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Abstract

We study the incorporation of equivariances into
vector-valued GPs and more general classes of
random field models. While kernels guarantee-
ing equivariances have been investigated previ-
ously, their evaluation is often computationally
prohibitive due to required integrations over the
involved groups. In this work, we provide a ker-
nel characterization of stochastic equivariance for
centred second-order vector-valued random fields
and we construct integration-free equivariant ker-
nels based on the notion of fundamental regions
of group actions. We establish data-efficient and
computationally lightweight GP models for veloc-
ity fields and molecular electric dipole moments
and demonstrate that proposed integration-free
kernels may also be leveraged to extract equivari-
ant components from data.

1. Introduction
The incorporation of structural knowledge such as physical
laws into machine learning models has gained significant
attention for improving predictive accuracy and realism.
For example, equivariances are ubiquitous across molecular
chemistry, where applying simultaneous rigid motions on
underlying atoms typically results in equivalent motions to
their vectorial properties (as demonstrated in Figure 1). The
incorporation of such equivariances is well-established in
deep learning Cohen & Welling (2016), allowing neural
networks to exploit knowing the responses across entire
orbits of a group action from a single data point.

In contrast, progress incorporating such knowledge into
Gaussian process (GP) models has been more moderate,
potentially due to the intricate mathematical constraint of
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Figure 1. Rotational equivariance of electric dipole moments (red
arrow) of acetylacetone molecules.

ensuring positive definiteness in matrix-valued covariance
kernels. However, attracted by GP’s explicit posterior distri-
butions that facilitate uncertainty quantification and active
learning, especially in scientific applications Moss et al.
(2020); Griffiths et al. (2022); Ranković et al. (2024), there
has been a significant recent effort to encode invariances
and equivariances through tailored kernels Ginsbourger et al.
(2012); Scheuerer & Schlather (2012); Ginsbourger et al.
(2016); van der Wilk et al. (2018); Holderrieth et al. (2021);
Henderson (2023).

Unfortunately, building equivariant kernels comes with sig-
nificant computational effort, and choices are typically made
that alleviate costs at the price of reducing expressiveness.
Such computational challenges have been addressed in spe-
cific contexts, e.g., for accurate modelling of interatomic
force fields Glielmo et al. (2017), by transforming a scalar
argument-wise invariant kernel into an equivariant matrix-
valued kernel with a single group integration.

Our work proposes a novel class of equivariant kernels that
simultaneously overcome the previously high computational
cost and limited flexibility of existing equivariant kernels.
We exploit the group-theoretic notion of projecting onto fun-
damental regions of group actions, substantially extending
the approach of Ginsbourger et al. (2012) as proposed for
scalar-valued invariance. Our main contributions are:

1. a theoretical framework for stochastically equivariant
random fields,

2. a class of integration-free equivariant kernels that are
computationally efficient, flexible, and stable,

3. empirical results on equivariant fluid flows and dipole
predictions from quantum chemistry.
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2. Background
Preliminaries For a detailed summary of the necessary
background on multivariate (Gaussian) random fields and
group theory, we refer the reader to Appendix A. In what
follows, we interchangeably denote vector-valued Gaussian
random fields as GPs.

Equivariances In this work, we focus on efficiently en-
coding equivariances in random fields models. We con-
sider Rp-valued, second-order, centered random fields Z =
(Zx)x∈D, where D ⊂ Rd. We denote by ⋆ a group ac-
tion of a linear group G on D. Equivariance of a mapping
f : D → Rp means that for any group element g ∈ G and
any x ∈ D, the (vector) value taken by f at the point g ⋆ x
is related to its value at x via multiplication with a matrix
ρg ∈ Rp×p representing g in Rp, i.e. f(g ⋆ x) = ρgf(x).

In the context of a random field Z we introduce a notion of
stochastic equivariance, expressed as:

∀g ∈ G, x ∈ D, P(Zg⋆x = ρgZx) = 1. (1)

Let us point out that for G countable, ∀g ∈ G can be
brought inside of P without further assumptions, deliver-
ing a property of equivariance up to a modification, that
is, ∀x ∈ D, P(∀g ∈ G,Zg⋆x = ρgZx) = 1. Adding
conditions on D (e.g., D countable) similarly leads to a
stronger notion of almost sure equivariance, namely that
P(∀g ∈ G, x ∈ D,Zg⋆x = ρgZx) = 1. Sufficient con-
ditions for those types of equivariances in more general
settings go beyond the scope of this work. In the following,
we focus on stochastic equivariance.

Recall that a centred Gaussian random field Z is character-
ized by its matrix-valued covariance kernel K : D ×D →
Rp×p, where for x,x′ ∈ D and 1 ≤ i ≤ p,

K(x,x′)ij = Cov
(
Z(i)
x , Z

(j)

x′

)
,

where the superscript (i) refers to the i−th vector compo-
nent. As we prove in Section 3, ensuring stochastic equiv-
ariance (1) for broad classes of random fields can be charac-
terized in terms of a notion of kernel equivariance such as
introduced in Reisert & Burkhardt (2007) for deterministic
kernel-based algorithms.

Related work The Helmholtz kernel is currently consid-
ered a suitable kernel for GPs in the case p = d = 2, as it
leverages the Helmholtz decomposition for vector fields de-
fined over R2. While it ensures equivariance in the posterior
mean (Prop. 4.2 Berlinghieri et al. (2023)), the Helmholtz
kernel does not satisfy the requirements for stochastic equiv-
ariance. In the context of molecular properties, incorpo-
rating symmetries in GP models has been demonstrated to

be relevant Uteva et al. (2017). Symmetry-adapted GPs of
Grisafi et al. (2018) effectively address equivariance but
involve computationally expensive double sums. Wigner
kernels Bigi et al. (2024) provide a more efficient method for
modeling covariances in molecular systems that primarily
exhibit SO(3)-equivariance through an iterative, integration-
free approach. However, similar to the method proposed
in Glielmo et al. (2017), Wigner kernels are constructed
around a scalar base kernel, and their accuracy depends on
the number of iterations, with computational cost exponen-
tially increasing in the number of iterations. Conceptually
aligned with our approach is the work of Aslan et al. (2023),
which enforces equivariance in deterministic machine learn-
ing models within the setting of discrete groups by employ-
ing similar notions of fundamental regions and projections
onto them.

3. Kernel characterizations of stochastic
equivariance

We begin by characterizing in broad settings the stochastic
equivariance of centred second order random fields in terms
of their matrix-valued kernel. Theorem 3.1 lays the ground
for the subsequent development of our computationally effi-
cient kernel class.
Theorem 3.1 (Kernel Characterization for stochastically
equivariant random fields). Let Z = (Zx)x∈D, D ⊂ Rd,
be a Rp-valued square-integrable, centred random field with
matrix-valued kernel K : D × D → Rp×p. Furthermore
let G be a linear group acting on D via ⋆ and represented
in Rp by ρ : g ∈ G → ρg ∈ Rp×p. Then, the following
equivalence holds:

∀x ∈ D, g ∈ G, P(Zg⋆x = ρgZx) = 1

⇐⇒
∀x,x′ ∈ D, g, h ∈ G,

K(g ⋆ x, h ⋆ x′) = ρgK(x,x′)ρ⊤h . (2)

Proof. Assuming Z stochastically equivariant, we have
that for any x,x′ ∈ D, g, h ∈ G,

K(g ⋆ x, h ⋆ x′) = Cov(Zg⋆x,Zh⋆x′)

= E[Zg⋆xZ
⊤
h⋆x′ ] = E[ρgZx(ρhZx′)⊤]

= ρgE
[
ZxZ

⊤
x′
]
ρ⊤h = ρgK(x,x′)ρ⊤h .

Conversely, assuming (2), then, for any x ∈ D, g ∈ G,

Cov(Zg⋆x−ρgZx,Zg⋆x − ρgZx)

= K(g ⋆ x, g ⋆ x) + ρgK(x,x)ρ⊤g

−K(g ⋆ x,x)ρ⊤g − ρgK(x, g ⋆ x) = 0,

where from E(||Zg⋆x − ρgZx||2) = tr(0) = 0 and hence
P(Zg⋆x = ρgZx) = 1.
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Property (2), i.e. for K to be equivariant in the first argument
and anti-equivariant in the second, is referred to in Reisert
& Burkhardt (2007) as (kernel) equivariance. In that sense,
Theorem 3.1 establishes equivalence for centred second-
order random fields between stochastic equivariance and
equivariance of the underlying matrix-valued kernel. It is
noticeable that Theorem 3.1 is quite general concerning the
linear group G and its action ⋆ on D. In particular, note that
while we assume D ⊂ Rd throughout the paper, the result
can be directly generalized to any D.

We now consider more specific assumptions. Following
settings from Reisert & Burkhardt (2007), given a compact,
linear and unimodular group G with continuous represen-
tation in case of G being a Lie group, such equivariant
matrix-valued kernels can be constructed by Haar integra-
tion. Considering base matrix-valued kernels Ko such that
the integrals are well-defined, one obtains in fact as class of
equivariant matrix-valued kernels by taking

K∫ (x,x′) =

∫
G2

ρ⊤g Ko(g ⋆ x, h ⋆ x′)ρh dg dh. (3)

In particular, the equivariance of K∫ can be checked by
using the translation invariance of the Haar measure (de-
fined up to a constant). Assuming further that the Haar
measure is normalized, choosing any Ko already satisfying
equivariance in Eq. 3 leads to K∫ = Ko. In such settings,
equivariant kernels can thus systematically be represented
with this construction. In practice, however, the integral
nature of Eq. (3) can make GP modelling with such kernels
very computationally demanding.

4. Integration-free equivariant kernels
The primary limitation of modelling equivariant random
fields with K∫ is the need of evaluating the cumbersome
double integral in Eq. (3) which is rarely available in
closed form and must often instead be approximated, e.g.,
by quadrature methods. In addition, these approximations
need to be accurate to allow the inversion of the Gram
matrix required when fitting the GP. For instance, in the
rotation-equivariant GP in Section 5.1, around 1000 func-
tion evaluations are needed, making posterior simulations
over a few hundred locations computationally challenging.

The computational burden inherent to the group integra-
tion formulation of (3) motivate us to introduce a new
class of integration-free kernels. Taking inspiration from
a previously developed approach for scalar-valued random
fields with invariant paths, as proposed by Ginsbourger et al.
(2012), we propose projecting inputs onto a fundamental
region of the group action, which is subsequently incorpo-
rated into a base matrix-valued kernel. Equivariance of the
resulting kernel is enforced by left and right multiplication
of the base kernel with suitable matrices following from the

Figure 2. Log computation times (in seconds) for integration-based
vs integration-free equivariant kernel evaluations.

considered group representations.

As detailed in Appendix A, we denote by fundamental re-
gion of ⋆ a subset A ⊂ D such that G ⋆ Ā = D, and
(g ⋆ A) ∩ A = ∅, for any g ∈ G \ {e}. For such an A
and any x ∈ D, there exists at least one g ∈ G such that
g ⋆x ∈ Ā. We call section any mapping s : D → G, satisfy-
ing s(x)⋆x ∈ Ā, and denote by Πs : D → Ā the associated
projection onto Ā, characterized by Πs(x) = s(x) ⋆ x for
x ∈ D. The resulting class of kernels and their equivari-
ance are presented in Proposition 4.1, followed by a worked
example illustrating construction principles and resulting
computational benefits.

Proposition 4.1 (Integral-free equivariant kernels). Let G
be a linear group acting on D via ⋆, possessing a unitary
group representation ρ : g ∈ G → ρg ∈ Rp×p, and let A ⊂
D be a fundamental region of ⋆. Then, for any matrix-valued
kernel KĀ on Ā× Ā, section s and associated projection
Πs, KΠ below defines a matrix-valued kernel equivariant
(w.r.t ⋆ and ρ) on (G ⋆ A)× (G ⋆ A):

KΠ(x,x′) = ρ⊤s(x)KĀ(Πs(x),Πs(x
′))ρs(x′). (4)

We refer to Appendix C for a proof of Proposition 4.1.

Remark 4.2. In case of a free group action, KΠ is equiv-
ariant on the whole domain D ×D. Otherwise, s(g ⋆ x) =
s(x) ◦ g−1 may not hold for all x ∈ G ⋆ ∂A.

Example 4.3. Assume D = R2, p = 2, and G = SO(2)
(An example of a SO(d)-equivariant prediction task is pre-
sented in Appendix F). A fundamental region is then given
by A = {(x, 0), x > 0}. To each point x ∈ D, we assign
a section s(x) that rotates x into Ā, represented for x ̸= 0
by:

ρs(x) =

[
cos (θ(x)) − sin (θ(x))
sin (θ(x)) cos (θ(x))

]
.

Here, θ(x) = − arctan (x(2)/x(1)) is the angle needed to
rotate x onto Ā (clockwise). For x = 0, we fix θ(0) = 0,
since any rotation is a valid choice for s(0).

The corresponding projection Πs onto Ā maps each x to
Πs(x) = (r(x), 0), where r(x) = ∥x∥2. In Figure 2, we
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compare the total time to compute the posterior covariance
matrices associated with GP (0,KΠ) and GP (0,K∫ ) on
training and test locations in [−1, 1]2, for different train-
ing and test set sizes. Here, K∫ is computed by adaptive
integration with the adaptIntegrate function in R on
a maximum of 1000 function evaluations.

The base kernels Ko = KĀ are chosen to be the simple
diagonal RBF matrix-valued kernel. All computations in
this paper were performed on a cluster equipped with single-
core AMD EPYC2 CPUs running at a clock time of 2.25
GHz. With a straightforward implementation, the difference
in computation time for moderate training and test set sizes
is considerable. While computing the posterior distribu-
tion of GP (0,K∫ ) at 500 test locations given 100 training
points requires 45 hours, with GP (0,Kπ) it takes a total of
55 seconds.

Proposition 4.4 (Continuity of KΠ). Under the conditions
of Proposition 4.1, assume that for a subset B of Ā, both ρs
and Πs are continuous on G ⋆B, and KĀ is continuous on
B ×B. Then, KΠ is continuous on (G ⋆ B)× (G ⋆ B). In
particular, for B = Ā, KΠ is continuous on D ×D.

Proof. Assume (x,x′) ∈ (G ⋆ B) × (G ⋆ B). Then,
(Πs(x),Πs(x

′)) ∈ B × B. Since Πs is continuous on
(G⋆B)×(G⋆B) and KĀ is continuous on B×B, it follows
that KĀ(Πs(·),Πs(·)) is continuous on (G⋆B)× (G⋆B).
By the continuity of matrix products of continuous matrix-
valued functions, KΠ is continuous on (G ⋆ B)× (G ⋆ B).

If B = Ā, then by definition of A, we have G ⋆ B = D,
which implies that KΠ is continuous on D ×D.

Remark 4.5. If the continuity properties are not fulfilled
with B = Ā but with B = A, this results in continuity on
(G ⋆ A)× (G ⋆ A). Appendix B examines the continuity of
KΠ in specific applications.

5. Experiments
We now present a series of experiments designed to high-
light the advantages of incorporating equivariances in GP
models, alongside the specific benefits of our integration-
free equivariant kernel. First, we model equivariant velocity
fields, comparing with the popular Helmholtz kernel, which
exhibits equivariance only in the posterior mean. Next,
we consider a challenging real-world test case involving
the prediction of molecular dipole moments, demonstrat-
ing the enhanced uncertainty quantification and practical
applicability of our proposed kernel. Finally, we explore
the efficacy of our GP models in a parameter estimation
problem - disentangling a real-world ocean velocity dataset
from equivariant perturbations.

5.1. Rotation-equivariant vector fields

Data generation To assess the predictive performance
of a zero-mean rotation-equivariant GP with our proposed
integration-free kernel, we build a dataset of n noisy mea-
surements Dn = {(xi,yi)}

n
i=1, with yi given as realisa-

tions of

F (xi) + εi, εi ∼ N (0, σ2
obsI2)

for two synthetic SO(2)-equivariant vector fields

F 1(x) = (−x(2),x(1)), x ∈ [−1, 1]2,

F 2(x) =
x

0.5 + ∥x∥4
, x ∈ [−2, 2]2,

with n = 8, 10 observations and σobs = 0.15, 0.1 for F 1

and F 2, respectively. See Appendix A.3 for a detailed
explanation of the training and evaluation procedure.

Baselines We consider four kernels constructed from a
diagonal squared-exponential base kernel matrix function

KSE(x,x
′;θ) =

[
σ2
1e

−∥x−x′∥2/2ℓ21 0

0 σ2
2e

−∥x−x′∥2/2ℓ22

]
,

with tunable kernel parameters θ = (ℓ1, σ1, ℓ2, σ2, σobs).
We build two SO(2)-equivariant kernels following the setup
of Example 4.3, i.e. setting Ko = KĀ = KSE, to pro-
duce our integral-free SO(2)-equivariant kernel KΠ and
the double-integral SO(2)-equivariant kernel K∫ .

We also consider two additional kernels proposed for ocean
modelling by Berlinghieri et al. (2023): (1) using KSE di-
rectly and (2) the Helmholtz matrix-valued kernel KH, as de-
rived by modelling the components Φ and Ψ of a Helmholtz
decomposition of a vector field F = gradΦ + rotΨ as in-
dependent GPs (see Berlinghieri et al. (2023) for a detailed
derivation).

Mean predictions The posterior mean predictions and
root mean squared error (RMSE) over the ground truth
field for the four GPs are shown in Figure 3, where we
see that all kernels except KSE provide equivariant pos-
terior means. However, we stress that the computational
costs of our GP (0,KΠ) were 500 times faster than those
of GP

(
0,K∫ ), where the double integral (3) is approx-

imated with the adaptIntegrate function in R using
1000 evaluations.

Probabilistic predictions and sampling Figure 4
presents single realizations (samples) from the posterior
distributions of each model, alongside the logarithmic pos-
terior density of predictions over the ground truth field
(LogS). Table 1 summarises average RMSE and LogS
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Figure 3. Ground truth (left), blue: posterior means of the squared exponential (KSE), Helmholtz, fundamental (KΠ) and double
integration (K∫ ) GP. The top row corresponds to F 1, the bottom row to F 2 and red vectors indicate (noisy) observations.

scores for each 1000 random draws of n = 8, 10 training
and nte = 172, 202 test locations.

We see that the proposed integration-free kernel enjoys sub-
stantial advantages over all the other methods for two key
reasons. Firstly, unlike the kernels K∫ and KΠ which
satisfy our formal equivariance condition of Eq. (2), the
Helmholtz GP does not provide rotation-equivariant pos-
terior samples — see Corollary 5.1 below about posterior
stochastic equivariance. Secondly, unlike our numerically
stable KΠ, integral approximation errors when calculating
K∫ lead to instability along the the boundary of the domain.

Corollary 5.1 (Posterior equivariance). Assume a Gaussian
random field Z and a group G satisfy the assumptions of
Theorem 3.1, with the kernel of Z being equivariant (2).
Then, given any observed realization ztr of Ztr (whereby
the notation of Appendix A is used), the resulting posterior
distribution retains stochastically equivariant, i.e.,

∀x ∈ D, g ∈ G, P(Zg⋆x = ρgZx | Ztr = ztr) = 1.

Remark 5.2. If a Gaussian random field Z is stochastically
equivariant on a subset of the domain D, then such posterior
distributions retain stochastic equivariance on that subset.
In particular, under the assumptions of Proposition 4.1, the
resulting posterior distributions for a Gaussian process con-
structed via the kernel KΠ retain stochastic equivariance
on G ⋆ A.

Remark 5.3. The cubic computational complexity of Gaus-
sian process inference restricts its application to datasets
of only a few thousand training and test points. Sparse
approximations alleviate this limitation and enable GP mod-
eling at larger scales. Interestingly, for usual constructions

Table 1. Mean performance metrics [standard deviation]. Best
scores are in bold, and values within the standard deviation of the
best score indicated by (*).
F K KSE KH KΠ K∫
1 RMSE 0.27 [0.11] 0.23 [0.06] 0.11 [0.06]* 0.08 [0.04]

LogS 2.06 [137.88] 88.44 [256.96] -6.03 [0.51] -5.95 [0.46]*

2 RMSE 0.33 [0.06] 0.26 [0.06] 0.13 [0.05] 0.22 [0.2]
LogS 149.4 [1086.65] 8.04 [84.35] -7.41 [0.81] -3.41 [2.06]

of sparse GPs, building upon an equivariant kernel (and
an equivariant mean) leads to sparse GP models retaining
the equivariance properties in both their mean and covari-
ance—thus preserving stochastic equivariance. We give
further detail on this in Appendix G. This observation opens
the door to extending equivariant GP modeling to large-
scale datasets in the future.

Continuity of KΠ and effect of A. Downsides of KΠ

compared to K∫ include potential discontinuities in s and
Πs, potentially resulting in discontinuity of KΠ, as well
as challenges with pathological choices of fundamental
regions. To reduce boundary-related issues, one may fa-
vor connected fundamental regions. For example (See
Fig. 5 for an illustration), partitioning {(x, 0), x > 0} into
P = ∪iPi × {0} with Pi’s intervals of equal length and
defining A = ∪i(−1)iPi × {0} as the fundamental region
for the SO(2)-equivariant kernel in Example 4.3 leads to
reduced performance. In Experiment 5.1, a partition of size
10 results in GP (0,KΠ) achieving an average RMSE (resp.
LogS) score of 0.49 (resp. −2.56) when predicting F 2.
Appendix E provides an illustration of this A and further-
more the impact of a similarly ill-specified A on the learning
curves of Experiment 5.2.
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Figure 4. Single realizations of the Gaussian process posterior distributions. Unlike the Helmholtz and squared exponential GP posteriors,
the two right-most models ensure equivariant realizations, as shown by Corollary 5.1

Figure 5. Visualisation of a disconnected fundamental region for
Experiment 5.1 and the associated s and Πs.

5.2. Water molecule dipole moments

The electric dipole moment, a vector indicating the imbal-
ance in a molecule’s electron distribution, is key to under-
standing intermolecular interactions Israelachvili (2011);
Stone (2013) and predicting IR spectra intensities Califano
(1976). Estimating the dipole moment across a molecular
surface is computationally intensive, often requiring recal-
culations for numerous configurations, which can take days
even for small molecules. Therefore, accurate statistical
models are crucial, as they reduce the number of required
calculations while still effectively describing the dipole sur-
face, thereby making it feasible to predict IR spectra and

manage computational costs for larger molecules.

The electric dipole moment of a molecule is here modeled
as a vector function µ : x ∈ D ⊂ R3s → µ(x) ∈ R3,
where x = Vec (a1, . . . ,as) encodes the position vectors
in Euclidean space of the s atoms (ai, i = 1, ..., s) within
the considered molecule. From physical principles, µ is
known to be translation-invariant and rotation-equivariant,
i.e. for all x ∈ D,{

µ(t ⋆1 x) = µ(x) ∀t ∈ R3,

µ(g ⋆2 x) = ρgµ(x) ∀g ∈ SO(3),
(5)

where ⋆1 denotes the action of translations (encoded by
elements of R3) on R3, ⋆2 denotes the usual action of SO(3)
on R3, and ρg ∈ R3×3 is the rotation matrix (representation)
canonically associated with g ∈ SO(3). The actions are
extended to D (and later to D̃) with the conventions:{

t ⋆1 x = Vec (t ⋆1 a1, . . . , t ⋆1 as) ,

g ⋆2 x = Vec (g ⋆2 a1, . . . , g ⋆2 as) .
(6)

We now provide an explicit example of how to apply our
Eq. (4) to a quantum chemistry problem. In particular, we
consider the case of water molecules, where x ∈ D ⊂ R9

now represents the position vectors of an oxygen and two
hydrogen atoms. In the considered case of water molecules
where s = 3 and a2,a3 both stand for hydrogen atoms,
there is also permutation-invariance with respect to these

6
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Figure 6. Predictive scores (mean ± sd over 103 reps) of GP models versus training set size.

two columns. Specifically, for any x = Vec (a1, . . . ,as),

µ(η ⋆3 x) = µ(x) η ∈ Z/2Z, (7)

where ⋆3 stands for the action of Z/2Z that swaps (for
η = 1̄) the last and penultimate atom position vectors as

and as−1.

Naive baseline As a baseline kernel, we take a diagonal
squared exponential matrix-valued kernel:

K1(·;θ) : D ×D → R3×3,

(x,x′) 7→ σ2e−
∥x−x′∥22

2ℓ2 I3,

where θ =
(
ℓ, σ2

)
denotes the vector containing the tunable

kernel lengthscale and variance hyperparameters. For ease
of notation we write K1 = K1(·;θ). We use a single length-
scale and variance, as there is no reason to assume different
marginal variances for the components of µ, given that they
all depend on the intrinsic geometry of the position vectors
x. Analogous experiments with separate lengthscales and
variances did not lead to significant changes in the results.

Constructing a tailored matrix-valued kernel We as-
sume that µ(x) = f(ϕ(x)), where f : D̃ → R3 is a
stochastically equivariant GP on D̃ ⊂ R6. The map
ϕ : D → D̃ is defined by ϕ(x) = η(∆(x)) ⋆3 ∆(x)
with ∆ : D → D̃ defined by ∆(x) = Vec (ā1, ā2) =
Vec (a2 − a1,a3 − a1) and η : D̃ → Z/2Z is defined by
η(x̄) = 1̄ if r1 ≥ r2 (and 0̄ otherwise), where ri = ∥āi∥
(i ∈ {1, 2}). ϕ can be checked to be invariant under ⋆1 and
⋆3 and equivariant under ⋆2. We model f as a centered GP

with equivariant kernel KΠ, considering the fundamental
region of ⋆2 on D̃:

A =


0, ā12︸︷︷︸

>0

, 0, ā21︸︷︷︸
>0

, ā22︸︷︷︸
∈R

, 0

 : ā221 + ā222 < ā212

 .

To define a section for a point x̄ = Vec (ā1, ā2) ∈ D̃, we
apply a rotation Ψ(x̄) ∈ SO(3) that maps ā1 to (0, r, 0)
with r = max{r1, r2}, and ā2 to (c1, c2, 0) with c1 >
0. This rotation can be represented as a product of three
elementary rotations in SO(3): Ψ(x̄) =

∏3
i=1 Ψi(x̄).

The corresponding projection map is given by

Πs(x̄) = (0, r, 0, c1, c2, 0) .

We obtain KΠ on D̃ as

KΠ(x̄, x̄′) = Ψ(x̄)⊤KĀ(Πs(x̄),Πs(x̄
′))Ψ(x̄′).

Finally, a kernel of µ that is invariant under ⋆1 and ⋆3 and
equivariant under ⋆2, is given for x,x′ ∈ D by:

Kϕ
Π(x,x′) = KΠ(ϕ(x),ϕ(x′)).

An illustration of this procedure is shown in Figure 7. Note
that the choices of A and Ψ are not unique. Here, KĀ

follows the same form as K1(·;θ), with inputs Πs(∆(·))
parameterized in (a subset of) R3 (by r, c1, and c2).

Experimental Results We consider a dataset of dipole
moments µ obtained from 850 water molecule configura-
tions x, which were computed using quantum chemical
methods. For details on the dataset generation process, see

7
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Figure 7. Illustration of the rotations for KΠ.

Appendix H . To enhance the dataset’s diversity and rep-
resentativeness, we applied random rotations to the data
points. See Figure 15 of the Appendix for a visualisation of
this augmented dataset.

We compare the predictive accuracy of GP models for the
dipole moments of water molecules using the baseline ker-
nel K1 and the proposed kernel KΠ. See Appendix I for a
visualisation of the optimised parameter values, sensitivity
to initialisation, and additional information about our train-
ing schemes. For additional comparison, we can include
invariances separately with the following kernels:

• Translation-invariance:

K2(x,x
′) = K1(∆(x),∆(x′)),

• Permutation-invariance:

K3(x,x
′) = K1(Π⋆3

(x),Π⋆3
(x′)),

Π⋆3
(x) = η(∆(x)) ⋆3 x,

• Permutation and translation-invariance:

K4(x,x
′) = K1(ϕ(x),ϕ(x

′)).

In Figure 6, we see that incorporating structural knowledge
into kernels consistently improves predictive accuracy. The
proposed integration-free equivariant GP significantly out-
performs the other GPs across all training set sizes, the small
order of magnitudes of the RMSE suggest that our proposed
model is accurate enough for use in quantum chemistry.

Remark 5.4. The construction of the argument-wise
rotation-equivariant and translation-invariant kernel KΠ

for the dipole moment prediction task in ((5),(6)) transfers
analogously to molecules of larger numbers of atoms s.

Preliminary learning curves in Appendix J on a newly ob-
tained dipole moment dataset of 21,000 N-Methylformamide
molecules of 9 atoms highlight the significantly improved
predictive performance on test sets of size 500 of the equiv-
ariant Gaussian process over its base GP, particularly in
data-scarce regimes (n < 1000) where structural priors are
crucial. Sparse GP modeling on the full data set is part of
ongoing work.

5.3. Ocean data with equivariant noise

We finally investigate the performance of weighted combi-
nations of (rotation-)equivariant and non-equivariant kernels
on combinations of vector fields with equivariant perturba-
tions in the case d = p = 2.

Figure 8. Gulf data with SO(2)-equivariant variation

In our experiment (see the visualization in Figure 8),

F (x) = αF Ref(x) + (1− α)FE(x), α ∈ [0, 1]. (8)

F Ref represents ocean drifter velocities on a set of 564 loca-
tions in the Gulf of Mexico, as taken from the Gulf Drifters
Open dataset Lilly & Pérez-Brunius (2021), after standard-
izing x and FG(x), and

FE(x) =
x

0.5 + ∥x∥2
.

In Table 2 we compare model fits to F , using 1000 replicates
of 100-observation training sets and a 0.2 train/test ratio, of
five different GPs:

1. GP (0,KSE),

2. GP
(
0, γ2KSE + (1− γ)2KΠ

)
,

3. GP (0,KH),

4. GP
(
0, γ2KH + (1− γ)2KΠ

H

)
, and

5. GP
(
0, γ2KH + (1− γ)2KΠ

)
.

Here KΠ
H is the kernel matrix function which enforces the

Helmholtz GP to be fully rotation-equivariant, obtained
bytaking KHelm as Ko in the integration-free kernel of Ex-
ample 4.3. The mixing coefficient γ ∈ [0, 1] is an additional

8
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Table 2. Mean performance metrics and [standard deviation]. Best scores are in bold, and values within the standard deviation of the best
score given an asterisk (*).

GP α 1 0.8 0.6 0.4 0.2 0

1 RMSE 0.787 [0.035]* 0.630 [0.028]* 0.476 [0.022]* 0.323 [0.016] 0.168 [0.010] 0.021 [0.007]
LogS 0.962 [0.082] 0.035 [0.096] -1.111 [0.122] -2.617 [0.108] -5.292 [0.085] -18.872 [1.153]

2 RMSE 0.766 [0.035]* 0.617 [0.029]* 0.468 [0.023]* 0.317 [0.016]* 0.166 [0.009] 0.021 [0.014]
LogS 0.857 [0.167]* 0.003 [0.164]* -1.121 [0.163] -2.738 [0.162] -5.420 [0.159] -20.317 [1.143]

3 RMSE 0.787 [0.035]* 0.629 [0.029]* 0.471 [0.022]* 0.316 [0.015]* 0.162 [0.008]* 0.015 [0.005]*
LogS 0.932 [0.087]* 0.001 [0.098]* -1.201 [0.117] -2.829 [0.133]* -5.537 [0.140]* -13.536 [0.022]

4 RMSE 0.818 [0.050] 0.644 [0.038] 0.490 [0.030] 0.340 [0.032] 0.192 [0.026] 0.011 [0.006]
LogS 1.231 [0.343] 0.264 [0.289] -0.798 [0.265] -2.258 [0.366] -4.623 [0.545] -13.763 [0.059]

5 RMSE 0.761 [0.031] 0.608 [0.023] 0.458 [0.018] 0.310 [0.012] 0.158 [0.006] 0.021 [0.004]
LogS 0.773 [0.172] -0.137 [0.164] -1.302 [0.171] -2.898 [0.166] -5.541 [0.093] -7.308 [0.005]

kernel parameter optimised in the maximum likelihood set-
ting, with initial value 0.5.

The results presented in Table 2 allow to compare models
both in terms of point predictions (via the RMSE) and of
probabilistic predictions (via the logarithmic score). Combi-
nations of equivariant and non-equivariant kernels appear to
consistently yield better performances than the use of single
non-equivariant kernels alone. This stands out in particular
for the logarithmic score, which underlines the importance
of fine-tuning GPs in terms of distributional properties be-
yond the resulting posterior means. In this regard, the fifth
combination, which stands out for most values of α, appears
as an intriguing blend between GPs equivariant in the mean
and stochastically equivariant. Future numerical experi-
ments will aim at exploring this and further combinations
more extensively.

6. Conclusion and perspectives
We presented a theoretical framework for stochastically
equivariant second order random fields and introduced a
method to construct a class of equivariant random field
models by leveraging fundamental regions, that avoids cum-
bersome group integration. It is worth noting that neither
integration-based nor fundamental region approaches can
be declared universally superior for stochastically equivari-
ant GP modeling. While the former offers an elegant con-
struction principle, the latter provides a fast and practical
alternative that still satisfies the equivariance requirements
and enables tackling challenging prediction tasks. Our ex-
periments on rotation-equivariant synthetic and real-world
data show that the proposed approach enables obtaining
lightweight GP models honoring prescribed equivariances,
leading to benefits both on the computational side and in
terms of probabilistic prediction performance. Our approach
was found in particular to allow for efficient predictions of
dipole moments of water molecules by incorporating physi-
cal principles directly into the GP framework. It was also

shown to allow for expressive kernel combinations and ob-
tain competitive probabilistic predictions for ocean velocity
data with equivariant perturbations.

Future work includes scaling up equivariant GP modeling
to large molecule datasets like the full N-Methylformamide
dataset using sparse equivariant GPs. Beyond scaling to
larger data, we also aim to extend our approach to other nat-
ural and artificial systems, broadening the applicability of
equivariant GP modeling in scientific research. Considering
proposed kernels within wider machine learning pipelines
providing prediction of molecular properties or active learn-
ing (e.g. Moss & Griffiths (2020); Griffiths et al. (2024))
could be of interest. Also, further exploring mathematical
properties of those kernels and investigating potential syn-
ergies with recent developments pertaining to kernels on
graphs, Lie groups, and other structures (See, e.g., Azan-
gulov et al. (2024)) are of interest.

Data availability and code We provide the dipole moment
data from Section 5.2 along with a notebook containing the
code necessary to reproduce the experiments in this Github
repository.
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Appendix

A. Preliminaries
A.1. Multivariate random field

Let (Ω,F ,P) be a probability space. We denote by Rp-valued random variable a measurable mapping

V : (Ω,F) → (Rp,B(Rp)),

where B(Rp) stands for the Borel sigma-algebra of Rp. We call a Rp-valued random variable V square-integrable whenever
E(∥V ∥2) < ∞, where ∥∥ stands for the Euclidean norm in Rp. For such a square-integrable V , there exist a vector m ∈ Rp

and a positive semi-definite matrix K ∈ Rp×p such that

E[V ] =
(
E[V (i)]

)p

i=1
= m,

and
Cov[V ] =

(
Cov

[
V (i), V (j)

])
1≤i,j≤p

= K,

where V (i) denotes the i−th component of the random vector V .

Now, for some set D, a Rp−valued random field is a collection of Rp−valued random vectors defined on the probability
space (Ω,F ,P), indexed over D, that we denote by Z = (Zx)x∈D. We call Z square-integrable, if for all x ∈ D, Zx

is square-integrable in the above sense. Then there exist mappings m : D → Rp and K : D ×D :→ Rp×p defining the
expected value at any x ∈ D by

m(x) = E[Zx]

and the matrix-valued kernel of Z describing cross-covariances by

K(x,x′) = Cov(Zx,Zx′),

where x,x′ ∈ D. The kernel K needs to satisfy K(x′,x) = K(x,x′)⊤ (for any x,x′ ∈ D) and be positive-semi definite,
meaning that, for any n ≥ 1, a1, . . . ,an ∈ Rp, and x1, . . . ,xn ∈ D, it holds∑

1≤i,j≤n

a⊤
i K(xi,xj)aj ≥ 0.

Throughout this work, we consider the index set D to be a subset of Rd, where d ≥ 1.

A.2. Multivariate Gaussian random field

Z is said to be a multivariate Gaussian random field if for any n ≥ 1, and x1, . . . ,xn ∈ D, Vec (Zx1 , . . . ,Zxn) has a
multivariate Gaussian distribution. In what follows, we think of Ztr = Vec (Zx1 , . . . ,Zxn) as responses at set of training
points denoted Xtr = [x1, . . . ,xn] ∈ Rd×n. Further denoting by ztr a vector standing for an observed realization of Ztr,
we use the notation

Dn = {(xi, zxi)}
n
i=1 .

While the xi points are not considered as random here, we use a Dn subscript in forthcoming equations as a shorthand
notation to summarize the information needed to condition Z based on the considered n training evaluations of Z (i.e. to
condition Z on the event ”Vec (Zx1 , . . . ,Zxn) = ztr)”.

Prior to any observation, the distribution of Ztr is N (m (Xtr) ,K (Xtr)) , where

m (Xtr) =
(
m(1)(x1), . . . ,m

(1)(xn), . . . ,m
(p)(x1), . . . ,m

(p)(xn)
)

(9)

and

K (Xtr) =

K11 (Xtr) . . . K1p (Xtr)
...

. . .
...

Kp1 (Xtr) . . . Kpp (Xtr)

 ∈ Rpn×pn. (10)
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For 1 ≤ i, j ≤ p, the block matrices in (10) are given by

Rn×n ∋ Kij (Xtr) =
(
(K(xl,xm))i,j

)
1≤l,m≤n

.

Similarly, the cross-covariance for any two sets of locations

X1 = [x1, . . . ,xn1 ] ∈ Rd×n1 , X2 = [x′
1, . . . ,x

′
n2 ] ∈ Rd×n2 ,

is given by

K (X1, X2) =

K11 (X1, X2) . . . K1p (X1, X2)
...

. . .
...

Kp1 (X1, X2) . . . Kpp (X1, X2)

 ∈ Rpn1×pn2 ,

where
Rn1×n2 ∋ Kij (X1, X2) =

(
(K(xl,x

′
m))i,j

)
1≤l≤n1, 1≤m≤n2

.

Posterior distribution For a centred Gaussian random field Z and test locations Xte, the posterior distribution of Zte

(defined analogously to Ztr in terms of Xte instead of Xtr) given Dn is thus characterised by the posterior mean

mDn
(Xte) = K(Xte, Xtr)K(Xtr)

−1ztr (11)

and the posterior covariance

KDn
(Xte) =K(Xte)−K(Xte, Xtr)K(Xtr)

−1K(Xtr, Xte).

Observation Noise To account for observation noise, we can augment the training covariance matrix by adding the noise
covariance matrix Σ. This results in a modified covariance matrix:

K (Xtr) + Σ.

For i.i.d. normal observation noise with a common variance σ2
obs to the p components, the noise covariance becomes a

scaled identity matrix, so the training covariance matrix is given by:

K (Xtr) + σ2
obsIpn. (12)

A.3. Training of the Gaussian Process

For a matrix-valued kernel Kθ parametrised by θ ∈ Rq, at which Kθ is invertible, we tune the kernel parameters θ using
the maximum likelihood approach, i.e. minimizing the negative twice log-likelihood (n2ll) given in noise-free settings by

l(θ) = z⊤
trKθ (Xtr)

−1
ztr + log |Kθ (Xtr)|+ 2n log 2π. (13)

In our experiments, training is performed using the gradient-based Adam optimiser. The gradient of (13) with respect to θ
for values at which Kθ (Xtr) is differentiable and invertible is given by

[2∇l(θ)]i = z⊤
trK

−1
θ (Xtr)

∂Kθ (Xtr)

∂θi
K−1

θ (Xtr) ztr − tr

(
K−1

θ (Xtr)
∂Kθ (Xtr)

∂θi

)
.

In the noisy setting (12), the n2ll and its gradient are computed analogously with the observation noise as an additional
tunable kernel parameter. The parameters θ are optimized using maximum likelihood estimation with the gradient-based
Adam optimizer Kingma & Ba (2014). For experiment 5.1, the optimization is run for 1000 iterations with a learning rate of
0.01, starting from the initial values θinit = (1, 1, 1, 1, 0.1).

To evaluate the predictions, we measure the average magnitude of prediction error on the test set, given by the RMSE:

RMSE =

√
1

nte
∥zte −mDn

(Xte)∥22, (14)

where zte ∈ Rpnte is the stacked vector of observed test set responses, and mDn(Xte) is the GP posterior mean at locations
Xte, as defined in Eq. (11) of Appendix A.

To measure the probabilistic predictive accuracy, we use the average logarithmic score LogS. For a given train/test split, the
LogS is defined by the logarithmic posterior density of the test data.
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A.4. Group and representation theory

In this section, we outline the essential background on groups and group representations required for constructing equivariant
kernel matrix functions. Our discussion is primarily based on the group theory framework in Reisert & Burkhardt (2007)
and fundamental regions in Ginsbourger et al. (2012). For clarity and consistency, we harmonize some notations.

Definition A.1. A group (G, ◦) is a set G equipped with a binary operation

◦ : G×G → G, (a, b) 7→ a ◦ b

which satisfies

1. ∀a, b, c ∈ G, a ◦ (b ◦ c) = (a ◦ b) ◦ c

2. ∃e ∈ G s.t. ∀a ∈ G, a ◦ e = e ◦ a = a

3. ∀a ∈ G, ∃a−1 ∈ G s.t. a ◦ a−1 = a−1 ◦ a = e.

Definition A.2. If the set G is furthermore a topological space and the group operation ◦ as well as its inverse ◦−1 are
continuous with respect to the topology of G, we call G a topological group. In addition, a topological group G is compact
if it is compact with respect to its topology, i.e. if each open cover of G admits a finite subcover.

Definition A.3. A group representation ρ maps elements from a group G to L(V ) where V is a finite dimensional Hilbert
space and L(V ) the space of linear transformations on V. Furthermore ρ is a homomorphism, i.e. for any g1, g2 ∈ G,
ρ(g1 ◦ g2) = ρ(g1)ρ(g2).

Remark A.4. There exist definitions of group representations where V is infinite dimensional. However, these cases go
beyond the scope of this paper, which focuses exclusively on finite-dimensional representations.

Definition A.5. A group G is called a linear group if there exists an injective homomorphism ϕ : G → GL(p,F) to the
general linear group GL(p,F) for some integer p and some field F, such that the image ϕ(G) is a closed set in the natural
topology on GL(p,F), which corresponds to the topology induced by the standard norm on Kp.

As consequence, a linear group admits invertible matrix-valued representations.

Definition A.6. A linear group representation is called unitary if for any g ∈ G it holds ρg−1 = ρ†g.

Remark A.7. Since our work focuses on the case F = R, a unitary representation is equivalent to an orthogonal
representation, meaning that for any g ∈ G, it holds that ρg−1 = ρ⊤g .

Following Reisert & Burkhardt (2007), it can be shown that any representation of a finite group or of a compact continuous
group with continuous representation is equivalent to a unitary representation.

Definition A.8. A measure µ defined on the σ−algebra generated by the open sets of a compact group G, called the Borel
algebra of G, is called left translation-invariant if for any open subset S ⊂ G and g ∈ G it holds µ(gS) = µ(S), where
gS = {g ◦ s|s ∈ S}.

By Haar’s theorem, on any compact group there exists a unique left translation-invariant measure, called the left Haar
measure. Analogously, there exists a unique right translation-invariant measure, called the right Haar measure.

Definition A.9. A compact group is said to be unimodular, if its right and left Haar measure coincide.

It can be shown that representations of compact, linear, unimodular groups have determinant one, which simplifies
reparametrisations in Haar integrals

∫
G
f(g) dg.

Definition A.10. A left group action of a group G on a set X is a mapping

Φ: G×X → X

(g, x) 7→ g ⋆ x

satisfying for any x ∈ X, g, h ∈ G :

1. e ⋆ x = x

2. g ⋆ (h ⋆ x) = (g ◦ h) ⋆ x

14
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Fundamental regions
Definition A.11. The orbit of a point x ∈ X under the action of G on X is the set

O(x) = {g ⋆ x | g ∈ G}.

Definition A.12. The stabilizer of a set S ⊂ X in G is defined by

StabΦ(S) = {g ∈ G | ∀x ∈ S, g ⋆ x = x}.

Definition A.13. Let X be a topological space. We call a subset A ⊂ X a fundamental region for the action ⋆ if the
following conditions hold:

1. G ⋆ A = X,

2. (g ⋆ A) ∩A = ∅ for all g ∈ G \ {e}.

Remark A.14. A fundamental region A is a subset of X that intersects each orbit under the action of G at most once. That
is, for any two distinct elements x, y ∈ A, there is no group element g ∈ G such that g ⋆ x = y.

Definition A.15. Given a fundamental region A, we call section any mapping s : X → G, satisfying for all x ∈ X,

s(x) ⋆ x ∈ Ā.

We further define the associated projection map by

Πs : X → Ā,

x 7→ s(x) ⋆ x.

Remark A.16. By definition of A, the restrictions to G ⋆ A of the section s and therefore also of the projection map Πs are
uniquely defined. If the group action is free (i.e., g ⋆ x = x implies g = e for all x ∈ X), then s and Πs are unique.

B. More on the continuity of KΠ in specific applications
B.1. Continuity of KΠ in Experiment 5.1

In Experiment 5.1, A was chosen to be the positive x-axis and with the section for non-zero x :

ρs(x) =

[
cos (θ(x)) − sin (θ(x))
sin (θ(x)) cos (θ(x)),

]
and s(0) = I2. The corresponding projection map is thus Πs = (∥x∥2, 0). With θ(x) = − arctan (x(2)/x(1)), ρs
discontinuous on {0} × R and on {(−x, 0), x > 0}, there exists no subset B ⊂ Ā for which ρs is continuous on G ⋆ B.

However, if we use a non-angular parametrization of the representation of s, i.e.

ρs(x) =
1

∥x∥2

[
x(1) x(2)

−x(2) x(1)

]
∈ SO(2), (15)

then for any subset B ⊂ A, ρs is continuous on G ⋆ B, as discontinuity occurs only at 0 ∈ ∂A. Furthermore, Πs is
continuous on G ⋆ B and KĀ is continuous on B ×B. Thus, by Proposition 4.4, KΠ is continuous on (G ⋆ A)× (G ⋆ A).

B.2. Continuity of KΠ and Kϕ
Π in Experiment 5.2

For x̄ = Vec (ā1, ā2) ∈ D̃, the section s(x̄) is a rotation composed of three elementary rotations {Ψi(x̄)}3i=1 ⊂ SO(3). If
we parametrize the respective 2−dimensional rotation components of Ψi(x̄) non-angularly as in (15), ρs =

∏3
i=1 Ψi is

continuous except at x̄ = Vec (0,0) , which lies in the boundary of A. By definition of A, it holds for any subset B ⊂ A
that Vec (0,0) /∈ G ⋆ B, hence ρs is continuous on G ⋆ B. Since Πs(x̄) = Vec

(
ρs(x̄)ā1, ρs(x̄)ā2

)
, Πs is continuous

on G ⋆ B for any B ⊂ A. As KĀ is continuous on Ā × Ā, it follows from Proposition 4.4 that KΠ is continuous on
(G ⋆ A)× (G ⋆ A).

Now, ϕ may be discontinuous on the subset of D of Lebesgue measure zero given by Eϕ = {x ∈ D | ϕ(x) ∈ Π−1
s (∂A)}.

Thus, Kϕ
Π is continuous on (D \ EΦ)× (D \ EΦ).
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Figure 9. Comparison of KR
Π and the original KΠ by the predictive scores and the ratio of computation times (in seconds).

Extending continuity using the Reynolds operator We can use the Reynolds operator with respect to ⋆3, to con-
struct a fundamental region kernel which is discontinuous only on a subset of Eϕ × Eϕ. For this, denote by K∆

Π (·, ·) =
KΠ(∆(·),∆(·)) the ⋆2-equivariant and ⋆1-invariant kernel obtained by omitting the permutation of ā1 = a2 − a1 and
ā2 = a3−a1 in the construction of ϕ. We can ensure invariance under ⋆3 by applying the Reynolds operator for G = Z/2Z
on K∆

Π , resulting in the ⋆1,3-invariant, ⋆2-equivariant kernel KR◦∆
Π given by

KR◦∆
Π (x,x′) =

1

4

∑
g,g′∈G

K∆
Π (g ⋆3 x, g

′ ⋆3 x
′). (16)

Without permuting ā1 and ā2,Πs maps onto the fundamental region

A∗ =


0, ā12︸︷︷︸

>0

, 0, ā21︸︷︷︸
>0

, ā22, 0

 ∈ D̃ : ā21, ā12 > 0

 ,

with the same section s. The points of potential discontinuities of K∆
Π thus reduce to E∆ × E∆, where E∆ = {x ∈ D |

∆(x) ∈ Π−1
s (∂A∗)} ⊂ Eϕ. As the employed Reynolds operator may not introduce additional discontinuities, it follows

that K∆
Π and KR◦∆

Π are both continuous on (D \ E∆)× (D \ E∆).

Comparing the GPs GP (0,KR◦∆
Π ) and GP (0,Kϕ

Π) by their learning curves in Figure 9, we see that continuous KR◦∆
Π

provides improved predictive performance, requiring a moderate multiple of Kϕ
Π’s computation time.

C. Proofs
C.1. Proof of Proposition 4.1

Proposition 4.1 Let G be a linear group acting on D via ⋆, possessing a unitary group representation ρ : g ∈ G →
ρg ∈ Rp×p, and let A ⊂ D be a fundamental region of ⋆. Then, for any matrix-valued kernel KĀ on Ā× Ā, section s and
associated projection Πs, KΠ below defines a matrix-valued kernel equivariant (w.r.t ⋆ and ρ) on (G ⋆ A)× (G ⋆ A):

KΠ(x,x′) = ρ⊤s(x)KĀ(Πs(x),Πs(x
′))ρs(x′).
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Proof. KΠ(x,x′) = KΠ(x′,x)⊤ holds for any x,x′ ∈ D, and positive semi-definiteness follows directly as for any
n ≥ 1, a1, . . . ,an ∈ Rp, and x1, . . . ,xn ∈ D,∑

1≤i,j≤n

a⊤
i KΠ(xi,xj)aj =

∑
1≤i,j≤n

a⊤
i ρ

⊤
s(xi)

KĀ(Πs(xi),Πs(xj))ρs(xj)aj

=
∑

1≤i,j≤n

b⊤i KĀ(Πs(xi),Πs(xj))bj

≥ 0,

where bi := ρs(xi)ai and the last inequality follows from positive definiteness of KĀ.

Now, let (x,x′) ∈ (G ⋆ A) × (G ⋆ A). Since the projector Πs is constant on the orbits of x and x′, it holds for any
g, h ∈ G :

KΠ(g ⋆ x, h ⋆ x′) = ρ⊤s(g⋆x)KĀ(Πs(g ⋆ x),Πs(h ⋆ x′))ρs(h⋆x′)

= ρ⊤s(g⋆x)KĀ(Πs(x),Πs(x
′))ρs(h⋆x′).

Its straightforward to see that s(g ⋆ x) = s(x) ◦ g−1 and thus ρs(g⋆x) = ρs(x)ρg−1 . Hence,

KΠ(g ⋆ x, h ⋆ x′) = ρgρ
⊤
s(x)KĀ(Πs(x),Πs(x

′))ρs(x′)ρ
⊤
h

= ρgKĀ(x,x
′)ρ⊤h .

C.2. Proof of Corollary 5.1

Corollary 5.1 Assume a Gaussian random field Z and a group G satisfy the assumptions of Theorem 3.1, with the kernel
of Z being equivariant (2). Then, given any observed realization ztr of Ztr (whereby the notation of Appendix A is used),
the resulting posterior distribution retains stochastically equivariant, i.e.,

∀x ∈ D, g ∈ G, P(Zg⋆x = ρgZx | Ztr = ztr) = 1.

Proof. For simplicity we assume the noiseless setting, as the case of present observation noise is analogous. For a test
point x ∈ D and the training set Xtr, we have a cross-covariance matrix of the form

K(x, Xtr) = [K(x,x1), . . . ,K(x,xn)] ∈ Rp×pn.

Since K satisfies the equivariance (2), it follows that for g ∈ G

K(g ⋆ x, Xtr) = [ρgK(x,x1), . . . , ρgK(x,xn)] ,

and therefore it holds the equivariance of the posterior mean

mDn(g ⋆ x) = ρgmDn(x).

Furthermore the equivariance (2) of K transfers to the posterior covariance KDn . Let x,x ∈ D, and g, h ∈ G, then

KDn(g ⋆ x, h ⋆ x) = ρgKDn(x,x)ρ⊤h .

Hence, analogously to the proof of Theorem 3.1, it follows that

Cov(Zg⋆x − ρgZx,Zg⋆x − ρgZx | Ztr = ztr) = 0.
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D. Experiment 5.3 continued
We extend Experiment 5.3 to the case where FE ∼ GP (0,KE), is a realisation of an equivariant Gaussian process, i.e.
KE ∈ I. Under the assumption that the ocean drifter velocities F ref are a realisation of a second-order centred Gaussian
process, we can study the ability of combinations of GPs with non-equivariant and equivariant kernels to recover the mixture
parameter α as a parameter estimation problem.

To analyze the parameter estimation of α with a combination of the squared-exponential kernel K and the equivariant
squared exponential kernel KΠ (resulting in GP 2 below), we generate realisations of

F = αF ref + (1− α)GP (0,KΠ). (17)

Analogously, we consider the case of the equivariant part coming from the fully equivariant Helmholtz GP with KΠ
H defined

as in Experiment 5.3:
FH = αF ref + (1− α)GP (0,KΠ

H ). (18)

Figure 10 presents realisations of the random vector field (18) for different values of α. This experiment considers four
Gaussian process models to evaluate the performance of single, non-equivariant kernels against combinations of equivariant
and non-equivariant kernels and the ability to recover the mixture parameter α through an additional tunable mixture
parameter γ ∈ [0, 1] of such combinations:

1. GP (0,KSE),

2. GP
(
0, γ2KSE + (1− γ)2KΠ

)
,

3. GP (0,KH), and,

4. GP
(
0, γ2KH + (1− γ)2KΠ

H

)
.

Figure 10. Realisations of FH for different values of α. Red indicates the training set of size 100.
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Table 3. Mean performance metrics and [standard deviation]. Best scores are in bold, and values within the standard deviation of the best
score given an asterisk (*).

GP α 1 0.8 0.6 0.4 0.2 0

1
RMSE 0.781 [0.033] 0.634 [0.030]* 0.501 [0.048]* 0.397 [0.127] 0.306 [0.197] 0.270 [0.275]
LogS 0.716 [0.144]* -0.123 [0.185]* -1.037 [0.434] -2.154 [1.090]* -3.600 [2.184] -4.273 [2.688]
Bias - - - - - -

2
RMSE 0.782 [0.033]* 0.631 [0.029] 0.482 [0.031] 0.334 [0.048] 0.177 [0.048] 0.039 [0.096]
LogS 0.711 [0.138] -0.147 [0.170]* -1.200 [0.331] -2.691 [0.722] -5.208 [0.927] -6.975 [1.718]
Bias -0.265 [0.100] -0.124 [0.090]* -0.060 [0.090] -0.027 [0.100]* -0.018 [0.100]* 0.014 [0.020]

3
RMSE 0.766 [0.030] 1.017 [1.237]* 1.784 [3.715]* 1.809 [3.656] 2.278 [5.015]* 3.416 [7.642]*
LogS 0.863 [0.135]* 1.184 [3.798]* 2.126 [8.310]* 1.083 [8.189]* 0.270 [8.439]* 1.029 [10.986]*
Bias - - - - - -

4
RMSE 0.768 [0.031]* 0.770 [0.721] 1.216 [3.321] 0.931 [2.577] 1.174 [4.278] 1.928 [6.900]
LogS 0.855 [0.145] 0.359 [1.844] 0.166 [5.398] -1.584 [4.291] -3.511 [6.079] -4.407 [8.403]
Bias -0.139 [0.120] -0.054 [0.140] -0.068 [0.130]* -0.022 [0.180] 0.002 [0.140] 0.062 [0.210]

Table 3 summarizes the average RMSE, LogS, and bias scores across six values of α, evaluated over 1000 samples of 100
training points and 464 test points. The kernel parameters (ℓ1, σ1, ℓ2, σ2) of KΠ and KΠ

H were uniformly sampled between
0 and 2. The optimization of the kernel parameters θ = (ℓ1, σ1, ℓ2, σ2, σobs, α) was performed using maximum likelihood
estimation with the Adam optimizer over 1000 iterations and a learning rate of 0.01.

We observe that for both random vector fields F and FH , the corresponding combined GPs 2 and 4 consistently achieve
lower logarithmic scores compared to the single non-equivariant kernel GPs. The combined GPs also appear to generalise
better than the single non-equivariant GPs 1 and 3 in terms of point predictions, with lowest RMSE scores across all
investigated values of α but α = 1, where the difference in scores is insignificant. This equivalence of point predictive
accuracy is explained by no additional equivariance being present in the case α = 1.

Both combined models (GP 2 and GP 4) thus suggest strong evidence that incorporating equivariance into the model leads
to better predictive performance, with the combination of non-equivariant and equivariant kernels appearing to provide a
flexible framework that adapts well to varying levels of equivariance in the data.

Figure 11 presents the distribution of the estimated γ, showing that both GP 2 and GP 4 correctly identify the fully equivariant
case α = 0. However, as α increases, GP 2 tends to estimate the mixture parameter more accurately for α ≤ 0.6, while GP
4 performs better for α = 0.8 and α = 1. Increasing the number of training iterations to 3000 reduces the uncertainty in γ,
as seen in the lower panel of Figure 11, confirming the benefit of extended training for more accurate parameter recovery.

This experiment demonstrates that incorporating equivariant kernels into Gaussian process models noticeably improves
performance in tasks involving physical systems with inherent equivariance for better generalization and predictive accuracy.

E. Pathological choices and their effect of fundamental regions
In Section 5.1, we discuss a shortfall of the fundamental region approach, which can occur for unfortunate constructions
of the fundamental region. The left panel of Figure 12 illustrates the connected construction of A from Example 4.3,
for a SO(2)− equivariant KΠ taking values from R2 × 2R2. The right panel shows a disconnected construction of a
fundamental region using an alternating partition of the x−axis, which lead to reduced performance. Figure 13 shows the
posterior means of two fundamental region GPs learned on samples of observations of the SO(2)−equivariant random
vector fields in Experiment 5.1. The middle column shows the posterior means of the equivariant GP with a disconnected
fundamental region of 1000 sub-intervals Pi. The right column shows the posterior means for the connected fundamental
region. In contrast to using the connected fundamental region, the posterior means of the equivariant GP with disconnected
fundamental region are discontinuous and deviate significantly from the ground truths.

An analogous investigation provided equivalent conclusions for the dipole moment GPs. We constructed a disconnected
fundamental region in the same way as for the SO(2)−equivariant case, by inducing a similar alternating partition in the x̄22

component, which only requires occasional left-multiplication of the section by an additional rotation around the y−axis
with angle θ = π. The resulting discontinuous fundamental region GP decreases in performance, as can be seen by the
elevated learning curves of Figure 14.
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Figure 11. Optimised values of γ from the mixture GPs 2 and 4 for 1000 vs. 3000 training iteration steps.

F. An example of a matrix to vector prediction task featuring SO(d) equivariances
We present an interesting example extending the fundamental region concept of Experiment 4.3 featuring SO(d) equivariance
in arbitrary dimension d. Consider a class of matrix to vector mappings constructed as follows. The Input matrices
X = [x1, . . . ,xd] ∈ Rd×d are chosen such that their columns form orthogonal (not necessarily orthonormal) bases of Rd,
and f(X) ∈ Rd is defined as g(||x1||)x1 where g : (0,∞) → R. Such an f is automatically equivariant with respect to
SO(d) (acting by matrix multiplication on columns of X and similarly on f(X)) as, for any orthogonal matrix R,

f(RX) = g(||Rx1||)Rx1 = Rg(||x1||)x1 = Rf(X).

Besides, f(X) does not depend on the d− 1 last columns of X , which is an additional invariance property. Taking both
equivariance and invariances properties into account, we arrive at the fundamental region

FR = {[αe1, e2, . . . , ed], α > 0},

where the ei’s are the canonical basis vectors. The key to construct a section here is to observe that Ψ =[
1

||x1||x1, . . . ,
1

||xd||xd

]
is an orthogonal matrix with

ΨTX = [||x1||e1, ||x2||e2, . . . , ||xd||ed],

which can then be sent to FR by modifying the inactive columns appropriately (e.g., by norming them). Hence f can be
modelled via an equivariant GP model defined in terms of the latter sequence of operations and of a kernel on FR, that is, a
kernel that can be parametrized on (0,∞)× (0,∞) (and corresponds to solely modelling the function g).
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Figure 12. Visualisations of connected and disconnected fundamental regions for Experiment 5.1 and the associated s and Πs.

Figure 13. Ground truths sampled from the equivariant random fields of 5.1 (left column), posterior means of GP (0,KΠ) with discon-
nected A (middle column) and connected A (right column).
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Figure 14. Learning curves of GP (0,Kϕ
Π) (dotted: disconnected fundamental region) for the dipole moment prediction task.

G. Equivariance of sparse GPs
To broaden the applicability of equivariant GP modeling to large datasets like our N-Methylformamide dataset, we introduce
a (centered) sparse Gaussian Process based on m << n inducing locations Xu ∈ Rm×d, with posterior mean and covariance
respectively denoted mu

Dn and Ku
Dn with, for x,x′ ∈ D,

mu
Dn(x) = K(x, Xu)K(Xu)

−1mDn−m(Xu),

Ku
Dn(x,x′) = K(x,x′)−K(x, Xu)K(Xu)

−1(K(Xu)−KDn−m(Xu))K(Xu)
−1K(Xu,x

′).

Here, mDn−m(Xu) and KDn−m(Xu) are the posterior mean and covariance at the inducing points given the remaining
observations Dn−m, given by

mDn−m(Xu) = K(Xu, Xtr)K(Xtr)
−1ztr,

KDn−m(Xu) = K(Xu)−K(Xu, Xtr)K(Xtr)
−1K(Xtr, Xu).

If this sparse GP is built upon an equivariant kernel, it will be equivariant in its mean and covariance and therefore enjoy
stochastic equivariance. To see this, consider any g, h ∈ G. It holds

mu
Dn(g ⋆ x) = K(g ⋆ x, Xu)K(Xu)

−1(mDn−m(Xu)) = ρgK(x, Xu)K(Xu)
−1mDn−m(Xu))ρgm

u
Dn(x),

and

Ku
Dn(g ⋆ x, h ⋆ x′) = K(g ⋆ x, h ⋆ x′)−K(g ⋆ x, Xu)K(Xu)

−1(K(Xu)−KDn−m(Xu))K(Xu)
−1K(Xu, h ⋆ x′)

= ρgK(x,x′)ρ⊤h − ρgK(x, Xu)K(Xu)
−1(K(Xu)−KDn−m(Xu))K(Xu)

−1K(Xu,x
′)ρ⊤h

= ρgK
u
Dn(x,x′)ρ⊤h .

It is worth noting that additional assumptions for computational efficiency like FITC and PITC will not affect stochastic
equivariance of the posterior distribution of the sparse GP, as these assumptions only replace mDn−m(Xu) and KDn−m(Xu)
with approximations thereof. Similarly, conditioning on a finite number of derivatives or linear forms (e.g., Fourier
coefficients) will preserve stochastic equivariance.
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H. Data generation
The dipole moments were generated by optimising an initial guess for the geometry of water using the RI-MP2 module
in the TURBOMOLE quantum chemistry program. The theory for this module is described in the original MP2 paper
by Møller & Plesset (1934) and the RI-MP2 paper by Weigend & Häser (1997). Furthermore, a cc-pVDZ basis set was
used, as created by Dunning (1989). Using this optimised structure, a numerical hessian was found. Diagonalising the mass
weighted Hessian then gave a set of three Normal coordinates, corresponding to bending, symmetric and asymmetric bond
stretch. Using the static grid method Toffoli et al. (2007) in the MIDASCPP program package a grid of twenty points was
constructed along each normal coordinate. These points were linearly spaced between the classical turning points of the tenth
excited state of the quantum mechanical oscillator approximation which can be constructed from the mass weighted hessian.
Furthermore, three twenty by twenty grids were constructed describing displacements along two out of the three coordinates
simultaneously. Combined with the optimised structure this gives 1261 geometries. For each of these geometries, the electric
dipole moment was calculated using the RI-MP2 method and a cc-pVDZ basis set in TURBOMOLE. To ensure dataset
efficiency, 410 pairs of points that were rotations of each other were identified and removed. The remaining 851 points
were then randomly rotated to cover a larger region of Cartesian space. This approach samples the geometries of chemical
interest around the optimised structure and them rotates them in space resulting in a diverse and representative dataset.

Figure 15. The point cloud representing the dataset: (light) blue indicate positions of the hydrogen atoms, red the position of the oxygen
atoms and orange the dipole moments.
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I. Optimized kernel parameter values
We train the GPs using Adam optimisation over 1000 iterations, with all kernel parameters initialised to 1, maximising the
training likelihood. Figure 16 shows the distributions of the optimised values (after initialised by 1) of the parameters ℓ, σ
for 2000 draws of the training and test split for different training sizes.

The choice of starting kernel parameter values plays an influential role, the left panel of Figure 17 shows the distribution
of the optimal parameter values for GP (0,K1) and GP (0,KΠ) on training sets of size 50, when initialised uniformly on
[10−4, 5]. We see that GP (0,K1) tends to increase the lengthscale and decrease the variance, which indicates the kernel to
smooth out the function excessively, likely because it lacks the capacity to capture the complexity in the data, which is not
the case for GP (0,KΠ). The right panel shows the distributions of the corresponding log(RMSE) and LogS scores after
optimising the kernel parameters, indicating stable predictive performance for both GPs with respect to initialisation.

Figure 16. Optimised parameters (mean ± sd over 2000 samples) for different training sizes for the dipole moment prediction in 5.2.

J. Dipole Moment Prediction for the N-Methylformamide Molecule
We consider a dataset comprising 21,000 distinct configurations of the N-Methylformamide (NMF) molecule, which consists
of nine atoms. As outlined in Experiment 5.2, constructing a kernel KΠ that is rotation-equivariant and translation-invariant
follows the same principles as in the water molecule setting.

Figure 18 shows preliminary learning curves comparing the baseline Gaussian process GP (0,K1) using a squared exponen-
tial kernel with the ⋆2-equivariant and ⋆1-invariant Gaussian process GP (0,KΠ). Evaluation was conducted on 500 test
points across 1,000 random train-test splits. The kernel parameters were optimized via the same Adam routine used in the
water molecule experiments. For additional comparison, we also report performance using fixed kernel hyperparameters
(σ, ℓ) = (1, 1) (dashed lines), which notably reduced performance—particularly for GP (0,KΠ) across both metrics and for
GP (0,K) in terms of the log score.

The relatively flat learning curves of the baseline GP highlight its inability to model the structured nature of the data. In
contrast, the equivariant GP demonstrates an improved ability to capture the structural of the data. However, achieving high
predictive accuracy requires larger training sets, motivating the use of sparse GP methods, which is part of ongoing work.
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Figure 17. Left panel: Distributions of initial kernel parameters and the corresponding optimised values. Right panel: distribution of
log(RMSE) and LogS scores after optimisation.

Figure 18. Predictive performance (mean ± std over 103 repetitions) of GP models versus training set size on the N-Methylformamide
molecule dataset.
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