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Abstract
001

In Neural Machine Translation (NMT), models002

will sometimes generate repetitive or fluent out-003

put that is not grounded in the source sentence.004

This phenomenon is known as hallucination and is005

a problem even in large-scale multilingual transla-006

tion models. We propose to use Contrastive Decod-007

ing, an algorithm developed to improve generation008

from unconditional language models, to mitigate009

hallucinations in NMT. Specifically, we maximise010

the log-likelihood difference between a model and011

the same model with reduced contribution from the012

encoder outputs. Additionally, we propose an al-013

ternative implementation of Contrastive Decoding014

that dynamically weights the difference based on015

the maximum probability in the output distribution016

to reduce the effect of CD when the model is con-017

fident of its prediction. We evaluate our methods018

using the Small (418M) and Medium (1.2B) M2M019

models across 21 low and medium-resource lan-020

guage pairs. Our results show a 14.6 ± 0.5 and021

11.0± 0.6 maximal increase in the mean COMET022

scores for the Small and Medium models on those023

sentences for which the M2M models initially gen-024

erate a hallucination., respectively.025

1 Introduction026

Hallucinations are a rare but problematic phe-027

nomenon in NMT (Neural Machine Translation)028

whereby the target side output is repetitive or fluent029

but not grounded in the source sentence (Ji et al.,030

2023). Even though hallucinations are rare in NMT,031

they are a significant problem as they undermine032

trust in deployed NMT systems. Hallucinations033

occur when the target side sentence is detached034

from the source side sentence (Wang and Sennrich,035

2020; Raunak et al., 2021; Dale et al., 2023), or in036

other words, when there is a low contribution of037

the source sentence to the generation of the target 038

sentence. 039

Previous work on mitigating hallucinations has 040

focused on sampling translations and reranking 041

them according to quality metrics (Dale et al., 2023; 042

Guerreiro et al., 2023b). Separate to this, Li et al. 043

(2022) proposed Contrastive Decoding (CD) as a 044

way of mitigating bad behaviour (such as excessive 045

repetition and low diversity) when generating from 046

unconditional language models. CD is a decoding 047

algorithm that maximises the difference between 048

the log probabilities of a strong expert and a weak 049

amateur model (equivalent to maximising the ratio 050

of probabilities). A threshold is applied so that 051

decoding follows the expert when it is more confi- 052

dent. The intuition behind CD is that the amateur 053

model is more prone to certain types of low-quality 054

generation, so by subtracting the log probabilities, 055

these are removed. We hypothesise that by using 056

CD with an amateur, which is prone to source de- 057

tachment, we can mitigate hallucinations in NMT. 058

In order to create an amateur with low source 059

attachment, we experiment with different strategies 060

for reducing the role of cross-attention. The sim- 061

plest is the NO ENCODER strategy, where the ama- 062

teur is a decoder-only version of the expert. In our 063

other strategies, we retain the encoder and cross- 064

attention but impose uniform attention, remove at- 065

tention from the most highly attended source posi- 066

tion, or scale down all cross-attention values. 067

In contrast to unconditional generation, NMT 068

should be more strictly grounded in the source sen- 069

tence. Additionally, hallucinations only account 070

for a small proportion of translations, and hence, 071

mitigation of hallucinations must not come at the 072

cost of reduced performance on other sentences. 073

As such, increasing the diversity of the translations 074

is less desirable than it is in unconditional gener- 075

ation. Ideally, CD would only take effect when a 076

model is hallucinating. To address this issue, we 077

experiment with a novel variant of CD that dynam- 078
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ically adjusts the subtraction’s magnitude based on079

a distribution’s maximum value.080

We evaluate our approach on large multilingual081

models, which have recently been shown to be082

prone to hallucinations (Guerreiro et al., 2023a).083

Specifically, we use the M2M family of models084

(Fan et al., 2020) and consider the 418M (Small)085

and 1.2B (Medium) versions.086

We summarise our contributions as follows:087

• We show that using CD in conjunction with088

amateur models that have reduced source con-089

tributions mitigates hallucinations.090

• We extend the CD algorithm, dynamically set-091

ting the weight given to the amateur to limit092

the effect of CD when the expert is confident.093

• We evaluate across 21 language pairs using094

the M2M family of models on the FLORES-095

101 dataset, reporting a mean increase of096

14.6 ± 0.5 and 11.0 ± 0.6 COMET on sen-097

tences causing hallucinations for the Small098

model and Medium models respectively.099

2 Related Work100

Hallucination Detection We discuss Hallucination101

detection as it relates to our experimental setup.102

Guerreiro et al. (2023b); Dale et al. (2023); Rau-103

nak et al. (2021) all evaluate different methodolo-104

gies for automatically identifying hallucinations105

and demonstrate the effectiveness of ALTI+ as a106

hallucination detection method.107

Hallucination Mitigation Guerreiro et al.108

(2023a) propose using a different fallback model109

when a hallucination is detected. Other methods110

rely on sampling and reranking translations, for111

example, using COMET (Rei et al., 2022) to miti-112

gate hallucinations (Guerreiro et al., 2023b; Dale113

et al., 2023). Compared to our methodology, this114

approach relies on an additional outside model to115

rank sentences to achieve the best performance.116

Additionally, both works only evaluate on a small117

de→en model, whereas we evaluate on large-scale118

multilingual models.119

In contemporaneous work, Sennrich et al. (2023)120

uses a similar CD approach to mitigate hallucina-121

tions. Hallucinations are evaluated by counting122

the proportion of segments with chrF2 <10 (Lee123

et al., 2019; Müller and Sennrich, 2021). Unlike124

our work, the authors use the same model as the125

amateur but supply it with randomly selected in-126

puts. In contrast, we use different models as the127

amateur, supplied with the same inputs. Randomly 128

selecting another source segment is potentially less 129

stable than using a model as an amateur, as trans- 130

lations can depend heavily on the selection of the 131

source segment. This work also compares different 132

amateurs and techniques for combining the expert 133

and amateur distributions, whereas Sennrich et al. 134

(2023) places additional focus on off-target transla- 135

tions. Our work can thus be seen as complementary 136

to theirs. 137

3 Methodology 138

We first describe CD as proposed by Li et al. (2022), 139

then discuss our proposed improvements (normal- 140

isation and dynamic weighting), and finally moti- 141

vate the amateur models that we use in our experi- 142

ments. 143

3.1 Contrastive Decoding 144

Equation 1 gives the ORIGINAL formulation of CD 145

in log space proposed by Li et al. (2022). Here 146

px(i) is the probability (post softmax) assigned to 147

token i in vocabulary V by the expert model, and 148

pa(i) is the probability assigned by the amateur 149

model. 150

CD(i) = log(px(i))− γ log(pa(i)) (1) 151

The subtraction results in a new set of scores 152

CD(i) that are used in beam search in place of 153

the expert’s scores. γ is a hyperparameter that 154

weights the amateur subtraction. The equivalent 155

formulation in linear space equates to rescaling 156

the expert probabilities according to the amateur 157

probabilities. 158

Li et al. (2022) use a hyperparameter α (0 < 159

α<1) to threshold the expert probability distribu- 160

tion. As shown in Equation 2, only those tokens 161

with a probability greater than or equal to the max- 162

imum probability scaled by hyperparameter α are 163

considered for CD. 164

Vthresh = {i ∈ V : log(px(i)) 165

≥ log(α) + max
j

log(px(j)} (2) 166

As stated by (Li et al., 2022) this thresholding 167

has two purposes. Firstly, preventing extremely 168

unlikely tokens under the expert being the highest 169

scoring under CD and secondly, if the expert is 170

significantly confident, to consider only one token 171

so that CD selects the same token as the expert. 172
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3.2 Contrastive Decoding for Hallucinations173

Unlike Li et al. (2022) our aim is not to increase174

the diversity of generations but rather to prevent175

hallucinations in NMT. This presents two funda-176

mental challenges. Firstly, hallucinations only rep-177

resent a small proportion of translated sentences,178

and secondly, compared to open-ended generation,179

the output of NMT needs to be grounded in the180

source sentence. As such CD when applied in our181

context, should ideally only affect the output for182

those few sentences where the model hallucinates183

and only minimally change those outputs that are184

not hallucinations. We address these issues through185

normalisation and dynamic weighting.186

3.3 Normalisation187

The motivation of normalisation is both to stabilise188

beam search when decoding and also to help with189

the dynamic weighting only approach introduced190

subsequently. Without normalisation, the magni-191

tudes of the CD scores at each time step are dif-192

ferent, and as a result, time steps will contribute193

differently to the hypotheses in the beam. As dy-194

namic only applies CD to a significant number of195

tokens at each time step, normalisation helps in the196

case where a certain beam shows a much bigger197

CD score than other beams.198

NCD =

∑Vthresh
i=1 px(i)/pa(i)

γ∑Vthresh
i=1 px(i)

(3)199

Equation 3 gives the value of the normalisation200

constant, used to normalise the CD probabilities.201

Dividing the contrastive scores by NCD normalises202

the scores before scaling them to sum to the prob-203

ability mass covered by Vthresh. The set of nor-204

malised CD scores is combined with the set of205

expert probabilities given by the complement of206

Vthresh to obtain a probability distribution. We207

refer to CD with normalisation as NORMALISED208

3.4 Dynamic Weight209

The original CD algorithm is applied at each time210

step with the same weight, and hence, all probabili-211

ties are rescaled. Rather than varying the number212

of candidates CD considers (as the threshold α213

does), we propose to vary the degree to which CD214

affects token generation by dynamically setting the215

γ in Equation 1. Equation 4 gives the dynamic216

weighting approach to setting the amateur weight217

γ, where β is a hyperparameter.218

γ = 1−max
i

px(i)
β (4) 219

When the expert distribution has a high max- 220

imum probability γ → 0, thereby reducing the 221

effect of CD when the expert model is confident. 222

Conversely, when the expert distribution has a low 223

maximum probability γ → 1 and, hence, the rescal- 224

ing due to the amateur probabilities is larger. We 225

experiment with both a combination of threshold- 226

ing and dynamic weighting (DYNAMIC); and solely 227

relying on dynamic weighting by setting the thresh- 228

old in Equation 2 so that the number of tokens 229

considered for CD is constant (DYNAMIC ONLY). 230

3.5 Amateur Models 231

In order to mitigate hallucinations, amateur models 232

are chosen to simulate detachment from the source, 233

thereby stimulating hallucinations or at least in- 234

creasing the probability mass assigned to halluci- 235

nated tokens while decreasing the probability mass 236

of "reasonable" tokens. Apart from the SMALL 237

amateur, the different approaches all try to reduce 238

the source contribution to the output: 239

NO ENCODER: The No Encoder approach calls 240

the decoder without the encoder inputs (bypassing 241

the entire cross-attention block), essentially acting 242

as a language model. Without the source sentence, 243

the amateur has to rely only on the target side prefix. 244

Unlike Language Model fusion (Stahlberg et al., 245

2018), which interpolates the two distributions, CD 246

rescales the distributions, increasing scores that are 247

unlikely under the amateur and decreasing scores 248

that are likely under the amateur. 249

FLAT ATTENTION: An amateur where the cross- 250

attention scores are uniform, which equates to tak- 251

ing the unweighted mean of the encoder outputs. 252

In this approach, the amateur still has access to the 253

encoder information with only the attention infor- 254

mation removed, representing a softer detachment. 255

ZERO MAX ATTENTION: For this approach, we 256

set the maximum cross-attention score of the am- 257

ateur to zero, and hence, there is no contribution 258

from the most salient encoder output. When select- 259

ing the maximum, we disregard the last token to 260

account for punctuation at the end of a sentence. 261

ATTENTION SCALING: This approach is used 262

both independently and in combination with the 263

Flat Attention and Zero Max Attention approaches. 264

We directly reduce the contribution of the source 265

by scaling down all of the attention weights. 266
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SMALL: Using a smaller model trained on the267

same data (Li et al., 2022). We use the M2M Small268

amateur as a comparison against the other amateurs269

that explicitly reduce the source contribution.270

3.6 Beam Search271

After calculating the CD scores, we use beam272

search to generate the translations. As all beams273

are the same for the first time step, we ensure that274

when not using normalisation, we set the threshold275

probability to the probability of the tenth token,276

ensuring that all beams have a valid score. As the277

normalised scores include the output probabilities278

of the expert, this is no longer necessary for nor-279

malised CD.280

4 Experimental Setup281

4.1 Models and Datasets282

We adopt the setup of Guerreiro et al. (2023a)283

and use the M2M (Fan et al., 2020) models, eval-284

uating on the FLORES-101 (Goyal et al., 2022)285

dataset. The M2M models are strong multilingual286

transformer (Vaswani et al., 2017) models that are287

trained on 7.5B sentences but still have been shown288

to hallucinate for low and medium resource lan-289

guages (Guerreiro et al., 2023a), thus providing a290

tested method to evaluate our approach. We only291

evaluate on the Small (418M) and Medium (1.2B)292

M2M models, as they produce more hallucinations293

than the 12B parameter model. The language pairs294

we evaluate on are given in Table 1 alongside the295

number of detected hallucinations on the expert.296

For evaluation, we combine the FLORES-101 dev297

and devtest splits to increase the number of halluci-298

nations. All our experiments are run using fairseq299

(Ott et al., 2019)1.300

4.2 Metrics301

Hallucination Detection As both WMT and FLO-302

RES-101 do not have gold standard labels for hallu-303

cinations, we follow Guerreiro et al. (2023a) and304

use a combination of ALTI+ (Ferrando et al., 2022)305

and TNG (top n-gram count) (Raunak et al., 2021;306

Guerreiro et al., 2023b) to detect hallucinations in307

the expert translations. ALTI+ measures both the308

source and the target contribution to generations309

and can be used to identify detached sentences. We310

use the same approach as Guerreiro et al. (2023a)311

and obtain a threshold value for the ALTI+ score312

using en→de and en→ru WMT-19 (Barrault et al.,313

1https://github.com/facebookresearch/fairseq

2019) and en→fr WMT-14 data (Bojar et al., 2014) 314

data. TNG identifies sentences where the top target 315

side n-gram count is at most t greater than the top 316

source side n-gram, where n is set to 4 and t is set 317

to 2. Additionally, reasonable quality thresholds 318

for spBLEU (Goyal et al., 2022), chrf++ (Popović, 319

2015), and COMET (Rei et al., 2022) are used to 320

filter out false positives. We report all threshold 321

values in Appendix A. 322

Evaluation Metrics: We report COMET (Rei 323

et al., 2022) scores as these have been shown to be 324

sensitive to hallucinations (Guerreiro et al., 2023b; 325

Dale et al., 2023) for our main results2. We evaluate 326

how CD affects hallucinations by splitting our test 327

sets into hallucinations and non-hallucinations and 328

report COMET for each separately. Additionally, 329

we report hallucination counts for our selected ap- 330

proaches using the hallucination detection pipeline 331

detailed above. As ALTI+ is a model-based metric, 332

we use the expert with forced decoding to generate 333

ALTI+ scores for the translations generated with 334

CD. 335

4.3 Hyperparameters 336

We decode using Beam search with a Beam size 337

of 4. We tune the following hyperparameters: α, 338

γ and β. We determine hyperparameters for the 339

M2M experiments by performing a grid search us- 340

ing ha→en WMT-21 data (Akhbardeh et al., 2021)3 341

as it has a reasonable number of hallucinations. Hy- 342

perparameters were selected using the maximum 343

COMET score on EXPERT hallucinations. For the 344

DYNAMIC ONLY approach, we fix the number of 345

tokens used for CD to 25 for all experiments; the 346

Attention Scaling parameter is set to 0.01 when 347

used independently and 0.25 when combined with 348

other approaches. The complete set of hyperparam- 349

eters is given in Appendix A. 350

5 Results 351

First, we present results comparing our different 352

experimental setups by combining all language 353

pairings. We compare amateur models using the 354

ORIGINAL CD approach before reporting on the 355

effects of our additions to the CD algorithm. Next, 356

we compare the performance across languages by 357

looking at the distributions of COMET scores and 358

presenting qualitative examples. Finally, we use 359

the hallucination detection suite to report the num- 360

2Specifically, we use wmt22-comet-da
3WMT data obtained using SACREBELU (Post, 2018)
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Language Pair ast-en en-ast oc-en en-oc ps-en en-ps sw-en en-sw bn-en en-bn fa-en en-fa tr-en en-tr zh-en en-zh be-ru fr-sw ar-fr el-tr hi-bn

Small (418M) 6 111 5 30 35 1465 2 195 6 169 3 2 1 3 1 5 190 514 3 5 117
Medium (1.2B) 33 29 2 92 11 1109 2 54 0 62 1 16 0 3 0 2 99 431 6 7 93

Table 1: Language pairs used for evaluation along with hallucination counts detected for the EXPERT models.

Small(418M) Medium(1.2B)

ORIGINAL NORMALISED DYNAMIC
DYNAMIC

ONLY
ORIGINAL NORMALISED DYNAMIC

DYNAMIC

ONLY

EXPERT 47.4±0.4 - - - 54.4±0.5 - - -
ATTENTION SCALING 62.0±0.3 59.5±0.3 60.8±0.4 60.7±0.4 65.4±0.4 61.6±0.5 62.2±0.5 61.3±0.5

FLAT ATTENTION 55.5±0.4 56.4±0.4 54.3±0.4 54.9±0.4 57.4±0.5 58.6±0.5 56.5±0.5 57.2±0.5

FLAT ATTENTION SCALING 61.9±0.3 60.1±0.4 60.8±0.4 61.3±0.4 64.2±0.4 61.6±0.5 62.3±0.5 62.8±0.5

NO ENCODER 62.0±0.3 61.1±0.3 61.7±0.4 61.6±0.4 64.9±0.4 62.3±0.5 62.1±0.5 62.8±0.5

SMALL - - - - 54.2±0.4 58.1±0.5 57.6±0.5 57.8±0.5

ZERO MAX ATTENTION 59.3±0.4 58.1±0.4 57.4±0.4 58.0±0.4 60.5±0.5 59.3±0.5 58.6±0.5 59.8±0.5

ZERO MAX ATTENTION SCALING 60.9±0.3 60.0±0.4 60.1±0.4 60.8±0.4 63.5±0.4 62.0±0.5 61.7±0.5 61.9±0.5

Table 2: Mean COMET scores on examples with hallucination for the two M2M models used (Small, Medium).
The mean is calculated over sentences in all translation directions (en→ps and ps→en are removed due to having
far more hallucinations than all other language pairs). Errors reported are SEM (Standard Error on the Mean). Bold
and underlined values highlight the maximum in each column and row.

ber of detected hallucinations when using CD. For361

completeness, we also report spBLEU, chrF++ and362

COMET for our selected approach in Appendix B.363

5.1 Amateur Models and Dynamic Weighting364

Contrastive Decoding Reduces Hallucinations365

Evaluating on M2M models presents a robust multi-366

lingual experimental setup that evaluates across 21367

low and medium-resource language pairs. We com-368

pare our experimental approaches by splitting the369

test sets into hallucinations and non-hallucinations370

and averaging the COMET scores across all lan-371

guage pairs. Table 2 shows that all variants of372

CD increase the mean COMET scores for both the373

Small and Medium M2M models, confirming our374

hypothesis that CD - when using an amateur de-375

signed to hallucinate - generates improved transla-376

tions of sentences for which the EXPERT generates377

hallucinations. The results for the Medium model378

show a maximal increase in the mean COMET-22 379

of 11.0± 0.5. In contrast, the Small model shows 380

a maximal increase of 14.6± 0.6, suggesting that 381

either CD is better for the smaller model or more 382

likely that the hallucinations for the 1.2B parameter 383

model are less severe. 384

Amateurs that remove the most encoder in- 385

formation are better at reducing hallucinations 386

We first focus on evaluating the performance of the 387

amateur models in terms of mean COMET scores 388

for hallucinations with the ORIGINAL approach. 389

NO ENCODER, ATTENTION SCALING, FLAT AT- 390

TENTION SCALING, and ZERO MAX ATTENTION 391

SCALING all achieve comparable results, as shown 392

in the first column of Table 2, when using the ORIG- 393

INAL CD approach. We hypothesise that the M2M 394

models have a strong enough decoder that FLAT 395

ATTENTION and ZERO MAX ATTENTION do not 396

remove enough encoder information to promote 397

Small(418M) Medium(1.2B)

ORIGINAL NORMALISED DYNAMIC
DYNAMIC

ONLY
ORIGINAL NORMALISED DYNAMIC

DYNAMIC

ONLY

EXPERT 77.4±0.1 - - - 80.8±0.1 - - -
ATTENTION SCALING 74.3±0.1 73.1±0.1 75.7±0.1 77.0±0.1 78.2±0.1 77.4±0.1 79.6±0.1 80.6±0.1

FLAT ATTENTION 74.9±0.1 75.3±0.1 74.7±0.1 75.0±0.1 78.0±0.1 78.9±0.1 78.5±0.1 78.7±0.1

FLAT ATTENTION SCALING 74.2±0.1 75.1±0.1 75.7±0.1 75.8±0.1 78.0±0.1 79.1±0.1 79.6±0.1 79.8±0.1

NO ENCODER 74.2±0.1 74.8±0.1 76.4±0.1 75.8±0.1 78.2±0.1 78.7±0.1 80.1±0.1 79.8±0.1

SMALL - - - - 71.8±0.1 77.1±0.1 78.7±0.1 80.1±0.1

ZERO MAX ATTENTION 73.7±0.1 75.2±0.1 74.9±0.1 75.1±0.1 77.5±0.1 79.0±0.1 78.9±0.1 79.0±0.1

ZERO MAX ATTENTION SCALING 73.5±0.1 74.9±0.1 75.7±0.1 75.9±0.1 77.7±0.1 79.0±0.1 79.7±0.1 79.8±0.1

Table 3: Mean COMET scores of non-hallucinations for the two M2M models used (Small, Medium). The mean
is calculated over sentences in all translation directions (en→ps and ps→en are removed due to having far more
hallucinations than all other language pairs). Errors reported are SEM (Standard Error on the Mean). Bold and
underlined values highlight the maximum in each column and row.
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Figure 1: COMET score distributions for hallucinations using the EXPERT and ATTENTION SCALING amateurs for
all language pairs with 10 or more hallucinations. Results are given for both the 418M and 1.2B parameter models.
The red line is the mean COMET of EXPERT non-hallucinations for a given language pair.

hallucinations in the other amateurs. As FLAT AT-398

TENTION SCALING and ZERO MAX ATTENTION399

SCALING both rely on being combined with AT-400

TENTION SCALING we prefer the more straightfor-401

ward approaches of removing the encoder outputs402

or simply scaling the attention weights as amateurs.403

For the medium model, we also experiment with404

using the Small 418M parameter model as an ama-405

teur. Using the ORIGINAL approach, SMALL does406

not improve mean COMET scores for examples407

with hallucinations compared to the expert. Al-408

though smaller models tend to have lower source409

contribution, the fact that SMALL does not im-410

prove on the expert lends further credence to our411

claim that actively restricting the source informa-412

tion available to amateur models improves the abil-413

ity of CD to correct expert hallucinations.414

Based on the FLAT ATTENTION ZERO MAX415

ATTENTION and SMALL results, we propose that416

removing encoder information is important when417

mitigating hallucinations using CD.418

Dynamic Weighting mitigates the adverse ef-419

fect of CD on non-hallucinations Looking at Ta-420

ble 3, we see that the ORIGINAL implementation of421

CD adversely affects sentences for which the EX-422

PERT does not hallucinate. The results demonstrate423

that our DYNAMIC weighting approaches counter-424

act the adverse effects of CD on these sentences,425

achieving comparable COMET scores to the EX-426

PERT model. We underline this result by report-427

ing the mean chrF++ scores for non-hallucinations428

in Table 4 as COMET scores are robust against429

paraphrasing. As chrF++ is a string-based metric,430

the decreased results highlight that the ORIGINAL 431

CD approach generates translations which are less 432

similar to the reference than the EXPERT and the 433

DYNAMIC or DYNAMIC ONLY approaches. As 434

we define our task as mitigating hallucinations, we 435

argue that these decreases are undesirable. 436

Small(418M) Medium(1.2B)

ORIGINAL
DYNAMIC

ONLY
ORIGINAL

DYNAMIC

ONLY

EXPERT 45.0±0.1 - 50.3±0.1 -
ATTENTION SCALING 42.5±0.1 46.3±0.1 45.9±0.1 49.4±0.1

FLAT ATTENTION 43.4±0.1 43.9±0.1 45.6±0.1 47.3±0.1

FLAT ATTENTION SCALING 42.2±0.1 44.6±0.1 45.7±0.1 48.6±0.1

NO ENCODER 42.4±0.1 44.6±0.1 45.8±0.1 48.6±0.1

SMALL - - 38.5±0.1 49.4±0.1

ZERO MAX ATTENTION 43.0±0.1 44.6±0.1 46.2±0.1 48.4±0.1

ZERO MAX ATTENTION SCALING 41.9±0.1 45.0±0.1 45.6±0.1 49.0±0.1

Table 4: Mean chrF++ scores for non-hallucinations on
the two M2M models used (Small, Medium). The mean
is calculated over sentences in all translation directions
(en→ps and ps→en are removed due to having far more
hallucinations than all other language pairs). Errors
reported are SEM (Standard Error on the Mean).

The effects of DYNAMIC weighting are particu- 437

larly pronounced for SMALL for which the chrF++ 438

score in Table 4 is 11.8± 0.1 less than the EXPERT 439

without DYNAMIC weighting. Looking at Table 2, 440

the COMET of SMALL DYNAMIC increases, in- 441

dicating that the SMALL with DYNAMIC weight 442

corrects some EXPERT hallucinations. Taken to- 443

gether, these results show that scaling the weight 444

by the maximum probability prevents CD from 445

making significant changes to EXPERT translations 446

whilst still affecting translations to mitigate hallu- 447

cinations. 448
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Figure 2: Examples EXPERT hallucinations that are fixed by ORIGINAL CD with the ATTENTION SCALING
amateur.

5.2 Attention Scaling449

Next, we explore how CD behaves across differ-450

ent languages and present examples to showcase451

how CD repairs EXPERT hallucinations. For this452

we select the ATTENTION SCALING ORIGINAL453

and ATTENTION SCALING DYNAMIC approaches.454

Whilst, NO ENCODER has comparable COMET455

scores, and if anything appears more robust, we se-456

lect ATTENTION SCALING as it is more flexible by457

allowing fine-grained selection of the source contri-458

bution via a hyperparameter. However, we believe459

both amateurs would have been viable choices. We460

report on DYNAMIC ONLY to better understand461

how its behaviour contrasts with the ORIGINAL462

approach.463

Repaired hallucinations still have errors In464

Figure 2 we provide examples of sentences for465

which the expert generates hallucinations which466

CD fixes. Compared to the EXPERT both sen-467

tences generated with CD are not detached from468

the source. The fixed detachment is especially ap-469

parent in sentence 2, which contains the incorrect470

segment ’ability to plague’ but recovers and cor-471

rectly translates ’along the body’. Both sentences472

still have errors, but we argue that these are transla-473

tion errors rather than hallucinations, in line with474

the topology proposed by Guerreiro et al. (2023b).475

Another way of looking at these errors is that CD476

highlights tokens that rely on the source, as these477

should have a lower score in the amateur when the 478

source context is removed. However, the expert 479

still needs to assign enough probability to such to- 480

kens for them to be considered in the first place. 481

Hence, in such cases, CD still promotes the correct 482

tokens, but the model is not able to translate the 483

source sentence correctly. 484

Repairing hallucinations is dependent on the 485

quality of the expert model We analyse COMET 486

scores across languages by plotting the distribution 487

of COMET scores for EXPERT hallucinations in 488

Figure 1, along with the mean COMET for non- 489

hallucinations. The result shows that CD with AT- 490

TENTION SCALING increases the COMET of EX- 491

PERT hallucinations across all languages. Addi- 492

tionally, for all languages apart from ast-en with 493

the Medium model, CD improves the long tail 494

of comet scores observed for hallucinations. The 495

mean COMET scores for non-hallucinations show 496

that they act as a ceiling to the improvement of 497

hallucinated translations. For some language pairs, 498

such as hi-bn (Small), the entire COMET score 499

distribution improves as the EXPERT model has the 500

potential to generate better translations. In contrast, 501

for weaker translation directions such as en-ps and 502

en-sw, Figure 1 illustrates that most COMET scores 503

do not improve because the overall performance of 504

the model caps them; instead, only the long tail is 505

improved. We propose that the ability of CD to fix 506

Language Pair Experiment ast-en en-ast oc-en en-oc ps-en en-ps sw-en en-sw bn-en en-bn fa-en en-fa tr-en en-tr zh-en en-zh be-ru fr-sw ar-fr el-tr hi-bn

Small (418M)
EXPERT 6 111 5 30 35 1465 2 195 6 169 3 2 1 3 1 5 190 514 3 5 117
ATTENTION SCALING DYNAMIC ONLY 0 57 1 15 6 1238 1 90 5 47 1 0 0 1 1 5 93 358 3 0 40
ATTENTION SCALING 0 20 0 3 0 1111 0 41 2 4 0 1 0 0 0 1 70 171 0 0 5

Medium (1.2B)
EXPERT 33 29 2 92 11 1109 2 54 0 62 1 16 0 3 0 2 99 431 6 7 93
ATTENTION SCALING DYNAMIC ONLY 15 10 0 58 1 800 1 39 0 46 0 6 0 2 0 2 65 360 2 3 73
ATTENTION SCALING 15 0 0 34 2 508 0 13 0 15 0 0 0 2 0 2 57 162 1 1 27

Table 5: Hallucination counts for the EXPERT model and the ATTENTION SCALING ORIGINAL and ATTENTION
SCALING DYNAMIC ONLY approaches. Hallucination labels are obtained with the ALTI+ and TNG hallucination
detection methodology.
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hallucinations depends on the strength of the EX-507

PERT model for a given language pair. We support508

this claim by observing that, in Table 5, both en-ps509

and en-sw have a high proportion of hallucinations510

that CD does not repair.511

CD with Attention Scaling fixes translations512

In Table 5 we present the hallucination counts using513

the ATTENTION SCALING and ATTENTION SCAL-514

ING DYNAMIC ONLY obtained using the hallucina-515

tion detection pipeline. As ALTI+ is a model-based516

metric, we force decode the CD translations us-517

ing the expert to obtain ALTI+ scores, hypothesis-518

ing that for expert hallucinations that are repaired,519

the ALTI+ scores improve based on the target pre-520

fix. The table shows that CD with ATTENTION521

SCALING reduces hallucinations for all language522

pairs. Adding DYNAMIC ONLY decoding reduces523

the efficacy of CD, with fewer hallucinations be-524

ing mitigated. However, we observe in Figure 1525

that the DYNAMIC ONLY approach has higher peak526

COMET scores for the small model. This leads us527

to speculate that when DYNAMIC weighting fixes528

a hallucination, it may generate better translation.529

Model Small (418M) Medium (1.2B)
Hallucination Yes No Yes No
Amateur Temperature

0.5 58.5±0.4 71.9±0.1 61.3±0.5 76.0±0.1

1 62.0±0.3 74.3±0.1 65.4±0.4 78.2±0.1

1.5 61.4±0.5 75.2±0.1 63.0±0.6 79.1±0.1

Table 6: Mean COMET scores across all language pairs
for the ATTENTION SCALING amateur using different
Softmax temperatures for the amateur model.

The performance of CD depends on the ama-530

teur temperature As Li et al. (2022) demonstrate531

that the amateur temperature can affect CD perfor-532

mance, we report the mean COMET scores for hal-533

lucinations and non-hallucinations at different ama-534

teur temperatures in Table 6. We can see that reduc-535

ing the temperature to 0.5 and thereby increasing536

the sharpness of the amateur distribution degrades537

the COMET scores for non-hallucinations and hal-538

lucinations. By contrast, increasing the amateur539

temperature to 1.5 decreases the mean COMET for540

hallucinations but slightly increases the COMET541

for non-hallucinations. This result makes sense542

as increasing the temperature leads to a smoother543

distribution.544

6 Conclusions 545

This paper applies CD decoding to the task of mit- 546

igating hallucinations in NMT. We show that CD 547

improves the mean COMET scores of sentences for 548

which the M2M translation models generate hallu- 549

cinations. Our results also support our hypothesis 550

that a key part of effectively using CD to mitigate 551

hallucinations is restricting decoder access to the 552

encoder outputs in amateur models, simulating tar- 553

get detachment from the source. 554

Additionally, we experiment with decreasing the 555

adverse effect of CD on sentences for which the 556

M2M models already generate good translations by 557

dynamically changing the weight hyperparameter, 558

which scales the subtraction of the amateur proba- 559

bilities. We show that dynamic weighting decreases 560

the changes to translations generated compared to 561

the expert, but this comes at the cost of repairing 562

fewer hallucinations. Improvements to the dynamic 563

approach would require a model-based metric that 564

identifies hallucinations at the token level. 565

As such, we recommend the original approach 566

and either removing the encoder outputs or scal- 567

ing down the cross-attention weights. In light of 568

the adverse effects on non-hallucinations, we also 569

suggest using CD only when a hallucination is de- 570

tected, for example, with a hallucination detection 571

pipeline. Any ’fixed’ hallucinations should also be 572

flagged if CD is used in a deployed system. End 573

users should be made aware that the translation 574

was originally a hallucination and may still contain 575

translation errors. 576

7 Limitations 577

Whilst we evaluate across 21 language pairs, these 578

are all medium and low-resource languages. We 579

provided no results on how our method works 580

with high-resource languages. Our experimental 581

setup does not investigate out-of-domain transla- 582

tions where hallucinations are particularly frequent. 583

We also point out that we fix the number of to- 584

kens considered by the DYNAMIC ONLY approach 585

rather than trying different values. Finally, our im- 586

plementation for NO ENCODER skips the entire 587

cross-attention block. As such, the associated layer 588

normalisation is also skipped. Hence, the results 589

of NO ENCODER and ATTENTION SCALING with 590

the hyperparameter set to 0 do not lead to the same 591

translations, but we do not investigate this further. 592
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A Hyperparameters 746

We first use an en→de model that has a data set of human-annotated hallucinations (Guerreiro et al., 747

2023b; Dale et al., 2023) in order to validate our approach, and explore different variants of our strategy. 748

Threshold Value

ALTI+ (Small) ALTI+ (Medium) spBLEU chrF++ COMET
0.32 0.38 18.7 45.6 76.6

Table 7: Threshold values for the Hallucination Detection pipeline.

Experiment Alpha(α) Weight(γ/β) Minimum Tokens Scaling

ATTENTION SCALING 0.15 0.5 1 0.01
ATTENTION SCALING NORMALISED 0.05 1.0 1 0.01
ATTENTION SCALING DYNAMIC 0.01 0.5 1 0.01
ATTENTION SCALING DYNAMIC ONLY - 0.2 25 0.01
FLAT ATTENTION 0.2 0.5 1 -
FLAT ATTENTION NORMALISED 0.01 0.5 1 -
FLAT ATTENTION DYNAMIC 0.01 0.7 1 -
FLAT ATTENTION DYNAMIC ONLY - 0.7 0.25 -
FLAT ATTENTION SCALING 0.1 0.5 1 0.25
FLAT ATTENTION SCALING NORMALISED 0.01 0.5 1 0.25
FLAT ATTENTION SCALING DYNAMIC 0.01 0.5 1 0.25
FLAT ATTENTION SCALING DYNAMIC ONLY - 0.5 25 0.25
NO ENCODER 0.15 1.0 1 -
NO ENCODER NORMALISED 0.1 1.0 1 -
NO ENCODER DYNAMIC 0.1 0.5 1 -
NO ENCODER DYNAMIC ONLY - 0.2 25 -
SMALL 0.25 0.75 1 -
SMALL NORMALISED 0.1 0.75 1 -
SMALL DYNAMIC 0.05 0.5 1 -
SMALL DYNAMIC ONLY - 0.2 25 -
ZERO MAX ATTENTION 0.1 0.5 1 -
ZERO MAX ATTENTION NORMALISED 0.01 0.5 1 -
ZERO MAX ATTENTION DYNAMIC 0.01 0.7 1 -
ZERO MAX ATTENTION DYNAMIC ONLY - 0.7 25 -
ZERO MAX ATTENTION SCALING 0.1 0.5 1 0.25
ZERO MAX ATTENTION SCALING NORMALISED 0.01 0.5 1 0.25
ZERO MAX ATTENTION SCALING DYNAMIC 0.01 0.5 1 0.25
ZERO MAX ATTENTION SCALING DYNAMIC ONLY - 0.5 25 0.25

Table 8: Hyperparameters used for all experiments. Alpha and weight were set using a grid search. We combine
weight and dynamic weight parameters in one column. Minimum tokens refers to the minimum number of tokens
for which CD is applied. Scaling refers to the magnitude of the ATTENTION SCALING used. Minimum tokens and
scaling were set to the given values for all experiments.
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Parameter Values

Alpha(α) 0.01, 0.05, 0.1, 0.15, 0.2, 0.25
Weight(γ) 0.25, 0.5, 0.75, 1.0
Weight Dynamic(β) 0.2, 0.5, 0.7

Table 9: All hyperparameters that were tried as part of the grid search.

B Additional Results749

EXPERT ATTENTION SCALING
ATTENTION SCALING

DYNAMIC ONLY

Language Pair spBLEU chrF++ COMET spBLEU chrF++ COMET spBLEU chrF++ COMET

ast-en 30.3 54.2 73.9 26.2 51.0 71.8 30.8 54.5 74.1
en-ast 24.8 48.5 68.0 18.1 45.1 66.6 24.2 48.6 68.8
oc-en 37.7 61.2 73.3 32.4 56.5 70.6 38.6 61.3 72.8
en-oc 23.3 47.5 68.2 15.6 43.1 66.6 22.0 47.2 69.2
ps-en 12.6 38.0 64.5 9.8 35.0 62.1 12.7 37.5 64.1
en-ps 5.8 22.6 55.7 3.6 21.0 57.7 5.1 23.0 60.3
sw-en 27.7 50.5 72.8 22.8 46.9 71.1 27.3 50.3 73.1
en-sw 21.4 46.3 72.9 16.3 42.9 70.3 20.8 46.2 73.3
be-ru 15.6 39.1 78.6 14.7 38.7 76.5 16.6 40.4 80.2
fr-sw 15.6 39.7 67.9 12.4 38.6 68.1 15.6 40.4 69.8

Mean Low-Resource 21.5 44.8 69.6 17.2 41.9 68.1 21.4 44.9 70.6

bn-en 25.6 51.3 82.7 19.8 47.2 80.9 24.9 50.9 82.6
en-bn 16.5 33.0 71.1 8.7 25.6 66.0 12.7 28.8 68.9
fa-en 28.2 53.9 82.3 22.0 49.4 80.4 27.7 53.6 82.5
en-fa 27.5 45.6 81.3 22.1 41.9 77.6 27.1 45.5 81.1
tr-en 31.4 55.7 84.7 24.9 51.0 82.9 30.9 55.4 84.8
en-tr 28.9 50.5 83.9 22.4 46.3 80.0 28.7 50.8 83.8
zh-en 21.7 48.4 81.8 17.0 44.5 80.1 21.7 48.1 81.9
en-zh 19.1 20.7 78.5 13.4 17.7 75.3 18.5 20.3 78.2
ar-fr 27.8 50.7 76.5 20.1 46.0 73.3 27.2 50.5 76.7
el-tr 19.8 42.5 79.5 15.0 39.4 76.2 19.8 42.8 79.7
hi-bn 16.2 32.7 71.9 8.8 25.3 68.2 13.6 29.8 71.3

Mean Medium-resource 23.9 44.1 79.5 17.7 39.5 76.4 23.0 43.3 79.2

Table 10: spBLEU, chrF++, COMET across all language pairs for the EXPERT, ATTENTION SCALING, and
ATTENTION SCALING DYNAMIC ONLYexperiments with the Small(418M) model.
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EXPERT ATTENTION SCALING
ATTENTION SCALING

DYNAMIC ONLY

Language Pair spBLEU chrF++ COMET spBLEU chrF++ COMET spBLEU chrF++ COMET

ast-en 36.8 58.7 79.2 30.7 54.6 77.5 36.5 58.6 79.4
en-ast 33.0 54.0 70.1 26.7 50.4 68.7 32.9 54.2 70.5
oc-en 46.4 66.9 79.1 39.7 62.0 77.1 46.9 66.7 79.0
en-oc 30.1 52.3 70.6 20.6 47.0 68.3 28.8 52.0 71.1
ps-en 17.9 43.4 71.2 14.0 39.8 68.4 17.4 42.5 70.5
en-ps 9.3 27.4 62.6 5.6 23.9 61.0 8.3 26.4 64.0
sw-en 35.2 57.0 79.7 29.4 52.9 78.1 34.6 56.6 79.7
en-sw 30.3 53.5 80.2 24.0 49.1 76.3 29.6 53.1 79.5
be-ru 19.3 42.5 84.8 17.7 41.3 82.9 19.4 42.8 85.2
fr-sw 21.5 44.5 74.0 18.5 43.6 74.3 21.3 44.6 74.4

Mean Low-resource 28.0 50.0 75.1 22.7 46.5 73.3 27.6 49.8 75.3

bn-en 28.4 53.1 83.9 22.2 48.9 82.4 28.0 53.0 83.9
en-bn 25.5 40.8 81.8 18.8 36.1 78.4 24.6 40.1 81.3
fa-en 30.0 54.5 82.8 23.3 49.8 81.0 29.2 54.0 82.8
en-fa 22.7 42.4 78.4 16.7 38.2 74.6 21.5 41.4 77.9
tr-en 35.7 58.7 86.7 28.7 53.8 85.4 34.8 58.1 86.7
en-tr 30.6 52.1 86.2 22.3 46.7 82.3 30.2 52.0 86.0
zh-en 27.1 52.2 84.6 21.0 47.7 83.0 26.4 51.7 84.6
en-zh 23.1 22.4 82.9 17.1 19.8 80.3 22.8 22.6 82.7
ar-fr 28.4 50.4 76.2 21.6 46.1 73.4 27.7 50.1 76.2
el-tr 21.7 44.1 82.0 15.7 40.1 79.0 21.5 44.3 82.2
hi-bn 23.6 38.4 79.5 18.1 35.0 77.3 23.4 38.5 79.6

Mean Medium-resource 27.0 46.3 82.3 20.5 42.0 79.7 26.4 46.0 82.2

Table 11: spBLEU, chrF++, COMET across all language pairs for the EXPERT, ATTENTION SCALING, and
ATTENTION SCALING DYNAMIC ONLYexperiments with the Medium(1.2B) model.

C GPU Hours 750

All experiments where run on GTX 3090 GPUs. While we did not keep track of the GPU utilization we 751

note that we only ran decoding experiments in this work. As an estimate of GPU hours both the parameter 752

grid search and evaluation took 3 days running on 4 GPUs. 753
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