E), let I = {Ii}i∈[k] be a set of CI state-
ments of the form Ii = (X,C, Y )i, i.e., (X ⊥⊥ Y |C) or
(X ⊥̸⊥ Y |C), where X,Y ∈ V,C ⊂ V, k ∈ N. I is condi-
tionally closed relative to C, denoted as IC , if there exists
a set C ⊂ P(V), where P(V) is the power set of V, that
satisfies the following

1. ∅ ∈ C and

2. If there exists X,Y ∈ V such that (X,C, Y ) ∈ I,
then (A,C, B) ∈ I for all A,B ∈ V and for all
C ∈ C.

Intuition of Definition 3.1. For any conditioning set C in
C, all CI relations with the conditioning set C must be fully
observed from data. C must at least include the empty set.

Throughout this work, we use C to denote some sets that
satisfy the conditions 1, 2 in Definition 3.1. We also define
a set of DAGs that are Markov equivalent based on the set
of CI relations restricted to C.

Definition 3.2 (C-Markov equivalence). Two DAGs D1, D2

are C-Markov equivalent if for any three disjoint subsets
X ⊂ V, Y ⊂ V,C ∈ C, X and Y are d-separated by C
in D1 if and only if X and Y are d-separated by C in D2.
We denote two DAGs D1, D2 that are C-Markov equivalent
as D1 ∼C D2.The set of DAGs that encode the same IC is
called the C-Markov equivalence class.

3.1 DIFFERENCES BETWEEN A MARKOV
EQUIVALENCE CLASS AND A C-MARKOV
EQUIVALENCE CLASS

Verma (1991) has shown that two DAGs are Markov equiv-
alent if and only if they share the same skeleton and un-
shielded colliders (see Theorem B.9 in Appendix B). We
now give an example to show that two DAGs that share the
same d-separation statements restricted to C do not have
the same skeleton and the same set of unshielded colliders.
We use Figure 2 to illustrate the difference between the
Markov equivalence class and the C-Markov equivalence
class. As shown by Figures 2(a) and 2(b), both D and D′

have different skeletons and different sets of unshielded
colliders. Nonetheless, D and D′ are C-Markov equivalent

when C = {∅, {Y }} because both D and D′ entail the same
CI statement of degree 0 and the same CI statements with
conditioning set {Y }.

Our main contribution is to extend an existing algorithm
called k-PC (Kocaoglu, 2023) from learning causal graphs
based on CI relations with conditioning set sizes up to k1 to
learning causal graphs based on IC (see Appendix A for the
pseudocode of k-PC). All proofs can be found in Appendix
C. Following a similar framework to (Kocaoglu, 2023), we
have the following auxiliary representation to facilitate the
characterization of C-Markov equivalence class. We call
this C-closure graph, which is similar to ancestral graphs
but without latent variables (Richardson and Spirtes, 2002).

Definition 3.3 (C-covered). Given a DAG D = (V,E) and
a set C, a pair of variables X,Y is said to be C-covered if
there exists no separating set C in C to d-separate X and Y
in D, i.e., ̸ ∃C ∈ C s.t. (X ⊥⊥ Y |C)D.

Definition 3.4 (C-closure). For a DAG D and a set C, the
C-closure of D, denoted as SC(D), is a mixed graph that
has the following properties:

1. If: X,Y are C-covered in D
(i) if X ∈ AnD(Y ), then X → Y in SC(D), (ii)
if Y ∈ AnD(X), then Y → X in SC(D), (iii) else
X ↔ Y in SC(D).

2. Else: X,Y are not adjacent in SC(D).

Intuition of Definition 3.4. When two variables X,Y are C-
covered and none of them is an ancestor of another, it is as if
there exists a confounder between them that is not observed,
resulting in X ↔ Y . When one is an ancestor of another,
C-closure graphs preserve this ancestral relationship. Fig-
ures 2(c) and 2(d) show an example of C-closure graphs. As
C-closure graphs are ADMGs, they have the same proba-
bilistic interpretation as ancestral graphs via m-separation.
The following lemma gives the relationship between the CI
statements entailed by a DAG and the CI statements entailed
by a C-closure graph.

Lemma 3.5. C-closure graph SC(D) of a DAG D en-
tails the same d-separation statements conditioned on any
C ∈ C as the DAG, i.e., (X ⊥⊥ Y |C)D ⇔ (X ⊥⊥
Y |C)SC(D),∀C ∈ C.

As shown by Figures 2(a) and 2(b), given a conditional
closed set C = {∅, {Y }}, we see that W and Q are d-
separated by Y in both D and D′. This d-separation state-
ment also holds in their respective C-closure graphs SC(D)
and SC(D′) as shown by Figures 2(c) and 2(d). All pair-
wise marginal dependencies also hold in both D and D′ and

1The first algorithm that learns causal DAGs from CIs up
to order k with a full analysis of its correctness is called LOCI
(Wienöbst and Liskiewicz, 2020).
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(a) D
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(b) D′
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(c) SC(D)

Z Y Q

W J

(d) SC(D′)

Z Y Q

W J

(e) εC(D)

Figure 2: An example shows the difference between a Markov equivalence class and a C-Markov equivalence class, where C = {∅, {Y }}.
(a)-(b): two C-Markov equivalent DAGs, i.e., D ∼C D′. (c)-(d): two Markov equivalent C-closure graphs SC(D),SC(D′). (e): the
C-essential graph of D.

Algorithm 1 C-PC

input Observational data V, a conditionally closed set C,
CI tester

1: Initiate a complete graph M among the set of observed
variables with circle edge o—o.

2: Find separating sets SX,Y for every pair X,Y ∈ V by
conditioning on C ∈ C.

3: Update M by removing the edges between pairs that
are separable.

4: Orient unshielded colliders of M : For any induced
subgraph Xo—oZo—oY or Xo → Zo—oY or
Xo—oZ ← oY , set Xo→ Z ← oY for any non-
adjacent pair X,Y where SX,Y does not contain Z.

5: M ← FCI_Orient(M ) {Algorithm 5 in Appendix A}
6: M ← kPC_Orient(M ) {Algorithm 4 in Appendix A}
7: return M

their respective C-closure graphs. Similar to the result given
by Theorem B.9, we can also check whether two DAGs
are C-Markov equivalent by verifying whether their respec-
tive C-closure graphs share the same set of skeletons and
unshielded colliders.

Theorem 3.6. Two DAGs D1, D2 are C-Markov equivalent
if and only if SC(D1) and SC(D2) are Markov equivalent.

From Figures 2(a) and 2(b), given C = {∅, {Y }}, we see
that D1 and D2 are C-Markov equivalent and SC(D1) and
SC(D2) are Markov equivalent due to Theorem 3.6. Similar
to the idea of using all CI statements to learn a Markov
equivalence class of DAGs (Spirtes et al., 2001), our goal is
to conduct CI tests only by using IC to learn the C-Markov
equivalence class of DAGs, that is, the Markov equivalence
class of C-closure graphs. We do so by using the following
edge union operation to characterize the Markov equiva-
lence class of C-closure graphs.

Definition 3.7 (edge unions: —, o—o, o → (Kocaoglu,
2023)). The edge union operations of a set of C-closure
graphs are defined as: (i) X — Y := X → Y ∪X ← Y ,
(ii) X o—o Y := X → Y ∪ X ← Y ∪ X ↔ Y , (iii)
X o→ Y := X → Y ∪X ↔ Y .

Definition 3.8 (C-essential graph). For any DAG D, the
edge union of all C-closure graphs that are Markov equiva-

Algorithm 2 Heuristic Search on C
input Observational data V, number of samples per entry

in the contingency table k (default is 5)
1: Discretize the dataset. Let C = {{∅}}
2: for Z ⊆ V, |Z| > 0 do
3: for X,Y ∈ V \ Z do
4: Construct contingency tables for X,Y given Z
5: if All entries have more than k samples in each

table then
6: Mark Z as “reliable".
7: if Z is “reliable" for more than half of the pairs X,Y

then
8: Add Z to C
9: return C

lent to SC(D) is called the C-essential graph of D, denoted
as εC(D).

To understand the edge union operation in Definition 3.7
and its connection to the construction of the C-essential
graph, consider two Markov equivalent C-closure graphs
SC(D),SC(D′) shown by Figures 2(c) and 2(d). We can
take the union of the edge Z ↔ Y in SC(D) and the edge
Z → Y in SC(D′) to derive the edge Zo→ Y in the C-
essential graph shown in Figure 2(e). From both Definition
3.7 and Definition 3.8, we see that a directed edge→ appears
in a C-essential graph only if such directed edge appears
in all C-closure graphs that are Markov equivalent. It is
important to know the difference between the edges o—o
and — from a causal viewpoint. The former says that there
exists a C-closure graph in the equivalence class where two
variables cannot be a cause of each other. The latter indicates
that there exists no C-closure graph in the equivalence class
where a bidirected edge exists between the two. Note that
any edge that appears in the C-essential graph may not be
present in the true DAG, regardless of the circle marks. It is
because some separating sets that are required to d-separate
two variables may not appear in C.

Assumption 3.9 (C-faithfulness). For a given set C and a
DAG D = (V,E), for any X,Y ∈ V and any C ∈ C, X
and Y are conditionally independent given C if and only if
they are d-separated given C in D.

Under Assumption 3.9, we present an algorithm for learning



causal graphs from a conditionally closed set of CIs. We call
this algorithm C-PC and it is shown in Algorithm 1. Next,
in Theorem 3.11, we prove that C-PC is sound for learning
C-essential graphs. We show that the properties of k-PC
(Kocaoglu, 2023) can be extended to the setting where the
conditioning sets are restricted to those that are given by
a set C. For details, please see Appendix C. We also show
that C-PC is sound and complete for learning the partial
ancestral graph (PAG) of the C-closure graph of any DAG
D in Corollary 3.10.

Corollary 3.10. C-PC without Step 6 is sound and complete
for learning PAG(SC(D)) of any DAG D.

Theorem 3.11. C-PC algorithm is sound for learning C-
essential graph given a conditional independence oracle un-
der the causal Markov and C-faithfulness assumptions, i.e.,
if C-PC returns M , we have εC(D) ⊆M ⊆ PAG(SC(D))

3.2 DISCUSSION ON FINDING THE
CONDITIONALLY-CLOSED SET C

We present a heuristic to find the conditionally-closed set
C in Algorithm 2. The intuition behind Algorithm 2 is as
follows. If each entry in the contingency table constructed
for a pair of variables is greater than 5 given C for all c
such that C = c, we call C reliable. If C is reliable for
more than a half of all pairs of variables, we include C in
the conditionally-closed set. This heuristic is inspired by
Agresti (2012) for the rule of expected frequencies being
at least 5 as a guideline to ensure the accuracy of the chi-
square approximation, especially for small sample sizes. We
note that our main algorithm, C-PC (see Algorithm 1), is
not limited to a specific CI test. This heuristic potentially
skips over some conditioning sets due to inefficient samples
for us to rely on the CI test result.

3.3 AN EXAMPLE OF THE EXECUTION OF C-PC

In this section, we provide an example of the execution
of Algorithm 1. Suppose the ground truth is a DAG D
shown in Figure 2(a). We will continue to let C = {∅, {Y }}.
After Step 4, we see that Algorithm 1 orients unshielded
colliders according to C as shown by Figure 3(a). Then,
C-PC follows the same orientation rules in k-PC shown by
Algorithm 2 in the Appendix A. Note that these orientation
rules do not depend on k in k-PC. By Step 5, C-PC applies
R1 as in FCI orientation rules (Zhang, 2008a) to orient
Y o—oQ as Y → Q (see Step 1 in Algorithm 2 in Appendix
A). It also removes the circle mark at J due to R11 in
Algorithm 2 since Y is not adjacent to any member with
which J has an edge o—o connected. Finally, C-PC applies
R12 in Algorithm 2 to the edge Wo—oZ and orient it as
W—Z, giving the final output shown in Figure 3(c), which
is consistent with the C-essential graph of D in Figure 2(e).

3.4 DIFFERENCES BETWEEN PC, k-PC, AND
C-PC

A natural question arises: how is C-PC different from the
PC algorithm (Spirtes et al., 2001) if one can assume condi-
tional dependence given a subset that is not in C? In general,
PC (Spirtes et al., 2001), k-PC (Kocaoglu, 2023), and the
proposed C-PC begin with a complete graph, then for any
two adjacent variables A,B, the PC algorithm will test
whether A and B are conditionally independent given Z for
any subset Z in the adjacency set of A or in the adjacency
set of B. For k = 1, k-PC will test whether A and B are
conditionally independent given any conditioning set up to
size 1. Suppose Y is in one of the adjacency sets. Given
C = {∅, {Y }}, the C-PC will test whether (A ⊥⊥ B)P and
(A ⊥⊥ B|Y )P . In terms of characteristics, k-PC subsumes
PC and C-PC subsumes both k-PC and PC by design as one
can specify C to include all conditioning sets of sizes up to
k as well.

Here, we will use the same example shown by Figure 3 to
illustrate their differences. When PC assumes conditional
dependence for the conditioning sets that are not in C. It
will output the result shown in Figure 3(d). Note that PC
will orient the edge (Z, Y ) as Z → Y . This is incorrect
as Z does not cause Y in the ground truth D in Figure
2(a). Unlike k-PC, C-PC does not need to exhaust all CI
statements of order up to k for any k > 0. As shown by
Figure 3(e), k-PC (Algorithm 3 in Appendix A) removes
the edge (Z, Y ) by Step 3 since it also conducts CI tests
with the conditioning set {W} for k = 1.

We observe that constraint-based algorithms often face chal-
lenges with false discovery rates (FDR) due to sequential
hypothesis testing Li and Wang (2009). We can compare
PC, k-PC and C-PC in terms of the number of CI tests
with the same example based on Figure 3. Since we restrict
PC to only conduct CI tests based on the conditionally-
closed set C, both PC and C-PC will have the same num-
ber of CI tests in this case, which is a total of 14 since
there will be

(
5
2

)
marginal tests plus 4 more CI tests:

(Z ⊥⊥ W |Y ), (Z ⊥⊥ Q|Y ), (W ⊥⊥ Q|Y ), (J ⊥⊥ Q|Y ).
If we do not restrict PC to conduct CI tests based on C,
PC algorithm will have a much larger number of CI tests
as it will conduct CI tests based on conditioning sets of
size from 0 up to at most |V| − 2 by design. Specifically,
for the best case in PC in the example with faithfulness
assumption, it will conduct all

(
5
2

)
= 10 marginal tests, with

(Z ⊥⊥ Y |W ), (Z ⊥⊥ Q|W ), (J ⊥⊥ Q|Y ), (W ⊥⊥ Q|Y ).
Then, there will be 4 edges left: (Z,W ), (W,Y ), (J, Y ),
(Y,Q). For each edge, PC will conduct the following num-
ber of tests based on the cardinality of the adjacency sets
of the pair: (Z,W ) : 1, (W,Y ) : 7, (J, Y ) : 3, (Q,Y ) : 3.
Therefore, the total number of CI tests for PC is 28 tests in
the best case. Regarding k-PC (k = 1), for the best case (as
there is randomness due to the order of CI tests), it will con-



Z Y Q

W J

(a) M after Step 4

Z Y Q

W J

(b) M after Step 5
with R11 applied
to J

Z Y Q

W J

(c) M after Step 5
with R12 with ap-
plied to W

Z Y Q

W J

(d) PC (Spirtes
et al., 2001) output
with CI tests based
on C

Z Y Q

W J

(e) k-PC (Ko-
caoglu, 2023)
output with k = 1

Figure 3: (a)-(c): Given C = {∅, {Y }}, this is an example of the execution of Algorithm 1. Particularly, 3(c) shows the output of C-PC
for learning the ground truth in Figure 2(a). (d): The output of PC algorithm when the conditioning sets are restricted to C and assume
conditional dependence whenever the conditioning sets are not in C for learning the ground truth in Figure 2(a). (e): The output of k-PC
after using all CI tests with conditioning sets of size up to 1 for learning the ground truth in Figure 2(a).

duct all marginal tests
(
5
2

)
= 10, with (Z ⊥⊥ Y |W ), (Z ⊥⊥

Q|W ), (J ⊥⊥ Q|Y ), (W ⊥⊥ Q|Y ), plus another 12 tests as
there will be 4 edges left in the learned skeleton and k-PC
will test each pair conditioning on each of the 3 nodes. Thus,
the total is 26 CI tests.

Since we assume only C-faithfulness, we assume all CI
conducted based on C are correct. Therefore, k-PC, (k = 1)
may remove more edges as it faces the 4 remaining edges
in the learned skeleton after conducting the first 14 tests
mentioned previously due to unreliable CI tests with the
conditioning sets that are not in C. By reducing the number
of hypotheses, our method demonstrates strong potential for
effective FDR control in practical applications. We leave
this interesting direction for future work.

When the conditionally closed set C is defined to be small,
the proposed algorithm C-PC run time complexity is lower
than that of the PC algorithm as it does not condition on
all subsets for testing conditional independence. C-PC can
also achieve the same complexity as k-PC for k = 0, which
only conducts

(
n
2

)
many CI tests. Note that our algorithm

allows the selection of a particular conditioning set beyond
the empty set, significantly improving its time complexity
compared to k-PC for any k > 0, which requires exhausting
all conditioning sets of size up to k.

3.5 TIME COMPLEXITY OF C-PC

We now discuss the complexity of C-PC. Let n be the num-
ber of nodes and m be the number of variables that we do not
want to condition on. Here, we give the complexity of C-PC
based on the purpose of setting C. For example, if {V1} ̸∈ C,
then V1 should not be in any member of C either. Hence,
the largest plausible conditioning set size is n − m − 2
in C. Given our results, we can test whether two DAGs
are C-Markov equivalence by constructing two C-closure
graphs and checking whether they are Markov equivalent. It
would takeO(nn−m−2) to determine whether two variables
are adjacent based on the complexity of searching through(

n− 2
n−m− 2

)
possible conditioning sets. Hence, we can

roughly bound the complexity of C-PC by O(n2(n−m−2))
since we will not be searching for separating set beyond the
O(nn−m−2) subsets of size at most n−m− 2.

3.6 PC-LIKE ADJACENCY SEARCH STRATEGY
VIOLATES THE SOUNDNESS OF C-PC

It is natural to consider applying the adjacency search strat-
egy from the PC algorithm to C-PC. However, we present
an example where directly adopting a PC-like adjacency
search strategy Spirtes et al. (2001) leads to a violation of
the soundness of C-PC. The adjacency search strategy is, for
each adjacent pair (X,Y ), the algorithm checks each subset
of the adjacency set of X and the adjacency set of Y for
finding any separating set of size up to k. Here, we use Fig-
ure 4 as an example to show why this strategy is not sound.
In this example, suppose that {E,C,X} and {G,U, V } are
in C. Note that if (A ⊥⊥ G|E,C,X)P is observed before
testing (A ⊥⊥ X|G,U, V )P , using the PC-like adjacency
search strategy in C-PC will orient X → A ← B, which
in turn will orient A↔ B since (X ⊥⊥ B|G,U, V )P . Note
that if A ↔ B is oriented, that implies that A cannot be a
parent of B nor B can be a parent of A in the true DAG.
Therefore, using this PC-like adjacency search strategy will
violate the soundness of C-PC.

3.7 DOWNSTREAM TASKS FOR USING
C-ESSENTIAL GRAPHS

In this section, we discuss potential downstream applica-
tions of C-essential graphs. One promising direction is ex-
ploring the identifiability of causal effects under C-Markov
equivalence, potentially by extending results from partial
identification Jaber et al. (2019). Other applications include
identifying invariant predictors under partial structures for
distribution shifts Subbaswamy and Saria (2020) and per-
forming root cause analysis. Additionally, the extra edge
orientations provided by C-PC could improve the efficiency
of IDA-type algorithms Fang and He (2020).



Figure 4: This is a DAG taken from Figure 1b in Schubert et al.
(2025). If (A ⊥⊥ G|E,C,X)P is observed before testing (A ⊥⊥
X|G,U, V )P , using the PC-like adjacency search strategy in C-
PC will orient X → A ← B, which in turn will orient A ↔ B
since (X ⊥⊥ B|G,U, V )P . Note that if A↔ B is oriented, that
implies that A cannot be parent of B nor B can be a parent of A
in the true DAG, which violates the soundness of C-PC.

4 EXPERIMENTS

In this section, we present a synthetic experiment and a real-
world experiment that involves missing data. The purpose
of these experiments is to demonstrate how C-PC can avoid
relying on some CI tests that are likely to be unreliable due
to finite sample under large support of the conditioning set,
which can violate the faithfulness assumption in practice.

4.1 SYNTHETIC EXPERIMENT: CONDITIONING
ON VARIABLES WITH LARGE SUPPORT

Experimental Setup. We randomly generate 100 causal
DAGs of size 30. Each DAG has 60 randomly assigned
edges. For each DAG, we sample the dataset three times
based on a conditional probability table that is randomly
assigned. Each discrete variable is randomly assigned to
have either 2 or 30 states, with probabilities of 0.7 and 0.3,
respectively. We include the following baselines: k-PC (Ko-
caoglu, 2023), GES (Chickering, 2002), GRaSP (Lam et al.,
2022). Both GES and GRaSP are set to use BDeu scores. For
k-PC and C-PC, we use chi-squared tests and set α = 0.05.
For C-PC, we employ Algorithm 2 as a heuristic to find the
conditionally closed set C and bound any conditioning set
in C to be of size up to 1 to limit the runtime of Algorithm 2.
We repeat the experiment with sample sizes of {500, 2000}.
Performance is evaluated based on the F1 scores for the
skeletons F1skeleton, tails F1tail and arrowheads F1arrowhead
against the true essential graph. We implement GES and
GRaSP by using causal-learn (Zheng et al., 2024) in
Python. The data is generated via pyAgrum (Ducamp et al.,
2020) in Python. We also provide the two-sample t-test re-
sults of the average F1-skeleton, F1-tail and F1-arrowhead
scores. We also include an additional result about a variant
of C-PC named C-PC-Path in Appendix E.2, which only con-

ducts CI tests for a pair of variables X,Y when at least one
member in the conditioning set is on some paths between
X and Y in the learned skeleton (Li et al., 2019).

Discussion. As shown by Figure 5, we see that C-PC (blue)
improves more quickly in terms of F1skeleton and F1arrowhead
when the sample size increases and outperforms other base-
lines when the sample size is 2000. Based on Figure 5(a)
and 5(d), we note that k-PC suffers from conditioning on
variables that have a high number of states for k > 0 while
C-PC performs similarly with k-PC with k = 0. This is
because the conditionally closed set includes an empty set
such that C-PC must conduct all marginal CI tests and C-PC
is set to perform CI tests of order 1 with the sets found by
Algorithm 2. As the sample size increases, from Figures
5(a) and 5(c), we see that the gaps between C-PC and k-
PC with k ∈ {1, 2} shrink as expected. A similar pattern
also appears in terms of F1arrowhead as shown by Figures
5(d) and 5(f). From Figure 9 in the Appendix E.2, we also
note that C-PC-Path does not necessarily improve C-PC in
this experiment. It has been shown that doing so can im-
prove the performance of the PC algorithm for consistency
of the separating sets (Li et al., 2019). Here, we show that
our heuristic of selecting conditioning sets for C alone has
improved the performance significantly. The two-sample
t-tests in the Appendix E.2 also show that the difference
between the averages of F1skeleton and F1arrowhead between
C-PC and all other baselines are statistically significant with
0.95 significance level when N = 2000.

4.2 REAL-WORLD EXPERIMENT: THE
COGNITION AND AGING USA (COGUSA)
STUDY

Experimental Setup. We want to explore the utility of C-PC
in the presence of missing data where one would perform
test-wise deletion CI tests for learning causal graphs. We
use the publicly available longitudinal dataset from the Cog-
nition and Aging USA (CogUSA) study (McArdle John
and Robert, 2007-2009). The dataset contains 16 discrete
variables that are related to neuropsychological activities
in the study with a total of 1514 samples. Out of 16 vari-
ables, 8 variables have missing values. We report the vari-
ables and their respective number of states and missing
samples in the form (variable, number of states, number of
missing values) here: (w1_D_dr, 11, 118), (w1_D_ir, 11,
117), (w1_D_scis, 2, 1), (w2_D_bc, 2, 285), (w2_D_bc,
10, 317), (w2_D_ir, 11, 315), (w2_D_num, 4, 285),
(w2_D_s7, 6, 285).

We compare C-PC with three baselines: PCMCI (Runge
et al., 2019), MVPC (Tu et al., 2019), tPC (Bang et al., 2024),
and k-PC (k = 1). We use causal-learn (Zheng et al.,
2024) to implement MVPC and tPC and use tigramite
to implement PCMCI in Python. We set C-PC to only con-
duct CI tests up to order 1 without conditioning on those
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Figure 5: Empirical cumulative distribution function of various F1 scores on 100 random DAGs with 30 nodes where the number of states
is assigned to be 2 or 30 with probability 0.7 and 0.3 respectively. The lower and farther from the left side the better. Top: Skeleton F1
scores F1skeleton, tail F1 scores F1tail and arrowhead F1 scores F1tail for sample size of N = 500. Bottom: Skeleton F1 scores F1skeleton,
tail F1 scores F1tail and arrowhead F1 scores F1tail for sample size of N = 2000. Overall, we see that C-PC (blue) outperforms other
baselines at N = 2000 in terms of F1skeleton, F1arrowhead with a small expense in F1tail. When N = 500, C-PC performs comparably with
k-PC (k = 0) as expected as C-PC also conducts all marginal independence tests.

8 variables that have missing values. All algorithms use
test-wise deletion chi-squared tests with α = 0.05. Here,
test-wise deletion involves removing samples that contain
missing values for the variables involved in conditional in-
dependence (CI) testing, ensuring that these variables have
the same number of observations for the CI test. We use the
same evaluation metrics as in (Strobl et al., 2018) to evaluate
all the algorithms, that is, no variable with its name starting
from w2 (variables that are collected from week 2 of the
study) can cause a variable with a name starting from w1
(variables that are collected from week 1 of the study). Also,
the variable (w1_D_bc) can only have a directed edge to
the variable that represents the mental status of the partici-
pants (w1_D_ms). We leave the results in Appendix G due
to space limit.

Discussion. From Figures 11, we see that C-PC does not
output incorrect causal relationships and can recover the
directed edge from w1_D_bc to w1_D_ms highlighted in
green. Although MVPC and k-PC can also recover the di-
rected edge from w1_D_bc to w1_D_ms, we note that all
of them also produce incorrect causal relationships high-
lighted in red. Based on Figure 13, while PCMCI does not
orient any variables from w2 to w1, it also fails to recover
the directed edge w1_D_bc→ w1_D_ms. This is expected
as PCMCI involves high-order CI tests, which are more
prone to errors when testing conditional independence, in
contrast with our proposed algorithm C-PC. As we can see
from Figure 14, k-PC with k = 1 removes the edge between

w2_D_dr and w1_D_ir such that it orients the unshielded
triple ⟨w2_D_dr,w1_D_dr,w1_D_ir⟩ as a unshielded
collider, which gives an incorrect relationship. From Fig-
ure 15, we observe that although tPC does not orient any
variable from week 2 to week 1 due to background knowl-
edge, tPC fails to capture the directed edge from w1_D_bc
to w1_D_ms. C-PC effectively prevents this by not con-
ditioning on the variables that have missing values since
test-wise deletion can be prone to inducing conditional inde-
pendence when the support of the conditioning set is large.
In contrast, C-PC only gives a bidirected edge (w2_D_dr)
↔ (w1_D_ir) as shown by Figure 11.

5 CONCLUSION

We propose a sound algorithm called C-PC for learning
causal graphs from a collection of conditioning sets known
as conditionally closed sets. We extend an existing algo-
rithm called k-PC that exhausts all CI tests of order up to
some integer k to a setting where CI tests are restricted to
a collection of conditioning sets. We perform experiments
to show the utility of the proposed method in the presence
of variables with large support under limited samples. One
can view C-PC as a more generalized version of k-PC as
the conditionally closed set can flexibly include any condi-
tioning set of size greater than zero. For future work, we
want to investigate whether one can systematically leverage
arbitrary CI statements for learning causal graphs.
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A ALGORITHMS

Algorithm 3 k-PC (Kocaoglu, 2023)

input Observational data V, k, CI tester
1: Initiate a complete graph M among the set of observed variables with circle edge o—o.
2: Find separating sets SX,Y for every pair X,Y ∈ V by conditioning on subsets Z ⊂ V of size at most k.
3: Update M by removing the edges between pairs that are separable.
4: Orient unshielded colliders of M : For every unshielded triple: Xo—oZo—oY , set Xo→ Z ←oY where SX,Y does

not contain Z.
5: M ← FCI_Orient(M ) {See Algorithm 5}
6: M ← kPC_Orient(M ) {See Algorithm 4}
7: return M

Algorithm 4 kPC_Orient (Kocaoglu, 2023)

input Mixed graph M
1: For any variable X that has no incoming edges, construct the sets B,Q :

B = {Y ∈ Ne(X) : Xo→ Y },Q = {Z ∈ Ne(X) : Xo—oZ}

and define sets B⋆ as the set of variables that are non-adjacent to any of the nodes in Q and Q⋆ as the set of variables
that are non-adjacent to other variables in Q:

B⋆ = {Y ∈ B : Y,Z are non-adjacent ∀Z ∈ Q},Q⋆ = {Z ′ ∈ Q : Z ′, Z are non-adjacent ∀Z ′ ̸= Z,Z ′ ∈ Q}

2: R11 : Orient Xo→ Y as X → Y , ∀Y ∈ B⋆
3: R12 : Orient Xo—oY as X—Y , ∀Z ∈ Q⋆

4: return M

Algorithm 5 FCI_Orient (Zhang, 2008a)

input Mixed graph M
1: Apply the orientation rules ofR1,R2,R3 of Zhang (2008a) to M until none applies.
2: Apply the orientation rules ofR8,R9,R10 of Zhang (2008a)
3: return M
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B GRAPH BASICS

Definition B.1. A graph D = (V,E) consists of a set of nodes (variables) V and a set of edges E. We use (X,Y ) to
denote an edge between a variable X and another variable Y in D. We consider graphs that may contain directed (→),
undirected (−) edges, and bidirected (↔) edges. A directed graph has only directed edges. A partially directed graph may
have both undirected and directed edges. A mixed graph can contain directed, undirected, and bidirected edges. A graph
D′ = (V′,E′) is a subgraph of D = (V,E) if V′ ⊆ V and E′ ⊆ E. A graph D′ = (V′,E′) is a subgraph of D = (V,E)
if V′ ⊆ V and E′ ⊆ E. D′ is an induced subgraph of D if E′ are all edges in E between nodes in V′.

Definition B.2 (Path). Two vertices in a graph are said to be adjacent if there is an edge between them. Given a partially
directed graph D, a path from V0 to Vn in D is a sequence of distinct vertices ⟨V0, V1, . . . , Vn⟩ such that for 0 ≤ i ≤ n− 1,
Vi and Vi+1 are adjacent. It is called a causal (or directed) path from V0 to Vn in D if Vi is a parent of Vi+1 for 0 ≤ i ≤ n−1.

Definition B.3 (Colliders). A consecutive triple of nodes ⟨X,Y, Z⟩ on a path is called a collider if both the edge between
X and Y and the edge between Y and Z have arrowheads pointing to Y . If additionally X and Z are not adjacent, it is
called unshielded collider. Any other consecutive triple is called a non-collider. If additionally, the two end vertices of the
triple are not adjacent, it is called a unshielded non-collider.

Definition B.4 (Ancestrality). In a graph D, for any two nodes X,Y in D, if there is a directed edge X → Y , then X is
a parent of Y and Y is a child of X in D. If there is a causal path from X to Y , then X is called an ancestor of Y and
Y is called a descendant of X . We denote a set of parents of X , a set of children of X , a set of ancestors of X , a set of
descendants of X and a set of non-descendants of X in D as PaD(X), ChD(X), AnD(X), DeD(X) and NDeD(X)
respectively. By convention, X is both an ancestor and a descendant of X in D. Furthermore, if X ↔ Y is in G, then X is a
spouse of Y and Y is a spouse of X .

Definition B.5 (DAGs, ADMGs). For any two nodes X , Y in D, if there is a causal path from X to Y and an edge from Y
to X , there is a directed cycle in D. An almost directed cycle occurs when there is a bidirected edge between X and Y and
X ∈ AnD(Y ). A directed graph without directed cycles is called a directed acyclic graph (DAG) or a causal graph. An
acyclic directed mixed graph (ADMG) is a graph that contains both bidirected edges and directed edges without directed
cycles.

Definition B.6 (Ancestral graphs). A mixed graph is ancestral if there is no directed cycle, no almost directed cyclic, and
for any undirected edges X − Y , X and Y have no parents or spouses.

Definition B.7 (m-separation). In a mixed graph, a path p between X and Y is m-connecting relative to Z if (i) every
non-collider on p is not a member of Z and (ii) every collider on p has a descendant in Z. X and Y are m-separated if there
is no m-connecting path between any vertex in X and any vertex in Y.

The probabilistic interpretation of ancestral graphs follows from its Markov property that if X and Y are m-separated
given Z, then X and Y are conditionally independent given Z. In the case of DAGs, m-separation reduces to d-separation
(Richardson and Spirtes, 2002).

Definition B.8 (Skeleton). The skeleton of a causal graph D is an undirected graph obtained by replacing every directed
edge of D with an undirected edge.

Pearl and Verma have proved the following characterization of DAGs that belong to the same Markov equivalence class.

Theorem B.9 (Verma (1991)). Two DAGs are Markov equivalent if and only if they have the same skeleton and the same set
of unshielded colliders.

C PROOFS

In this section, we will show that all the lemmas and theorems in (Kocaoglu, 2023) can be extended to the setting where the
conditioning sets are restricted to C instead of all conditioning sets of size up to some integer k.

C.1 PROOF OF LEMMA 3.5

To prove the lemma 3.5, we will first prove a few lemmas shown below.



Lemma C.1. Consider a DAG D where X ̸∈ AnD(Y ) and Y ̸∈ AnD(X), X,Y are non-adjacent and C-covered. Then
conditioned on any member of a conditionally closed set, i.e. C ∈ C, there exists a d-connecting path between X,Y that has
an arrowhead at both X and Y .

Proof. For the sake of contradiction suppose, conditioned on some C ∈ C, there is no d-connecting path with an arrow into
X and an arrow into Y . Since neither X is an ancestor of Y nor Y is an ancestor of X and assuming there is no d-connecting
path with an arrow into X and an arrow into Y , it must be that all d-connecting paths have colliders on them. All such
colliders must be ancestors of C.

Consider such a path p where the edge adjacent to X has a tail at X . Let K be the collider that is closest to X .

Thus, we have
X → U1 → . . .→ Um → K ← V . . . Y (3)

for some {Ui}i∈m, V . However, this is a contradiction since X and Y are C-covered, that is, X and Y must be d-connecting
given an empty set on the path p, which is impossible. Due to symmetry between X and Y , the supposition that the only
d-connecting paths must have a tail adjacent to either endpoint must be wrong. This proves the lemma.

Lemma C.2. Consider a DAG D where X ̸∈ AnD(Y ), X,Y are non-adjacent and C-covered. Then conditioned on any
member in C, i.e. ∀C ∈ C, there exists a d-connecting path between X and Y that starts with an arrow into X .

Proof. For the sake of contradiction, suppose otherwise. Given any C, there is no d-connecting path between X and Y that
starts with an arrow into X , that is, all the d-connecting paths start with a tail at X . We will show that we can find some
member C′ ∈ C that d-separates X,Y , which leads to a contradiction since X and Y are given to be C-covered.

Consider any path p between X and Y that is d-connecting given C which starts with a tail at X . p must be either directed
or there must be at least one collider along the path. Since X ̸∈ AnD(Y ), it must be that the path has at least one collider.
Let K be the collider that is closest to X on p as follows

X → U1 → . . .→ Um → K ← V . . . Y (4)

for some {Ui}i, V. Since the path is active, this collider cannot block the path p. It must be that K ∈ AnD(C). However,
this is a contradiction since X and Y are C-covered, that is, X and Y must be d-connecting given an empty set on the path
p, which is impossible. Thus, the assumption that all the d-connecting paths must have a tail at X must be wrong, which
proves the lemma.

Lemma C.3. (Kocaoglu, 2023) In a DAG D, let p be an active path between X and Y given Z and q be an active path
between Y and Q given Z, where X,Y,Q ̸∈ Z. If X and Q are d-separated given Z, then

1. Paths p, q must have no overlapping nodes and

2. Y must be a collider along the concatenated path and Q ̸∈ AnD(Z)

The following lemma shows that colliders that are closed in D must also be closed in the C-closure graph SC(D).

Lemma C.4. If a collider is blocked in D conditioned on some members C of a set C, then it must also be blocked in SC(D)
conditioned on C.

Proof. Suppose (X → Z ← Y )D is a collider that is blocked given C. Thus, it must be that Z ̸∈ AnD(C). For the sake of
contradiction, assume that this collider is unblocked in SC(D). Thus, it must be the case Z ∈ AnSC(D)(C). This means
there is a new directed path from Z to C in SC(D). If this path existed in D, the collider would be unblocked, which is
a contradiction. Thus, at least one of the edges along this path must have been added during the construction of SC(D).
Consider the collection of edges on this path that does not exist in D. Note that by construction of SC(D), a directed edge
α→ β is added between a C-covered pair α, β only if there is a directed path from α to β in D. Consider the path obtained
by replacing the directed edge between any C-covered pair along this path with the corresponding directed path in D. The
resulting directed path must be in D. This shows that there was at least one path already in D that implied Z ∈ AnD(C),
which is a contradiction. Therefore, any collider on p that is unblocked in SC(D) must also be unblocked in D.

Lemma C.5. The set of ancestors of any set Z of nodes in D is identical to the set of ancestors of Z in SC(D).



Proof. Adding edges to a graph, directed or bidirected, cannot decrease the set of ancestors of any node. We only need to
show that the set of ancestors in SC(D) is not larger than the set of ancestors in D.

Suppose otherwise: A node X ∈ AnSC (Z) but X ̸∈ AnD(Z). This can only happen if a collection of edges added during
the construction of SC(D) renders X an ancestor of Z. However, each such edge is added only if there is a directed path
between its endpoints in D. Consider the path obtained by replacing each such added edge along the path that renders X an
ancestor of Z in SC(D) with the corresponding directed paths in D. This directed path must be in D, which means that X
was an ancestor of Z in D as well, which is a contradiction.

Proof of Lemma 3.5

Lemma. C-closure graph SC(D) of a DAG D entails the same d-separation statements conditioned any C ∈ C as the DAG,
i.e., (X ⊥⊥ Y |C)D ⇔ (X ⊥⊥ Y |C)SC(D),∀C ∈ C.

Proof. Since no edge is removed during the construction of the C-closure graph, one direction immediately follows: If
(X ⊥⊥ Y |C)SC(D), then (X ⊥⊥ Y |C)D for any C ∈ C. Therefore, we will show the other direction.

Suppose (X ⊥⊥ Y |C)D for any C ∈ C. We will show that (X ⊥⊥ Y |C)SC(D). For the sake of contradiction, suppose
otherwise. Then, there must be a d-connecting path p between X and Y given C in SC(D). The length of any such path
must be greater than 1 since otherwise, whether the edge already existed in D or it was added during the construction of
SC(D), X, Y must have been dependent given C in D, which is a contradiction. Since the orientation of the existing edges
in D did not change in SC(D), either this path did not exist in D or that it existed but it was blocked by some collider that is
not in AnD(C). The latter is not possible due to Lemma C.4, since any unblocked collider in SC(D) must also be unblocked
in D. Thus, it must be that this d-connecting path did not exist in D.

Suppose p does not exist in D. At least one edge must have been added to form this path in SC(D) during the construction
of SC(D).

For any added edge U → V , the following is true: Since U → V was added in SC(D), it must be the case that V ̸∈ AnD(U)
since otherwise, there would be a cycle. By Lemma C.2, conditioned on C, there exists a d-connecting path between U
and V where the edge adjacent to V is into V . For any added edge U ↔ V , the following is true: since U ↔ V was added
in SC(D), it must be the case that U ̸∈ AnD(V ) and V ̸∈ AnD(U). By Lemma C.1, conditioned on C, there exists a
d-connecting path between U and V , where the edge adjacent to U is into U and the edge adjacent to V is into V . Call any
such path implied by these lemmas a replacement path. Note that a replacement path might be directed or not.

Consider a path q in D that is obtained from p by switching the edges added during the construction of SC(D) with the
replacement paths using the following policy: Suppose U → V in SC(D) for some C-covered pair U, V . If a directed path is
open given C in D, use that path as the replacement path for the edge X → Y . If not, use any other path. This means that
either the path that replaces an edge U → V is directed or that both the endpoints have an arrowhead and that U ∈ AnD(C).

Observe that each replacement path is d-connecting and the subpaths of p that remain intact in q must be d-connecting since
p is d-connecting. By Lemma C.3, any two paths – whether it is a pair of replacement paths or a replacement path and a
subpath of p – have overlapping nodes, then their concatenation must be d-connecting. Since we assumed that q was not
d-connecting, it must be that one of the endpoints of one of the added edges must be blocking q. We investigate each such
node to verify that q is indeed d-connecting to arrive at a contradiction.

In other words, the collider status of some of these nodes must have changed due to replacing some edges with replacement
paths. Specifically due to Lemma C.3, one of the endpoints of replacement paths must be a collider and not an ancestor of C.
Since ancestrality status cannot change from D to SC(D) due to Lemma C.5, the only way for q to not be d-connecting is if
some node that is not an ancestor of C changes status from being a non-collider along p to being a collider along q.

Note that for an edge U ↔ V, the nodes U and V are adjacent to an arrowhead in the replacement path. Thus, if some node
T changes collider status in q compared to p, it cannot be due to bidirected edges along p.

Now consider the directed edges U → V . If the replacement path is directed from U to V , similarly U is adjacent to a
tail and V is adjacent to an arrowhead on the replacement path. Therefore, such edges cannot alter the collider status of
nodes at the junction of different paths. Finally, consider the directed edges U → V where U and V are both adjacent to an
arrowhead on the replacement path. Observe that this edge cannot change the collider status of V . We now focus on U . If
the other edge adjacent to U along q is a tail, U remains a non-collider and cannot block q. Now suppose the other edge
adjacent to U along q is an arrowhead. This makes U a collider in q whereas U was a non-collider along p since we had



U → V along p. However, by construction of q, as we ended up adding a path with arrowheads at both endpoints, it must
be that the directed path between U, V (which exists since U → V was added during the construction of SC(D) must be
blocked via conditioning. This means U ∈ AnD(C) which means that although the status of U changes from non-collider
to collider, it must be that this collider does not block q since it is an ancestor of C. Therefore, no replacement path can alter
the status of a node to block the path q, and q must be d-connecting, which contradicts with the assumption that the path was
not d-connecting in D.

Thus, any d-connecting path in SC(D) is also d-connecting in D, which establishes that if (X ⊥̸⊥ Y |C)SC(D), then
(X ⊥̸⊥ Y |C)D, which proves the lemma.

C.2 PROOF OF THEOREM 3.6

We proceed by first proving a corollary that follows from a theorem proven by (Richardson and Spirtes, 2002).

Theorem C.6. (Richardson and Spirtes, 2002) Two MAGs M1,M2 are Markov equivalent if and only if i) They have the
same skeleton, ii) They have the same unshielded colliders, iii) For any node Y for which there is a discriminating path p, Y
has the same collider status on p in M1,M2.

Corollary C.7. Two C-closure graphs S1,S2 are Markov equivalent if and only if they have the same skeleton and they
have the same unshielded colliders.

Proof. (⇒)If they are Markov equivalent, then they are two Markov equivalent MAGs by Lemma C.12. Therefore, by
Theorem C.6, they have the same skeleton and the same unshielded colliders.

(⇐) If they have the same skeleton and the same unshielded colliders, then by Lemma C.18, they must have the same
colliders along discriminating paths. Thus, by Theorem C.6, they are equivalent.

Next, we prove two more lemmas which we will use later in the main proof.

Lemma C.8. In a C-closure graph SC(D), two nodes X,Y are non-adjacent iff (X ⊥⊥ Y |C)SC(D) for some C ⊂ V .

Proof. (⇒) Suppose X,Y are non-adjacent in SC(D). Thus, it must be the case that (X ⊥⊥ Y |C)D and C ∈ C, where C is
a conditionally closed set. Otherwise, X,Y would have been made adjacent by the construction of SC(D). By Lemma 3.5,
this implies (X ⊥⊥ Y |C)SC(D).

(⇐) Suppose (X ⊥⊥ Y |C)D. By definition of d-separation, adjacent nodes cannot be d-separated, and therefore, X,Y must
be non-adjacent in SC(D).

Lemma C.9. In a C-closure graph SC(D), any pair of non-adjacent nodes X,Y are separable by some members in the
conditionally closed set i.e., ∃C ∈ C, (X,⊥⊥ Y |C)SC(D).

Proof. Suppose that there exists some non-adjacent pair X,Y , all the d-separating sets in SC(D) are not in C. Let S be the
subset that makes X,Y d-separated, i.e., (X ⊥⊥ Y |S)SC(D). S is guaranteed to exist due to Lemma C.8. By definition of
C-closure graphs, the non-adjacency of X and Y in SC(D) implies X,Y are separable in D given some C ∈ C, where
C is a conditionally closed set, i.e., (X ⊥⊥ Y |C)D. By Lemma 3.5, D and SC(D) entail the same d-separation statement
restricted to the conditioning sets from a conditionally closed set. Therefore, (X ⊥⊥ Y |C)SC(D).

Proof of Theorem 3.6

Proof. Suppose D1, D2 are C-Markov equivalent. For the sake of contradiction, assume that SC(D1) and SC(D2) are not
Markov equivalent. By Corollary C.7, this occurs when either they have different skeletons or different unshielded colliders.
Thus, there are two cases: (i) C-closure graphs have different skeletons and (ii) C-closure graphs have different unshielded
colliders.

Case (i) C-closure graphs have different skeletons: SC(D1) and SC(D2) have different skeletons. Without loss of generality,
suppose that SC(D1) has an extra edge, i.e., X,Y are adjacent in SC(D1) but not in SC(D2). This can only happen if there
exists C ∈ C such that (X ⊥⊥ Y |C)D2

, while there is no such separating set in D1, implying that (X ⊥̸⊥ Y |C)D1
. This is a



contradiction with the supposition that D1, D2 are C-Markov equivalent. Thus, SC(D1) and SC(D2) must have the same
skeleton.

Case (ii) C-closure graphs have different unshielded colliders: Without loss of generality, assume that there exists an un-
shielded collider (X∗→ Z ←∗Y ) in SC(D1) but the unshielded triple ⟨X,Z, Y ⟩ is a non-collider in SC(D2), where ∗
denotes a wildcard that can be a tail, an arrowhead, or a circle mark.

Since X,Y are non-adjacent in both SC(D1) and SC(D2), by Lemma C.9, there exists two subsets C1,C2 that are members
of C such that

(X ⊥⊥ Y |C1)SC(D1), (X ⊥⊥ Y |C2)SC(D2) (5)

. So, we have Z ∈ C2 and Z ̸∈ C1 as Z is a collider between X,Y in SC(D1) and a non-collider in SC(D2). If we
switch the conditioning sets, due to different collider status of Z in both graphs, the d-separation statements will switch to
d-connection statements:

(X ⊥̸⊥ Y |C1)SC(D2), (X ⊥̸⊥ Y |C2)SC(D1) (6)

. Since C1,C2 are in C, by Lemma 3.5, we have that

(X ⊥⊥ Y |C1)D1
, (X ⊥̸⊥ Y |C1)D2

(7)

. This implies that D1, D2 are not C-Markov equivalent, which is a contradiction. Thus, if D1, D2 are C-Markov equivalent,
then SC(D1),SC(D2) must have the same skeleton and the same unshielded colliders. By Corollary C.7, SC(D1),SC(D2)
are Markov equivalent.

(⇐) Suppose that SC(D1) and SC(D2) are Markov equivalent. Then, they impose the same d-separation statements. Thus,
they impose the same d-separation statements when the conditioning set is restricted to the members of C. By Lemma 3.5,
this implies that D1, D2 must also impose the same d-separation statements for conditioning sets in C. This establishes that
D1, D2 are C-Markov equivalent.

C.3 PROOF OF COROLLARY 3.10

Kocaoglu (2023) shows that the well-celebrated FCI algorithm (Zhang, 2008b) is sound but not complete for learning
k-essential graphs. A similar result follows that the FCI algorithm is also sound but not complete for learning C-essential
graphs. Corollary 3.10 is a corollary that follows the lemma below, which shows that discriminating paths do not carry extra
information about the underlying causal structure. We will first prove the lemma and proceed to the proof of the corollary.

Lemma C.1. In any C-closure graph, if there is a discriminating path p for ⟨X,Y, Z⟩ and X ↔ Y ←∗Z is a collider along
p, then the orientation X∗→ Y and Y ←∗Z can be learned by first finding all unshielded colliders, and then applying the
orientation rulesR1 andR2 of FCI.

Proof. Suppose in the C-closure graph SC(D) for some DAG D, we have a discriminating path p for Y between the nodes
A and V of the form

A∗→↔ . . .↔ U ↔ Y ↔ V (8)

. By definition of the discriminating path, U must be a collider along p, and U → V . If Y ← V, then we would have an
almost directed cycle U → V → Y ↔ U . Thus, we have U ↔ Y ↔ V .

First, we will show that the arrowhead at Y of the edge Y ↔ V can be learned by first orienting unshielded colliders and
then applyingR1 andR2. Consider the bidirected edge U ↔ Y . By definition of the discriminating path A, V must be non-
adjacent. By Lemma C.9, they must be separable by some C ∈ C. Thus, we have a set C ∈ C such that (A ⊥⊥ V |C)SC(D).
By the definition of the discriminating path, every non-endpoint vertices along p is a parent of V . Therefore, it must be
that every collider along p including U must be in C. Otherwise, there would be a d-connecting path from A to V given C.
By Lemma C.2, conditioned on any set in C, we have a d-connecting path that starts with an arrowhead at Y . Consider the
shortest such path q. Let X be the node immediately before Y along q. Since this path exists in the DAG by lemma, we have
X → Y . If X and V are non-adjacent, then X → Y ↔ V would be an unshielded collider and we are done.

Suppose X and V are adjacent. Note that conditioned on C, A and X are d-connected. If X is a non-collider along the path
obtained by concatenating the subpath of q between A,X and the edge between X,V , then A, V would be d-connected
given C, which is a contradiction. Thus, X must be a collider along this path. Therefore, we have X ↔ V . Note that we



cannot have X ← V since this would create an almost directed cycle in SC(D). Let J be the node immediately before X
along q. Thus, we have J → X ↔ V (not J ↔ X since this edge exists in D).

Suppose J and V are not adjacent. Then, the collider J → X ←∗V is unshielded and therefore can be learned. Furthermore,
J and Y must be non-adjacent since otherwise, we must have J → Y to avoid a cycle and there would be a path that is
shorter than q, which “skip over” the node X along q. Thus, we can learn that X → Y fromR1. Finally, since now we have
learned V ∗→ X → Y and that Y, V are adjacent. We must have Y ←∗V by usingR2. Thus, the arrowhead mark at Y of
the edge Y ↔ V can be learned, and we are done.

Suppose J and V are adjacent. Following a similar argument, we either have some unshielded collider that can be propagated
using the argument above to orient V ∗→ Y , or we can continue covering unshielded colliders, which would imply the
previous nodes are always parents along q. But this implies that U has a directed path to Y , which cannot happen since
we have U ↔ Y, similarly consider the shortest d-connecting path q between Y and V in D given C that starts with
an arrowhead at Y . The argument follows similarly that either there would be a directed path from V to Y , which is a
contradiction with the existence of the edge Y ↔ V in the C-closure graph, or that there exists an unshielded collider along
q that can be learned by orienting unshielded colliders, which be propagated to learn U∗→ Y usingR1 andR2. This proves
the lemma.

Corollary 3.10. C-PC without Step 5 is sound and complete for learning PAG(SC(D)) of any DAG D.

Proof. By Lemma C.9, any non-adjacent pair are separable by a member in C. Thus, a valid separating set for any non-
adjacent pair will be found in Step 1, and will be used to learn the skeleton in Step 2, and to orient all unshielded colliders
in Step 3. Zhang (2008a) proved arrowhead and tail completeness of FCI with orientation rules R1 to R10. By Lemma
C.1, colliders on discriminating paths will be oriented at the end of Step 4. Thus,R4 that is concerned with discriminating
path colliders is not applicable. Similarly,R5,R6,R7 are only applicable in graphs with selection bias. Thus, they are not
applicable. Since the rules that we omit are never applicable during the execution of the algorithm, Step 4 correctly returns
the PAG(SC(D)) since the algorithm at that point is identical to the FCI algorithm for learning PAGs.

C.4 PROOF OF THEOREM 3.11

Theorem 3.11 . C-PC algorithm is sound for learning C-essential graph given a conditional independence oracle under the
causal Markov and C-faithfulness assumptions, i.e., if C-PC returns M , we have εC(D) ⊆M ⊆ PAG(SC(D))

Proof. We will prove soundness of the two orientation rulesR11,R12 with the following lemmas:

Lemma C.10. Let M be a mixed graph that is sandwiched between εC(D) and PAG(SC(D)), i.e., εC(D) ⊆ M ⊆
PAG(SC(D)).R11 is sound on M for learning the C-essential graph, i.e., if M ′ = R11(M), then εC(D) ⊆M ′ ⊆M .

Proof. For the sake of contradiction, suppose otherwise thatR11 orients an edge Xo→ Y in M as X → Y , and there is a
DAG D′ with a C-closure graph SC(D′) that is Markov equivalent to SC(D) and is consistent with M where X ↔ Y . This
means X and Y are C-covered in D′. Then, by Lemma C.1, conditioned on any member in C, there must be a d-connecting
path that starts with an arrowhead both at X and at Y in D. By the construction of the C-closure graph, this path must
also exist in SC(D′). Therefore, there must be some nodes W such that X ← W . Since X has no incoming edges, it
must be the case that W ∈ C. However, Y is chosen so that Y is non-adjacent to any node in C. Therefore, Y must be
non-adjacent to W in M . However, this creates the unshielded collider W → X ↔ Y . Note that Wo—oXo→ Y in
PAG(SC(D)). Hence, ⟨W,X, Y ⟩ is a non-collider in SC(D). Therefore, SC(D′) cannot be Markov equivalent to SC(D),
which is a contradiction.

Lemma C.11. Let M be a mixed graph that is sandwiched between εC(D) and PAG(SC(D)), i.e., εC(D) ⊆ M ⊆
PAG(SC(D)).R12 is sound on M for learning the C-essential graph, i.e., if M ′ = R12(M), then εC(D) ⊆M ′ ⊆M .

Proof. For the sake of contradiction, suppose otherwise thatR12 orients an edge Xo—oZ in M as X − Z, and there is a
DAG D′ with a C-closure graph SC(D′) that is Markov equivalent to SC(D) and is consistent with M where X ↔ Z. This
means X,Z are C-covered in D′. Then, by Lemma C.1, conditioned on any member in C, there must be a d-connecting
path that starts with an arrowhead both at X and Z in D. By construction of the C-closure graph, this path must also be in
SC(D′). Therefore, there must be some node W such that X ←W . Since X has no incoming edges, it must be the case that
X ∈ C. However, Z is chosen so that Z is non-adjacent to any other node in C. Therefore, Z must be non-adjacent to W in



M . However, note that Wo—oXo—oZ in PAG(SC(D)) and therefore, ⟨W,X,Z⟩ is a non-collider in SC(D). Therefore,
SC(D′) cannot be Markov equivalent to SC(D), which is a contradiction.

Now, consider the execution of the algorithm C-PC. When the algorithm completes Step 4, from Corollary 3.10, we have
that M = PAG(SC(D)). Since we start Step 5 with M = PAG(SC(D)), from Lemma C.10 and C.11, any arrowhead and
tail orientation of the M obtained at the end of Step 5 must be consistent with the C-essential graph of D. Therefore, we
have that εC(D) ⊆M.

We present more results below that are not explicitly described in the main paper.

C.5 PROOF OF LEMMA C.12

Lemma C.12. For any DAG D, the C-closure graph SC(D) is a maximal ancestral graph (MAG).

For a mixed graph to be a maximal ancestral graph, we need to show that it does not have directed or almost directed cycles
and that any non-adjacent pair of nodes can be made conditionally independent by conditioning on some subset of observed
variables (Zhang, 2008a). We proceed by proving the following lemma.

Lemma C.13. For any DAG D and a set C, SC(D) does not have directed or almost directed cycles.

Proof. Suppose, for the sake of contradiction that there is a directed cycle in SC(D). Since each edge X → Y in SC(D)
either exists in D or for each such edge in SC(D), there is a directed path from X to Y in D, the existence of a directed
cycle in SC(D) would imply a directed cycle in D, which contradicts with the DAG assumption of D.

Suppose, for the sake of contradiction that there is an almost directed cycle in SC(D), i.e., we have a directed path from A
to B for two nodes A↔ B. Since A↔ B is added during the construction of SC(D), it must be the case that neither A nor
B are ancestors of each other. However, from the above argument, there must be a directed path from A to B in D, which is
a contradiction. Thus, SC(D) cannot have almost directed cycles.

The other condition for a mixed graph to be a maximal ancestral graph is that for any non-adjacent pair of nodes, there exists
a subset of the observed variables that make them conditionally independent. For the C-closure graphs, this simply follows
by construction: Any pair of nodes that are non-adjacent in SC(D) can be made conditionally independent given some
members in the conditionally closed set, i.e., C ∈ C in D by construction of SC(D). From Lemma 3.5, this conditional
independence relation must be retained in SC(D). Thus any non-adjacent pair of nodes in SC(D) can be d-separated in
SC(D) by some members in a conditionally closed set. This establishes the claim.

C.6 PROOF OF THEOREM C.16

The following lemmas show that for any mixed graph M that satisfies the constraints in Theorem C.16, i.e., those that are
MAGs and that satisfy the condition that for any bidirected edge X ↔ Y , X,Y are C-covered in the graph M −{X ↔ Y }.

Lemma C.14. Consider a bidirected edge X ↔ Y in a mixed graph M . Suppose conditioned on any member C of C ,
(X ⊥̸⊥ Y |C)M−(X↔Y ). Then conditioned on any C ∈ C, there exists a d-connecting path between X and Y that starts with
an arrow into X and an arrow into Y .

Proof. For the sake of contradiction suppose, conditioned on some C ∈ C, there is no d-connecting path with an arrow into
X and an arrow into Y . Since neither X is an ancestor of Y nor Y is an ancestor of X and assuming there is no d-connecting
path with an arrow into X and an arrow into Y , it must be that all d-connecting paths have colliders on them. All such
colliders must be ancestors of C.

Consider such a path p where the edge adjacent to X has a tail at X . Let K be the collider that is closest to X .

Thus, we have
X → U1 → . . .→ Um → K ←∗V . . . Y (9)

for some {Ui}i∈m, V . However, this is a contradiction since we have (X ⊥̸⊥ Y )M−(X↔Y ), which is impossible. Due to
symmetry between X and Y , the supposition that the only d-connecting paths must have a tail adjacent to either endpoint
must be wrong. This proves the lemma.



Lemma C.15. Let M be a mixed graph that satisfies the conditions in Theorem C.16. Let M ′ be the graph obtained by
removing all the bidirected edges from M . Then,

1. M ′ is a DAG and

2. M ′ ∼C M

Proof. Since the only difference between M ′ and M is the removal of bidirected edges, any directed cycle that exists in M ′

would also have existed in M , which contradicts with the assumption that M is a MAG. This establishes that M has no
directed cycles.

Clearly, any independence statement in M holds in M ′, since it is obtained from M by removing edges. Thus any d-
separation relation restricted to C that holds in M also holds in M ′. Therefore, we only need to show that for any C ∈ C,
(A⊥̸⊥ B|C)M implies (A⊥̸⊥ B|C)M ′ .

Suppose for the sake of contradiction that (A⊥̸⊥ B|C)M but (A ⊥⊥ B|C)M ′ . Let p be a d-connecting path between A,B
given C in M . This path must be closed in M ′. Since the only difference between the two graphs is the removal of bidirected
edges, ancestrality relations cannot be different. Thus, it cannot be the case that a collider that was open in M is now closed
in M ′ and is closing the path p. Any collider that was open must still be open. Thus, the only way for p to be closed in M ′ is
if some bidirected edge X ↔ Y along p is removed. However, by Lemma C.14, for any such bidirected edge in M , and for
any conditioning set C ∈ C, we have a d-connecting path called a replacement path with an incoming edge to both X and Y .
Consider the path q obtained by replacing every bidirected edge along p with a corresponding replacement path. Since A,B
are d-separated by assumption, this path cannot be open. As this path is a concatenation of several d-connecting paths –
either sub-paths of p, which must be open, or replacement paths which must be open, by Lemma C.3, they must have no
overlapping nodes, and some node at the junction of these paths must be a collider and non-ancestor of C. However, since
we replaced bidirected edges X ↔ Y with paths of the form X ←∗ . . . ∗→ Y , both X and Y must have the same collider
status on both p and q. Thus, they cannot be blocking q since they are not blocking p. This means that q is d-connecting in
M ′, which is a contradiction. This proves the lemma that M and M ′ must entail the same d-separation relations restricted to
C, which implies they are C-Markov equivalent.

Theorem C.16. A mixed graph M = (V,E) is a C-closure graph if and only if it is a maximal ancestral graph and for any
bidirected edge X ↔ Y ∈ E the following is true:

• ̸ ∃C ∈ C, (X ⊥⊥ Y |C)M ′ , where M ′ = (V,E − {X ↔ Y })

Proof. The only if direction: Suppose a mixed graph is a C-closure graph, i.e. M = SC(D) for some DAG D and has
the edge A ↔ B. Suppose for the sake of contradiction that A,B are not C-covered in M − (A ↔ B). Let M ′ be the
graph obtained from M by removing all the bidirected edges. Note that M ′ is a DAG since M has no directed cycles. Also,
note that all edges in D must appear in M ′ by construction of C-closure graphs. D can therefore be obtained from M
by removing edges. Thus, any d-separation statement in M must also hold in D. Therefore, A,B must be conditionally
independent given some C ∈ C in D. This means A,B are adjacent in M and M cannot be the C-closure graph of D, which
is a contradiction.

If direction: Suppose a mixed graph M satisfies the conditions in Theorem C.16. By Lemma C.15, for any such mixed graph
M , there is a DAG whose C-closure is M , which shows that any such M is a valid C-closure graph, proving the theorem.

Definition C.17. For two partial mixed graphs M1,M2 with the same skeleton, M1 is said to be a subset of M2 iff the
following conditions hold for any pair X,Y

1. (Y ∗—X)M2
⇒ (Y ∗—X)M1

, 2. (Y ∗→ X)M2
⇒ (Y ∗→ X)M1

, where ∗ denotes a wildcard that can be a tail, an arrowhead, or a circle mark.

Lemma C.2. εC(D) ⊆ PAG(SC(D))



Proof. By Theorem C.16, every C-closure graph is a MAG whereas every MAG is not a C-closure graph. Hence, the set
of Markov equivalent C-closure graphs form a subset of the set of Markov equivalent MAGs. Therefore, the tails and
arrowheads that appear in all Markov equivalent MAGs must also appear in all the Markov equivalent C-closure graphs. The
result follows from Definition C.17.

C.7 PROOF OF LEMMA C.18

Lemma C.18. Suppose two C-closure graphs S1,S2 have the same skeleton and unshielded colliders. Then, along any
discriminating paths p for a node Y , Y has the same collider status in S1 and S2

Proof. Let S1 = SC(D1),S2 = SC(D2) be two C-closure graphs with the same skeleton and unshielded colliders. Suppose
for the sake of contradiction that there is a path p that is discriminating for a triple ⟨X,Y, Z⟩ in both such that Y is a collider
along p in S1 and a non-collider in S2. Thus, in S1, we have the path p as

A∗→ Q1 ↔ Q2 . . .↔ Qm ↔ X ↔ Y ↔ Z (10)

where Qi → Z for all i and X → Z and A and Z are not adjacent. Note that we cannot have Y ↔ Z instead of Y ↔ Z
since this would create the almost directed cycle X → Z → Y ↔ X . The same path with Y as a non-collider can take two
configurations in S2, either as

A∗→ Q1 ↔ Q2 . . .↔ Qm ↔ X ↔ Y → Z (11)

or as
A∗→ Q1 ↔ Q2 . . .↔ Qm ↔ X ← Y → Z (12)

. Other paths where Y is a non-collider would either render X a non-collider, which cannot happen by the definition of
a discriminating path, or create a directed or almost directed cycle. Since A,Z are not adjacent by the definition of a
discriminating path, there must be some C ∈ C where (A ⊥⊥ Z|C)S1 . Note that C must include Qi’s and X and not include
Y since otherwise there would be d-connecting paths between A and Z in S1 due to the discriminating path. This implies
that (A⊥̸⊥ Z|C)S2

Since X ↔ Y is in S1, by Lemma C.1, there must be a d-connecting path between X and Z in D1 conditioned on C that
has an arrowhead at Y . By construction, this path must also appear in S1. Since the path is inherited from D1, it does not
have bidirected edges. Consider the shortest of all such d-connecting paths, call this path q. Let X be the node adjacent to Y
along q. Thus, q has the form

X ↔ . . .→ R→ Y. (13)

We have that R→ Y in both D1 and S1. In S1, we have R→ Y ↔ Z. Since the edge between Y, Z has a tail at Y in S2,
this collider cannot exist in S2. Thus, it must be the case that this collider is shielded in S1, i.e., R and Z are adjacent in S1.
Since S1,S2 have the same skeleton, they must also be adjacent in S2.

Now consider the path obtained by concatenating the subpath of p A∗→ . . . X, and the subpath of q between X and R and
the edge between R and Z in S1. We call this path r. Note that the subpath of q is d-connecting given C, as well as the
subpath of p since Qi’s and X are in C. Thus, unless R is a collider on it, the path r between A and Z will be open, which
would lead to a contradiction since A and Z are d-separated given C in S1. Thus, the edge between R and Z must have an
arrowhead at R. Let W be the node before R along q. Thus, we have W → R↔ Z in S1. Note that R← Z is not possible
since this would create an almost directed cycle R→ Y ↔ Z → R in S1.

Suppose this collider is unshielded and appears in S2 as well: W∗→ R←∗Z in S2. Thus, in S2, we have Y → Z∗→ R←
W . Since R, Y are adjacent, it must be that R← Y or R↔ Y to avoid a directed or almost directed cycle. Thus, in S2, we
have R←∗Y. However, this creates the collider W∗→ R← ∗Y in S2. Note that this collider must be shielded, meaning
that W,Y must be adjacent and both in S2 and S1. Since we have W → R→ Y in S1, the edge must be W → Y in S1.
Furthermore, similar to R, W cannot be in the conditioning set since this would block the path q. This means there is a
d-connecting path that has an arrowhead at Y that is shorter than q, which is a contradiction.

Thus, the collider W → R↔ Z in S1 must be shielded. Similar to the above argument, W must be a collider along the path
constructed by concatenating the subpath A∗→ . . . X of p, and the subpath of q between X and W , and the edge between
W and Z since otherwise this path would be open, which would contradict with (A ⊥⊥ Z|C)S1 . Let T be the node next to
W along q. Thus, we have T → W → R along q and T → W ←∗Z is a collider in S1. In fact, it must be that W ↔ Z
since otherwise there would be an almost directed cycle Z →W → R→ Y ↔ Z in S1.



Suppose the collider T →W ↔ Z in S1 is unshielded and also appears in S2. Note that if T,R were adjacent in S1, the
orientation would have to be T∗→ R since otherwise there would be a directed cycle T →W → R→ T in S1. But this
would imply that there is a path shorter than q that connects X,Y and has an arrow into Y . Thus, T,R must be non-adjacent
in S1 and hence in S2. Thus, ⟨T,W,R⟩ is an unshielded non-collider in S1 and must also be in S2. Thus, it must be that
W → R in S2. Since Z∗→ W → R is in S2, it must be that Z∗→ R in S2 to avoid a directed or almost directed cycle.
Since Y → Z∗→ R is in S2, it must be that R ←∗Y to avoid a cycle or almost directed cycle in S2. However, now we
have a collider W → R ←∗Y in S2 that is a non-collider in S1 since in S1 we have R → Y . Thus, this collider must be
shielded, i.e., W,Y must be adjacent in S2. Thus, they must also be adjacent in S1. Since W → R→ Y in S1, it must be
that W → Y is in S1 to avoid a cycle. But this implies there is a shorter d-connecting path between X,Y given C with an
arrowhead at Y , which is a contradiction.

Therefore, the collider T →W ↔ Z must be shielded in S1. We can repeat the above argument as many times as needed
continuing from the parent of T along q. As we keep shielding more and more colliders in S1, eventually when we shield
the first node along q next to X , we will end up with a directed path from X to Y . However, this is a contradiction since
bidirected edge was added between X,Y which implies that X is not an ancestor of Y .

Therefore, if two C-closure graphs S1,S2 have the same skeleton and unshielded colliders, then they cannot have different
colliders along discriminating paths, which proves the lemma.

D RELATIONSHIPS BETWEEN C-FAITHFULNESS, ADJACENCY FAITHFULNESS AND
ORIENTATION FAITHFULNESS

One can view our method as a conservative approach to constraint-based causal discovery. Ramsey et al. (2006) has proposed
a sound algorithm under orientation unfaithfulness with the assumption of adjacency faithfulness. We provide one example
to show when adjacency faithfulness is a weaker assumption and another example to show when C-faithfulness is weaker
than adjacency faithfulness and orientation faithfulness.

Example 1. This example shows that adjacency faithfulness can be weaker than C-faithfulness. Consider A → B → C,
where (A ⊥⊥ C)P and (A ⊥⊥ C|B)P . Suppose the conditionally closed set C for C-PC is {∅}, we see that (A ⊥⊥ C)P
violates C-faithfulness., but adjacency faithfulness is not violated.

Example 2. This example shows that C-faithfulness can be weaker than adjacency faithfulness and orientation faithfulness.
Consider A→ B ← C with (A ⊥⊥ C)P , (A ⊥⊥ C|B)P , (B ⊥⊥ C|A)P . Suppose the conditionally closed set for C-PC is
{∅}, we see that C-faithfulness is not violated while adjacency faithfulness is violated by (B ⊥⊥ C|A)P and orientation
faithfulness is violated by (A ⊥⊥ C)P and (A ⊥⊥ C|B)P .

E ADDITIONAL EXPERIMENT RESULTS FOR THE EXPERIMENT IN SECTION 4.1

E.1 PRECISION AND RECALL BREAKDOWN

We supplement the experimental result in 4.1 with the corresponding precision and recall for the case where the size of the
DAG is 30 with sample sizes of 500 and 2000. The result is shown in Figures 6-7. Based on the precision curve in Figures
6-7, we can see that C-PC indeed exhibits a higher false positive rate across all three metrics: skeleton, tail and arrowheads
compared to other baselines, except for k-PC (k = 0). However, in terms of arrowheads and skeletons, C-PC enjoys a higher
recall rate, indicating that C-PC has fewer false negatives.

We also provide results for the case where the size of the DAG is 20. The result shown in Figure 8 is similar to the case
with 30 nodes and 60 edge cases for 500 samples shown in Figure 6, but with a slightly lower score. This is expected as the
graph gets denser, and the sample efficiency for CI tests also decreases. While C-PC enjoys similar performance with k-PC
(k = 0), the other baselines significantly again suffer from low recall rates in terms of arrowheads and skeletons.
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Figure 6: Empirical cumulative distribution function of various F1, precision, and recall scores on 100 random DAGs with 30 nodes and
60 edges where the number of states is assigned to be 2 or 30 with probability 0.7 and 0.3 respectively. The lower and farther from the left
side the better. Top: Skeleton with f1, precision, and recall scores for sample size of N = 500. Middle: Arrowheads with f1, precision,
and recall scores for sample size of N = 500. Bottom: Tails with f1, precision, and recall scores for sample size of N = 500.
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(f) Recall for arrowheads, N = 2000
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(h) Precision for tails, N = 2000
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Figure 7: Empirical cumulative distribution function of various F1, precision, and recall scores on 100 random DAGs with 30 nodes and
60 edges where the number of states is assigned to be 2 or 30 with probability 0.7 and 0.3 respectively. The lower and farther from the left
side the better. Top: Skeleton with f1, precision, and recall scores for sample size of N = 2000. Middle: Arrowheads with f1, precision,
and recall scores for sample size of N = 2000. Bottom: Tails with f1, precision, and recall scores for sample size of N = 2000.
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Figure 8: Empirical cumulative distribution function of various F1, precision, and recall scores on 100 random DAGs with 20 nodes with
60 edges where the number of states is assigned to be 2 or 30 with probability 0.7 and 0.3 respectively. The lower and farther from the left
side the better. Top: Skeleton with f1, precision, and recall scores for sample size of N = 500. Middle: Arrowheads with f1, precision,
and recall scores for sample size of N = 500. Bottom: Tails with f1, precision, and recall scores for sample size of N = 500.

E.2 EXTENDED EXPERIMENT WITH C-PC-PATH AND TWO SAMPLE T-TESTS RESULTS ON
EXPERIMENT IN SECTION 4.1

Sample Size 500 2000

C-PC 0.464± 0.004 0.604± 0.004
CPC-Path 0.450± 0.004 0.566± 0.004
k-PC, (k = 0) 0.476± 0.004 0.562± 0.003
k-PC, (k = 1) 0.180± 0.004 0.458± 0.005
k-PC, (k = 2) 0.113± 0.003 0.341± 0.005
GES 0.194± 0.005 0.399± 0.007
GRaSP 0.185± 0.005 0.381± 0.007

Table 1: Average F1-skeleton scores with standard errors rounded up to 3 decimal places

Next, we provide the experimental results in section 4.1 with C-PC-Path, which is a variant of C-PC and it only conducts the
CI tests for a pair of variables X,Y with conditioning sets Z in C when Z has members that are along with the path between
X and Y in the learned skeleton. The results are shown in Figure 9. We see that choosing only the conditioning sets that
have at least one member being along with a path between X and Y when testing conditional independence relation does
not necessarily improve the performance. Combining the heuristic of defining C (see Algorithm 2) with C-PC alone has
significantly improved k-PC performance where k = 1. We also present the two-sample t-test results in Tables 1, 2, 3, 4 for
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Figure 9: Empirical cumulative distribution function of various F1 scores on 100 random DAGs with 30 nodes where the number of states
is assigned to be 2 or 30 with probability 0.7 and 0.3 respectively. The lower and farther from the left side the better. This is the same
experiment conducted in section 4.1 with an additional baseline named C-PC-Path. Top: Skeleton F1 scores F1skeleton, tail F1 scores F1tail

and arrowhead F1 scores F1tail for sample size of N = 500. Bottom: Skeleton F1 scores F1skeleton, tail F1 scores F1tail and arrowhead
F1 scores F1tail for sample size of N = 2000. Overall, we see that C-PC (blue) outperforms other baselines at N = 2000 in terms of
F1skeleton, F1arrowhead with a small expense in F1tail. When N = 500, C-PC performs comparably with k-PC (k = 0) as expected as C-PC
also conducts all marginal independence tests.

Sample Size 500 2000

CPC-Path (0.017, -2.128) (2.982e-10, -6.295)
k-PC, (k = 0) (0.982, 2.092) (2.590e-15, -8.030)
k-PC, (k = 1) (1.010e-198, -45.965) (6.265e-80, -22.111)
k-PC, (k = 2) (1.960e-263, -62.154) (7.521e-175, -40.716)
GES (1.639e-164, -38.539) (4.870e-98, -25.520)
GRaSP (2.080e-175, -40.835) (7.346e-114, -28.511)

Table 2: One-sided two sample t-test result with format (p-value, t-value) under null hypothesisH0 : µbaseline ≥ µCPC , where µbaseline

is the average F1-skeleton scores of the baseline and µCPC is the average F1 skeleton scores of C-PC. The degree of freedom is 598.

Sample Size 500 2000

CPC 0.244± 0.004 0.352± 0.004
CPC-Path 0.249± 0.003 0.335± 0.004
k-PC, (k = 0) 0.269± 0.003 0.324± 0.003
k-PC, (k = 1) 0.049± 0.003 0.217± 0.005
k-PC, (k = 2) 0.019± 0.002 0.121± 0.004
GES 0.092± 0.005 0.229± 0.008
GRaSP 0.069± 0.004 0.190± 0.007

Table 3: Average F1-arrowhead scores with standard errors rounded up to 3 decimal places

the experiment in the main paper section 4.1 for testing significance of the difference in F1skeleton and F1arrowhead between
C-PC and other baselines.



Sample Size 500 2000

CPC-Path (0.791, 0.810) (4.769e-4, -3.320)
k-PC, (k = 0) (0.999, 4.646) (7.748e-10, -6.135)
kPC, (k = 1) (1.214e-154, -36.509) (3.813e-80, -22.152)
k-PC, (k = 2) (2.078e-204, -47.266) (1.949e-174, -40.628)
GES (2.093e-88, -23.708) (3.233e-39, -14.042)
GRaSP (6.823e-120, -29.663) (5.385e-66, -19.456)

Table 4: One-sided two sample t-test result with format (p-value, t-value) under null hypothesisH0 : µbaseline ≥ µCPC , where µbaseline

is the average F1-arrowhead scores of the baseline and µCPC is the average F1 arrowhead scores of C-PC. The degree of freedom is 598.

F ADDITIONAL EXPERIMENTS ON COMPARING C-PC WITH SAT-BASED DISCOVERY
ALGORITHM

In this section, we will briefly discuss how a solver-based approach would perform as compared to C-PC given an arbitrary
selection of independence and dependence constraints based on a conditionally-closed set. We ran an experiment similar
to our synthetic experiment in section 4.1 to compare an implementation of an SAT-based discovery algorithm Hyttinen
et al. (2013) and -PC. We excluded the bidirected edges from the implementation as we assume causal sufficiency. In this
experiment, we randomly generate DAGs of size 10, 20, 30, 40, 50 with the number of edges of 20, 40, 60, 80, 100. We fix
the sample size to be 1000. Each variable is assigned either 2 states or 30 states with probabilities 0.7 and 0.3. We repeat
this experiment 10 times for the number of variables only due to time constraints. We give both C-PC and the SAT-based
algorithm, the same CI constraints are found by the heuristic search. The result is shown in Figure 10. Based on the results,
we have two observations. First, C-PC outperforms the SAT-based method in terms of F1-arrowhead. They share roughly
the same F1-skeleton score. The SAT-based algorithm has a higher F1-tail score. We attribute the higher F1-arrowhead
and the lower F1-tail to the formulation of -essential graphs as it uses bidirected edges to represent some pairs of variables
that may not be d-separated given any set in the conditionally-closed set. Secondly, we see that as the number of variables
increases, the run time of the SAT-based discovery algorithm can far exceed that of C-PC. This is expected as the number
of CIs increases exponentially along with the size of the graph. This is important as there are downstream applications
such as root cause analysis in microservices where PC-like algorithms are used with hundreds of variables Ma et al. (2020).
Although PC-based procedures are more error-prone in general due to the orientation rules, they also allow us to orient the
graph more efficiently when there are enough correct CI statements.

G RESULTS ON REAL-WORLD EXPERIMENT: THE COGNITION AND AGING USA
(COGUSA) STUDY

In this section, we present the output of each algorithm we used in the real-world experiment in section 4.2. The result is
shown in Figures 11- 15. The dataset contains 16 discrete variables that are related to neuropsychological activities in the
study with a total of 1514 samples. 8 variables have missing values. We set C-PC to only conduct CI tests up to order 1
without conditioning on those 8 variables. All algorithms use test-wise deletion chi-squared tests with α = 0.05. We use the
same evaluation metrics as in (Strobl et al., 2018) to evaluate all the algorithms. Correct and incorrect relationships identified
by expert knowledge are highlighted in green and red, respectively. C-PC is able to capture the correct causal relationship
between backwards counting (w1_D_bc) and mental status (w1_D_ms). MVPC has output incorrect relationships by
having variables in the future causing variables in the past, e.g., (w2_D_s7)→(w1_D_ms). PCMCI does not output the
incorrect relationship but it also fails to capture the correct relationship e.g (w1_D_bc)→ (w1_D_ms). Additionally, We
ran tPC algorithm Bang et al. (2024) via the Python library named causal-learn with α = 0.05. As shown by Figure
15, we observe that although tPC does not orient any variable from week 2 to week 1 due to background knowledge, tPC
fails to capture the directed edge from w1_D_bc to w1_D_ms.
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(b) F1arrowhead, N = 1000
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Figure 10: Comparison between C-PC (blue) and a SAT-based discovery algorithm (red). In this experiment, we randomly generate DAGs
of size 10, 20, 30, 40, 50 with the number of edges of 20, 40, 60, 80, 100. We fix the sample size to be 1000. Each variable is assigned
either 2 states or 30 states with probability 0.7 and 0.3. We repeat this experiment 10 times per the number of variables only due to time
constraints. We give both C-PC and the SAT-based algorithm the same CI constraints found by the heuristic search.
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Figure 11: C-PC’s output from CogUSA data
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Figure 12: MVPC’s output from CogUSA data
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Figure 13: PCMCI output from CogUSA data
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Figure 14: k-PC’s output from CogUSA data, where k = 1
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Figure 15: tPC output on CogUSA data
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