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ABSTRACT

We study density estimation from pairwise comparisons, motivated by expert
knowledge elicitation and learning from human feedback. We relate the unobserved
target density to a tempered winner density (marginal density of preferred choices),
learning the winner’s score via score-matching. This allows estimating the target
by ‘de-tempering’ the estimated winner density’s score. We prove that the score
vectors of the belief and the winner density are collinear, linked by a position-
dependent tempering field. We give analytical formulas for this field and propose
an estimator for it under the Bradley-Terry model. Using a diffusion model trained
on tempered samples generated via score-scaled annealed Langevin dynamics, we
can learn complex multivariate belief densities of simulated experts, from only
hundreds to thousands of pairwise comparisons.

1 INTRODUCTION

Several complementary techniques, from flows (Rezende & Mohamed, 2015; Lipman et al., 2023) to
diffusion models (Ho et al., 2020), can today efficiently learn complex densities p(x) from examples
x ∼ p(x). With sufficiently large data, we can learn accurate densities even over high-dimensional
spaces, such as natural images (Rombach et al., 2022). While challenges persist in the most complex
cases, these models have achieved a high level of performance, proving sufficient for many tasks.

We consider the fundamentally more challenging problem of learning the density not from direct
observations but solely from comparisons of two candidates. Given x and x′ that are not sampled
from the target p(x) but rather from a distinct sampling distribution λ(x) satisfying suitable reg-
ularity conditions, the task is to learn p(x) from triplets (x,x′,x ≻ x′). The last entry indicates
which alternative has higher density (the winner point). Being able to do this enables, for instance,
cognitively easy elicitation of human prior beliefs for statistical modeling (O’Hagan, 2019; Mikkola
et al., 2023), or learning implicit preference distribution for a generative model (Dumoulin et al.,
2024). Our main interest is in representing human beliefs over relatively low-dimensional spaces – a
person cannot realistically maintain a joint belief over more than a handful of variables – but we are
also heavily constrained by the number of triplets, working with e.g. hundreds in contrast to millions
in modern density learning works (Wang et al., 2023). In summary, we face two difficulties: (a) We
do not have samples from the target density, and (b) we have extremely limited data in general.

Recently, Mikkola et al. (2024) proposed the first solution for this problem, learning normalizing
flows from pairwise comparisons and rankings. We propose an improved solution that also uses
random utility models (RUMs; Train, 2009) for modelling the preferential data and is inspired by
their idea of relating the target density p(x) to a tempered version of the distribution of winner points,
pτw(x), for some tempering parameter τ ≥ 1. Since we have samples from pw(x), this relationship
leads to practical algorithms once τ is estimated. In contrast to their empirically motivated heuristic
link, we characterize this connection in detail and provide an exact relationship between the scores
of p(x) and pw(x). Since the relationship holds for the scores, it is natural to also switch to solving
the problem with score-based models (Song & Ermon, 2019; Song et al., 2021), instead of flows.
This brings additional benefits, for instance in modeling multimodal targets, and we empirically
demonstrate a substantial improvement in accuracy compared to Mikkola et al. (2024). While they
could learn densities from a modest number of rankings, they needed additional regularization to
avoid escaping probability mass (Nicoli et al., 2023). Moreover, their best accuracy required more
informative multiple-item rankings. In contrast, we focus solely on pairwise comparisons, which are
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(a) Problem setup (b) MWD

×

(c) Tempering field

=

(d) ‘Tempered’ MWD

Figure 1: (a) Problem setup. An expert holds a subjective belief over a parameter space, such as the
likely hyperparameters of a learning algorithm (e.g. learning rate and weight decay), and can answer
questions like "Do you expect configuration A or B to work better?". We learn their belief as a density,
to be used e.g. as a prior distribution for finding optimal hyperparameters. (b)-(d) Density estimation
from 200 uniformly sampled pairwise comparisons, with the target density shown as a heatmap. (b)
Samples and the score field at an intermediate noise level σ, for a diffusion model trained on the
(winner, loser) pairs to model the marginal winner density (MWD). (c) Estimated tempering field. (d)
Samples from the score-scaled annealed Langevin dynamics with the MWD score and a tempering
field estimate. Samples align well with the target density, demonstrating the fundamental relationship
between the scores of the estimable MWD and the latent target (belief density).

easier to answer and more reliable (Kendall & Babington Smith, 1940; Shah & Oppenheimer, 2008),
and widely used in AI alignment (Ouyang et al., 2022; Wallace et al., 2024).

Denote by px≻x′(x,x′) the joint density of the available data, encoding the preferred candidate in
the order of the arguments. The marginal winner density (MWD), denoted by pw(x), is obtained
as its marginal as pw(x) =

∫
px≻x′(x,x′)dx′ ∝

∫
P(x ≻ x′)λ(x)λ(x′)dx′ where λ(x) is the

sampling density of the (independent) candidates. Our main theoretical contribution is a novel,
exact relationship between the target p(x) and the MWD pw(x) in terms of their scores: up to a
re-parametrization of the space, we have ∇ log p(x) = τ(x)∇ log pw(x). Critically, τ(x) is not
constant but a position-dependent tempering field. This implies we can perfectly recover p(x) from
the estimable pw(x) with score-based methods if the tempering field is known. We prove this
foundational relationship for the popular Bradley–Terry model (Bradley & Terry, 1952; Touvron
et al., 2023) and an exponential noise RUM, providing explicit formulas for the tempering fields.

Our second contribution is a practical algorithm derived from our theoretical insights. First, we pro-
pose to model the preference relationships by estimating the score of the joint density px≻x′(x,x′),
then train a continuous-time diffusion model (Karras et al., 2022) to recover the MWD by marginal-
izing it. Building on the ideal tempering field under the Bradley-Terry model, we estimate the
tempering field τ(x) by using the analytical formula with importance samples from the trained MWD
model and a simple density ratio model trained on the pairwise comparison data. Finally, we sample
from the belief density p(x) by running score-scaled annealed Langevin dynamics (Song & Ermon,
2019) with the MWD score and τ(x). Fig. 1 illustrates our approach.

2 BACKGROUND

2.1 DENOISING SCORE MATCHING AND ANNEALED LANGEVIN DYNAMICS

The (Stein) score of a probability density function p(x), denoted ∇x log p(x), is a vector field pointing
in the direction of maximum log-density increase. Score-based generative methods approximate this
score. They typically start by defining a family of perturbed densities pσ(x) by convolving p(x)
with noise at varying levels σ > 0; for example, pσ(x) = p(x) ∗ N (x;0, σ2I), where ∗ denotes
convolution. A neural network sθ(x, σ) with parameters θ is then trained to model the score of these
perturbed densities, ∇x log pσ(x). This score network sθ is commonly trained through denoising
score matching (Vincent, 2011), by minimizing the objective:

L(θ) = Ex∼p(x)Eσ∼ptrain(σ)Ex̃∼pσ(x̃|x)ℓ(σ) ∥∇x̃ log pσ(x̃|x)− sθ(x̃, σ)∥2 . (1)
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Here, x̃ is a noisy version of a clean sample x, generated via the perturbation kernel pσ(x̃|x) (e.g.,
an isotropic Gaussian N (x̃;x, σ2I)). The network is trained to predict the score of this kernel, which
is typically tractable. The function ℓ(σ) provides a positive weighting for different noise levels.
The noise levels σ are drawn from a distribution ptrain(σ) following either a discrete, often uniform
schedule (σt)

T
t=1 (Song & Ermon, 2019), or a continuous one (Karras et al., 2022).

Once trained, sθ(x, σ) enables sampling from an approximation of p(x). One prominent method,
besides reverse diffusion processes (discussed later), is annealed Langevin dynamics (ALD) (Song
& Ermon, 2019). ALD starts with samples x

(0)
T from a broad prior (e.g., N (x | 0, σ2

maxI)) and
iteratively refines them. It runs L steps of Langevin MCMC per noise level σt along a decreasing
schedule σmax = σT > . . . > σ1 = σmin:

x
(l)
t = x

(l−1)
t + ϵt sθ(x

(l−1)
t , σt) +

√
2ϵt n

(l)
t , l = 1, 2, . . . , L, (2)

with step size ϵt > 0 and n
(l)
t ∼ N (0, I). For t < T , x(0)

t = x
(L)
t+1. Under ideal conditions (L → ∞,

ϵt → 0, accurate sθ), x(L)
1 approximates a sample from pσmin

(x) ≈ p(x) (Welling & Teh, 2011).

2.2 DIFFUSION MODELS

A continuous-time diffusion model describes a forward process that gradually transforms a data
distribution p(x) into a simple, known prior distribution (e.g., a Gaussian). This process is often
defined by a forward-time stochastic differential equation (SDE) (Song et al., 2021):

dx = f(x, t)dt+ g(t)db,

where b is Brownian motion, f(x, t) is the drift coefficient, and g is the diffusion coefficient. If
x(0) ∼ p(x) (the target density), its time-evolved density is pt(x). If f is an affine transformation,
then the transition kernel p(x(t)|x(0)) is Gaussian and for a sufficiently large T > 0, the marginal
distribution pT (x(T )) becomes a pure Gaussian, such as N (0, I) or N (0, T 2I).

The forward process can be reversed to generate data. Starting from a sample xT ∼ pT (x), one can
obtain a sample x0 ∼ p(x) by solving the corresponding reverse-time SDE (Anderson, 1982):

dx =
(
f(x, t)− g2(t)∇x log pt(x)

)
dt+ g(t)db̄, (3)

where b̄ is Brownian motion with time flowing backward from T to 0. Alternatively, samples can be
generated by solving the deterministic probability flow ODE (Song et al., 2021),

dx =

(
f(x, t)− 1

2
g2(t)∇x log pt(x)

)
dt. (4)

Both reverse methods require the score function ∇x log pt(x), typically approximated by a trained
score network, sθ(x, t) or sθ(x, σ) if parameterized by noise level σ.

The Elucidating Diffusion Models (EDM) framework (Karras et al., 2022; 2024a) parameterises
the diffusion process directly using the noise level σ ∈ [σmin, σmax] rather than an abstract time
t. This can be achieved by assuming g(t) =

√
2t and f(x, t) = 0, and using the initial condition

xT ∼ N (0, σ2
maxI) for some fixed, sufficiently large σmax > 0. The perturbed density can be written

as pt(x) = pσ(x) = p(x) ∗ N (x;0, σ2I).

The score network sθ(x, σ) is trained via denoising score matching (Eq. 1). Sampling is done by
solving the stochastic reverse diffusion SDE (Eq. 3) or the deterministic probability flow ODE (Eq. 4).

2.3 RANDOM UTILITY MODELS AND DENSITY ESTIMATION FROM CHOICE DATA

In the context of decision theory, the random utility model (RUM) represents the decision maker’s
stochastic utility U as the sum of a deterministic utility and a stochastic perturbation (Train, 2009),

U(x) = u(x) +W (x),

where u : X → R is a deterministic utility function, W is a stochastic noise process, and the
choice space X is a compact subset of Rd. Given a set C ⊂ X of possible alternatives, the
decision maker selects an alternative x ∈ C by solving the noisy utility maximization problem:

3
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x ∼ argmaxx′∈C U(x′). Pairwise comparison is the most common form of choice data and
corresponds to assuming that the choice set contains only two alternatives, C = (x,x′). The decision
maker chooses x from C, denoted by x ≻ x′, if u(x)+w(x) > u(x′)+w(x′) for a given realization
w of W . It is often assumed that W is independent across x, leading to so-called Fechnerian models
(Becker et al., 1963), where the choice distribution conditional on C reduces to F (u(x) − u(x′)),
with F denoting the cumulative distribution function of W (x)−W (x′).

Psychophysical experiments suggest that human perception of numerical magnitude follows a loga-
rithmic scale (Dehaene, 2003). Assuming a RUM with utility function u(x) = log p(x), the model’s
noise becomes additive in the log-transformed beliefs. In this paper, we consider two RUMs, explicitly
including the noise level, as it is crucial for identifying p(x). First, we study the generalized Bradley–
Terry model (Bradley & Terry, 1952) with W ∼ Gumbel(0, s), which induces the conditional choice
distribution FLogistic(0,s)(u(x)−u(x′)). Second, we consider the exponential RUM with W ∼ Exp(s),
which yields a heavier-tailed conditional choice distribution FLaplace(0,1/s)(u(x)− u(x′)).

Under these assumptions, the density estimation task is an instance of expert knowledge elicitation
(O’Hagan, 2019; Mikkola et al., 2023), and it is closely related to (probabilistic) reward modeling
(Leike et al., 2018; Dumoulin et al., 2024). Expert knowledge elicitation infers an expert’s belief as a
probability density p(x) using only queries they can reliably answer, such as requests for specific
quantiles of p(x) (O’Hagan, 2019) or preferential comparisons like here. Recently, Dumoulin et al.
(2024) reinterpreted reward modeling by referring to the target distribution as the “implicit preference
distribution” and treating the reward as a probability distribution to be modeled.

3 BELIEF DENSITY AS A TEMPERED MARGINAL WINNER DENSITY

Let p(x) be the expert’s belief density. We assume the expert’s choices follow a RUM with utility
function u(x) = log p(x). They observe two points independently drawn from the sampling density
λ(x), and the expert chooses one of the points. We denote the probability density of that point by
pw(x) and call it as the marginal winner density (MWD). By marginalizing out the unobserved
loser x′ in a pairwise comparison where x is preferred (x ≻ x′), pw(x) can be expressed as
2λ(x)

∫
F (log p(x)− log p(x′))λ(x′)dx′ (Mikkola et al., 2024).

While Mikkola et al. (2024) empirically showed that p(x) resembles a tempered version of pw(x)
(i.e., p(x) ≈ [pw(x)]

τ for some constant τ ), this relationship was not formally analyzed besides the
theoretical limiting case of selecting the winner from infinitely many alternatives. In this section,
we establish a more fundamental connection. We demonstrate that under two RUMs – the Bradley-
Terry model and the exponential RUM – it is possible to find a tempering field τ(x) such that
∇ log p(x) = τ(x)∇ log pw(x) up to re-parametrization of the space. This key relationship implies
that, in principle, p(x) can be precisely recovered from pw(x) using score-based methods if τ(x)
is known. This finding motivates leveraging score-matching techniques for estimating the belief
density. To analyze such score-based relationships and evaluate approximations, we will use the
Fisher divergence, which quantifies the difference between two distributions based on their scores:

F (p, q) =

∫
X
∥∇ log p(x)−∇ log q(x)∥2 p(x)dx.

3.1 TEMPERING FIELD

We begin by examining a specific functional relationship where a probability density p(x) is con-
structed from another density q(x) using a position-dependent function τ : X → (0,∞):

p(x) =
qτ(x)(x)∫

X qτ(x′)(x′)dx′ . (5)

For such densities, the relationship between their scores is given by the product rule as

∇ log p(x) = τ(x)∇ log q(x) + log q(x)∇τ(x).

A special case arises if τ(x) is a constant, say τc. Then ∇τ(x) = 0, Eq. 5 becomes p(x) ∝
q(x)τc (standard tempering), and the scores simplify to being directly proportional: ∇ log p(x) =
τc∇ log q(x).
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Inspired by this relationship, we define a more general concept. We call τ(x) a tempering field
between p and q if their scores satisfy the following relation almost everywhere for x ∈ X :

∇ log p(x) = τ(x)∇ log q(x). (6)
This implies the scores are collinear, with τ(x) as a position-dependent scaling. The tempering field
thus describes a localized, score-level tempering. Note that τ(x) satisfying Eq. 6 does not imply that
p and q obey Eq. 5. The two definitions align only if log q(x)∇τ(x) = 0, i.e. τ(x) is constant.

3.2 TEMPERING FIELDS UNDER RUMS

With our theoretical framework in place, we analyze the relationship between the belief density p and
the MWD pw in terms of tempering fields for RUM models with utility log p. We prove our main
results for both the Bradley–Terry model and the exponential RUM, with W ∼ Gumbel(0, s) and
W ∼ Exp(s). The treatment of the latter RUM is deferred to Appendix A.

To facilitate theoretical analysis, with no loss of generality we assume a uniform sampling distribution
λ throughout this section, to remove tilting of MWD pw(x). We then address a non-uniform λ by
reparameterizing the space so that it becomes uniform on a hypercube. The diffusion model is trained
in the transformed space and the generated samples are mapped back to the original space with the
inverse transformation. We use the Rosenblatt transformation that requires the conditional distribution
functions of λ (Rosenblatt, 1952), here assumed to be either known (e.g., when λ is Gaussian) or
numerically approximated. Other transformations, e.g. ones based on copulas or normalizing flows
trained on samples from λ (i.e., the combined data of winners and losers), could be used as well.

Under the following assumptions, a tempering field exists between the belief density and the MWD:
Assumption 1. supp(p) ⊆ supp(λ).
Assumption 2. λ is a uniform density over X .
Assumption 3. p is smooth, with ∇p ̸= 0 almost everywhere.
Theorem 3.1. Assume W ∼ Gumbel(0, s). A tempering field τ(x) exists between the belief density
p and the MWD pw, and it is given by the formula,

τ(x) = s

 ∫
X

1
1+rs(x,x′)dx

′∫
X

rs(x,x′)
(1+rs(x,x′))2 dx

′

 , (7)

where rs(x,x
′) := p

1
s (x′)p−

1
s (x) is 1/s-tempered density ratio.

Proof. Our constructive proof derives a scalar-field that satisfies the defining relation. Specifi-
cally, for any fixed x ∈ X , direct manipulations yield a scalar τ(x) > 0 such that ∇x log p(x) −
τ(x)∇x log pw(x) = 0. See Appendix B for the full proof.

Fig. 2 illustrates the tempering field in Theorem 3.1 using s =
√

6/π2 (unit variance noise). There
exists a specific invariance relationship between the tempering and the noise scale. Specifically, if
τp,s denotes the tempering field of RUM under the belief density p and noise level s > 0, then by the
above Theorems it is clear that for any exponent α > 0: τpα,s =

1
sτpαs,1 and τpα,s = sτ

p
α
s ,1

, where
the tempering fields are of the exponential RUM and the Bradley-Terry model, respectively.

3.3 ON THE CONSTANT TEMPERING APPROXIMATION

Even though our method directly estimates the full tempering field, our theory sheds light also on
methods assuming constant tempering, such as Mikkola et al. (2024). It allows us to establish three
quantities of interest related to approximating p with a constant-tempered version of q: (i) the optimal
constant tempering τ⋆ > 0 which minimizes F (p, qτ

⋆

), (ii) the approximation error F (p, qτ ) for any
constant τ > 0, and (iii) the approximation error F (p, qτ

⋆

) for the optimal constant tempering.
Proposition 3.2. Assume that there exists a tempering field τ(x) between p and q. The optimal
tempering constant τ⋆ = argminτ>0 F (p, qτ ) can be written as,

τ⋆ = EX∼p (ω(X)τ(X)) , (8)

where the stochastic weight ω ≥ 0 is given by ω(X) = ∥∇ log q(X)∥2

EX∼p(∥∇ log q(X)∥2)
.
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(a) Score fields (b) Tempering fields (estimate and ground-truth)

Figure 2: Illustration of the relationship ∇ log p(x) = τ(x)∇ log pw(x) when p is Twomoons2D
(Stimper et al., 2022) and λ is uniform. (a) The score of p (red arrows) and the score of pw (orange
arrows) under the Bradley-Terry model, scaled for better visualization. (b) The estimated tempering
field τ(x) from 200 pairwise comparisons (left, Section 4.2) and the ground-truth (right, Theorem
3.1). Due to the colinearity of the scores, the red arrows equal the pointwise product of the orange
arrows and the tempering field, which can be estimated (with an underestimation in this example).

Proof. By the Leibniz integral rule,

∂

∂τ
F (p, qτ ) =

∫
X
2
(
τ ∥∇ log q(x)∥2 − ⟨∇ log q(x),∇ log p(x)⟩

)
p(x)dx.

The divergence is quadratic in τ and the critical point is the global minimum, and by assumption
⟨∇ log q(x),∇ log p(x)⟩ = τ(x) ∥∇ log q(x)∥2. Algebraic manipulation gives the result.

The approximation errors can be quantified in terms of the tempering field.

Proposition 3.3. Let τ(x) be a tempering field. For any τ > 0 it holds that

F (p, qτ ) = EX∼p

(
|τ − τ(X)|2 ∥∇ log q(X)∥2

)
.

Further, when τ⋆ > 0 is the optimal tempering

F (p, qτ
⋆

) = EX∼p

(
∥∇ log q(X)∥2 τ2(X)

)
−

(
EX∼p

(
τ(X) ∥∇ log q(X)∥2

))2
EX∼p

(
∥∇ log q(X)∥2

) .

Proof. See Appendix B.

4 SCORE-BASED DENSITY ESTIMATION FROM PAIRWISE COMPARISONS

Building on Section 3, we now introduce our score-based density estimator for eliciting the belief
density from pairwise comparisons. The method has two components. First, we train a diffusion
model on the joint distribution of winners and losers using a masking scheme that ensures its marginal,
that is MWD pw(x), can also be evaluated. Second, under the Bradley–Terry model, we provide
a simple procedure to estimate the tempering field τ(x) and use it to de-temper the score-based
estimate of the MWD. Details of both steps are explained next. The sampling distribution λ(x) is
assumed known, and we re-parameterize the space to make it uniform, as explained in Section 3.2.

4.1 MODELING THE MWD

Our goal is to learn the perturbed score model of the MWD ∇ log[pw(x) ∗ N (x;0, σ2I)]. We want
to utilize all samples, both winners and losers. To do so we simultaneously learn the marginal

6
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pw(x) =
∫
px≻x′(x,x′)dx′, and the full joint px≻x′(x,x′) from the concatenated data of winners

and losers. To learn the marginal, during training, half of the time we randomly mask x′ and consider
the score only with respect to x. We could also estimate the MWD directly from the winner points
alone with a slightly simpler estimator, but this approach that utilizes the full data works better; we
demonstrate this empirically in Fig. C.1.

We stay as close as possible to the EDM-style diffusion model (Karras et al., 2024a). We use the
perturbation kernel pσ(x̃ | x) = N (x̃;x, σ2I), which aligns with EDM and defines a forward
diffusion process from σmin to σmax, where pσmin

(x) ≈ p(x) and pσmax
(x) ≈ N (0, σ2

maxI). A
detailed description is provided in Appendix C.3, including Algorithm B.1 summarizing the method.

4.2 TEMPERING FIELD ESTIMATION

The tempering field under the Bradley-Terry model (Eq. 7) has a particularly convenient form as
it depends only on the belief density ratio r(x,x′) := p(x′)/p(x) and the RUM noise level s > 0.
Note that this ratio is different from what the phrase density ratio often refers to – this is the ratio of
the same density for two inputs, not a ratio of two densities for the same x. It does not depend on the
normalizing constant of the belief density and is hence easy to estimate. We train a simple estimator
for r(x,x′) by maximizing the Bradley-Terry model likelihood of the pairwise comparison data. If
we parametrize the density ratio (or its logarithm) as a neural network rθ, the parameters θ can be
optimized by minimizing the loss L(θ) ∝ Softplus(log rθ(x,x′)/s), where x and x′ are winner and
loser points, respectively. We plug-in the learned rθ into the integrals in Eq. 7, where the integrals
are computed using importance sampling with the MWD model acting as the importance sampler.
Algorithm B.2 summarizes the estimation procedure.

4.3 BELIEF DENSITY SAMPLING

Given the perturbed MWD score network sθ(x, σ) ≈ ∇ log[pw(x) ∗ N (x;0, σ2I)] and the estimate
of the tempering field τ(x), we can draw approximate samples from the belief density p(x) using
the score-scaled ALD. Specifically, we iteratively run Eq. 2 with the score τ(x)sθ(x, σ). This
procedure is asymptotically equivalent to sampling from p(x) with vanilla ALD using sθp(x, σ) ≈
∇ log[p(x) ∗ N (x;0, σ2I)] since the tempering field relation (Eq. 6) is guaranteed to hold in the
small-noise limit by Theorem 3.1. Possible mismatch at higher noise scales is not an issue, as the
theoretical guarantees of ALD sampling only hold in the small-noise limit (Welling & Teh, 2011).
We further validate our method empirically in Section 5.

5 EXPERIMENTS

We evaluate the method on synthetic data generated from a RUM. We then consider an experiment
where a large language model (LLM) serves as a proxy for a human expert, demonstrating the
method’s applicability in settings where data does not follow a RUM model. Our experimental setup
closely follows that of Mikkola et al. (2024), with the key distinction that we only query pairwise
comparisons, not considering the easier case of ranking multiple candidates. We empirically compare
against their flow-based model, using their implementation, as the only previous method for the task.

Setup and evaluation For a d-dimensional target, we query 1000d pairwise comparisons to ensure
reliable comparison between the methods but remaining well below the large-sample regime typical
for the diffusion model literature. For d ≤ 4, the sampling distribution λ is uniform. For d > 4, λ is
a diagonal Gaussian (Gaussian mixture in Mixturegaussians10D) centered at the target mean, with
a variance three times that of the target’s.1 The simulated expert follows the Bradley-Terry model
with utility given by log p, where the belief density p varies in dimensionality, modality, and detail.
We set the noise level s =

√
6/π2 (unit variance). As the diffusion model, we adopt an EDM-style

architecture with a linear MLP score network, implemented on top of Karras et al. (2024b). For
further details, see Appendix C and E. We assess performance qualitatively by visually comparing 2d
and 1d marginals of the target density and the estimate, and quantitatively using two metrics: the

1For non-uniform sampling distributions, we transform the space with a Rosenblatt transform such that the
sampling pdf becomes uniform, with an appropriate Jacobian transformation to the densities.
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Table 1: Density estimation from pairwise comparisons: score-based is ours, flow is (Mikkola et al.,
2024). Averages over 10 repetitions, with standard deviations and statistical significance (bolded).

p(x) λ(x)
wasserstein (↓) MMTV (↓)

flow score-based flow score-based

Onemoon2D uniform 1.37 (±0.03) 0.36 (±0.15) 0.54 (±0.00) 0.23 (±0.07)

Twomoons2D uniform 1.29 (±0.06) 0.49 (±0.14) 0.53 (±0.01) 0.16 (±0.07)

Ring2D uniform 0.87 (±0.03) 0.42 (±0.09) 0.40 (±0.01) 0.26 (±0.02)

Gaussian4D uniform 6.12 (±0.05) 1.49 (±0.35) 0.72 (±0.01) 0.53 (±0.15)

Mixturegaussians4D uniform 3.75 (±0.02) 1.20 (±0.13) 0.53 (±0.01) 0.23 (±0.02)

Stargaussian6D Gaussian 2.25 (±0.02) 1.28 (±0.06) 0.19 (±0.00) 0.21 (±0.04)

Mixturegaussians10D GMM 1.41 (±0.01) 1.49 (±0.23) 0.19 (±0.00) 0.30 (±0.10)

Gaussian16D Gaussian 5.50 (±0.03) 4.99 (±0.06) 0.16 (±0.00) 0.13 (±0.00)

Wasserstein distance and the mean marginal total variation distance (MMTV; Acerbi, 2020). Results
are reported as means and standard deviations over replicate runs.

Experiment 1: Synthetic low dimensional targets with uniform sampling We consider low-
dimensional synthetic target densities that may exhibit non-trivial geometry or multimodality. The set
includes five target distributions, see Appendix E.1. Table 1 (top) shows the score-based method is
clearly superior for all targets, with at least 50% (Wasserstein) and 25% (MMTV) reduction of error
compared to the flow method. Visual inspection (Fig. 3 (a-b) and Figs. F.1-F.3) confirms this. The
flow method captures the density relatively well but clearly overestimates the low-density regions,
whereas our estimate is here essentially perfect.

Experiment 2: Synthetic targets with Gaussian sampling For higher-dimensional experiments
we replace uniform sampling with more concentrated Gaussian sampling, since otherwise the prob-
ability that both x and x′ fall in low-density regions increases dramatically, making it impossible
to learn p(x) well. The set includes three target distributions, see Appendix E.1. Table 1 (bottom)
shows that we again achieve better or comparable Wasserstein distance, whereas the flow-based
method has better MMTV. Visually, the score-based method usually gives shaper and better estimates
(e.g., compare Fig. F.6 and F.7), but suffers in terms of the MMTV metric due to occasional too tight
marginals resulting from overestimating the tempering field (e.g., Fig. F.8).

Experiment 3: LLM as a proxy for the expert To illustrate the method in a real belief density
estimation task without user experiments, we replicate the LLM experiment of Mikkola et al. (2024),
except we query 220 pairwise comparisons instead of 5-wise rankings. The LLM2 acts as a proxy
for a human expert, providing its belief about the distribution of features in the California housing
dataset (Pace & Barry, 1997). While the true belief density is unknown, the learned LLM belief can
be compared to the empirical data distribution. Similarity between the two suggests the elicitation
method yields a reasonable belief estimate. Using the data from (Mikkola et al., 2024), we uniformly
sample 220 pairwise comparisons across all 8 features and prompt the LLM for belief judgments.
Fig. 3 (c) shows clear distributional similarities; for example, the marginals of AveRooms and MedInc
exhibit similar shapes. See Appendix F.2 for complete results, with Table F.1 quantifying the accuracy.

6 DISCUSSION

We proved the theoretical connection for two common RUMs but we believe it extends to other RUMS
as well, although a closed-form tempering field is not guaranteed e.g. for the Thurstone–Mosteller
model (Thurstone, 1927) where the choice probability requires integration.

The difficulty of the belief estimation problem, naturally, depends heavily on the sampling distribution
λ(x). For example, when the support of p(x) is much smaller than that of λ(x), it becomes
nearly impossible to obtain sharp estimates of p(x), and the problem is further exacerbated in high-
dimensional spaces. For this reason, we see potential in active learning methods that concentrate

2For a direct comparison with Mikkola et al. (2024), we also use Claude 3 Haiku by Anthropic (2024).
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(a) Score-based (b) Flow (c) LLM experiment

Figure 3: (a-b) Samples from score-based and flow estimates of Ring2D, with contours indicating the
true density. Ring2D illustrates an extreme case where the score-based method clearly outperforms
the flow method: the flow model oversamples the center of the ring, where the MWD also has
moderate density, whereas the score-based method can downweight it using the tempering field. (c)
Cross-plot of the first three variables in the LLM expert elicitation experiment. Full cross-plot and
comparison to the flow method are shown in Figs. F.10 and F.11. The score-based method tends to
generate Gaussian-like marginals in this extremely limited data setting.

sampling in high-density regions of p(x). In this work, we assume that λ(x) is given as it would be in
many applications (e.g. the elicitation protocol in prior elicitation), but for active learning or learning
beliefs from public preference data, an additional density estimation step is required to learn λ(x).

We demonstrated that low-dimensional targets can be learned from a few hundreds of pairwise com-
parisons (Fig. 1). However, in extremely limited data regimes, say below 100d pairwise comparisons,
the robustness of our method is not guaranteed without carefully tuning hyperparameters such as
those of the diffusion model – models that are notoriously difficult to train in a stable manner (Karras
et al., 2024b, Appendix B.5). Stability could likely be improved by adopting best practices from
the field (Karras et al., 2022) and incorporating recent advances in learning score models from
limited data (Li et al., 2024). Similarly, the tempering field estimator (Algorithm B.2) depends on
the density ratio estimate rθ, which is sensitive to the network’s regularization. Misspecified values
of the ℓ2 regularization for the network weights θ or the RUM noise level s will lead to under- or
overestimation of the tempering field.

The connection between the target density p and the marginal pw of the joint density may have
applications beyond expert knowledge elicitation, such as fine-tuning generative models (Wallace
et al., 2024) using pairwise data, a perspective explored by Dumoulin et al. (2024). Specifically, when
λ(x) represents a pretrained generative model conditioned on a prompt c, our theory suggests that
training the MWD and tempering field on individual-level data (rather than pooled data) yields a
probabilistic reward model – the tempered MWD – that captures the distribution of samples (e.g.,
images) aligned with prompt c from that individual’s perspective. That is, our tools could help
learning the preferences as normalized densities.

7 CONCLUSIONS

Despite two decades of active research on learning from preference data, following the pioneering
works of Chu & Ghahramani (2005); Fürnkranz & Hüllermeier (2010), the question of how to learn
flexible densities from such data has remained elusive. We established the missing theoretical basis
by showing how the score of the target density relates to quantities that can be estimated, enabling
the use of powerful modern density estimators for this task. Our approach demonstrates superior
performance over recent flow-based solutions in representing human beliefs.

Reproducibility statement We will make the complete code publicly available upon acceptance
to enable full reproducibility of the experimental results. During peer review, we provide the
reviewers with an anonymized zip file containing the code. Appendices C and E describe the main
implementation and training settings required to replicate the experiments. Appendix B provides the
full proofs of the theoretical results presented in the main text.
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APPENDIX

A TEMPERING FIELD UNDER THE EXPONENTIAL NOISE RUM

In this appendix, we state the existence and provide a closed-form expression for the tempering field
when the expert’s choice model follows the exponential RUM with W ∼ Exp(s).
Theorem A.1. Assume W ∼ Exp(s). A tempering field τ(x) exists between the belief density p and
the MWD pw, and it is given by the formula

τ(x) =
1

s

(
2vol(Lx) + 2ps(x)

∫
Ux

p−s(x′)dx′

ps(x)
∫
Ux

p−s(x′)dx′ + p−s(x)
∫
Lx

ps(x′)dx′ − 1

)
, (A.1)

where the sublevel set Lx = {x′ ∈ X | p(x) ≥ p(x′)} and the superlevel set Ux = X \ Lx.

Proof Sketch. For a fixed x ∈ X , after lengthy manipulations, we get τ(x) > 0 such that
∇x log p(x) − τ(x)∇x log pw(x) = 0. To handle the change in integration domains, we apply
the generalized Leibniz integral rule (Flanders, 1973). See Appendix B for the full proof.

Fig. A.1 illustrates the tempering fields from Theorems A.1 and 3.1, using s =
√

6/π2 for Bradley-
Terry and s = 1 for exponential RUM, both resulting in unit variance for ease of comparison. The
tempering fields are extremely similar, but tempering in high-density regions appears slightly more
pronounced in the Bradley–Terry model, due to a lighter-tailed conditional choice distribution.

Figure A.1: Illustration of the tempering fields under two different RUMs when p is Twomoons2D
(Stimper et al., 2022). The tempering field τ(x) of the exponential RUM (left, Theorem A.1) and the
Bradley-Terry model (right, Theorem 3.1).

B PROOFS

Theorem A.1. Assume W ∼ Exp(s). A tempering field τ(x) exists between the belief density p and
the MWD pw, and it is given by the formula,

τ(x) =
1

s

(
2vol(Lx) + 2ps(x)

∫
Ux

p−s(x′)dx′

ps(x)
∫
Ux

p−s(x′)dx′ + p−s(x)
∫
Lx

ps(x′)dx′ − 1

)
,

where the sublevel set Lx = {x′ ∈ X | p(x) ≥ p(x′)} and the superlevel set Ux = {x′ ∈ X |
p(x) < p(x′)}.

Proof. We want to show that for each x ∈ X , there exists a scalar τ(x) > 0 such that ∇ log p(x)−
τ(x)∇ log pw(x) = 0. Our constructive proof determines this scalar through brute-force calculation.
Fix a point x ∈ X , and denote a constant τ(x) = τ > 0.

Under the exponential RUM, the MWD pw(x) equals to

pw(x) = 2λ(x)

∫
X
FLaplace(0,1/s) (log p(x)− log p(x′))λ(x′)dx′. (B.1)
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For uniform λ, this implies

∇x log pw(x) = ∇x log

∫
X
FLaplace(0,1/s) (log p(x)− log p(x′)) dx′. (B.2)

Let Lx, Ux ⊂ X be the regions Lx = {x′ ∈ X | p(x) ≥ p(x′)} and Ux = {x′ ∈ X | p(x) < p(x′)}.
Straightforward manipulations give us,

τ∇x log pw(x)−∇x log p(x) =

= τ∇x log

(∫
Ux

1

2
ps(x)p−s(x′)dx′ +

∫
Lx

(
1− 1

2
p−s(x)ps(x′)

)
dx′
)
− τ∇x log p

1
τ (x)

= τ∇x log
vol(Lx) +

1
2p

s(x)
∫
Ux

p−s(x′)dx′ − 1
2p

−s(x)
∫
Lx

ps(x′)dx′

p
1
τ (x)

.

Because ∇x log f(x) = ∇xf(x)/f(x), the above vanishes, if and only if,

∇x

(
p−

1
τ (x)vol(Lx) +

1

2
ps−

1
τ (x)

∫
Ux

p−s(x′)dx′ − 1

2
p−s− 1

τ (x)

∫
Lx

ps(x′)dx′
)

= 0.

We will apply to LHS the generalized Leibniz integral rule (Flanders, 1973) for each fixed dimension
j ∈ {1, ..., d} by interpreting ∂

∂xj
as differentiation with respect to the time. To justify the generalized

Leibniz integral rule, note that the boundaries ∂Lx = ∂Ux are defined by an implicit function
g : X → X whose graph is the set {(x, g(x))} = {(x,x′) ∈ X 2 | f(x,x′) = 0}, where the
function f(x,x′) := p(x)− p(x′) is continuously differentiable by Assumption 3. Moreover, since
∇x′f(x,x′) = −∇p(x′) ̸= 0 almost everywhere, the implicit function theorem implies that the level
set {(x,x′) | f(x,x′) = 0} locally defines x′ as a differentiable function of x almost everywhere.
Therefore, g(x) is continuously differentiable almost everywhere.

For a smooth function f : X → R+ consider,

∂

∂xj

∫
Ax

f(x′)dx′,

where Ax = Lx or Ax = Ux. Interpret the scalar xj as time, and apply the generalized Leibniz
integral rule,

∂

∂xj

∫
Ax

f(x′)dx′ =

∫
Ax

∂

∂xj
f(x′)dx′ +

∫
∂Ax

f(x′)(n · v)dS,

where n is the unit normal vector pointing outwards from the boundary ∂Ax, v is the Eulerian
velocity of the boundary ∂Ax when xj is interpreted as time, and dS is the surface element. The first
term in RHS vanishes. For the second term, consider the level set {x′ ∈ X | p(x) − p(x′) = 0}.
The normal vector is orthogonal to this level set, which equals to gradient with respect to x′,
n = ∇x′(p(x) − p(x′))/ ∥∇x′(p(x)− p(x′))∥ = −∇x′p(x′)/ ∥∇x′p(x′)∥. This corresponds to
the normal vector of Lx while the normal vector of Ux is with the opposite sign.

Let us consider v = (
∂x′

1

∂xj
, ...,

∂x′
N

∂xj
), the velocity of the boundary with respect to xj . The total

derivative of the boundary should not change,

Dxj
(p(x)− p(x′)) = 0

∂

∂xj
(p(x)− p(x′)) +

d∑
i=1

∂

∂x′
i

(p(x)− p(x′))
∂x′

i

∂xj
= 0

∂

∂xj
p(x)−

d∑
i=1

∂

∂x′
i

p(x′)
∂x′

i

∂xj
= 0.

Taking the dot product of the constraint with the normal vector gives,

n · v = −
∂

∂xj
p(x)

∥∇x′p(x′)∥
.
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Since p(x′) = p(x) on ∂Lx = ∂Ux,

∂

∂xj

∫
Lx

ps(x′)dx′ = −ps(x)
∂

∂xj
p(x)

∫
∂Lx

1

∥∇x′p(x′)∥
dS(x′)

∂

∂xj

∫
Ux

p−s(x′)dx′ = p−s(x)
∂

∂xj
p(x)

∫
∂Lx

1

∥∇x′p(x′)∥
dS(x′)

∂

∂xj

∫
Lx

dx′ = − ∂

∂xj
p(x)

∫
∂Lx

1

∥∇x′p(x′)∥
dS(x′).

Together these imply that,(
p−

1
τ (x)

∂

∂xj

∫
Lx

dx′ +
1

2
ps−

1
τ (x)

∂

∂xj

∫
Ux

p−s(x′)dx′ − 1

2
p−s− 1

τ (x)
∂

∂xj

∫
Lx

ps(x′)dx′
)

= 0.

We are left with the following terms that vanish,

p−
1
τ −1(x)∇xp(x)

(
−1

τ
vol(Lx) +

s− 1
τ

2
ps(x)

∫
Ux

p−s(x′)dx′ +
s+ 1

τ

2
p−s(x)

∫
Lx

ps(x′)dx′
)
.

In order to this hold, the scalar in the parenthesis must vanish,
2

τ
vol(Lx) +

1

τ
ps(x)

∫
Ux

p−s(x′)dx′ − 1

τ
p−s(x)

∫
Lx

ps(x′)dx′

= sps(x)

∫
Ux

p−s(x′)dx′ + sp−s(x)

∫
Lx

ps(x′)dx′.

Rearranging the terms give us,

τ =
1

s

(
2vol(Lx) + 2ps(x)

∫
Ux

p−s(x′)dx′

ps(x)
∫
Ux

p−s(x′)dx′ + p−s(x)
∫
Lx

ps(x′)dx′ − 1

)
.

Theorem 3.1. Assume W ∼ Gumbel(0, s). A tempering field τ(x) exists between the belief density
p and the MWD pw, and it is given by the formula,

τ(x) = s

 ∫
X

1
1+rs(x,x′)dx

′∫
X

rs(x,x′)
(1+rs(x,x′))2 dx

′

 , (B.3)

where rs(x,x
′) := p

1
s (x′)p−

1
s (x) is 1/s-tempered density ratio.

Proof. Under the Bradley-Terry model, W ∼ Gumbel(0, s), and the MWD pw(x) now equals to

pw(x) = 2λ(x)

∫
X
FLogistic(0,s) (log p(x)− log p(x′))λ(x′)dx′. (B.4)

Following same lines of reasoning as in the constructive proof of Theorem A.1, we fix x ∈ X and
aim to find a constant τ(x) = τ > 0 solving the tempering field condition. Unless p is uniform, the
necessary and sufficient condition for the existence of τ is that it solves the equation,

p−1− 1
τ (x)

∫
X

1
sp

− 1
s (x)p

1
s (x′)− 1

τ

(
1 + p−

1
s (x)p

1
s (x′)

)
(
1 + p−

1
s (x)p

1
s (x′)

)2 dx′ = 0.

This is equivalent to,

τ = s

 ∫
X

1
1+rs(x,x′)dx

′∫
X

rs(x,x′)
(1+rs(x,x′))2 dx

′

 , (B.5)

where for clarity we denote rs(x,x
′) := p

1
s (x′)p−

1
s (x) =

(
p(x′)
p(x)

)1/s
, which is 1/s-tempered

density ratio between density values at compared points x′ and x.
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Proposition 3.2. Assume that there exists a tempering field τ(x) between p and q. A tempering
parameter τ⋆ > 0 defined by,

τ⋆ = EX∼p (ω(X)τ(X)) , (B.6)

where a stochastic weight ω ≥ 0 is given by

ω(X) =
∥∇ log q(X)∥2

EX∼p

(
∥∇ log q(X)∥2

) ,
minimizes the Fisher divergence between p and q,

τ⋆ = argmin
τ>0

F (p, qτ ). (B.7)

Proof. By the Leibniz formula,

∂

∂τ

∫
X
∥∇x log q

τ (x)−∇x log p(x)∥2 p(x)dx

=

∫
X

∂

∂τ
∥∇x log q

τ (x)−∇x log p(x)∥2 p(x)dx

=

∫
X
2
(
τ ∥∇x log q(x)∥2 − ⟨∇x log q(x),∇x log p(x)⟩

)
p(x)dx.

Since the Fisher score is quadratic in τ , the critical point corresponds to the global minimum. By the
assumption, ⟨∇x log q(x),∇x log p(x)⟩ = τ(x) ∥∇x log q(x)∥2. Hence,

τ⋆ =
EX∼p

(
τ(X) ∥∇ log q(X)∥2

)
EX∼p

(
∥∇ log q(X)∥2

) .

Lemma B.4. Let τ(x) be a tempering field. For any τ > 0 it holds that

F (p, qτ ) =

∫
X
|τ − τ(x)|2 ∥∇x log q(x)∥2 p(x)dx.

Proof. Since τ(x) is a tempering field,

∥∇x log q
τ (x)−∇x log p(x)∥

= ∥(τ − τ(x))∇x log q(x) + (τ(x)∇x log q(x)−∇x log p(x))∥
= ∥(τ − τ(x))∇x log q(x)∥ .

Proposition B.5. Let τ⋆ be the optimal tempering and τ(x) a tempering field.

F (p, qτ
⋆

) = E
(
∥∇ log q(X)∥2 τ2(X)

)
−

(
E
(
τ(X) ∥∇ log q(X)∥2

))2
E
(
∥∇ log q(X)∥2

) .
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Proof. By Proposition 3.2 and Lemma B.4,∫
X

∥∥∥∇x log q
τ⋆

(x)−∇x log p(x)
∥∥∥2 p(x)dx

= E
(
|τ⋆ − τ(X)|2 ∥∇ log q(X)∥2

)
= E


E

(
τ(X ′) ∥∇ log q(X ′)∥2

)
E
(
∥∇ log q(X ′)∥2

) − τ(X)

2

∥∇ log q(X)∥2


= E


∥∇ log q(X)∥E

(
τ(X ′) ∥∇ log q(X ′)∥2

)
E
(
∥∇ log q(X ′)∥2

) − ∥∇ log q(X)∥ τ(X)

2


=

(
E
(
τ(X) ∥∇ log q(X)∥2

))2
E
(
∥∇ log q(X)∥2

) − 2

(
E
(
τ(X) ∥∇ log q(X)∥2

))2
E
(
∥∇ log q(X)∥2

) + E
(
∥∇ log q(X)∥2 τ2(X)

)

= E
(
∥∇ log q(X)∥2 τ2(X)

)
−

(
E
(
τ(X) ∥∇ log q(X)∥2

))2
E
(
∥∇ log q(X)∥2

) .

Proposition 3.3. Let τ(x) be a tempering field. For any τ > 0 it holds that

F (p, qτ ) = EX∼p

(
|τ − τ(X)|2 ∥∇ log q(X)∥2

)
. (B.8)

Further, when τ⋆ > 0 is the optimal tempering

F (p, qτ
⋆

) = EX∼p

(
∥∇ log q(X)∥2 τ2(X)

)
−

(
EX∼p

(
τ(X) ∥∇ log q(X)∥2

))2
EX∼p

(
∥∇ log q(X)∥2

) . (B.9)

Proof. This is a combined result of Lemma B.4 and Proposition B.5.

Corollary B.7. Assume that the expert choice model follows the Bradley-Terry model or the exponen-
tial RUM. The scores of the belief and the MWD are collinear. That is, there exists a scalar-valued
function τ(x) such that,

∇ log p(x) = τ(x)∇ log pw(x).

Proof. Follows from the definition 6 and Theorems 3.1 and A.1.

C METHOD

C.1 TRAINING JOINT AND MARGINALS DISTRIBUTIONS

There are recent works that discuss in detail how to use diffusion model to learn between joint and
arbitrary conditionals, while modeling the marginals is not always straightforward (Gloeckler et al.,
2024). We adopt a simplified approach to estimate the marginal score function by leveraging a
corruption-based marginalization strategy.

To model simultaneously both the joint distribution px≻x′(x,x′) and the marginal distribution pw(x),
we introduce a binary conditioning variable joint ∈ {true,false} into the score model. During
training, we randomly set joint = false with 50% probability, and in this case, we mask the
input x′

t by replacing it with Gaussian noise N (0, σ2
t I), where σt is the current noise level. We

then compute the denoising score matching loss only over the winner dimensions x (i.e., the first d
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(a) Tempered MWD, w/o joint training (b) Tempered MWD, w/ joint training

Figure C.1: Replication of Fig. 1 using (a) only winner samples, with the score model trained only
for the MWD pw(x). The quality of the final density estimate, i.e., the ‘tempered’ MWD, is clearly
inferior compared to (b) training on the full joint px≻x′(x,x′) using both winners and losers.

components of ∇ log px≻x′(x,x′)). When joint = true, we train the model to predict the full joint
score over both x and x′.

At sampling time, to generate samples from the marginal distribution pw(x) using ALD, we similarly
set joint = false and replace x′

t with Gaussian noise N (0, σ2
t I) at each iteration of ALD. Fig. C.1

demonstrates the benefit of training the score model on the full joint data while using the proposed
marginalization method to model the marginal score.

C.2 ALGORITHMS

Algorithm B.1 Full algorithm

require: choice data D
output: samples from the belief density or a
trained diffusion model for it it
train sθ(x,x

′, σ, joint) using score-matching
on D = D≻ ×D⊁

• 50% of time: set joint = 0 and mask
x′ with N (0, σ2

t I)
• 50% of time: set σ to noise schedule
(σt)

L
t=1

initialize τ(x) given D and sθ
sample D⋆ using τ(x)-scaled ALD with the
score sθ(x,x

′, (σt)
L
t=1, joint=0)

optional
train sθMWD(x, σ, temp) using score-matching
on D⋆

return: D⋆ or sθMWD(x, σ, temp=1)

Algorithm B.2 τ(x)

require: s, D, sθ
initialize:

• train rθ(x,x
′) ≈ p(x′)

p(x) as MLE of D
(binary cross-entropy loss)

• sample m points X with densities
pw(X) using sθ (Appendix C.8)

input: x
r = (rθ(x,X))

1
s

return: s
( ∑m

i=1
1

1+ri

1
pw(Xi)∑m

i=1
ri

(1+ri)
2

1
pw(Xi)

)

C.3 DETAILS ON MODELING THE ‘TEMPERED’ MWD

To learn the MWD pw(x), having only access to samples from the joint distribution of winners and
losers px≻x′(x,x′), we propose learning the full joint and the first marginal to capture the preference
relationships in the data while enabling sampling from the tempered marginal via score-scaled

18
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ALD. To that end, we parametrize the score model sθ(x,x′, σ, joint, temp) such that (x,x′) 7→
sθ(x,x

′, σmin, joint=1, temp=0) models the score of the joint distribution of winners and losers, i.e.,
∇ log px≻x′(x,x′), and (x, temp) 7→ sθ(x, ∅, σmin, joint=0, temp) models the score of the MWD
and its ‘tempered’ version, i.e., ∇ log pw(x) and τ(x)∇ log pw(x), respectively. This allows training
the score network with both winners and losers, while still enabling sampling from the belief density
via the approximation sθ(x, ∅, σmin, joint=0, temp=1) ≈ τ(x)∇ log pw(x) = ∇ log p(x). Fig. C.1
validates that the joint score model is superior to directly learning the marginal from only the winner
samples.

We implement the method by training a score model through the denoising score matching equation 1
on the concatenation of winners and losers, with random masking of losers during training (for
more details, see Appendix C.1). Technically speaking, to enable sampling via reverse diffusion and
ALD, we use a noise distribution ptrain(σ) during training, defined as a mixture of a Dirac delta on
a cosine noise schedule and a LogNormal(Pmean, P

2
std), with mixture weight ϕ = 0.5 assigned to

the Dirac delta component. We stay as close as possible to the EDM-style diffusion model (Karras
et al., 2024a). Specifically, we use the perturbation kernel pσ(x̃|x) = N (x̃;x, σ2I), which aligns
with EDM and defines a forward diffusion process from σmin to σmax, where pσmin(x) ≈ p(x) and
pσmax

(x) ≈ N (0, σ2
maxI). After training sθ(x,x

′, σ, joint, 0) on perturbed winners and losers, we
sample from the belief density using the score-scaled ALD. We can either stop here, or optionally
train the tempered marginal score network sθMWD(x, σ, temp), which weights can be initialized to that
of sθ, through denoising score matching using the sampled data. Finally, we use the loss weighting
ℓ(σ) = σ2. Algorithms B.1–B.2 summarize the method.

C.4 SCORE MODEL

We follow as closely as possible the EDM2 specifications used in the 2D toy experiment in (Karras
et al., 2024a). For both the joint score network and the tempered MWD score network, we use
an MLP with one input layer and four hidden layers, SiLU activation functions (Hendrycks &
Gimpel, 2016) are applied after each hidden layer, and implemented using the magnitude-preserving
primitives from EDM2 (Karras et al., 2024b). In the joint score network, the input is a (2d + 3)-
dimensional vector (x, x′, σ, joint, temp), and the output of each hidden layer has h features, where
h ∈ {32, 64, 96, 128} depending on the experiment dimensionality. In the MWD score network, the
input is a (d+3)-dimensional vector (x, σ, 0, temp). The binary variables joint and temp are linearly
embedded into an h/4-dimensional space. Further, a simple residual connection is applied to the
embedded variables through all hidden layers. Otherwise, we use the same preconditioning for the
score network as described in EDM (Karras et al., 2022).

C.5 BELIEF DENSITY RATIO MODEL

We parametrize the belief density ratio rθ(x,x
′) ≈ p(x′)/p(x) via parameterizing the unnormalized

log density fθ(x) ≈ log p(x) + constant as an MLP with three hidden layers with SiLu activa-
tions, and one output layer, such that log rθ(x,x′) = fθ(x

′)− fθ(x). The number of hidden units
is tied to that of the score model (Section C.4). Regularization of the weights θ is important for
obtaining sensible results. To this end, we apply adaptive ℓ2-regularization using the Adam opti-
mizer (Kingma & Ba, 2014) with weight decay. In contrast, standard ℓ2-regularization, corresponding
to AdamW (Loshchilov & Hutter, 2017), yielded slightly inferior empirical performance. We set the
weight decay to 10−3, except in the small data n = 100d experiments, where we use a higher value
of 3× 10−3.

C.6 TEMPERING FIELD ESTIMATE

For the d-dimensional target, we use 2000d importance samples to estimate the integrals in the
tempering field formula 7. The importance weights are computed using the probability ODE of the
MWD diffusion model (see Appendix C.8 for details). The estimated tempering field τ(x) is clipped
such that 1 ≤ τ(x) ≤ Qτ (0.999), where Qτ (0.999) denotes the 99.9% quantile of the estimated
tempering field values. The lower bound follows directly from the theory (i.e., from formula 7), while
the upper bound is introduced for numerical stability to remove outliers.
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C.7 SCORE-SCALED ALD

Score-scaled ALD uses the scaled score τ(x)∇ log pw(x), where ∇ log pw(x) is replaced by our
estimated score. While τ(x) is not the ALD step size ϵ > 0, it is clear that τ(x) influences the ALD
update in a manner similar to ϵ. To ensure convergence of score-scaled ALD, at each ALD step
we use the step size ϵ = ϵbase

τ(x)
σ2

σ2
max

, where ϵbase is the base step size to be specified. The required
number of iterations T should be chosen with respect to ϵbase. In our experiments, we use L = 50,
T = 40, and ϵbase = 0.15. In 2D-experiments, we use faster sampling parameters: L = 15, T = 40,
and ϵbase = 7.0. Regarding the injection of a deterministic ALD noise schedule during denoising
score-matching training, we find that the cosine schedule yields better empirical performance, while
the noise schedule corresponding to the EDM time-step discretization is also a natural option.

C.8 DENSITY EVALUATION OF A DIFFUSION MODEL

Chen et al. (2018) showed that for a random variable whose probability density evolves over time,
with dynamics dx = f̃(xt, t) dt (where f̃ is Lipschitz continuous in x and continuous in t), the
density at p0(x) is given by

log p0(x0) = log pT (xT ) +

∫ T

0

∇ · f̃(xt, t) dt, (C.1)

where ∇· denotes the divergence operator, which is equal to the trace of the Jacobian. In practice, the
divergence is often approximated using the Skilling–Hutchinson trace estimator (Grathwohl et al.,
2018),

∇ · f̃(x) ≈ Eϵ∼N (0,I)[ϵ
⊺Jf̃ (x)ϵ],

where the expectation is estimated using a finite number of samples.

Now, applying this to EDM-type diffusion model, which is characterized by the probability ODE

dx = −σ∇x log pσ(x) dσ, (C.2)

we can compute the probability density at a point x as

log p(x) = logN (xσmax ;0, σmaxI)−
∫ σmax

0

σ log p(xσ, σ) dσ.

We note that ODE C.2 is stiff, which requires stiff ODE solvers to get stable estimates.

D RUM UNDER THE SPACE RE-PARAMETRIZATION

This appendix studies the exponential RUM and the Bradley–Terry model under space reparametriza-
tion, and verifies that both RUMs are invariant under this transformation. This justifies our approach
of transforming possible non-uniform λ(x) into a uniform distribution.

The winner densities of the exponential RUM and the Bradley-Terry model can be written

pw(x) = 2λ(x)

∫
X
FLaplace(0,1/s) (log p(x)− log p(x′))λ(x′)dx′,

and

pw(x) = 2λ(x)

∫
X
FLogistic(0,s) (log p(x)− log p(x′))λ(x′)dx′,

respectively. Let d = 1. Denote the cumulative distribution function of λ as Q. By the 1d probability
change of variable formula, the winner densities in the re-parametrized space x 7→ Q(x) can be
written

pw(x) =

∣∣∣∣ ddxQ−1(x)

∣∣∣∣ (2q(Q−1(x))

∫
X
FLaplace(0,1/s)

(
log p(Q−1(x))− log p(x′)

)
λ(x′)dx′

)
,
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and

pw(x) =

∣∣∣∣ ddxQ−1(x)

∣∣∣∣ (2q(Q−1(x))

∫
X
FLogistic(0,s)

(
log p(Q−1(x))− log p(x′)

)
λ(x′)dx′

)
,

respectively. The volume change
∣∣ d
dxQ

−1(x)
∣∣ = 1/q(Q−1(x)). Similarly, applying the integration

by substitution formula to the transformation x′ 7→ Q−1(x′) with the volume change
∣∣ d
dx′Q

−1(x′)
∣∣.

Hence,

pw(x) = 2

∫
Xtrans

FLaplace(0,1/s)
(
log p(Q−1(x))− log p(Q−1(x′))

)
dx′,

and

pw(x) = 2

∫
Xtrans

FLogistic(0,s)
(
log p(Q−1(x))− log p(Q−1(x′))

)
dx′,

respectively, where Xtrans is the transformed space, i.e. the hypercube. We can define the belief
density in the transformed space as ptrans(x) = p(Q−1(x)). Hence, the RUM in the transformed
space is the same as in the original space but with uniform sampling distribution and the utility
function log ptrans(x) = log p(Q−1(x)).
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E EXPERIMENTAL DETAILS

E.1 TARGET DISTRIBUTIONS

The log unnormalized densities of the target distributions used in the synthetic experiments are
provided below.

Onemoon2D : −1

2

(
∥x∥ − 2

0.2

)2

− 1

2

(
x1 + 2

0.3

)2

Twomoons2D : − (∥x∥ − 1)
2

0.08
− (|x1| − 2)

2

0.18
+ log

(
1 + e−

4x1
0.09

)
Ring2D : log

(
k∑

i=1

(
32

π
e−32(∥x∥−i−1)2

))
, where k = 1

Stargaussian6D : log

(
1

2
N (x | µ,Σ1) +

1

2
N (x | µ,Σ2)

)
,

σ2 = 1, ρ = 0.9, D = 6, µ = 31D, Σ1 =


σ2 ρσ2 ρσ2 · · · ρσ2

ρσ2 σ2 ρσ2 · · · ρσ2

ρσ2 ρσ2 σ2 · · · ρσ2

...
...

...
. . .

...
ρσ2 ρσ2 ρσ2 · · · σ2

 ,

Σ2 =


σ2 −ρσ2 ρσ2 · · · (−1)D−1ρσ2

−ρσ2 σ2 −ρσ2 · · · (−1)D−2ρσ2

ρσ2 −ρσ2 σ2 · · · (−1)D−3ρσ2

...
...

...
. . .

...
(−1)D−1ρσ2 (−1)D−2ρσ2 (−1)D−3ρσ2 · · · σ2


Mixturegaussians, D ∈ {4, 10} : log

(
1

4

4∑
i=1

exp

(
−1

2
(x− µi)

⊤Σ−1
i (x− µi)

))
,

where µi = r · vi

∥vi∥
, r = 3, v1 = 1D, v2 = −1D, v3 =

[
(−1)j

]D
j=1

, v4 = −v3,

Σi = Qi · diag(σ2
0 , σ

2, . . . , σ2) ·Q⊤
i , σ2

0 = 1, σ2 = 0.1, Qi = [µ̂i, . . .] ∈ RD×D

Gaussian, D ∈ {4, 16} : − 1
2 (x− µ)⊤Σ−1(x− µ), µ = 2

 (−1)1

...
(−1)D

 ,
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D
10

D
15 · · · D

15
D
15

D
10 · · · D

15
...

...
. . .

...
D
15

D
15 · · · D
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
E.2 OTHER EXPERIMENTAL DETAILS

Hyperparameters and optimization details. The score models are trained for varying number
of iterations (d = 2 : 8192, 2 < d < 10 : 12288, d ≥ 10 : 15360) with the Adam optimizer
(Kingma & Ba, 2014) and a batch size of min{n, 4000} pairwise comparisons, where n is the number
of pairwise comparisons in the dataset. For the 2D experiments, we follow (Karras et al., 2024a)
and use an adaptive learning rate, specifically a decay schedule of αref/max(iter, iterref , 1), with
αref = 0.005 and iterref = 1024 iterations. We use a power-function EMA profile with σref = 0.01.
The setup is somewhat sensitive to hyperparameters, and performance can vary depending on their
tuning. We expect to achieve better or worse performance in the experiments depending on how well
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the hyperparameters are tuned. The chosen hyperparameters are likely suboptimal, and we expect
performance gains, especially in higher-dimensional experiments, if the hyperparameters are well
tuned.

Environment. All experiments are conducted on a server equipped with nodes containing dual Intel
Xeon Cascade Lake processors (20 cores each, 2.1GHz). While exact training times and memory
usage were not recorded, the datasets and score network architectures used are relatively lightweight.

Experiment replications. Every experiment was replicated with 10 different seeds, ranging from 1
to 10.

Baseline. We used the official implementation of (Mikkola et al., 2024) and the provided config files
to match the hyperparameter configuration used in their experiments to the closest experiment in our
paper. For example, for 2D experiments, we use the config file that was used in their Onemoon2D
experiment.
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F PLOTS

F.1 PLOTS OF LEARNED BELIEF DENSITIES

(a) Score-based (b) Flow

Figure F.1: Onemoon2D experiment. The target distribution is shown as a heatmap, and samples from
the learned model are overlaid in blue. (a) Samples from the score-base model. For this particular
seed, the estimated tempering field is not too far from the true field, resulting in a good fit. (b)
Samples from the flow model.

(a) Score-based (b) Flow

Figure F.2: Twomoons2D experiment. The target distribution is shown as a heatmap, and samples
from the learned model are overlaid in blue. (a) Samples from the score-base model. For this
particular seed, the estimated tempering field is not too far from the true field, resulting in a good fit.
(b) Samples from the flow model.
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(a) Score-based (b) Flow

Figure F.3: Ring2D experiment. The target distribution is shown as a heatmap, and samples from the
learned model are overlaid in blue. (a) Samples from the score-base model. (b) Samples from the
flow model.

Figure F.4: Gaussian4D experiment. The target distribution is depicted by light blue contour points
and its marginal by a pink curve. The learned diffusion model is depicted by greenish blue contour
sample points and its marginal by a black curve.
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Figure F.5: Mixturegaussians4D experiment. The target distribution is depicted by light blue contour
points and its marginal by a pink curve. The learned diffusion model is depicted by greenish blue
contour sample points and its marginal by a black curve.
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Figure F.6: Stargaussian6D experiment. The target distribution is depicted by light blue contour
points and its marginal by a pink curve. The learned diffusion model is depicted by greenish blue
contour sample points and its marginal by a black curve.
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Figure F.7: Stargaussian6D experiment when using the baseline flow-based method. The target
distribution is depicted by light blue contour points and its marginal by a pink curve. The learned
flow model is depicted by greenish blue contour sample points and its marginal by a black curve.
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Figure F.8: Mixturegaussians10D experiment. The target distribution is depicted by light blue contour
points and its marginal by a pink curve. The learned diffusion model is depicted by greenish blue
contour sample points and its marginal by a black curve.
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Figure F.9: Gaussian16D experiment. The target distribution is depicted by light blue contour points
and its marginal by a pink curve. The learned diffusion model is depicted by greenish blue contour
sample points and its marginal by a black curve.
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F.2 LLM EXPERIMENT

Details of the data generation for the LLM experiment, including the prompts used, are provided in
Mikkola et al. (2024, Appendix C.2). We reuse their data and scripts to convert the 5-wise rankings
into the pairwise comparisons assumed in our setup: https://github.com/petrus-mikkola/prefflow.

Fig. F.10 shows completes the partial plot in main text for the LLM experiment. The elicited 2d and
1d marginals have the same support as the true data distribution marginals, and their shapes are also
similar, with the distinction that score-based methods tend to generate Gaussian-like marginals. The
only exception is the variable AveOccup, whose marginal appears to have an unreasonably long tail.

Figure F.10: Full result plot for the LLM expert elicitation experiment, complementing the partial
plot presented in Fig. 3.

Fig. F.11 compares our score-based diffusion method and the flow method of learning the LLM prior
from pairwise comparisons in the LLM experiment, highlighting that score-based method result in
smoother estimates than the flow method. Table F.1 summarizes the densities in a quantitative manner
by reporting the means for all variables.

Figure F.11: Comparison of the results when learning the LLM prior from pairwise comparisons
using our score-based diffusion method (left) and the flow based method (right).
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Table F.1: The means of the variables based on (first row) the distribution of California housing
dataset, (second row) the sample from the score-based diffusion model fitted to the LLM’s feedback,
and (third row) the sample from the flow model.

MedInc HouseAge AveRooms AveBedrms Population AveOccup Lat Long
True data 3.87 28.64 5.43 1.1 1425.48 3.07 35.63 -119.57
Score-based 5.89 27.56 6.66 1.53 2997.96 4.70 36.69 -119.37
Flow 5.83 28.48 6.68 1.49 2948.17 3.36 36.73 -119.30

G THE USE OF LARGE LANGUAGE MODELS (LLMS)

The data for Experiment 3 "LLM as a proxy for the expert" in Section 5 was obtained by promoting
an LLM (Claude 3 Haiku by Anthropic, March 2024). Further, the first version of the Rosenblatt
transformation implementation was developed using an LLM. This version was later improved,
and the final version was verified to correctly transform points to the hypercube. The inverse
transformation also worked in the tested cases. Finally, an LLM was used to check for writing and
content errors in both the text and the code.
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