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Abstract

Real-world time series analysis, such as healthcare, autonomous driving, and
solar energy, faces unique challenges arising from the scarcity of labeled data,
highlighting the need for effective semi-supervised learning methods. While the
Virtual Adversarial Training (VAT) method has shown promising performance in
leveraging unlabeled data for smoother predictive distributions, straightforward
extensions of VAT often fall short on time series tasks as they neglect the temporal
structure of the data in the adversarial perturbation. In this paper, we propose the
framework of functional Virtual Adversarial Training (f-VAT) that can incorporate
the functional structure of the data into perturbations. By theoretically establishing
a duality between the perturbation norm and the functional model sensitivity,
we propose to use an appropriate Sobolev (H−s) norm to generate structured
functional adversarial perturbations for semi-supervised time series classification.
Our proposed f-VAT method outperforms recent methods and achieves superior
performance in extensive semi-supervised time series classification tasks (e.g., up
to ≈ 9% performance improvement). We also provide additional visualization
studies to offer further insights into the superiority of f-VAT.

1 Introduction

Time series analysis has attracted considerable attention from both academia and industry, due to its
relevance to critical domains such as electrocardiogram (ECG) interpretation in medical diagnosis [14]
and photovoltaic module power calibration in solar energy systems [35]. However, capturing intrinsic
temporal structural properties of time series data, such as noisy fluctuations, long-term trends, and
periodic patterns, is still challenging [22], particularly with scarce labeled data [41]. Because manual
annotation is labor-intensive and costly with massive unlabeled data, semi-supervised time series
classification methods have become a promising research direction.

In this regard, existing methods attempt to leverage massive unlabeled data and limited labeled
data to alleviate overfitting. Some studies generate high-confidence pseudo-labels for unlabeled
samples and then train a deep model on the expanded dataset [6, 36]. Although such methods can
iteratively improve predictive performance, they require careful selection of confidence thresholds and
remain susceptible to “confirmation bias”: earlier errors in pseudo-labels are likely to be reinforced
during training, making it difficult for deep models to correct early biases or capture global trend
information [10, 2]. Some recent studies enhance pseudo-labeling with strong data augmentation and
self-supervised representation learning to better utilize unlabeled data. For instance, TS-TCC [18]
generates the pseudo-label on a weakly augmented view, while encouraging consistent representations
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under strong augmentation. However, naive data augmentation methods (e.g., local cropping, random
shifting) [42] can disrupt key temporal information, thus affecting generalization.

Recently, Virtual Adversarial Training (VAT) based consistency regularization [31] constructs ad-
versarial perturbations that maximally change the predictions of the model and then penalize the
difference between the original and perturbed outputs, thus enforcing local smoothness and effectively
tightening the decision boundary in the data manifold. While VAT and its variants have shown promis-
ing performance in the fields of computer vision [31], and natural language processing [28], most
of these methods are based on the classical Euclidean norm to bound perturbations. Unfortunately,
a straightforward extension of VAT to semi-supervised time series classification often proves less
effective because bounding virtual perturbations via the Euclidean norm ignores the time series nature
of the input data, producing jagged and spiky anomalous patterns that disrupt low-frequency trend
information. Consequently, adversarial perturbations generated by standard VAT are not truly worst-
case for time series data, making VAT inefficient in improving smoothness of predictive distributions
and predictive performance.

To address these challenges, we propose functional Virtual Adversarial Training (f-VAT) for semi-
supervised time series classification. F-VAT constructs adversarial perturbations in various (possibly)
infinite-dimensional spaces, such as the Sobolev spaces [1], which can better capture the underlying
structure of the data. For time series, this approach enables us to generate adversarial perturbations
that can simultaneously preserve low-frequency trend information and flexibly explore input space,
facilitating smoother predictive distribution and alleviating severe overfitting to limited labeled data.

In this paper, we theoretically establish the duality between the perturbation and the smoothness
of (non-)linear functional models. Based on theoretical analysis, for time series data, we use an
appropriate Sobolev norm to generate functional adversarial perturbations that preserve low-frequency
trend information while avoiding “jagged” anomalous patterns. We conduct extensive experiments
on real-world datasets to verify that f-VAT significantly outperforms other competitive baselines (e.g.,
up to 9.42% on CricketX and 8.30% on SelfReg). Further visualization indicates that, compared to
the original VAT, our proposed functional adversarial perturbations lead to more stable convergence
and better final performance.

In summary, our main contributions are as follows.

• We propose the framework of functional Virtual Adversarial Training (f-VAT) that allows
us to construct perturbations in various function spaces. For linear and non-linear models,
we theoretically establish the duality between the perturbation norm and gradient sensi-
tivity (Theorem 3.3 and Theorem 3.4), showing how to generate structured adversarial
perturbations.

• For the semi-supervised time series classification problem, we propose to use an appropriate
Sobolev norm (H−s norm in Section 3.3) to generate structured adversarial perturbations.
The Sobolev norm allows us to properly control the model’s sensitivity to high-frequency
noises while capturing low-frequency trend information.

• Extensive experimental results (Section 4.2) on semi-supervised time series classification
are provided to demonstrate the superiority of f-VAT over existing methods. Additional
visualization results (Section 4.3) indicate that functional adversarial perturbations can
significantly smooth the loss landscape to achieve stable convergence and better performance.

2 Preliminaries on Virtual Adversarial Training

Let us briefly introduce the procedure of Virtual Adversarial Training (VAT) [31]. We consider the
semi-supervised classification problem with a small labeled dataset and a large unlabeled dataset.
Let {X1, X2, . . . , Xn} ∈ X denote the entire input data, where each Xi can be associated with a
label yi ∈ Y = {1, 2, . . . ,K} if it is labeled, or yi is unknown if it is unlabeled. We denote by Dl

the labeled dataset, Du the unlabeled dataset, and D = Dl ∪ Du the entire dataset. Our goal is to
learn the conditional probability (vector) p(· | Xi; θ) = fθ(X) ∈ RK .

The idea of VAT is to generate adversarial perturbations ri for each sample Xi and then penalize the
difference between the original and perturbed outputs, facilitating the local smoothness of predictive
distribution. Formally, the Local Distributional Smoothness LDS(Xi, ri; fθ) is used to measure such
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difference for the model outputs. In this paper, we mainly focus on the squared loss

LDS(Xi, ri; fθ) = ∥fθ(Xi + ri)− fθ(Xi)∥22, (1)

while another common choice is the Kullback-Leibler (KL) divergence [31]. We adopt the squared
error, because its symmetry yields better numerical stability in the early stages of training [13].
The adversarial perturbation ri aims to maximize the LDS loss, characterizing the worst-case local
perturbation for the model fθ as

r∗i = argmax
ri:∥ri∥2≤ϵ

LDS(Xi, ri; fθ), (2)

where ϵ > 0 is a small hyperparameter controlling the perturbation norm in Euclidean space. Then,
the VAT loss over Xi is defined as

LVA(Xi; fθ) = LDS(Xi, r
∗
i ; fθ) = max

ri:∥ri∥2≤ϵ
LDS(Xi, ri; fθ). (3)

In practice, since the analytic expression of ri is intractable, an interactive gradient ascent [31] is used
to approximate the optimal perturbation r∗i . The overall objective function combines the supervised
loss L0 on the labeled set Dl and the VAT loss LVA on the entire dataset D is

L(D; fθ) = L0(Dl; fθ) + LVA(D; fθ), (4)

where LVA(D; fθ) = 1
n

∑n
i=1 LVA(Xi; fθ) is the VAT loss over the entire dataset D.

3 Functional Virtual Adversarial Training

One key aspect of VAT is the choice of the norm used to bound the local perturbation ∥r∥ ≤ ϵ in
Eq. (2). In the literature [31], it seems to be straightforward to use the Euclidean norm ∥·∥2 as the
input is typically represented vector in Rd. However, when the input space X consists of functions,
which is the case for time series data, the choice of the norm can become more intricate. As we will
see in the following theoretical analysis, the choice of the norm can have a significant impact on the
VAT loss and its interpretation. In this section, for simplicity, we consider one-dimensional output
f : X → R and focus on some fixed sample x0, while our results can be easily extended to the case
where f is a vector-valued function.

3.1 The Duality Perspective of VAT

To start with, let us first consider the setting where the input x is a vector in Rd, but we consider
a more general setting where the perturbation is bounded by a general norm. Let Σ be a positive
definite matrix, we denote the Σ-norm by ∥v∥Σ :=

√
v⊤Σv. Replacing the Euclidean norm in Eq. (2)

with the Σ-norm, we introduce the following VAT loss:

LVA
Σ (x0, ϵ; f) = sup

r:∥r∥Σ≤ϵ

LDS(x0, r; f). (5)

To illustrate the impact of the Σ-norm on the VAT loss, let us first consider the case where f(x) is a
linear function. We have the following result.
Proposition 3.1. Let f(x) = ⟨β, x⟩ be a linear model. Then, the VAT loss Eq. (5) is equivalent to

LVA
Σ (x0, ϵ; f) = ϵ2∥β∥2Σ−1 . (6)

Proof. Since f(x) is linear, we have

LVA
Σ (x0, ϵ; f) = sup

r:∥r∥Σ≤ϵ

|⟨β, x0⟩ − ⟨β, x0 + r⟩|2 = sup
r:∥r∥Σ≤ϵ

|⟨β, r⟩|2.

This supremum is achieved when r is in the direction of Σ−1β, i.e.,

r∗ = ϵΣ−1β/
∥∥Σ−1β

∥∥
Σ
= ϵΣ−1β/∥β∥Σ−1 ,

and thus
LVA
Σ (x0, ϵ; f) = sup

r:∥r∥Σ≤ϵ

|⟨β, r⟩|2 = ⟨β, r∗⟩2 = ϵ2∥β∥2Σ−1 .
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Moreover, the result can be extended to the case where f(x) is a continuously differentiable function
as follows. The proof is deferred to Appendix A.3.
Proposition 3.2. Let f(x) be continuously differentiable. Then, we have

lim
ϵ→0+

ϵ−2LVA
Σ (x0, ϵ; f) = ∥∇f(x0)∥2Σ−1 . (7)

The results from Proposition 3.1 and Proposition 3.2 reveal a simple but profound duality structure
underlying the VAT loss. First, as the gradient ∇f(x0) reflects the sensitivity of the function, the
VAT loss can be interpreted as a measure of the model’s sensitivity to perturbations in the input space.
Moreover, the use of the Σ-norm in the perturbation constraint ∥r∥Σ ≤ ϵ naturally introduces a dual
norm ∥·∥Σ−1 penalizing the sensitivity of f along the different directions. This is reminiscent of
duality in optimization, where constraints in the primal space translate to penalties in the dual space.

Therefore, one of the crucial questions is how to choose the matrix Σ when designing the VAT loss.
If Σ is isotropic (e.g., Σ = I), the VAT loss reduces to the Euclidean sensitivity ∥∇f(x0)∥22. If Σ is
anisotropic, the VAT loss prioritizes robustness along directions where Σ assigns lower curvature.
This coincides with our intuition: allowing larger adversarial perturbations results in more constraint
on the model’s sensitivity in those directions. While it seems to be trivial when Σ is a diagonal
matrix that simply scales the input, the choice of Σ can be more complex and encompasses structural
information about the input space, which would lead to substantial differences in the VAT loss. This
is what we will see under the time series data.

3.2 VAT under Functional Inputs

In the setting of the time series data [24], the input x is viewed as a function of some interval T ,
which would require a more sophisticated treatment on the theoretical analysis. Let L2 = L2(T )
be the Hilbert space of square integrable functions on T and denote the inner product by ⟨·, ·⟩L2(T ).
We suppose that the input x ∈ L2(T ). For the perturbation, let us take another Banach space E and
denote by ∥·∥E the norm in E. Typically, we can choose E to be a Sobolev space, which will be
discussed in the next subsection. The dual space E∗ of E is defined as the space of continuous linear
functionals on E, which is equipped with the dual norm ∥·∥E∗ defined by

∥g∥E∗ = sup
x∈E:∥x∥E≤1

|g(x)|.

To avoid technicalities, we will only provide informal results here. For a formal treatment and
rigorous proofs, we refer the readers to Appendix A in appendix.

The functional virtual adversarial training (f-VAT) introduces a more general form of the VAT loss,
which is defined as

LVA
E (x0, ϵ; f) = sup

r∈L2∩E:∥r∥E≤ϵ

LDS(x0, r; f). (8)

Our first result parallels Proposition 3.1 in the functional setting.
Theorem 3.3 (Informal). Let f(x) = ⟨β, x⟩L2(T ), β ∈ L2(T ) be a functional linear model. Then,
the loss Eq. (8) is equivalent to

LVA
E (x0, ϵ; f) = ϵ2∥β∥2E∗ , (9)

where ∥β∥E∗ can be infinite if β /∈ E∗.

Then, the next result is the functional version of Proposition 3.2.
Theorem 3.4 (Informal). Let f : L2(T )→ R be differentiable at x0 ∈ L2(T ). Then,

lim
ϵ→0+

ϵ−2LVA
E (x0, ϵ; f) = ∥∇f(x0)∥2E∗ . (10)

Theorem 3.3 and Theorem 3.4 establish the duality of VAT under general functional spaces, showing
that a constraint over the E-norm of the perturbation results in penalizing the dual space E∗-norm
of the model’s sensitivity. These results also recover Proposition 3.1 and Proposition 3.2 as special
cases, since ∥·∥Σ and ∥·∥Σ−1 are dual under the canonical Euclidean norm. While finite dimensional
spaces under different norms are equivalent, the infinite dimensional spaces can be substantially
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different. The functional setting generalizes the vector-based analysis in the preceding subsection,
but its infinite-dimensional nature allows for a richer specification of perturbation constraints that
align with the geometry of functional data.

These findings offer several key insights into the behavior and potential of VAT when applied to
functional data, such as time series. A critical implication of these results lies in the role of the space
E (or equivalently, the norm ∥·∥E), which defines the constraint of the perturbation r. It is known
that the stronger norm of E (thus a “smaller” space) leads to a weaker norm of E∗ (thus a “bigger”
space), which can be seen from the duality between ∥·∥Σ and ∥·∥Σ−1 . We will use the Sobolev spaces
to show a concrete example in the next section. Consequently, the result highlights that, if we want to
impose a stronger norm on the sensitivity of the method, we should, in contrast, relax the norm of the
perturbation.

Moreover, this perspective also has practical implications for designing VAT-based training procedures.
The choice of E and thus E∗ determines the directions and structure of perturbations against which
the model is made robust. For time series data, where the inputs are functions over a time interval
T , this flexibility is particularly valuable. Time series often exhibit structural properties such as
smoothness, periodicity, or specific temporal dependencies. By selecting a space that captures these
characteristics—for instance, a Sobolev space that penalizes high-frequency oscillations through
derivative-based norms—the VAT loss can be tailored to prioritize robustness under a particular sense.
This could be especially beneficial in applications where high-frequency components are considered
noise, which encourages the model to focus on the underlying smooth signal.

3.3 Structured Adversarial Perturbations via Sobolev Spaces

Sobolev spaces [1] are a powerful tool in functional analysis, particularly useful for analyzing the
smoothness and regularity of functions. Using Sobolev spaces, we can define a structured norm for
the f-VAT constraint that captures the smoothness properties of the perturbations. In this subsection,
we will briefly introduce the Sobolev spaces, their duality, and practical ways to compute their norms
with discrete points. We refer the readers to Appendix B in the appendix for more details.

For a positive integer s, the Sobolev space Hs(T ) comprises functions in L2(T ) whose weak
derivatives up to order s are also in L2(T ). The weak derivative generalizes differentiation to
functions lacking classical smoothness, enabling control over their regularity. A function with
classical continuous derivatives up to order s is in Hs(T ), but the converse is not necessarily true.
The norm in a Sobolev space is simply the sum of the L2(T ) norms of all derivatives up to order s
and the inner product can be similarly defined, which make Hs(T ) a Hilbert space.

More broadly, Hα(T ) can be defined for any real α ∈ R. Non-integer α captures fractional
smoothness, while negative α encompasses distributions rougher than L2(T ) functions. Moreover, it
is known that for s > 0, Hs is densely embedded into L2(T ), while L2(T ) is dense in H−s(T ).

The duality of Sobolev spaces can be easily identified with the index s. The dual of Hα(T ) is
H−α(T ) under the L2(T ) inner product. This duality enables us to frame the VAT loss using the
dual norm ∥ · ∥H−s , assessing model sensitivity to perturbations constrained by ∥ · ∥Hs for s > 0.

Computing the Norm with Discrete Observations. In practical settings, time series are discrete
vectors in RN . For simplicity, we assume that the time series is sampled at N equidistant points,
but the results can be extended to non-equidistant points with minor adjustments. Then, we can
approximate the Sobolev norms using finite difference operators [9]. Define the first-order difference
matrix D1 ∈ RN×N with (D1r)i = ri+1 − ri and higher-order differences Dk = Dk

1 . For integer k,
the squared Hk norm of k with discrete observations rN ∈ RN can be approximated as:

∥r∥2Hk ≈ r⊤NAk,NrN , where Ak,N = IN +D⊤
1 D1 +D⊤

2 D2 + · · ·+D⊤
k Dk,

where IN is the N ×N identity matrix. This sums the ℓ2-norm of r and its discrete derivatives up to
order k.

However, we actually will use the H−s norm for the perturbation, so the above formulation is not
directly applicable. For general α ∈ R, we will use the spectral method [9] instead. It is known
that the Sobolev space Hα(T ) can be represented via the fractional power of the Laplacian operator.
We have Hα(Rd) =

{
f = (I −∆)−α/2u : u ∈ L2(Rd)

}
and ∥f∥2Hα =

∥∥(I −∆)α/2f
∥∥2
L2(Rd)

.
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Therefore, let us take the discrete negative Laplacian matrix

LN =


2 −1 0 · · · 0 0
−1 2 −1 · · · 0 0

...
...

. . . . . .
...

...
0 0 · · · −1 2 −1
0 0 · · · 0 −1 2

 .

We can compute the Hα norm by

∥r∥2Hα ≈ r⊤N (IN + LN )αrN , α ∈ R, (11)

where (IN + LN )α is defined via the spectral theorem: if IN + LN = QΛQ⊤ with diagonal Λ, then
(IN + LN )α = QΛαQ⊤, where Λα takes the exponent of each diagonal entry. This formulation is
also valid for non-integer or negative s, where we note that (IN + LN ) is positive definite and thus
the diagonal entries of Λ are positive. This gives us practical ways to compute the Sobolev norms
with discrete observations.

3.4 The Algorithm

Let us now summarize the f-VAT procedure. Overall, we apply a mini-batch gradient descent to
minimize the total loss. In practice, since the analytic expression of optimal perturbation r∗ is
intractable in Eq. (2), we approximate it using gradient ascent. We illustrate each step of updating θ
in Algorithm 1, where we recall the labeled loss L0(Dl; fθ) and LDS in Eq. (1). According to our
theory in Theorem 3.3 and the duality of Sobolev spaces, we use H−s for the norm of adversarial
perturbation r to impose a smoothness constraint on the functional model. In this paper, we mainly
use s = 2 to penalize (weak) derivative up to the second order of the model, empirically verified by
ablation studies in Fig. 1.

Algorithm 1 Functional Virtual Adversarial Training Step
1: Input: Data batch D,Dl, model fθ, order of the Sobolev norm s ≥ 0, radius ϵ, adversarial

iterations L, learning rate η.
2: for each sample Xi ∈ D do ▷ Approximate r∗i
3: Randomly initialize perturbation vector ri over ∥ri∥H−s ≤ ϵ.
4: for ℓ = 1→ L do
5: Gradient ascent ri ← ri + η∇riLDS(Xi, ri; fθ)
6: Normalize ri ← ϵ ri

∥ri∥H−s
.

7: end for
8: end for
9: θ ← θ − η∇θL(θ), where L(θ) = L0(Dl; fθ) +

1
|D|

∑
Xi∈D LDS(Xi, ri; fθ)

4 Experiments

4.1 Experimental Settings

We use dozens of publicly available datasets from the UCR and UEA repositories [11], including
the representative univariate dataset (i.e., CricketX, UWave, and InsectWing) and the multivariate
dataset (i.e., SelfReg, NATOPS, and Heartbeat) in [19]. These representative datasets are from
difficult to easy, and widely-used in semi-supervised time series classification [19, 21]. Additionally,
we construct more empirical results on several large-scale China Securities Index (CSI) datasets
(i.e., CSI 50 and 500 futures) spanning from 2020 to 2023 for predicting directions (upward or
downward) of futures prices [44, 33]. The dataset collects records spanning from 2020 to 2022. Each
time step contains bid/ask prices and corresponding volumes. Following [19], each dataset is split
into train (60%), valid (20%), and test set (20%). We rescale each dataset into the range [0, 1] for
numerical stability. We refer readers to Appendix C for more details.
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4.2 Performance Evaluation

Semi-Supervised Performance Following [19], we compare f-VAT with six deep learning-based
methods, including recent SemiTime [19] and TapNet [43]. The baseline SupL represents the deep
model trained only on the labeled dataset. We adopt the baseline results to Table 1 from the original
work [19, 25, 43]. Following [40], we average the performance of each method over five runs with
different random seeds and train/valid/test splits. Table 1 reports the mean and standard error from
multiple runs.

Table 1: The semi-supervised classification accuracy (%) with standard deviation across six real-world
datasets. Best performance in boldface.

Dataset Ratio SupL PI MTL SemiTime TapNet VAT f-VAT

10% 44.88 ±0.51 38.87 ±2.26 40.94 ±1.97 44.88 ±3.13 39.42 ±0.82 42.85 ±3.97 49.18 ±1.96

CricketX 20% 51.61 ±0.45 44.44 ±2.91 50.12 ±1.22 51.61 ±0.66 51.41 ±0.31 49.14 ±0.50 57.91 ±3.58

40% 58.71 ±0.46 53.39 ±2.18 55.10 ±1.12 58.71 ±2.78 58.97 ±0.72 58.63 ±0.50 68.39 ±2.25

10% 81.46 ±0.18 81.53 ±0.54 76.35 ±0.56 81.46 ±0.60 82.34 ±0.58 94.41 ±0.09 94.82 ±0.39

UWave 20% 84.57 ±0.87 81.66 ±0.74 81.77 ±0.94 84.57 ±0.49 86.35 ±0.43 95.53 ±0.31 96.45 ±0.27

40% 86.91 ±0.98 86.45 ±1.20 86.91 ±0.68 86.91 ±0.47 89.24 ±0.69 94.76 ±0.54 97.23 ±0.43

10% 54.96 ±1.25 43.16 ±3.20 50.45 ±1.01 54.96 ±1.61 55.53 ±1.18 55.49 ±1.28 58.01 ±1.12

InsectWing 20% 59.01 ±1.13 48.35 ±0.81 56.43 ±0.88 59.01 ±1.56 60.36 ±0.38 61.27 ±0.19 61.28 ±1.86

40% 62.38 ±1.39 55.32 ±2.04 60.90 ±0.87 62.38 ±0.76 63.87 ±1.41 63.48 ±0.30 64.81 ±1.15

10% 46.49 ±2.01 50.44 ±0.76 50.88 ±2.01 49.68 ±2.83 50.87 ±3.31 53.12 ±4.51 59.31 ±3.06

SelfReg 20% 52.44 ±3.15 53.94 ±2.63 52.19 ±2.01 52.63 ±1.31 54.39 ±2.74 55.76 ±0.35 61.60 ±1.13

40% 51.31 ±3.48 55.69 ±2.74 56.14 ±2.01 49.56 ±1.72 54.38 ±0.76 53.47 ±1.04 64.44 ±3.13

10% 68.98 ±2.89 75.83 ±4.39 73.91 ±3.73 68.52 ±0.81 70.37 ±7.12 82.38 ±0.96 86.04 ±1.41

NATOPS 20% 81.02 ±1.60 82.51 ±1.25 82.41 ±2.89 80.09 ±2.12 77.77 ±1.39 82.81 ±0.52 86.25 ±1.38

40% 88.89 ±2.78 88.27 ±1.19 90.27 ±1.39 87.49 ±2.41 82.87 ±2.12 90.15 ±1.60 93.13 ±0.15

10% 67.08 ±3.57 72.13 ±1.99 71.61 ±2.47 71.61 ±1.71 72.84 ±1.23 73.86 ±0.59 76.25 ±1.22

Heartbeat 20% 73.25 ±0.71 72.01 ±0.78 73.66 ±0.71 74.49 ±1.43 73.24 ±1.88 71.59 ±0.13 76.46 ±1.06

40% 67.08 ±1.89 73.28 ±1.53 73.61 ±3.07 72.43 ±3.11 73.66 ±0.71 75.00 ±0.11 77.28 ±0.40

Table 1 shows that f-VAT consistently outperforms other competitive baselines across all real-world
datasets reported in various label ratios. For instance, f-VAT achieves up to 9.42% performance
improvements on CricketX and 8.30% on SelfReg with label ratio α = 0.4, while in the label-scarce
scenario α = 0.1, f-VAT still achieves up to 6.19% performance improvements on SelfReg.

To further verify the superiority of f-VAT, we randomly sample 30 datasets from UCR/UEA
datasets [16]. Then, we add a classical baseline meanTeacher [38] and a recent state-of-the-art
Class-Aware Temporal and Contextual Contrasting (CA-TCC) [18] for fair comparison. Table 2
shows that f-VAT still consistently outperforms other competitive baselines in all settings. Due to the
page limit, the details of more empirical results can be found in Appendix E.

Table 2: The average accuracy (%) and average rank under different label ratios.

Method 10% 20% 40%
AvgAcc AvgRank AvgAcc AvgRank AvgAcc AvgRank

SupL 35.31 6.67 36.92 7.00 37.15 7.33
PI 53.09 3.93 55.16 4.40 63.60 4.47
MTL 45.19 5.70 45.72 5.87 46.11 6.80
meanTeacher 42.89 5.93 50.94 4.87 63.85 4.13
SemiTime 56.53 3.57 58.93 3.77 69.02 3.13
TapNet 58.67 3.70 60.41 3.40 70.28 3.17
CA-TCC 58.07 3.37 59.84 3.67 63.27 4.27
f-VAT 65.85 1.50 68.87 1.50 76.24 1.53

Additionally, we construct more empirical results on several large-scale China Securities Index
(CSI) datasets (i.e., CSI 50 and 500 futures). Table 3 presents the performance of various semi-
supervised methods across different label ratios, and shows that f-VAT significantly outperforms
other competitive baselines on futures datasets, especially on more volatile CSI 500 futures. This
is because f-VAT’s adversarial perturbations incorporating key temporal structure facilitate deep
models to effectively use unlabeled samples to yield smoother predictive distribution with better
generalization.
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Table 3: The performance comparison on domestic futures datasets like CSI 50 and 500 futures. Best
performance in boldface.

Futures Ratio SupL PI MTL SemiTime TapNet CA-TCC f-VAT

50
10% 40.05 ±1.38 42.87 ±1.45 53.94 ±0.13 55.19 ±0.77 54.62 ±0.54 55.72 ±1.16 58.64 ±0.53

20% 45.08 ±1.45 47.26 ±0.73 54.97 ±0.61 56.69 ±0.50 56.93 ±1.28 58.21 ±0.44 62.09 ±0.26

40% 50.69 ±3.53 52.42 ±1.21 56.97 ±0.57 57.34 ±0.20 59.75 ±1.09 59.80 ±1.32 64.78 ±0.45

500
10% 34.23 ±0.24 44.00 ±0.06 39.53 ±1.35 38.86 ±2.04 40.53 ±0.83 39.79 ±1.54 43.77 ±0.73

20% 35.38 ±1.06 46.57 ±0.48 45.26 ±0.29 46.04 ±0.12 44.58 ±1.70 45.05 ±1.74 52.14 ±0.25

40% 43.85 ±1.49 49.25 ±0.55 47.66 ±1.50 50.65 ±1.05 51.30 ±1.36 54.29 ±0.87 58.66 ±0.46

Fully-Supervised Performance The proposed f-VAT can be easily extended to fully supervised
settings. We compare f-VAT with several competitive supervised learning methods. ED [3] is the clas-
sical one-nearest-neighbor classifier based on Euclidean distance. TapNet [43] and ShapeNet [26] are
deep learning-based methods that leverage manual shapelet-based features for better representations.
Additionally, we include two non-neural methods called ROCKET [17] and HiveCOTE [4]. The
empirical results in Table 4 are taken from the original work [3, 43, 26]. We average the performance
of each method over five runs with different random seeds, and report mean values with standard
deviations.

Table 4: The performance comparison between f-VAT and other baselines in fully-supervised settings.
We report the mean and standard deviation over five runs. Best performance in boldface.

Dataset Hive-COTE ROCKET ED TapNet ShapeNet VAT f-VAT

CricketX 74.10 ±0.03 76.10 ±0.01 62.90 ±0.14 66.20 ±0.25 68.30 ±0.51 68.54 ±1.40 77.25 ±0.94

UWave 92.10 ±0.02 93.70 ±0.04 88.10 ±0.12 89.40 ±0.69 90.60 ±0.13 92.43 ±0.47 97.75 ±0.13

InsectWing 62.20 ±0.01 64.70 ±0.01 60.20 ±0.13 67.30 ±0.11 66.30 ±0.02 70.01 ±1.16 71.70 ±0.55

SelfReg 51.60 ±0.67 51.40 ±0.59 48.30 ±0.12 55.10 ±0.26 57.80 ±0.03 58.75 ±1.25 60.21 ±0.68

NATOPS 82.80 ±0.32 88.50 ±0.44 85.10 ±0.18 93.90 ±0.01 88.30 ±0.03 87.58 ±1.89 97.50 ±0.51

Heartbeat 72.20 ±0.52 71.70 ±0.02 61.90 ±0.09 72.10 ±1.43 75.60 ±0.02 76.08 ±0.82 78.75 ±0.41

Table 4 shows that f-VAT consistently outperforms other baselines with an average improvement of
2.4% in all settings, especially for datasets containing long-term trend structures (i.e., up to 4.05%
improvement in UWave). Also, f-VAT exhibits lower variance than VAT, as the functional adversarial
perturbation imposes stronger regularization on the model’s gradient sensitivity and improves the
model’s stability in fully-supervised settings.
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Figure 1: Various order of Sobolev norm.

Altering Order of Sobolev Norm We further ex-
plore how the order s of Sobolev norm influences
the performance of f-VAT. Fig. 1 illustrates that the
performance of f-VAT in NATOPS with label ratio
α = 0.4 under different s, where the error bar reports
the standard deviation over 5 runs. We observe that
the model’s accuracy peaks at s = 2. This is because
under-regularization (s ≤ 1) or over-regularization
(s ≥ 3) both would degenerate predictive perfor-
mance. Based on this, we choose s = 2 in the rest
of experiments. Additionally, we evaluate the per-
formance on more datasets in Table 5, where s = 0
reduces to the original VAT. Table 5 shows that set-
ting s = 2 achieves the best performance in almost all settings. For high volatile time series data,
setting high order s = 3 generates adversarial perturbations that preserve low-frequency temporal
information, while for relatively stable time series data, the small order s = 1 allows the perturbation
to flexibly explore input space. In practice, it suffices to evaluate s ∈ {1, 2, 3, 4} based on the
validation set and report the average performance over several runs.

Moreover, to verify the model-agnostic property of f-VAT, we compare the performance of different
architectures trained by f-VAT in Appendix D. The empirical results suggest that Temporal Con-
volutional Network (TCN) [5] outperforms other architectures in most settings, so we adopt the
eight-layer TCN as main architecture.
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Table 5: The performance of f-VAT with different Sobolev norm order s.

s CricketX UWave InsectWing NATOPS SelfReg

0 58.63 ±0.50 94.76 ±0.54 63.48 ±0.30 90.15 ±1.60 53.47 ±1.04

1 59.91 ±2.32 96.54 ±0.67 66.70 ±0.50 89.58 ±0.12 56.16 ±1.73

2 61.66 ±2.33 97.16 ±0.28 67.08 ±0.86 93.13 ±0.15 58.86 ±0.35

3 60.44 ±0.23 96.82 ±0.16 64.10 ±0.86 90.10 ±0.65 51.39 ±1.21

4 58.22 ±3.39 96.71 ±0.61 66.11 ±0.82 87.51 ±0.52 50.93 ±0.12

4.3 Further Analysis

In this subsection, we conduct additional qualitative experiments to further analyze the behaviors of
the deep model trained by f-VAT in the semi-supervised time series classification.

500 600 700 800 900
0.0

0.5
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Time

Sample
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Figure 2: Visualization of perturbations.

Perturbation Visualization Fig. 2 visualizes vari-
ous virtual perturbations on NATOPS with label ratio
α = 0.4. The color line represents the original time
series data, the color line adds adversarial perturba-
tion generated by the original VAT, and the color line
adds our proposed functional adversarial perturbation
by f-VAT. As shown in Fig. 2, the functional adver-
sarial perturbation closely aligns with the original
sample across all key time steps and only adds subtle
fluctuations to non-critical regions, while the origi-
nal VAT’s perturbation introduces large spikes that
disrupt underlying trend structure. These observa-
tions show that functional adversarial perturbations
can preserve trend information without introducing anomalous patterns, facilitating deep models to
achieve smoother predictive distributions and more stable convergence.
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Figure 3: Visualization of performance curve (left) and the loss landscape of deep models trained by
VAT (mid) and f-VAT (right) on the UWave dataset with label ratio α = 0.4. The landscape of VAT
contains many local minima, trapping the model in suboptimal solutions. The landscape of f-VAT is
significantly smoother due to the adversarial perturbation in function space. Thus, f-VAT achieves
faster and more stable convergence and better final results (left).

Loss Landscapes To validate the smoother predictive distribution offered by the functional adver-
sarial perturbation in Sobolev space and demonstrate that f-VAT leads to easier optimization, we
visualize the loss landscape of deep model trained by f-VAT and VAT using “filter normalization” [27]
on NATOPS with label ratio α = 0.4. From Fig. 3(mid), we observe that the loss landscape of VAT
is highly chaotic, which causes the model to be easily trapped in suboptimal minima, leading to an
unstable training curve. In contrast, deep models trained by f-VAT (as shown in Fig. 3 (right)) enjoy
a significantly smoother loss landscape, where the functional adversarial perturbation in the Sobolev
space preserves low-frequency trend information to provide more consistent gradient directions.
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Consequently, f-VAT facilitates deep models for faster and more stable convergence with better final
performance, as demonstrated in Fig. 3 (left).

Feature Importance Analysis To further analyze the behaviors of deep models trained by f-VAT
in semi-supervised settings, Fig. 4 visualizes the gradient-based feature importance map [34] on
NATOPS with different label ratios. The sample corresponds to “Fold wings” action, whose feature
importance significantly changes within the time interval [25, 35]. These observations show that
as supervision signals increase, deep model trained by f-VAT captures essential “shapelets” (i.e.,
“elbow’s movement to the right”) [23] and reduces its reliance on irrelevant features (i.e., feature 2
“shoulder rotation”), which aligns with existing knowledge that “Fold wings” action primarily relies on
“elbow movement” with less reliance on “shoulder notation” [37]. This qualitative analysis validates
the importance of capturing functional trend information within time series data and demonstrates
that f-VAT is a highly effective and efficient method for this purpose.
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Figure 4: As the label ratio increases, the deep model trained by f-VAT ignores less important
features (e.g., feature 2) and captures more critical regions (e.g., feature 10).

5 Limitations and Future Directions

In this paper, we propose functional Virtual Adversarial Training (f-VAT), which incorporates the
functional structure of data into perturbations. Considering semi-supervised time series classification,
we provide both theoretical insights and extensive empirical results showing the superiority of the
proposed f-VAT method. We believe that our f-VAT method can serve as a general framework for
semi-supervised learning methods with functional data.

Nevertheless, there are still some limitations in this work. We follow the implementations of repre-
sentative semi-supervised time series classification settings, which primarily train backbone models
from scratch, rather than fine-tuning them based on pretrained weights. We consider examining the
effectiveness of pre-trained backbones as a potential future work.

Another future direction is to explore and design different adversarial perturbation norm for other
functional models. For example, for data with known seasonality or periodic patterns, we can design
a norm that additionally penalizes the non-periodicity of the perturbation to align with the periodic
patterns, which could be done using the Fourier domain decomposition. We believe that investigating
additional structure of the time series would further enhance the performance of the f-VAT method.
Also, if the functional data lie on a manifold, one can introduce norm induced by the manifold
structure to better align the perturbations. These further exploration would shed the light on the
development of semi-supervised learning methods.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims made in the abstract and introduction accurately reflect our
paper’s contributions and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Our paper discusses the limitations of the work in Section 5 Limitations and
Futures Directions.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: Our paper provides a full set of assumptions and a complete (and correct)
proof in Appendix A and Appendix B.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Our paper fully discloses the information needed to reproduce the main
experimental results in Section 4.1 and Appendix C.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We include our codes and instructions to reproduce our main experimental
results in the supplemental material.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Our paper specifies the training and test details in Section 4.1 and Appendix C.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We report the mean and standard error over five runs in Table 1, Table 4
and Fig. 1 within Section 4.2.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The paper provides sufficient information on the computer resources in Ap-
pendix C.2.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducts with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: The paper is essentially fundamental research in machine learning, without
negative social impacts.
Guidelines:

• The answer NA means that there is no societal impact of the work performed. There is
no societal impact of the work performed

• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: The paper does not use existing assets.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Duality Characterization of VAT Loss in General Spaces

Let us first introduce some preliminaries on the duality with respect to L2. Let T be an interval in R
and we denote by L2(T ) the space of square-integrable functions on T with the inner product

⟨u, v⟩L2(T ) =

∫
T

u(x)v(x)dx.

Let E be a Banach space with norm ∥·∥E . Let E∗ be the dual space of E, which consists of all
continuous linear functionals on E. For f ∈ E∗ and u ∈ E, we denote by ⟨f, u⟩E∗,E = f(u) the
duality pairing between f and u. Suppose that E is either densely embedded in L2(T ) or L2(T ) is
densely embedded in E. We will discuss the relationship between the dual space E∗ and the space
L2(T ). We denote by ∥·∥ the operator norm.

The case E ↪→ L2. Let iE→L2 : E → L2 be the embedding. Suppose that ∥u∥L2 ≤ K∥u∥E For
v ∈ L2 and u ∈ E, we define the functional

ϕv(u) = ⟨iE→L2(u), v⟩L2 .

Then, we find that

|ϕv(u)| = |⟨iE→L2(u), v⟩L2 | ≤ ∥iE→L2(u)∥L2∥v∥L2 ≤ ∥iE→L2∥∥u∥E∥v∥L2 ,

so
∥ϕv∥E∗ = sup

∥u∥E≤1

|ϕv(u)| ≤ ∥iE→L2∥∥v∥L2 .

This shows that ϕv ∈ E∗. Moreover, suppose ϕv ∈ E∗ is identically zero. Then, for all u ∈ E,
we have ϕv(u) = ⟨iE→L2(u), v⟩L2 = 0. But since the range of iE→L2 is dense in L2, we must
have v = 0. Therefore, v 7→ ϕv defines an embedding L2 ↪→ E∗, which we denote by iL2→E∗ . In
addition, we also have

⟨v, iE→L2(u)⟩L2 = ⟨iL2→E∗(v), u⟩E∗,E , namely, i∗E→L2 = iL2→E∗ .

If we view the embeddings as inclusions, we have E ⊂ L2 ⊂ E∗.

The case L2 ↪→ E. Let iL2→E : L2 → E be the embedding. For an element ϕ ∈ E∗, ϕ ◦ iL2→E

also defines a continuous functional on L2. Consequently, from the Riesz representation theorem,
there exists a unique element vϕ ∈ L2 such that (ϕ ◦ iL2→E)(u) = ⟨u, vϕ⟩L2 . Moreover,

∥vϕ∥L2 = sup
∥u∥L2≤1

|(ϕ ◦ iL2→E)(u)| = sup
∥u∥L2≤1

|ϕ(iL2→E(u))| ≤ ∥ϕ∥E∗∥iL2→E∥∥u∥L2 .

Therefore, the mapping ϕ 7→ vϕ is a bounded linear operator from E∗ to L2, which we denote by
iE∗→L2 . Furthermore, if vϕ is identically zero, then ϕ must also be zero by the density of the range
of iL2→E . Consequently, iE∗→L2 is an embedding. Similarly, we have

⟨ϕ, iL2→E(u)⟩E∗,E = ⟨iE∗→L2(ϕ), u⟩L2 , namely, i∗L2→E = iE∗→L2 .

Viewing the embeddings as inclusions, we have E∗ ⊂ L2 ⊂ E.

A.1 The Duality Characterization of VAT Loss

With the above notations, let us give a more rigorous statement of the theorem. When E ↪→ L2, we
define the VAT loss as

LVA(x0, ϵ; f) = sup
r=iE→L2 (r0)∈L2:∥r0∥E≤ϵ

|f(x0)− f(x0 + r)|2, (12)

while when L2 ↪→ E, we define the VAT loss as

LVA(x0, ϵ; f) = sup
r∈L2:∥iL2→E(r)∥

E
≤ϵ

|f(x0)− f(x0 + r)|2, (13)

Let us give a more rigorous statement of the theorem.
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Theorem A.1. Let f(x) = ⟨β, x⟩L2(T ) be a functional linear model with β ∈ L2.

• For the case E ↪→ L2, the loss Eq. (13) is equivalent to

LVA(x0, ϵ; f) = ϵ2∥iL2→E∗(β)∥2E∗ . (14)

• For the case L2 ↪→ E, the loss Eq. (12) is equivalent to

LVA(x0, ϵ; f) =

{
ϵ2∥β0∥2E∗ , if β = iE∗→L2(β0) for some β0 ∈ E∗,

∞, otherwise.
(15)

If we view the embeddings as inclusions, we unify the two cases as

LVA(x0, ϵ; f) = ϵ2∥β∥2E∗ . (16)

Proof. Let E0 be the set over which the supremum is taken in Eq. (13) and Eq. (12). Then, the VAT
loss writes

LVA(x0, ϵ; f) = sup
r∈E0

|⟨β, x0⟩ − ⟨β, x0 + r⟩|2 = sup
r∈E0

⟨β, r⟩2L2(T )

Let us consider the two cases of separately.

The case E ↪→ L2. Using the relation between the dual spaces, we have

LVA(x0, ϵ; f) = sup
r=iE→L2 (r0)∈L2:∥r0∥E≤ϵ

⟨β, r⟩2L2(T )

= sup
r0∈E:∥r0∥E≤ϵ

⟨β, iE→L2(r0)⟩2L2(T )

= sup
r0∈E:∥r0∥E≤ϵ

⟨iL2→E∗(β), r0⟩2E∗,E

= ϵ2∥iL2→E∗(β)∥2E∗ .

The case L2 ↪→ E. In this case, we have

LVA(x0, ϵ; f) = sup
r∈L2:∥iL2→E(r)∥

E
≤ϵ

⟨β, r⟩2L2(T ) .

If β = iE∗→L2(β0) for some β0 ∈ E∗, we have

LVA(x0, ϵ; f) = sup
r∈L2:∥iL2→E(r)∥

E
≤ϵ

⟨iE∗→L2(β0), r⟩2L2(T )

= sup
r∈L2:∥iL2→E(r)∥

E
≤ϵ

⟨β0, iL2→E(r)⟩2E∗,E

= sup
r1∈E:∥r1∥E≤ϵ

⟨β0, r1⟩2E∗,E

= ϵ2∥β0∥2E∗ .

On the other hand, if LVA(x0, ϵ; f) is finite, then we can define a function on Ran iL2→E that

ϕ(r1) = ⟨β, r⟩L2(T ) , r1 = iL2→E(r),

which is well-defined since iL2→E is injective. It is easy to verify that ϕ is linear. Moreover,

ϵ2∥ϕ∥2E∗ = sup
r1∈E:∥r1∥E≤ϵ

|ϕ(r1)|2 = sup
r∈L2:∥iL2→E(r)∥

E
≤ϵ

⟨β, r⟩2L2(T ) = L
VA(x0, ϵ; f) <∞.

Hence, we have ϕ ∈ E∗. Moreover, the definition of ϕ and the duality relation gives

⟨β, r⟩L2(T ) = ϕ(r1) = ⟨ϕ, r1⟩E∗,E = ⟨ϕ, iL2→E(r)⟩E∗,E = ⟨iE∗→L2(ϕ), r⟩L2(T ) ,

which implies that β = iE∗→L2(ϕ). Consequently, LVA(x0, ϵ; f) < ∞ if and only if β ∈
Ran iE∗→L2 and we conclude the theorem.
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A.2 Proof of Theorem 3.4

Let us first recall that Fréchet differentiability of f at x0 means that there exists a continuous linear
functional ∇f(x0) ∈ L2(T ) such that

f(x0 + r) = f(x0) + ⟨∇f(x0), r⟩L2(T ) + o(∥r∥L2(T )) as ∥r∥L2(T ) → 0.

Moreover, if L2 → E, we say that the Fréchet differentiability holds under the E-norm if∇f(x0) =
iE∗→L2(β0) for some β0 ∈ E∗ and for any r ∈ L2, we have

f(x0 + r) = f(x0) + ⟨∇f(x0), r⟩L2(T ) + o(∥iL2→E(r)∥E) as ∥r∥E → 0.

First, we give a rigorous version of Theorem 3.4 in the following.

Theorem A.2 (Theorem 3.4 restated). Let f : L2(T )→ R be Fréchet differentiable at x0 ∈ L2(T )
with gradient∇f(x0) ∈ L2(T ).

• If E ↪→ L2(T ), then

lim
ϵ→0+

ϵ−2LVA(x0, ϵ; f) = ∥iL2→E∗(∇f(x0))∥2E∗ .

• If L2(T ) ↪→ E, assume further that ∇f(x0) = iE∗→L2(β0) for some β0 ∈ E∗ and the
Fréchet differentiability holds under under E-norm, we have

lim
ϵ→0+

ϵ−2LVA(x0, ϵ; f) = ∥β0∥2E∗ .

Proof. We consider the two cases separately.

The case E ↪→ L2(T ) In this setting, the dual embedding iL2→E∗ : L2(T )→ E∗ satisfies

⟨iL2→E∗(v), u⟩E∗,E = ⟨v, u⟩L2(T ) for all v ∈ L2(T ), u ∈ E.

Combining it with the Fréchet differentiability of f at x0, If r = iE→L2(r0), we have

f(x0 + r) = f(x0) + ⟨∇f(x0), r⟩L2(T ) + o(∥r∥L2(T ))

= f(x0) + ⟨iL2→E∗(∇f(x0)), r0⟩E∗,E + o(∥iE→L2(r0)∥L2(T ))

= f(x0) + ⟨iL2→E∗(∇f(x0)), r0⟩E∗,E + o(∥r0∥E),

Therefore, recalling that the VAT loss is given by Eq. (12), we have

LVA(x0, ϵ; f) = sup
r0∈E:∥r0∥E≤ϵ

(
⟨iL2→E∗(∇f(x0)), r0⟩E∗,E + o(∥r0∥E)

)2

= sup
r0∈E:∥r0∥E≤ϵ

(
⟨iL2→E∗(∇f(x0)), r0⟩E∗,E + o(ϵ)

)2

Consequently,

ϵ−2LVA(x0, ϵ; f) = sup
r0∈E:∥r0∥E≤ϵ

(
ϵ−1 ⟨iL2→E∗(∇f(x0)), r0⟩E∗,E + o(1)

)2

= sup
s0∈E:∥s0∥E≤1

(
⟨iL2→E∗(∇f(x0)), s0⟩E∗,E + o(1)

)2

= sup
s0∈E:∥s0∥E≤1

(
⟨iL2→E∗(∇f(x0)), s0⟩E∗,E

)2

+ o(1)

= ∥iL2→E∗(∇f(x0))∥2E∗ + o(1).
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The case L2(T ) ↪→ E In this case, let us recall that the dual embedding iE∗→L2 : E∗ → L2(T )
satisfies

⟨iE∗→L2(ϕ), u⟩L2(T ) = ⟨ϕ, u⟩E∗,E for all ϕ ∈ E∗, u ∈ L2(T ).

Thus, since∇f(x0) = iE∗→L2(β0) for some β0 ∈ E∗, using the Fréchet differentiability of f at x0

under the E-norm, we have

f(x0 + r) = f(x0) + ⟨∇f(x0), r⟩L2(T ) + o(∥iL2→E(r)∥E)

= f(x0) + ⟨iE∗→L2(β0), r⟩L2(T ) + o(∥iL2→E(r)∥E)

= f(x0) + ⟨β0, iL2→E(r)⟩E∗,E + o(∥iL2→E(r)∥E).

Recall the VAT loss is given by Eq. (13), we have

LVA(x0, ϵ; f) = sup
r∈L2:∥iL2→E(r)∥E≤ϵ

∣∣∣⟨β0, iL2→E(r)⟩E∗,E + o(∥iL2→E(r)∥E)
∣∣∣2

= sup
r1∈E,∥r1∥E≤ϵ

∣∣∣⟨β0, r1⟩E∗,E + o(∥r1∥E)
∣∣∣2,

where we use the density of iL2→E . Therefore,

ϵ−2LVA(x0, ϵ; f) = sup
r1∈E:∥r1∥E≤ϵ

(
ϵ−1 ⟨β0, r1⟩E∗,E + o(1)

)2

= sup
s1∈E:∥s1∥E≤1

(
⟨β0, s1⟩E∗,E + o(1)

)2

= ∥β0∥2E∗ + o(1).

A.3 Proof of Proposition 3.2

Since f(x) is continuously differentiable, we have

f(x0)− f(x0 + r) = ⟨∇f(x0), r⟩+ o(∥r∥2).

Noticing that ∥r∥Σ ≤ ϵ implies ∥r∥2 ≤ ϵ
∥∥∥Σ− 1

2

∥∥∥
∞

, we have

LVA(x0, ϵ; f) = sup
r:∥r∥Σ≤ϵ

|⟨β, x0⟩ − ⟨β, x0 + r⟩|2

= sup
r:∥r∥Σ≤ϵ

(⟨∇f(x0), r⟩+ o(∥r∥2))
2

= sup
r:∥r∥Σ≤ϵ

(⟨∇f(x0), r⟩+ o(ϵ))
2
.

Therefore, when ϵ→ 0+, we obtain that

ϵ−2LVA(x0, ϵ; f) = sup
r:∥r∥Σ≤ϵ

(
ϵ−2 ⟨∇f(x0), r⟩2 + o(1)

)
→ sup

r:∥r∥Σ≤ϵ

ϵ−2 ⟨∇f(x0), r⟩2

= ∥∇f(x0)∥2Σ−1 .
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B Sobolev Spaces

Sobolev spaces are a cornerstone of functional analysis, providing a framework to quantify the
smoothness of functions and distributions. This section outlines their construction, duality properties,
and practical computation in discrete settings, which are particularly relevant for introducing dual
loss in the VAT method. We refer to books [1, 9] for details.

B.1 Construction of Sobolev Spaces via Fourier Transforms

Sobolev spaces Hs(Rd) for s ∈ R are defined using Fourier transforms, offering a unified approach
across all real smoothness indices. Let S(Rd) denote the Schwartz space of smooth, rapidly decaying
functions on Rd, and S ′(Rd) its dual, the space of tempered distributions. Moreover, we can define
the Fourier transformation û(ξ) = Fu(ξ) =

∫
Rd u(x)e

−iξ·x dx of u ∈ S(Rd) and extend the Fourier
transformation to S ′(Rd).

For s ∈ R, the Sobolev space Hs(Rd) is defined as the space of tempered distributions u such that

(1 + |ξ|2)s/2|û(ξ)| ∈ L2(Rd) (17)

with the norm and inner product

∥u∥Hs =

(∫
Rd

(1 + |ξ|2)s|û(ξ)|2 dξ
)1/2

, ⟨u, v⟩Hs =

∫
Rd

(1 + |ξ|2)sû(ξ)v̂(ξ) dξ. (18)

Moreover, Hs(Rd) is also equivalent to the completion of S(Rd) with respect to the Hs norm.
The weight (1 + |ξ|2)s modulates the contribution of different frequencies: for s > 0, it penalizes
high-frequency components, enforcing smoothness; for s < 0, it emphasizes them, allowing rougher
distributions; and for s = 0, it reduces to the L2(Rd) norm, since H0(Rd) = L2(Rd). It is well
known that the Sobolev space Hs(Rd) is a Hilbert space under the inner-product ⟨·, ·⟩Hs .

For positive integer s, Hs(Rd) coincides with the space of L2 functions whose weak derivatives up to
order s are also in L2(Rd). For negative s, Hs(Rd) includes distributions that lack the integrability
of L2 functions but are constrained by the decay of their Fourier coefficients.

In applications like time series, we often consider functions on a bounded domain, such as T = [0, 1].
For domains Ω ⊆ Rd, Hs(Ω) can be defined as the restriction of functions from Hs(Rd) to Ω, with
the norm being the infimum of the Hs(Rd) norm over all extensions, or as the completion of C∞(Ω)
with respect to the appropriate norm.

B.2 Duality and Embeddings of Sobolev Spaces

Sobolev spaces exhibit a rich duality structure, which is essential for understanding their properties
and applications. For s ∈ R, the dual space of Hs(Rd) with respect to the L2(Rd) inner product is
H−s(Rd). That is, any continuous linear functional ℓ ∈ (Hs(Rd))∗ can be represented as:

ℓ(u) = ⟨v, u⟩L2 =

∫
Rd

v(x)u(x) dx, (19)

for some v ∈ H−s(Rd), with the norm equivalence:

∥ℓ∥(Hs)∗ = ∥v∥H−s . (20)

This duality arises because the pairing ⟨v, u⟩L2 is well-defined when u ∈ Hs and v ∈ H−s, as the
Fourier transform ensures that (1 + |ξ|2)−s/2v̂(ξ) and (1 + |ξ|2)s/2û(ξ) yield a product in L2(Rd).

Sobolev spaces also satisfy embedding theorems, which relate them to other function spaces based
on smoothness. A key result is the Sobolev embedding theorem: for s > d/2, Hs(Rd) embeds
continuously into Cb(Rd), the space of bounded continuous functions, with:

∥u∥Cb
≤ C∥u∥Hs , (21)

for some constant C. This embedding implies that functions in Hs with sufficiently large s are not
only continuous but also bounded, a property useful for ensuring regularity in optimization problems.
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More generally, for s1 > s2, Hs1(Rd) ↪→ Hs2(Rd), reflecting that higher s corresponds to greater
smoothness.

These properties—duality and embeddings—are critical in applications like Virtual Adversarial
Training (VAT), where the dual norm ∥∇f(x0)∥H−s quantifies model sensitivity to perturbations r
constrained by ∥r∥Hs ≤ ϵ, and embeddings ensure perturbations maintain desirable regularity.

B.3 Fractional Powers of the Laplacian and Sobolev Norms

The fractional power of the Laplacian provides an operator-theoretic perspective on Sobolev spaces,
unifying the definition of Hs(Rd) across all s ∈ R. The Laplacian −∆ is a positive, self-adjoint
operator on L2(Rd), and its fractional power (−∆)α for α ∈ R is defined via the Fourier transform:

F [(−∆)αu](ξ) = |ξ|2αû(ξ),

where û(ξ) = Fu(ξ) is the Fourier transform of u. However, the Sobolev norm incorporates a
shifted operator, I −∆, to ensure positivity and handle low frequencies effectively. Specifically, the
fractional power (I −∆)s/2 satisfies:

F [(I −∆)s/2u](ξ) = (1 + |ξ|2)s/2û(ξ),

so that:
∥u∥Hs = ∥(I −∆)s/2u∥L2 .

This equivalence follows from:

∥(I −∆)s/2u∥2L2 =

∫
Rd

|(1 + |ξ|2)s/2û(ξ)|2 dξ =

∫
Rd

(1 + |ξ|2)s|û(ξ)|2 dξ = ∥u∥2Hs .

For s > 0, (I−∆)s/2 acts as a differential operator of order s, penalizing high-frequency oscillations
and enforcing smoothness. For example, when s = 2, (I−∆)u = u−∆u, and the norm ∥u−∆u∥L2

measures both the function and its second derivatives. For s < 0, (I −∆)s/2 is a smoothing operator,
and Hs includes distributions whose images under (I −∆)−s/2 are in L2.

The dual norm in H−s(Rd) relates to the inverse fractional power. For v ∈ H−s, we have:

∥v∥H−s = ∥(I −∆)−s/2v∥L2 ,

since:
∥v∥H−s = sup

∥u∥Hs≤1

|⟨v, u⟩L2 | = sup
∥(I−∆)s/2w∥L2≤1

|⟨v, (I −∆)s/2w⟩L2 |,

and setting w = (I − ∆)−s/2u yields the result via the self-adjointness of I − ∆. This operator
formulation is particularly useful in discrete settings, as it translates directly to matrix powers, as
discussed previously.

The fractional Laplacian (−∆)s itself (without the identity shift) is also of interest, with norm:

∥(−∆)s/2u∥2L2 =

∫
Rd

|ξ|2s|û(ξ)|2 dξ.

While this norm emphasizes derivative behavior alone, I −∆ ensures a baseline L2 contribution,
making Hs norms more robust for small s or low frequencies. Choosing between (I − ∆)s/2,
(−∆)s/2 or (αI −∆)s/2 for perturbation constraints can tailor the robustness profile: the former
balances function magnitude and smoothness, while the latter focuses purely on derivative control.

B.4 Discrete Computation via Spectral Methods

In practical applications such as time series analysis, data are represented as discrete vectors in RN .
To compute Sobolev norms in this discrete setting, we employ spectral methods that approximate
the continuous operators while preserving their spectral properties, ensuring consistency with the
operator perspective introduced in the discussion on fractional powers and Sobolev norms.
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We recall that in the continuous case, the Sobolev norm of a function u ∈ Hs(Rd) is defined using
the fractional power of the operator I −∆, where ∆ is the Laplacian:

∥u∥Hs = ∥(I −∆)s/2u∥L2 .

This can be expressed in the Fourier domain as:

∥u∥2Hs =

∫
Rd

(1 + |ξ|2)s|û(ξ)|2 dξ,

where û is the Fourier transform of u, and 1 + |ξ|2 arises from the eigenvalues of I − ∆. In the
discrete setting, we aim to approximate this norm for a vector r ∈ RN , representing a time series
sampled at N equally spaced points. For simplicity, we assume periodic boundary conditions, which
are common in time series analysis and allow for efficient computation via the Fast Fourier Transform
(FFT).

B.4.1 Discrete Laplacian and Sobolev Norm

The discrete Laplacian LN ∈ Rn×n is constructed using second-order finite differences. For a
uniform grid with n points, LN is a tridiagonal matrix defined as:

LN =

 2 −1 0 · · · 0 0
−1 2 −1 · · · 0 0
0 0 · · · −1 2 −1
0 0 · · · 0 −1 2

 .

This matrix LN approximates the negative Laplacian −∆ via twice difference, which is a positive
semi-definite matrix. Thus, IN + LN , where IN is the N × N identity matrix, approximates
the operator I − ∆. Consequently, the squared Hs norm of the discrete vector rN ∈ Rn is then
approximated as:

∥r∥2Hs ≈ r⊤N (IN + LN )srN .

B.4.2 Speeding up the Computation under Periodic Boundary Conditions

For many applications of time series, we assume periodic boundary conditions, which allow us to
use the discrete Fourier transform (DFT) to compute the Sobolev norm efficiently. Under periodic
boundary conditions, we take the discrete Laplacian as

L̄N =

 2 −1 0 · · · 0 −1
−1 2 −1 · · · 0 0
0 0 · · · −1 2 −1
−1 0 · · · 0 −1 2

 ,

where we note the off-diagonal entries −1 at the corners (e.g., L1,N = −1, LN,1 = −1) enforce
periodicity. Then, this matrix L̄N is a circulant matrix, which can be diagonalized using the discrete
Fourier transform (DFT). The matrix can be diagonalized by the discrete Fourier transform matrix F ,
defined by:

F = (Fjk)
N−1
j,k=0, Fjk =

1√
N

e−i2πjk/N , j, k = 0, 1, . . . , N − 1,

which is unitary (i.e., F ∗F = IN , with F ∗ being the conjugate transpose). Then, the spectral
decomposition of L̄N is given by:

L̄N = FΛF ∗,

where Λ = diag(λ0, λ1, . . . , λN−1) is a diagonal matrix of eigenvalues. For the discrete Laplacian
defined above, the eigenvalues are:

λk = 4 sin2
(
πk

n

)
, k = 0, 1, . . . , n− 1.

These eigenvalues are non-negative (λk ≥ 0), with λ0 = 0 corresponding to the constant mode.
Consequently, IN + L̄N is decomposed as:

IN + L̄N = F (IN + Λ)F ∗,
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and the fractional power of the operator is then:

(IN + LN )s = F (IN + Λ)sF ∗.

Thus, the norm can be computed as:

∥rN∥2Hs ≈ r⊤N (IN + LN )srN = r⊤NF (IN + Λ)sF ∗rN =

n−1∑
k=0

(1 + λk)
s|r̂n,k|2,

where r̂n = F ∗rN is the discrete Fourier transform of rN . Since the fast Fourier transform (FFT)
can compute r̂n in O(N logN) time and other operations are O(N), the overall complexity of
computing the Sobolev norm is O(N logN), improving efficiency compared to direct matrix-vector
multiplication, which would be O(N2).

B.4.3 Discrete Laplacian for Non-Uniform Points

In many practical applications, such as time series analysis with irregularly sampled data, the points
t1 < t2 < · · · < tN are not uniformly spaced. In this case, we have to adjust the discrete Laplacian
to account for the non-uniform spacing between points.

For a non-uniform grid, let us define the forward and backward step sizes at each point:

h+
i = ti+1 − ti, i = 1, . . . , N − 1,

h−
i = ti − ti−1, i = 2, . . . , N,

and define h−
1 = h+

1 and h+
N = h−

N . We introduce the coefficients

ai = −
2

h−
i (h

+
i + h−

i )
, ci = −

2

h+
i (h

+
i + h−

i )
, bi =

2

h+
i h

−
i

, i = 2, . . . , N − 1.

The entries of the discrete Laplacian LN ∈ RN×N are given by

LN =

b1 c1 0 · · · 0 0
a2 b2 c2 · · · 0 0
0 0 · · · aN−1 bN−1 cN−1

0 0 · · · 0 aN bN

 .

With the adjusted discrete Laplacian, we can compute the Sobolev norm in a similar manner as
before.
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C Experiment Details

C.1 Dataset Details

We choose several representative datasets as benchmarks, ranging from easy to difficult. These
datasets include different properties like sampling rate, allowing for a more comprehensive evaluation
of various semi-supervised time series classification methods. Table 6 summarizes the statistics of
various datasets. The details of other 30 UCR/UEA datasets can be found in [16].

• CricketX [32]. The dataset contains gesture data with position of the X axis collected from
accelerometers in 3D space. CricketX includes 12 classes: “Cancel Call”, “Dead Ball”,
“Four”, “Last Hour Leg Bye”, “No Ball”, “One Short”, “Out”, “Penalty Runs”, “Six”, “TV
Replay”. Both the training and test sets contain 390 samples.

• UWaveGestureLibraryAll (UWave) [30]. The dataset from the gesture recognition system
used by Nokia’s search engine collects user-phone interaction motions. It contains 4,478
samples. The training and test sets contain 896 and 3,582 samples, respectively.

• InsectWingbeatSound (InsectWing) [12]. The dataset is released by the Computational
Entomology group at the University of California Riverside for insect classification. It
includes wingbeat audio signals from male and female mosquitoes, different species of flies,
and other insects. The training set contains 220 samples and the test set contains 1,980
samples.

• SelfRegulationSCP2 (SelfReg) [7]. The University of Tuebingen releases SelfRegulation-
SCP2 [7], which contains EEG data with seven columns and 1,152 rows. These sensors
record signals of slow cortical potentials from auditory and visual feedback. The training
set contains 200 samples, and the test set contains 180 samples.

• NATOPS [20]. The AALTD competition releases the NATOPS dataset [20]. These sensors
collect data from hands, elbows, wrists, and thumbs. The dataset consists of position
coordinates. The six categories represent different actions: “I have to command”, “all clear”,
“not clear”, “spread wings”, “fold wings”, and “lock wings”. Both training and test sets
contain 180 samples.

• Heartbeat [29]. The Heartbeat dataset released by the PhysioNet Challenge 2016 primarily
includes heart sound signals from volunteers in clinical or non-clinical environments. The
signals are categorized into two classes: “normal” (113 samples) and “abnormal” (296
samples). The sensors are sequentially positioned at the aortic, pulmonic, tricuspid and
mitral auscultation sites in patients spanning a broad age range.

Table 6: The statistics of univariate and multivariate datasets in UEA & UCR archive, including three
univariate datasets and three multivariate datasets for evaluation.

Dataset Samples Length Dim Class

CricketX 780 300 1 12
UWave 4478 948 1 8

InsectWing 2200 256 1 11
SelfReg 380 1152 7 2

NATOPS 360 51 24 6
Heartbeat 409 405 61 5

C.2 Hyperparameter Setting

We use stochastic gradient descent with a learning rate of 10−3. The batch size is set to 64 with a
maximum of 300 epochs. Due to the model-agnostic properties of f-VAT, we use an eight-layers
Temporal Convolutional Network (TCN) [5] as the backbone architecture to compare with other
competitive baselines. We run our experiments on eight NVIDIA A10 GPUs (each with 24 GB
memory).
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D Ablation Study

D.1 Various Architectures

To verify the model-agnostic property of our proposed f-VAT, we select several representative deep
architectures with comparable parameter size, including Gated Recurrent Units (GRU), Self-Attention
encoder and Temporal Convolutional Network (TCN).

• Gated Recurrent Unit (GRU) integrates the output and memory gates to address short-term
memory challenges [15]. GRUs are combined with attention mechanisms to better capture
trend information within time series data.

• Self-Attention encoder (SA) [39]. SA encoder is composed of four self-attention layers and
a positional encoding layer, which can effectively extract trend information from modeling
time series data.

• Temporal Convolutional Network (TCN) is a widely used for sequence modeling. Its
causal convolutional operations effectively capture both short-term fluctuations and long-
term temporal dependencies [5]. TCN achieves superior performance in various sequence
modeling tasks.

We report the mean performance of each architecture over five runs with different random seeds. As
shown in Fig. 5, TCN significantly outperforms other deep architectures on NATOPS with various
label ratios. These observations show that causal convolution of TCN can effectively capture trend
information, thus effectively utilizing unlabeled data to further improve generalization. In this paper,
we adopt the 8-layer TCN as our main architecture.
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Figure 5: The performance comparison of different architectures on NATOPS with different label
ratios. TCN significantly outperforms other architectures in all settings.

Table 7: Comparison of VAT, VAT-step, and f-VAT on five datasets under different label ratios.

Methods CricketX UWave InsectWing SelfReg NATOPS

10% 20% 40% 10% 20% 40% 10% 20% 40% 10% 20% 40% 10% 20% 40%

VAT 42.85 ±3.97 49.14 ±0.50 58.63 ±0.50 94.41 ±0.09 95.53 ±0.31 94.76 ±0.54 55.49 ±1.28 61.27 ±0.19 63.48 ±0.30 53.12 ±4.51 55.76 ±0.35 53.47 ±1.04 82.38 ±0.96 82.81 ±0.52 90.15 ±1.60

VAT-step 40.47 ±3.84 47.85 ±0.33 59.30 ±0.36 93.78 ±0.67 96.09 ±0.32 95.86 ±0.55 57.45 ±0.21 60.92 ±0.48 63.61 ±0.58 48.61 ±3.27 53.67 ±2.79 52.75 ±1.80 81.33 ±0.96 83.02 ±0.12 86.58 ±1.18

f-VAT 49.18 ±1.96 57.91 ±3.58 68.39 ±2.25 94.82 ±0.39 96.45 ±0.27 97.23 ±0.43 58.01 ±1.12 61.28 ±1.86 64.81 ±1.15 59.31 ±3.06 61.60 ±1.13 64.44 ±3.13 86.04 ±1.41 86.25 ±1.38 93.13 ±0.15

To verify the straightforward improvement to VAT may be unsuitable for time series, we design
a variant called VAT-step, which constrains the magnitude of perturbations at each time step, and
conduct extensive experiments across multiple datasets with different label ratios. Table 7 shows
that VAT-step only provides marginal performance gains compared to the original VAT in most
settings, and even degrades performance on more challenging multivariate datasets (e.g., SelfReg and
NATOPS) containing complex temporal structure. This is because clipping the perturbation at each
time step struggles to adaptively scale the magnitude on critical regions for prediction (like “shapelets”
in Fig. 4), unless the per-step magnitude hyperparameters are carefully tuned. Additionally, VAT-step
can easily converge to the “permutation-invariant” [8] local optimum, where arbitrarily reordering
time steps can still generate identical perturbations satisfying each step-wise constraint. By contrast,
adversarial perturbations generated by f-VAT, which incorporate the temporal structure of time series,
more efficiently utilize sequential information to improve the smoothness of predictive distributions
and the final predictive performance.
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E More Empirical Results

We randomly sample 30 datasets from UCR/UEA datasets and add a state-of-the-art Class-Aware
Temporal and Contextual Contrasting (CA-TCC) [18] within available resources. Tables 8 to 10 show
that tVAT consistently outperforms other baselines in all settings.

Table 8: The accuracy and rank of each method across 30 datasets with label ratio α = 0.1.
dataset SupL PI MTL meanTeacher SemiTime TapNet CA-TCC f-VAT SupL_rank PI_rank MTL_rank meanTeacher_rank SemiTime_rank TapNet_rank CA-TCC_rank f-VAT_rank

ACSF1 13.75 ±3.75 16.40 ±8.60 13.28 ±2.34 35.94 ±2.82 42.97 ±2.51 32.82 ±3.12 43.75 ±2.64 57.29 ±2.61 7 6 8 4 3 5 2 1
Adiac 5.98 ±4.02 7.54 ±1.74 6.06 ±0.26 16.73 ±2.68 11.19 ±6.19 29.04 ±1.11 29.25 ±2.88 33.94 ±4.20 8 6 7 4 5 3 2 1
AllGestureWiimoteX 10.12 ±1.35 36.61 ±4.46 26.90 ±0.78 23.66 ±2.68 46.20 ±2.91 24.33 ±4.69 42.71 ±1.68 44.86 ±7.36 8 4 5 7 1 6 3 2
AllGestureWiimoteY 12.68 ±1.21 33.93 ±7.59 20.42 ±0.34 20.76 ±2.90 51.49 ±2.24 32.36 ±3.79 44.19 ±5.58 55.36 ±1.78 8 4 7 6 2 5 3 1
AllGestureWiimoteZ 12.68 ±1.21 25.67 ±6.47 18.02 ±3.74 19.20 ±2.92 38.17 ±3.79 23.66 ±2.68 34.38 ±5.84 33.54 ±4.91 8 4 7 6 1 5 2 3
ArrowHead 38.10 ±0.10 52.34 ±4.22 39.61 ±0.86 39.84 ±2.80 60.78 ±2.34 64.84 ±1.56 61.67 ±3.96 71.25 ±1.41 8 5 7 6 4 2 3 1
BME 45.83 ±2.67 75.00 ±2.57 50.78 ±2.34 45.32 ±2.82 64.06 ±2.78 90.24 ±1.17 74.48 ±2.70 79.69 ±2.69 7 3 6 8 5 1 4 2
Beef 20.00 ±0.10 20.00 ±0.10 15.00 ±5.00 20.00 ±0.10 25.00 ±5.00 20.00 ±2.75 20.00 ±0.10 28.00 ±0.10 3 3 8 3 2 3 3 1
BeetleFly 50.00 ±0.10 62.50 ±2.86 50.00 ±0.10 50.00 ±0.10 50.00 ±0.10 43.75 ±6.25 41.67 ±2.78 68.75 ±5.75 3 2 3 3 3 7 8 1
BirdChicken 50.00 ±0.10 56.25 ±6.25 50.00 ±0.10 50.00 ±0.10 62.50 ±2.86 56.25 ±2.86 45.83 ±5.89 62.50 ±5.15 5 3 5 5 1 3 8 1
CBF 24.22 ±0.10 99.46 ±0.53 98.16 ±0.24 75.10 ±2.89 99.74 ±0.26 99.20 ±0.80 98.84 ±0.74 99.92 ±0.58 8 3 6 7 2 4 5 1
Car 25.00 ±0.10 41.66 ±2.87 25.00 ±0.10 25.00 ±0.10 37.50 ±2.86 52.08 ±2.09 25.00 ±0.10 58.34 ±4.16 5 3 5 5 4 2 5 1
Chinatown 71.83 ±0.10 94.49 ±1.34 88.58 ±0.41 79.69 ±0.52 91.56 ±0.10 90.56 ±2.82 96.35 ±3.71 95.88 ±0.52 8 3 6 7 4 5 1 2
ChlorineConcentration 55.36 ±0.10 56.06 ±1.96 54.96 ±0.09 53.70 ±0.10 55.67 ±0.23 52.18 ±1.14 69.43 ±3.43 66.97 ±0.68 5 3 6 7 4 8 1 2
CinCECGTorso 18.49 ±0.10 71.94 ±2.83 38.72 ±1.96 29.84 ±2.41 62.32 ±2.75 86.58 ±0.37 79.68 ±4.01 91.96 ±2.09 8 4 6 7 5 2 3 1
Coffee 50.00 ±0.10 50.00 ±0.10 50.00 ±0.10 50.00 ±0.10 75.00 ±2.86 70.00 ±2.86 50.00 ±0.10 82.00 ±0.10 4 4 4 4 2 3 4 1
Computers 50.00 ±0.10 56.64 ±5.08 56.25 ±6.25 39.06 ±0.10 49.22 ±2.78 59.38 ±3.12 57.82 ±2.75 67.97 ±3.12 6 4 5 8 7 2 3 1
CricketX 4.69 ±0.39 28.40 ±1.78 15.62 ±1.34 10.94 ±1.56 30.98 ±1.97 32.82 ±2.82 36.07 ±3.37 34.49 ±4.87 8 5 6 7 4 3 1 2
CricketY 5.08 ±0.10 18.12 ±3.30 10.60 ±2.92 11.25 ±3.13 27.32 ±0.18 35.22 ±2.63 35.09 ±4.17 36.34 ±4.55 8 5 7 6 4 2 3 1
CricketZ 6.48 ±1.40 25.31 ±0.40 11.45 ±3.24 10.94 ±1.56 32.10 ±2.01 32.10 ±1.38 35.51 ±3.27 38.58 ±0.13 8 5 6 7 3 3 2 1
Crop 15.47 ±3.67 55.90 ±1.07 52.96 ±2.46 34.93 ±1.76 54.20 ±0.13 61.14 ±2.82 64.75 ±0.38 63.31 ±0.35 8 4 6 7 5 3 1 2
DiatomSizeReduction 30.65 ±0.10 64.48 ±2.79 30.60 ±0.08 30.32 ±0.62 63.23 ±2.76 94.93 ±3.51 96.81 ±3.47 99.16 ±0.84 6 4 7 8 5 3 2 1
DistalPhalanxOutlineAgeGroup 59.81 ±0.10 82.49 ±0.39 79.87 ±1.52 70.03 ±3.62 77.91 ±1.92 76.67 ±3.09 75.90 ±2.19 82.92 ±4.58 8 2 3 7 4 5 6 1
DistalPhalanxOutlineCorrect 73.83 ±0.10 72.47 ±0.30 67.74 ±5.98 69.53 ±4.43 68.60 ±0.59 69.97 ±3.54 75.92 ±0.53 74.32 ±3.50 3 4 8 6 7 5 1 2
DistalPhalanxTW 48.11 ±0.10 77.97 ±1.72 64.22 ±7.34 66.40 ±2.86 73.04 ±2.73 72.66 ±2.19 77.35 ±2.21 80.08 ±0.39 8 2 7 6 4 5 3 1
DodgerLoopDay 13.79 ±0.10 18.96 ±2.86 20.69 ±2.81 13.79 ±0.10 24.14 ±3.00 27.58 ±6.89 17.24 ±2.75 28.58 ±3.00 7 5 4 7 3 2 6 1
DodgerLoopGame 51.61 ±0.10 51.61 ±0.10 51.61 ±0.10 51.61 ±0.10 69.35 ±2.84 67.74 ±0.10 54.84 ±2.79 74.19 ±2.86 5 5 5 5 2 3 4 1
DodgerLoopWeekend 70.97 ±0.10 70.97 ±0.10 88.71 ±2.86 70.97 ±0.10 77.42 ±3.23 88.71 ±1.61 82.79 ±2.82 95.16 ±1.61 6 6 2 6 5 2 4 1
ECG200 67.95 ±1.28 76.45 ±3.24 68.08 ±2.34 80.80 ±2.68 82.81 ±2.75 81.92 ±2.75 83.60 ±3.91 86.30 ±3.91 8 6 7 5 3 4 2 1
ECG5000 56.93 ±0.10 93.02 ±0.14 91.90 ±0.53 91.42 ±0.22 91.48 ±0.55 91.40 ±0.59 91.28 ±0.36 83.81 ±0.36 8 1 2 4 3 5 6 7

Average 35.31 53.09 45.19 42.89 56.53 58.67 58.07 65.85 6.67 3.93 5.70 5.93 3.57 3.70 3.37 1.50

Table 9: The accuracy and rank of each method across 30 datasets with label ratio α = 0.2.
Dataset SupL PI MTL meanTeacher SemiTime TapNet CA-TCC f-VAT SupL_rank PI_rank MTL_rank meanTeacher_rank SemiTime_rank TapNet_rank CA-TCC_rank f-VAT_rank

ACSF1 10.00 ±0.10 14.06 ±1.56 10.93 ±2.90 29.68 ±2.80 21.10 ±2.79 25.00 ±2.82 24.22 ±2.82 60.42 ±2.63 8 6 7 2 5 3 4 1
Adiac 5.98 ±2.82 7.45 ±2.87 2.54 ±0.04 14.08 ±2.89 20.08 ±1.43 34.39 ±0.14 30.44 ±2.90 38.85 ±2.62 7 6 8 5 4 2 3 1
AllGestureWiimoteX 12.68 ±1.21 52.23 ±2.84 23.44 ±0.22 50.00 ±2.84 45.98 ±0.45 40.62 ±0.90 46.43 ±2.83 55.36 ±0.45 8 2 7 3 5 6 4 1
AllGestureWiimoteY 12.68 ±1.21 43.08 ±2.95 24.38 ±2.05 14.74 ±1.78 34.60 ±2.23 44.64 ±1.78 58.19 ±1.28 61.50 ±2.78 8 4 6 7 5 3 2 1
AllGestureWiimoteZ 13.89 ±0.10 38.84 ±2.54 20.31 ±1.12 20.31 ±2.75 42.18 ±0.22 35.27 ±2.68 40.85 ±2.96 48.96 ±0.67 8 4 6 6 2 5 3 1
ArrowHead 38.10 ±0.10 65.16 ±2.71 55.78 ±0.78 25.00 ±0.10 67.50 ±1.88 75.16 ±2.76 69.06 ±2.57 83.44 ±2.63 7 5 6 8 4 2 3 1
BME 45.83 ±2.51 82.81 ±2.55 49.22 ±0.78 21.10 ±2.93 65.62 ±2.86 87.89 ±2.79 88.54 ±2.77 89.06 ±2.79 7 4 6 8 5 3 2 1
Beef 20.00 ±0.10 25.00 ±2.61 20.00 ±0.10 20.00 ±0.10 35.00 ±2.88 25.00 ±2.68 23.33 ±2.52 40.00 ±2.95 6 3 6 6 2 3 5 1
BeetleFly 50.00 ±0.10 50.00 ±0.10 50.00 ±0.10 50.00 ±0.10 50.00 ±0.10 37.50 ±2.59 62.50 ±2.79 63.50 ±2.70 3 3 3 3 3 8 2 1
BirdChicken 50.00 ±0.10 50.00 ±0.10 50.00 ±0.10 54.00 ±0.10 50.00 ±0.10 52.00 ±2.53 50.00 ±0.10 53.25 ±0.10 4 4 4 1 4 3 4 2
CBF 57.80 ±2.64 100.00 ±0.10 97.55 ±0.77 99.48 ±0.52 98.96 ±0.52 100.00 ±0.10 97.54 ±0.43 99.44 ±1.95 8 1 6 3 5 1 7 4
Car 25.00 ±0.10 25.00 ±0.10 29.16 ±2.85 25.00 ±0.10 37.50 ±2.79 52.08 ±2.09 29.17 ±2.70 58.34 ±2.61 6 6 5 6 3 2 4 1
Chinatown 71.83 ±0.10 87.43 ±2.75 78.52 ±2.60 97.92 ±2.90 94.70 ±0.10 96.35 ±0.52 97.40 ±0.85 94.96 ±0.52 8 6 7 1 5 3 2 4
ChlorineConcentration 55.36 ±0.10 65.07 ±0.90 54.12 ±0.34 77.22 ±1.88 57.29 ±0.10 66.90 ±0.76 53.70 ±2.69 84.80 ±0.10 6 4 7 2 5 3 8 1
CinCECGTorso 18.49 ±0.10 63.34 ±2.51 34.00 ±0.42 73.22 ±2.67 74.31 ±1.10 94.00 ±1.04 63.69 ±2.10 86.18 ±3.00 8 6 7 4 3 1 5 2
Coffee 50.00 ±0.10 50.00 ±0.10 50.00 ±0.10 50.00 ±0.10 50.00 ±0.10 80.00 ±2.64 50.00 ±0.10 58.00 ±0.10 3 3 3 3 3 1 3 2
Computers 50.00 ±0.10 62.89 ±2.60 63.28 ±2.63 46.09 ±1.17 63.28 ±1.56 55.47 ±2.72 59.38 ±2.65 67.58 ±2.75 7 4 2 8 2 6 5 1
CricketX 6.48 ±1.40 33.44 ±2.82 16.77 ±0.64 30.18 ±2.80 41.83 ±2.28 42.54 ±0.41 48.93 ±2.83 43.16 ±0.45 8 5 7 6 4 3 1 2
CricketY 6.48 ±1.40 18.30 ±2.77 17.21 ±2.82 15.32 ±1.56 39.91 ±0.09 43.39 ±2.73 41.25 ±2.51 46.49 ±2.55 8 5 6 7 4 2 3 1
CricketZ 6.48 ±1.40 30.09 ±0.09 16.05 ±1.90 36.03 ±0.93 46.07 ±1.16 39.02 ±1.70 44.76 ±2.94 41.20 ±2.52 8 6 7 5 1 4 2 3
Crop 23.44 ±2.46 59.36 ±2.77 48.42 ±0.84 59.82 ±2.61 58.88 ±1.69 65.79 ±1.77 71.77 ±0.87 68.95 ±0.43 8 5 7 4 6 3 1 2
DiatomSizeReduction 35.48 ±2.61 78.03 ±2.61 30.60 ±0.23 68.75 ±0.73 89.84 ±0.78 99.16 ±0.10 71.91 ±2.75 100.00 ±0.84 7 4 8 6 3 2 5 1
DistalPhalanxOutlineAgeGroup 59.81 ±0.10 79.37 ±0.43 70.13 ±2.55 79.09 ±0.04 74.78 ±2.89 72.40 ±0.10 78.24 ±2.29 81.74 ±2.55 8 2 7 3 5 6 4 1
DistalPhalanxOutlineCorrect 73.83 ±0.10 68.08 ±0.37 55.92 ±2.74 65.10 ±0.86 79.91 ±0.15 73.40 ±2.77 79.57 ±1.56 80.76 ±0.10 4 6 8 7 2 5 3 1
DistalPhalanxTW 48.11 ±0.10 75.39 ±0.08 67.26 ±0.08 75.78 ±0.10 74.61 ±1.17 0.00 ±0.10 75.78 ±0.10 79.30 ±0.39 7 4 6 2 5 8 2 1
DodgerLoopDay 13.79 ±0.10 18.96 ±2.79 20.69 ±2.90 17.24 ±2.83 29.31 ±2.78 34.48 ±2.83 21.84 ±2.66 26.20 ±1.73 8 6 5 7 2 1 4 3
DodgerLoopGame 51.61 ±0.10 61.29 ±2.90 53.22 ±1.62 58.06 ±2.79 59.68 ±2.84 75.81 ±2.78 59.14 ±2.77 77.42 ±2.81 8 3 7 6 4 2 5 1
DodgerLoopWeekend 70.97 ±0.10 83.87 ±2.50 91.94 ±1.62 82.26 ±2.87 88.71 ±2.83 95.16 ±1.61 84.95 ±2.91 96.77 ±0.10 8 6 3 7 4 2 5 1
ECG200 66.67 ±0.10 73.22 ±0.90 78.02 ±2.90 81.59 ±2.71 84.38 ±2.79 76.34 ±2.81 80.36 ±2.71 86.31 ±2.90 8 7 5 3 2 6 4 1
ECG5000 56.93 ±0.10 93.16 ±0.10 92.28 ±0.49 91.21 ±0.29 91.96 ±0.33 92.43 ±0.54 92.21 ±0.08 94.21 ±0.08 8 2 4 7 6 3 5 1

Average 36.92 55.16 45.72 50.94 58.93 60.41 59.84 68.87 7.00 4.40 5.87 4.87 3.77 3.40 3.67 1.50

Table 10: The accuracy and rank of each method across 30 datasets with label ratio α = 0.4.
dataset SupL PI MTL meanTeacher SemiTime TapNet CA-TCC f-VAT SupL_rank PI_rank MTL_rank meanTeacher_rank SemiTime_rank TapNet_rank CA-TCC_rank f-VAT_rank

ACSF1 11.25 ±1.25 33.60 ±2.34 8.59 ±2.34 29.69 ±2.70 35.16 ±2.66 43.75 ±1.56 44.79 ±2.88 46.88 ±1.56 7 5 8 6 4 3 2 1
Adiac 4.78 ±2.87 3.93 ±1.25 2.93 ±0.25 11.06 ±2.91 36.26 ±0.14 55.67 ±1.25 48.67 ±2.92 60.08 ±1.21 6 7 8 5 4 2 3 1
AllGestureWiimoteX 13.89 ±0.10 51.56 ±1.11 25.22 ±0.67 55.58 ±0.67 54.28 ±0.67 57.36 ±2.80 55.65 ±2.76 59.15 ±2.58 8 6 7 4 5 2 3 1
AllGestureWiimoteY 13.89 ±0.10 52.90 ±2.45 24.22 ±2.79 56.03 ±0.67 69.19 ±2.24 62.50 ±2.82 54.28 ±0.56 61.99 ±2.80 8 6 7 4 1 2 5 3
AllGestureWiimoteZ 13.89 ±0.10 49.11 ±2.68 18.52 ±0.22 54.91 ±1.34 50.22 ±2.69 47.99 ±0.67 36.16 ±2.73 54.61 ±2.90 8 4 7 1 3 5 6 2
ArrowHead 38.10 ±0.10 67.66 ±2.67 41.64 ±2.77 77.81 ±2.95 73.28 ±2.86 62.82 ±2.96 66.46 ±2.86 81.56 ±2.75 8 4 7 2 3 6 5 1
BME 45.84 ±2.97 88.28 ±2.70 54.30 ±2.71 76.56 ±2.81 93.75 ±2.90 95.32 ±1.56 89.06 ±2.70 100.00 ±0.10 8 5 7 6 3 2 4 1
Beef 20.00 ±0.10 25.00 ±2.79 20.00 ±0.10 25.00 ±2.79 25.00 ±2.79 30.00 ±2.85 20.00 ±0.10 50.00 ±2.86 6 3 6 3 3 2 6 1
BeetleFly 50.00 ±0.10 56.25 ±2.75 50.00 ±0.10 50.00 ±0.10 68.75 ±2.88 62.50 ±2.92 50.00 ±0.10 87.50 ±2.77 5 4 5 5 2 3 5 1
BirdChicken 50.00 ±0.10 62.50 ±2.55 50.00 ±0.10 56.25 ±2.55 81.25 ±2.77 50.00 ±2.77 50.00 ±0.10 62.50 ±2.69 5 2 5 4 1 5 5 2
CBF 37.89 ±2.62 100.00 ±0.10 97.92 ±1.04 99.48 ±0.52 100.00 ±0.10 99.71 ±0.29 100.00 ±0.10 98.96 ±0.84 8 1 7 5 1 4 1 6
Car 22.92 ±2.09 25.00 ±0.10 25.00 ±0.10 45.84 ±2.80 45.83 ±0.10 60.42 ±0.10 41.67 ±2.78 63.67 ±2.93 8 6 6 3 4 2 5 1
Chinatown 71.83 ±0.10 86.68 ±2.59 83.08 ±2.77 97.92 ±1.04 91.98 ±0.10 93.98 ±2.77 98.96 ±0.85 99.40 ±0.52 8 6 7 3 5 4 2 1
ChlorineConcentration 55.36 ±0.10 80.24 ±2.69 54.18 ±0.64 89.92 ±2.65 59.94 ±1.61 78.43 ±1.77 53.70 ±0.39 92.97 ±0.10 6 3 7 2 5 4 8 1
CinCECGTorso 32.94 ±2.93 79.74 ±2.67 41.37 ±2.03 82.10 ±2.76 86.61 ±1.39 93.50 ±0.91 91.57 ±2.88 94.70 ±0.35 8 6 7 5 4 2 3 1
Coffee 50.00 ±0.10 100.00 ±0.10 50.00 ±0.10 90.00 ±0.10 99.00 ±0.10 99.00 ±0.10 80.00 ±2.70 100.00 ±2.88 7 1 7 5 3 3 6 1
Computers 50.00 ±0.10 68.36 ±2.73 53.71 ±2.99 66.02 ±2.73 60.94 ±0.10 65.62 ±2.99 66.40 ±2.97 71.09 ±0.10 8 2 7 4 6 5 3 1
CricketX 5.08 ±0.10 42.77 ±2.82 18.84 ±2.05 52.68 ±1.61 58.76 ±0.62 63.57 ±2.98 56.49 ±2.80 66.78 ±0.71 8 6 7 5 3 2 4 1
CricketY 22.76 ±2.78 31.25 ±2.79 15.14 ±3.00 30.62 ±2.87 54.51 ±2.84 60.31 ±2.99 54.23 ±2.84 64.10 ±2.95 7 5 8 6 3 2 4 1
CricketZ 6.48 ±1.40 44.20 ±2.68 18.84 ±2.93 40.62 ±2.80 55.80 ±2.86 60.14 ±2.98 56.13 ±2.93 63.75 ±2.94 8 5 7 6 4 2 3 1
Crop 24.52 ±0.96 71.32 ±2.80 49.84 ±0.66 54.92 ±2.39 62.40 ±0.78 60.79 ±0.26 — 74.32 ±1.47 7 2 6 5 3 4 — 1
DiatomSizeReduction 31.46 ±0.80 92.16 ±2.79 45.14 ±2.83 82.19 ±2.85 95.32 ±2.81 95.21 ±2.82 59.48 ±2.88 96.21 ±0.26 8 4 7 5 2 3 6 1
DistalPhalanxOutlineAgeGroup 59.81 ±0.10 76.08 ±2.79 72.05 ±2.79 78.31 ±1.52 79.76 ±2.34 78.73 ±2.66 78.22 ±2.32 76.76 ±0.94 8 6 7 3 1 2 4 5
DistalPhalanxOutlineCorrect 73.83 ±0.10 73.32 ±2.78 59.92 ±2.52 79.91 ±0.37 80.43 ±0.52 65.62 ±2.78 78.08 ±2.70 81.32 ±2.14 5 6 8 3 2 7 4 1
DistalPhalanxTW 48.11 ±0.10 71.59 ±2.78 71.48 ±0.86 75.78 ±0.10 76.95 ±0.39 73.23 ±1.82 75.78 ±0.10 78.59 ±2.79 8 6 7 3 2 5 3 1
DodgerLoopDay 13.79 ±0.10 42.58 ±2.79 25.86 ±1.72 22.42 ±2.77 29.31 ±1.72 44.82 ±2.88 24.14 ±2.89 43.82 ±2.96 8 3 5 7 4 1 6 2
DodgerLoopGame 51.61 ±0.10 71.58 ±2.51 51.61 ±0.10 75.81 ±1.62 70.97 ±2.92 75.81 ±2.90 59.14 ±2.86 78.15 ±2.63 7 4 7 2 5 2 6 1
DodgerLoopWeekend 70.97 ±0.10 92.83 ±2.71 90.32 ±0.10 80.64 ±2.84 98.38 ±1.62 96.77 ±0.10 70.97 ±0.10 99.38 ±0.96 7 4 5 6 2 3 7 1
ECG200 66.67 ±0.10 76.14 ±2.96 72.72 ±3.00 85.04 ±2.92 83.48 ±2.87 80.24 ±2.78 80.24 ±2.78 83.14 ±0.16 8 6 7 1 2 4 4 3
ECG5000 56.93 ±0.10 91.38 ±2.77 90.83 ±0.19 92.30 ±0.32 93.04 ±0.10 94.68 ±0.24 94.68 ±0.24 95.68 ±0.36 8 6 7 5 4 2 2 1

- 37.15 63.60 46.11 63.85 69.02 70.28 63.27 76.24 7.33 4.47 6.80 4.13 3.13 3.17 4.27 1.53

F Runtime comparison

Compared with VAT (O(N)), the computational complexity of f-VAT is O(N logN) with a small
constant factor, due to the FFT-based ∥·∥H−s normalization. The empirical results in Table 11 show
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that the extra computational cost remains in the same order as VAT. The proposed f-VAT achieves
competitive performance without incurring significant computational costs, making it particularly
suitable for semi-supervised time series classification with limited computational resources.

Table 11: Runtime comparison of f-VAT and VAT.

Method CricketX UWave InsectWing NATOPS SelfReg

VAT 15.67 51.66 35.58 28.04 30.68
f-VAT 20.45 62.05 45.92 38.98 44.95
∆ (%) 30.50 20.11 29.06 39.02 46.51
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