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Abstract

The attention mechanism plays a central role in the computations performed by
transformer-based models, and understanding the reasons why heads attend to spe-
cific tokens can aid in interpretability of language models. Although considerable
work has shown that models construct low-dimensional feature representations,
little work has explicitly tied low-dimensional features to the attention mechanism
itself. In this paper we work to bridge this gap by presenting methods for identify-
ing attention-causal communication, meaning low-dimensional features that are
written into and read from tokens, and that have a provable causal relationship to
attention patterns. The starting point for our method is prior work [1–3] showing
that model components make use of low dimensional communication channels
that can be exposed by the singular vectors of QK matrices. Our contribution is to
provide a rigorous and principled approach to finding those channels and isolating
the attention-causal signals they contain. We show that by identifying those sig-
nals, we can perform prompt-specific circuit discovery in a single forward pass.
Further, we show that signals can uncover unexplored mechanisms at work in
the model, including a surprising degree of global coordination across attention
heads.

1 Introduction

Transformer-based language models exhibit remarkable abilities [4–6] and consequently have been
very widely deployed. However, it is quite challenging to explain how language models are able
to accomplish such sophisticated tasks [7]. Nonetheless, progress on interpretability for language
models is critical, e.g., to build a foundation for improving model safety and alignment [8].

A meaningful explanation for model behavior should capture causal, rather than merely correlative,
relationships. Elucidating causal relationships within language models has been largely approached
using interventions during model execution [9–15], a method termed causal mediation analysis [16].
However, in this paper we treat the model itself as a structural causal model [13, 17] and thereby
exactly identify the impact of a given counterfactual on the model’s computation.

We focus on causal analysis of a key model computation: attention. In the attention mechanism a
head uses its QK matrix to compute an attention weight for each token pair, and when the weight is
large, we say the head attends to the token pair, resulting in a significant movement of information
within the model. The attention mechanism has been celebrated for its ability to respond to precise
features in activations and enable sophisticated behaviors [18–20]. From the standpoint of causal
analysis, the attention mechanism raises a basic question: when a head attends to a token pair, what
is the most useful counterfactual? That is, what are the most informative features present in the
tokens that explain the head’s attention to the token pair [16]? Answering this question has potential
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to make progress on critical challenges in interpretability. As shown in [21], model components
work together to implement complex behaviors by reading and writing to residuals, so precisely
identifying attention-causal features uncovers key communication taking place within the model.

Leverage in addressing our question comes from the large amount of work showing that many impor-
tant features in models are encoded in one-dimensional subspaces [15, 22–28] or in low-dimensional
subspaces [29–32]. Hence we seek to explain a head’s attention in terms of the presence or absence
of features encoded in low-dimensional subspaces of the residuals.

This suggests a focus on parsimony in selecting counterfactuals. We frame the question as follows:
Given an attention head attending to a pair of tokens, for each token we seek to identify a low-
dimensional subspace and a small number of upstream components, such that if the components
had not written into the token in that subspace, the head would not have attended to the token pair.
We show that this strategy identifies low-dimensional signals that are causal for attention, directly
provide efficient and useful circuit traces, and can uncover model-wide control mechanisms at work.

Our approach to this question starts from prior work [1–3] showing that the singular vectors of QK
matrices will tend to be aligned with important features in residuals. Hence we start by decomposing
residuals in the spectral bases of QK matrices. However, placing activations in a new basis is not
enough. Model heads use the Softmax function to compute attention; this nonlinearity complicates
the question of deciding which components of a residual are causal when a head attends to a token
pair. In the body of the paper we show how we overcome these challenges to identify the signals
that are causal for attention.

Once signals are identified, they can be used to address a number of challenges in model inter-
pretability. First, they enable precise and simple circuit discovery (emphasized as an open problem
in [8, 33]). We show a general method for using signals to identify the model components that are
causal for model outputs. Across the models and tasks we study, the circuits we identify are all
consistent with those found via previous methods. Each circuit obtained is specific to a given model
input, and requires only a single model execution (without need for counterfactual inputs). Together,
these aspects constitute an advance over the state of the art in circuit tracing.

Further, identifying signals uncovers and explains fundamental model mechanisms. Because the
signals we identify are jointly determined by both model weights and runtime activations, they are
not limited to data-dependent features. We broadly identify two classes: data signals and control
signals. Control signals are present across many or all tokens, and are often used in the control of
large groups of attention heads. This novel phenomenon occurs across models in our study.

Related Work. Our work relates to mechanistic interpretability [34, 35], which seeks to under-
stand neural network computations in human-understandable terms. Significant bodies of work in
the area concern (a) how features are represented [22] and (b) how to trace circuits, ie, to identify
model components that are responsible for solving specific tasks [23]. Our work contributes to both
of these areas.

With respect to feature representation, much prior work has established the low-dimensionality of
many feature representations [15, 22–32]. Feature representations have been extensively explored
using Sparse Autoencoders (SAEs) [36, 37], but those methods have been shown to have significant
drawbacks [38–42]; one reason for this can be that SAEs are built only from model activations, and
do not take into account model parameters [43]. In contrast, our work jointly analyzes activations
and model parameters (QK matrices) to identify features that are provably causal for attention. On
the other hand, our work shares some ideas with [44], but that work is not based on causal analysis.

With respect to circuit tracing, much recent work has used methods based on counterfactual inputs
(‘activation patching’) for establishing causality of model components [10, 11, 14, 45–47]. Patching
is time-consuming, requiring many forward passes, generally requires the creation of a counterfac-
tual data set to provide task-neutral activation patches, and exhibits a number of other weaknesses
[48–51]. In this work, we trace circuits using only a single forward pass, eliminating the need for
counterfactual inputs and avoiding the problems associated with patching.

Our method has similarities to but also important differences from [3]. Unlike that paper, we start
with a formal problem definition of attention-causal communication and we present an algorithm that
provably identifies attention-causal communication. Further, the method in [3] needs modification
to work in general. This is because [3] assumed that moving the attention score of a token pair
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towards zero will decrease the attention on the pair. However, this is not true in general (eg, when
attention scores are negative), which is one motivation for our introduction of relative attention.

As noted above, our approach to signal identification builds on prior work showing that model
components often communicate in low dimensional subspaces defined by the spectral decomposition
of QK matrices [1–3]. Furthermore we show that the control signals we identify are proximal causes
for attention sinks [52, 53] and generalize previous attention-sink mechanisms [54].

Background. In the model, token embeddings are D-dimensional, there are H attention heads in
each layer, and there are L layers. We define R = D

H , which is the dimension of the spaces used for
keys and queries in the attention mechanism. We use N to denote the number of tokens in a given
prompt. Superscript indices will denote (layer, head, destination token, source token); reduced sets
of indices will be used where there is no confusion, and subscripts will generally denote matrix
components.

To simplify exposition in the body of the paper, we consider models in which the attention mecha-
nism does not apply a bias term to computation of keys and queries.1 In Appendix B we describe
how we handle models with bias terms in the QK circuit. Further, the body of the paper only dis-
cusses models with global positional encoding; in Appendix C we describe how we handle models
that use rotary positional encoding [57] (RoPE). We emphasize that all the methods in the paper
extend to models having attention bias terms and using RoPE, and we provide code 2 implementing
our methods for those models.

The attention mechanism operates on a set of N tokens in D-dimensional embeddings: X → RN→D.
Each token x → RD is passed through linear transforms given by x↑WK , x↑WQ, using weight
matrices WK ,WQ → RD→R. Then the inner product is taken for all pairs of transformed tokens to
yield attention scores:

A↓
ds = xd↑!xs (1)

in which ! = WQW↑
K , xd is the destination token, and xs is the source token of the attention

computation. We also refer to ! as the head’s QK matrix.

To enforce masked self-attention, A↓
ds is set to ↑↓ for d < s. Attention scores are then normalized

for each destination d, yielding attention weights Ad = Softmax(A↓
d/
↔
R). The resulting attention

weight Ads is the amount of attention that destination d is placing on source s. We denote the portion
of the output of attention head (ω, a) that comes from xs and is written into xd via the OV-circuit as
oωads. Further details of model computations are given in Appendix A.

2 Signals

Problem Statement. As described in §1, our goal is to identify low-dimensional features that
are causal for attention patterns. We define the problem of attention-causal communication as the
following. For a given model and input, and given a head (ω, a) that attends to a token pair (xd,xs),
consider one of xd or xs, denoted x. Identify a c-dimensional subspace C, and a set M consisting
of m model components upstream of (ω, a), with c and m as small as possible, such that if the
components in M had not written into x in subspace C, head (ω, a) would not have attended to
(xd,xs).

To make our problem statement precise, we need to define when a head “attends to” a token pair. We
adopt a very conservative definition: we say that a head (ω, a) attends to the token pair (d, s) when
Aωa

ds ↗ 1/n, where n is the number of tokens considered in the Softmax calculation. That is, the
head attends to the token pair when the attention it places on this pair is greater than what it would
be for a uniform distribution over tokens. This could be considered too low a value in many cases –
when the context window is large, the value of 1/n will be quite small. However, we emphasize that
our methods can be used for any setting of attention threshold greater than 1/n, and it is a simple
matter to use a larger threshold in practice. The other phrase we need to make precise is for “c and

1Models in this category include the Gemma [55] and Llama 3 [56] families.
2Code available at https://github.com/gaabrielfranco/

pinpointing-attention-causal-communication
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m to be as small as possible.” In practice we optimize these separately, first finding a subspace C

having small dimension, and then finding the smallest set of upstream components (M ) given C.

We do not attempt to solve the attention-causal communication problem exactly, but instead present
a heuristic method that gives very good results in practice. In the following sections we describe the
method in detail.

Relative Attention. We first attack the problem of identifying the subspace C. We isolate this
problem as follows: consider a head (ω, a) and a token pair (xd,xs), such that Aωa

ds ↗ 1/n. Working
for example with xd (methods for xs are analogous), we seek a low-dimensional subspace C such
that in a counterfactual setting where the component of xd in C were removed, we would have
Aωa

ds < 1/n. That is, under the intervention do(xd = PC→xd), the head (ω, a) would not attend to
the token pair (xd,xs).

An additional constraint on C is that upstream components must write into xd in C. By virtue of the
model’s residual connections, we can consider x to be an initial encoding plus a sum of upstream
additions [21]. Hence it is attractive to consider linear decompositions of x in determining C. How-
ever, this strategy faces a key challenge: a head’s attention Ads is a nonlinear function of !, xd, and
xs through the Softmax function.

To address this problem, we introduce an ersatz function that usefully stands in for Softmax in
causal analysis. Recall that Ad = Softmax(A↓

d/
↔
R) as described in §1. We define the relative

attention at head (ω, a) and position (d, s) as:

cωads = A↓
ds ↑

1

d↑ 1

∑

j↔d, j ↗=s

A↓
dj (2)

where A↓
ds = xd!ωaxs. Relative attention has two important properties: first, it is linear in each of

xd, !ωa, and xd. The linearity of cωads in each of these will be important for our methods below.

The second important property of relative attention is that it is useful for causal analysis. In particu-
lar, we have the following Lemma:
Lemma 1. Let n ↘ N be equal to the number of tokens considered in self-attention at head (ω, a)
for destination token d, and cωads be defined as in (2). If Aωa

ds ↗ 1/n, then cωads > 0.

We prove Lemma 1 in Appendix D. We can interpret Lemma 1 as saying that if an attention head
puts more weight on a source than would occur under a uniform distribution, the relative attention
(2) will be positive; likewise, when the relative attention is negative, the attention weight is less than
what is given by the uniform distribution.

Using relative attention we can reframe the search for causal mediators of attention. Instead of
looking for low-dimensional components of x that are causal for (nonlinear) attention greater than
1/n, we can search for low-dimensional components that are causal for (linear) relative attention
greater than zero.

Attention Decomposition. Relative attention is a useful tool in searching for attention-causal fea-
tures, because it allows us to consider linear decompositions of x as candidate features. We first
note that relative attention (2) can be expanded in the singular vectors of !:

cωads =
∑

1↔k↔R



xωd↑ukεkvk↑xωs
↑

1

d↑ 1

∑

j↔d, j ↗=s

xωd↑ukεkvk↑xωj



 (3)

where
∑

1↔k↔R ukεkvk↑ is the singular value decomposition of !ωa. Then the following
hypothesis (adapted from [3]) drives our approach:

Hypothesis (Sparse Attention Decomposition [3]) When an attention head performs a task that
requires detecting components in a pair of low-dimensional subspaces in its inputs xd and xs, and
its inputs have significant components in those subspaces, the terms in (3) will show large values for
a distinct subset of values of k.

In §3 we demonstrate that sparse attention decomposition occurs widely across the models, tasks,
and attention heads we examine. Typically the number of significant terms in (3) is 20 or less, and
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is often as small as 5. This gives us leverage on determining C. When considering an attention
head (ω, a) that is attending to tokens (xd,xs), we will have that cωads will be positive. We then can
identify C as defined by the smallest set of terms responsible for the positive value of cωads, and by
the sparse attention decomposition hypothesis, we expect that C will typically be a low-dimensional
subspace. This strategy builds on prior work [1–3] showing that the singular vectors of QK matrices
provide useful decompositions of attention and inter-layer communication.

Why Should Attention Show Sparse Decomposition? Here we pause to ask: why should atten-
tion show sparse decomposition? To simplify matters, we consider just the bilinear form xd↑!xs

and ask why it should show sparse decomposition in its singular vectors.

We start by noting that for a square matrix A, a consequence of the Courant-Fischer theorem is that,
over all unit vectors x, the maximum value of the quadratic form x↑Ax is obtained when x is the
principal eigenvector of A. This is readily extended to bilinear forms: over all unit vectors x and
y, the maximum value of x↑Ay is obtained when x is the principal left singular vector, and y the
principal right singular vector, of A. From the standpoint of model training, another view is useful:

Lemma 2. Given vectors x and y, among all rank-1 matrices having unit Frobenius norm, the
matrix D that maximizes x↑Dy is D = x

↘x↘
y↑

↘y↘ . (Proof is provided in Appendix E.)

In a model training setting, we can hypothesize (following [15, 22–32]) that xd and xs contain
corresponding feature sets {ωi

}, {εi
} that are encoded in one-dimensional or in low-dimensional

subspaces. For example, feature ω0
→ RD could correspond to a geographic location encoded in xd,

as in [27]. We further note that the authors in [22] argue that models will tend to represent correlated
feature sets in a manner such that, considered in isolation, the sets are nearly orthogonal. They term
this the use of “local, almost-orthogonal bases.” In our case, if an attention head with QK matrix
! is tuned to detect feature sets {ωi

} and {εi
} that are important when performing a specific task,

then we may hypothesize that training will construct the sets to be “nearly-orthogonal,” meaning that
cosine similarities among the features in each set would typically be small. In this case, Lemma 2
suggests that the learned ! will have sets of singular vectors {uk}, {vk} that are likely to sparsely
encode the {ωi

} and {εi
}.

Isolating Signals. We can now describe how to decompose residuals to separate causal signals
they contain from background. The goal is to identify which terms in (3) form the sparse represen-
tation of cωads, which is akin to denoising in signal processing. Starting from a head (ω, a) attending
to token pair (xd,xs), we have that Aωa

ds ↗ 1/n, and so by Lemma 1 cωads > 0. We separate the
terms in (3) into two sets, one of which is the smallest set whose sum exceeds cωads, and the other
whose sum is close to (but less than) zero.

Specifically, we define S
ωads as (the indices of) the smallest set of terms in (3) that in sum exceed

cωads. The terms captured in S
ωads are strictly positive, and are the largest positive terms in (3).

Given S
ωads, we can decompose model residuals into ‘signal’ and ‘noise’ in terms of their impact

on attention scores as measured by cωads. Define subspaces U = Span{uk
| k → S

ωads
} and V =

Span{vk
| k → S

ωads
} and associated projectors PU and PV . The denoising step separates the

residuals xωd and Xω into:

sωd = PUx
ωd, zωd = PU→xωd, Sω = XωP↑

V , Zω = XωP↑
V→ , (4)

where PU→ = I ↑ PU and PV→ = I ↑ PV . Then we have xωd = sωd + zωd, Xω = Sω + Zω, and

sωd↑!ωaSω
s↑

1

d↑ 1

∑

j↔d,j ↗=s

sωd↑!ωaSω
j ≃ cωads and zωd↑!ωaZω

s↑
1

d↑ 1

∑

j↔d,j ↗=s

zωd↑!ωaZω
j ↘ 0,

(5)
where |S

ωads
| = dimU = dimV is as small as possible. Note that by definition, under the coun-

terfactual in which signal sωd is not present in xωd (i.e., do(xωd = PU→xωd)) then cωads < 0, and so
(ω, a) would not have attended to token pair (xd,xs). The corresponding conclusion holds as well
for Sω and Xω.

5



��� ��� ��� ��	 ��
 ��� ���
���������������� ����!���������������

�

�




�




��
��
��"

����������
�"���������
����������

��� ��� ��� ��	 ��
 ���
�������������������������������������

�

�




�


�
��
�� 

����������
� ���������

��� ��� ��� ��	 ��
 ���
���������������� ����!���������������

���

���

���


��

����

��
��
��"

����������
�"���������
����������

Figure 1: Dimension of signal subspace compared to R in (left to right): IOI task, GT task, GP task.

3 Sparse Attention Decomposition

Next we confirm prior work showing that the phenomenon of sparse attention decomposition is
ubiquitous [1–3]. We utilize models spanning various architectures and scales: GPT-2 small [19],
Pythia-160M [58], and Gemma-2 2B [55]. These models are evaluated on multiple tasks: Indirect
Object Identification (IOI) [45], the Greater Than (GT) task3 [59], and Gender Pronoun (GP) [60].
These models and tasks cover a wide range of studies in mechanistic interpretability, specifically in
circuit discovery [14, 61–63].

We first determine S
ωads for significant Aωa

ds >
1
n values using the strategy in §2. We then count the

number of singular vectors utilized from Equation (3) for each relevant head and token pair. Figure 1
illustrates the resulting distributions of the fraction of singular vectors used to construct Sωads, ie,
the distribution of |Sωads

|/R. The figure illustrates the sparsity of attention decomposition across
different attention heads, prompts, models, and tasks. Typically, models use only 5–10% of the
available R dimensions (e.g., 3–6 for GPT-2/Pythia, 13–25 for Gemma-2)—and almost always less
than half—to compute their attention scores. Additional plots demonstrating this sparse attention
decomposition for individual attention heads in various tasks are in Appendix G. These findings
confirm that sparse attention decomposition is widespread, indicating that signals generally inhabit
low-dimensional subspaces.

4 Application: Tracing Communication and Circuits

The results of §3 suggest an application to tracing communication. In this section we describe how
one may use signals to trace communication within the model.

Causal Structure. To start, we note that the use of residual connections in the model makes it
possible to describe a residual xd at the input to layer ω in the model as the following sum:

xωd
→ RD =

AH outputs︷ ︸︸ ︷∑

1↔l<ω

∑

1↔a↔H

∑

1↔s↔N

olads +

FFN outputs︷ ︸︸ ︷∑

1↔l<ω

f ld +

attn. biases︷ ︸︸ ︷∑

1↔l<ω

bl
O +

input at layer 0︷︸︸︷
x0d (6)

where olads is defined in §1, f ld is the output of the FFN at layer l for resdual d, bl
O is the bias term

for layer l, and x0d is the input embedding of token d. Equation (6) provides a complete and exact
decomposition of a residual at any layer in the model.

To characterize the causal structure of the model with respect to relative attention, we define two
functions d(·) and s(·) parameterized by a head (ω, a) and a token pair (xd,xs). These functions
measure the extent to which a particular model component affects the relative attention cωads. The
function dωads(w) measures what the relative attention cωads would be if the source tokens were
fixed as X while w had been the destination token; and sωads(W ) if the set of source tokens had
been W but the destination token were fixed as xd (formal definitions are in Appendix H). Each
function is linear in its argument. Note that

cωads = dωads(xωd) = sωads(Xω). (7)
To characterize causality in the model with respect to relative attention, we distribute (7) over (6) as
described in Appendix H. This gives, for each upstream component, its contribution to the relative
attention at head (ω, a) and token pair (xd,xs).

3Gemma-2 2B was not analyzed for the GT task, as its distinct number tokenization (requiring two sequen-
tial tokens for two-digit numbers) complicates performance comparisons; details are in the Appendix F.
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Tracing Attention-Causal Communication. The pieces are now in place to trace causal commu-
nication within the model. Our goal is, given Aωa

ds ↗ 1/n, find the upstream components that are
responsible for head (ω, a) attending to token pair (xd,xs).

We describe the tracing process starting from a destination token xωd. The process starting from a
source token is analogous, and we provide full details in Appendix H.

Using the methods of §2, we obtain the subspace U in which the signals reside. This allows us to
isolate signals as in (4), obtaining sωd. By (5), (7) and the properties of the SVD, we have

cωads ≃ dωads(sωd) = dωads(PUx
ωd). (8)

To identify the upstream components writing these signals into the residuals, we distribute (8) over
(6). Then we can determine the upstream contributions to cωads by making use of the linearity of
d(·) and the projection operations. Specifically, distributing (8) over (6) results in the upstream
contributions:
dωadslhdt = dωads(PUo

lhdt), dωadsld = dωads(PU f
ld), dωadsl = dωads(PUb

l
O), dωads0 = dωads(PUx

0d),
(where subscripts here denote upstream indices), allowing us to decompose the relative attention in
terms of each upstream component’s contribution:

cωads ≃
∑

l<ω,h↔H,t↔N

dωadslhdt +
∑

l<ω

dωadsld +
∑

l<ω

dωadsl + dωads0 (9)

We provide more details, and an equivalent decomposition for the source token, in Appendix H.
Equation (9) shows how to measure the contribution of each upstream component to the downstream
relative attention. Each term in Equation (9) represents an edge in the communication graph of the
model’s computation.

To build a communication graph for a given model and prompt, we start by finding the heads that
contribute the largest signal in the direction of the model output. Then, for any of those heads that
are attending to a token pair and writing in that direction, we find the upstream components (atten-
tion heads, MLPs, bias terms, or input tokens) causal for their attention. We then work backward,
recursively tracing signals from downstream to upstream. The recursion terminates on any head in
the first layer, or that is not attending to a token pair, or on an MLP, bias term, or input token. Our
algorithm is described in detail in Appendix H, and the code for all our methods is available.
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Figure 2: Intervention effect,
GPT-2/IOI. Green: signal ab-
lation; Red: signal boosting;
Blue: random ablation; Or-
ange: random boosting.

Communication Graphs. We construct communication graphs
for GPT-2 small, Pythia-160M, and Gemma-2 2B across the IOI,
GP, and GT tasks. Appendix H provides details of the process, run-
ning times, and examples of resulting communication graphs. All
experiments were conducted on CPU-only machines.

Communication graphs (Appendix H) are highly detailed and con-
tain extensive information about information flow in a model’s com-
putation. To illustrate, we present aggregated versions for the IOI
task in Figure 3, in which each edge’s thickness reflects the num-
ber of edges between tokens in the full communication graph. Even
aggregated, these graphs illustrate differences in the task solution
strategies used by the three models. For example, they confirm that
GPT and Pythia rely on identifying duplication of the subject token
(‘Simon’), and later tokens receive information from both occur-
rences (as reported in [45, 63]). In contrast, Gemma uses the token
‘Andrew’ as an information-aggregating anchor, with subsequent
tokens receiving information from this anchor. Complete commu-
nication graphs for these prompts are in the Appendix.

Interventions. To validate our communication graphs, we demonstrate that intervening in the
signals we identify has a causal impact on model performance. For any signal s, we boost it
(do(x = x + s)) or ablate it (do(x = x ↑ s)) for the relevant token x at input to the relevant
attention head (ω, a) 4. We then measure the performance of the model on the given task. Perfor-
mance is task-specific, but is measured in all cases via relative logit differences between correct and
incorrect outputs, with positive values indicating improved model performance.

4Specifically, we intervene only on the input of either the Q or K transformation.
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 the at working were Andrew and Simon,Then  to basketball a give to decided Simon. restaurant

 Simon. restaurant the at working were Andrew and Simon,Then  to basketball a give to decided
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Figure 3: Aggregated communication graphs, IOI task. Top to bottom: GPT-2, Pythia, Gemma-2.
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Figure 4: Circuit performance. First-reported circuit used for comparison for every task/model.

Figure 2 shows typical results; full results are in Appendix J. We find that ablating any of the test
signals leads to performance decreases, and boosting the signal leads to performance improvements,
across the three models and three tasks. Note also that these interventions have an extremely small
impact on residuals themselves, with an average relative change in vector norm less than 1% and
cosine similarity before and after typically greater than 0.99 (see Appendix J).

Circuits. To find circuits (maximal collections of model components causal for performance),
we aggregate communication graphs over multiple prompts, threshold edges based on their causal
impact on model output, and remove components not causal for the output. For comparative anal-
ysis, we focus on methods that report full circuit components, such as Edge Pruning (EP) [61],
ACDC [14], and EAP [62]. We note that reported circuits for each task vary considerably and lack
definitive ground-truth, so we seek to know whether our circuits are broadly consistent with those
reported by others. To choose a baseline for comparison, we use the first-reported circuit for each
task and model combination (Pythia/IOI: [63], GPT-2/IOI: [45], GPT-2/GP: [60], and GPT-2/GT:
[59]), against which we compute precision, recall, and F1-scores for all other methods. Figure 4
shows that our approach reports circuits that are consistent with previously reported circuits. Details
and more comparisons are in Appendix K.

5 Application: Control Signals

As a second application of our methods, we examine all signals used in a single forward pass (no
longer limiting to those in the communication graph as in §4). We find that many signals are data-
independent – they are used by heads in many layers, and they are present in many or all tokens.
These signals play a role in organizing model computation; we call them control signals.
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Figure 5: Control signals and associated heads: top: GPT-2, middle: Pythia, bottom: Gemma-2.

Control signals are easily identified; in each of the models we study, two clear clusters of signals are
present, with the larger cluster corresponding to control signals. The functional distinction between
control signals and data signals concerns the source token that the head is attending to. When the
source token is the first token (in GPT-2), the first token or a punctuation token (in Pythia and
Gemma), the signal that is causal for attention is from the control cluster. When the source token is
not one of those, the causal signal is a data signal.
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Hence, control signals are the mechanism implementing attention sink behavior [52–54] at the signal
level. The attention sink phenomenon is the tendency of models to attend to an initial token when the
head does not need to move information into the destination token. The Softmax operation imposes
an attention distribution over sources, so the head uses a semantically unimportant token as source
in these situations. We observe that typically more than 80% of all token pairs attended to in our
experiments are due to attention sink.

Control signals come in pairs: one that resides in the relevant source (eg, start) token, and one
that resides in every token as a potential destination. We find that control signals are the causal
mechanism for attention sinking; they are strongly predictive of attention-sink behavior, with F-
scores of 0.965 (GPT-2), 0.952 (Pythia), and 0.994 (Gemma-2). In intervention experiments akin to
those in §4, we observe that boosting the control signal in either source or target tokens causes the
head to revert to attention sinking, essentially “shutting it down,” regardless of the tokens presented.

Next, we show that most control signals belong to one of a small number of clusters and that attention
heads are functionally organized according to those clusters. In Figure 5 the top row shows signal
clusters (source left, destination right) for the three models. Height corresponds to cosine similarity;
note that a similarity greater than 0.2 is quite significant, and most clusters have internal similarity
greater than 0.4. Hence, there are only a few really distinct control signals used in these models –
less than a dozen. More surprisingly, these distinct control signals generally are used in different
parts of the model. The second row shows where each control signal from the top row is used in
the model. We see that models are hierarchically organized into groups of heads that tend to share
a common control signal. The functional significance of this organization is an intriguing direction
for further study.

Finally, we ask how models manage the control signals in tokens. We observe that control signals
are added in layer 0, either by the attention head layer or the MLP. Over the layers of the model,
signal strength tends to rise towards the layers where the signal is used (as shown in lower row in
Figure 5). As expected, source control signals have a strongly negative cosine similarity with non-
start tokens, and vice versa; this is to avoid confusion in the attention sink process. Figures 24 and
25 in Appendix M show how control signals vary over the layers of the models.

6 Conclusions

In this paper we make a number of contributions. We define the attention-causal communication
problem, and we develop a theoretically grounded, heuristic approach to address it. Our approach
is based on two key ideas: first, singular vectors of the QK matrix should in some sense ‘match’
relevant features in residuals; and second, relative attention (which we define) provides a causally-
useful linear ersatz for the nonlinear attention computation. We build on previous observations that
attention is generally sparsely decomposable in the QK basis, which leads to an efficient method for
identifying low-dimensional subspaces in which signals reside. These signals enable new, precise
methods to expose important communication with the model, and expose mechanisms of global
model coordination.

Limitations. Our approach, while promising, shares the quadratic complexity in the number of to-
kens inherent in standard attention mechanisms. Additionally, the proposed solution to the attention-
causal communication problem is a heuristic. While empirically effective, future work could explore
more formally guaranteed methods as well as causality involving MLPs.
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Proceedings of the 2013 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, pages 746–751, Atlanta, Georgia,
June 2013. Association for Computational Linguistics.

[25] Guillaume Alain and Yoshua Bengio. Understanding intermediate layers using linear classifier
probes, 2018.

[26] Kiho Park, Yo Joong Choe, and Victor Veitch. The linear representation hypothesis and the
geometry of large language models. In Causal Representation Learning Workshop at NeurIPS
2023, 2023.

[27] Wes Gurnee and Max Tegmark. Language models represent space and time. In The Twelfth
International Conference on Learning Representations, ICLR 2024, Vienna, Austria, May 7-
11, 2024. OpenReview.net, 2024.

[28] Wes Gurnee, Neel Nanda, Matthew Pauly, Katherine Harvey, Dmitrii Troitskii, and Dimitris
Bertsimas. Finding neurons in a haystack: Case studies with sparse probing. arXiv, 2023.

[29] Amit Arnold Levy and Mor Geva. Language models encode numbers using digit representa-
tions in base 10, 2025.

[30] Joshua Engels, Eric J. Michaud, Isaac Liao, Wes Gurnee, and Max Tegmark. Not all language
model features are one-dimensionally linear, 2025.

12



[31] Subhash Kantamneni and Max Tegmark. Language models use trigonometry to do addition,
2025.

[32] Evan Hernandez, Arnab Sen Sharma, Tal Haklay, Kevin Meng, Martin Wattenberg, Jacob
Andreas, Yonatan Belinkov, and David Bau. Linearity of relation decoding in transformer
language models, 2024.

[33] Lee Sharkey, Bilal Chughtai, Joshua Batson, Jack Lindsey, Jeff Wu, Lucius Bushnaq, Nicholas
Goldowsky-Dill, Stefan Heimersheim, Alejandro Ortega, Joseph Bloom, Stella Biderman,
Adria Garriga-Alonso, Arthur Conmy, Neel Nanda, Jessica Rumbelow, Martin Wattenberg,
Nandi Schoots, Joseph Miller, Eric J. Michaud, Stephen Casper, Max Tegmark, William Saun-
ders, David Bau, Eric Todd, Atticus Geiger, Mor Geva, Jesse Hoogland, Daniel Murfet, and
Tom McGrath. Open problems in mechanistic interpretability, 2025.

[34] Chris Olah. Mechanistic interpretability, variables, and the importance of interpretable
bases. https://transformer-circuits.pub/2022/mech-interp-essay/
index.html.

[35] Neel Nanda. A comprehensive mechanistic interpretability explainer & glossary. https:
//www.neelnanda.io/mechanistic-interpretability/glossary.

[36] Robert Huben, Hoagy Cunningham, Logan Riggs Smith, Aidan Ewart, and Lee Sharkey.
Sparse autoencoders find highly interpretable features in language models. In The Twelfth
International Conference on Learning Representations, 2024.

[37] Trenton Bricken, Adly Templeton, Joshua Batson, Brian Chen, Adam Jermyn, Tom Con-
erly, Nicholas L Turner, Cem Anil, Carson Denison, Amanda Askell, Robert Lasenby, Yifan
Wu, Shauna Kravec, Nicholas Schiefer, Tim Maxwell, Nicholas Joseph, Alex Tamkin, Karina
Nguyen, Brayden McLean, Josiah E Burke, Tristan Hume, Shan Carter, Tom Henighan, and
Chris Olah. Towards monosemanticity: Decomposing language models with dictionary learn-
ing. https://transformer-circuits.pub/2023/monosemantic-features.

[38] Patrick Leask, Bart Bussmann, Michael Pearce, Joseph Bloom, Curt Tigges, Noura Al
Moubayed, Lee Sharkey, and Neel Nanda. Sparse autoencoders do not find canonical units
of analysis, 2025.

[39] Lucius Bushnaq. Lesswrong post. https://www.lesswrong.com/posts/
cCgxp3Bq4aS9z5xqd/lucius-bushnaq-s-shortform?commentId=
wETE2ebypKzAdH8De.
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A Further Background

Here we provide further background on model computations and associated notation.

To compute the output of the attention head each input token is first passed through an affine trans-
formation: V = XWV + 1b↑

V with WV → RD→R,bV → RR. Attention weights are then used to
combine rows of V to construct the attention head’s outputs: Z = AV , with Z → RN→R. Next each
head’s output is passed through a linear transformation yielding the per-head output O = ZWO

which transforms it back into the D-dimensional embedding space, with O → RN→D. For a given
layer ω the final output of the attention block is then the sum over heads plus a per-layer bias:

Oω =
∑

1↔a↔H

Oωa + 1b↑
O (10)

For a given attention head, we will at times need to decompose the per-head output Oωa = AVWO

into the portions contributed by each source token s. Let oωad
→ RD denote the output of head (ω, a)

for token d. This corresponds to row d of Oωa. Let Ad → RN be the d-th row of the (ω, a) attention
matrix, V → RN→R be the value computation in head (ω, a), and WO → RR→D be the output matrix
of head (ω, a). Then the per-source output is:

oωads = AdsVsWO (11)

where Vs is row s of V . Note that we have oωad =
∑

1↔s↔N oωads, with oωads = 0 when s > d due
to masked self-attention.

SVD. Our methods make use of the SVD of !. The matrix ! has size D ⇐ D, but due to its
construction it has maximum rank R. We therefore work with the SVD of ! = U”V ↑ in which
U → RD→R, V → RD→R and ” → RR→R. U and V are orthonormal matrices with U↑U = I and
V ↑V = I , and ” = diag(ε1,ε2, . . . ,εR) with ε1 ↗ ε2 ↗ · · · ↗ εR ↗ 0. Important to our work is
that the SVD of ! can equivalently be written as

! =
R∑

k=1

ukεkvk↑ (12)

in which {uk
} and {vk

} are orthonormal sets and each term in the sum is a rank-1 matrix having
Frobenius norm εk.

B Bias in Attention

Here we discuss how to handle models in which the attention head’s key-query computation includes
bias terms.

In such a model, each token x → RD is passed through two affine transforms given by x↑WK+b↑
K ,

x↑WQ + b↑
Q, using weight matrices WK ,WQ → RD→R and offsets bK ,bQ → RR. Then the inner

product is taken for all pairs of transformed tokens to yield attention scores. Specifically:

A↓
ds = (xd↑WQ + b↑

Q)(x
s↑WK + b↑

K)↑

= xd↑WQW
↑
Kxs + xdWQbK + b↑

QW
↑
Kxs + b↑

QbK (13)

in which xd is the destination token and xs is the source token of the attention computation.

As a result, for models with bias we will use two versions of (13). We define !d =
[
WQW↑

K WQbK

]
, !s =

[
WQW↑

K
b↑
QWK

]
, and we use x̃ to denote

[
x
1

]
. Then:

A↓
ds = xd↑!dx̃

s + b↑
QWKxs + b↑

QbK , (14a)

A↓
ds = x̃d↑!sx

s + xd↑WQbK + b↑
QbK . (14b)
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Given these new definitions, when expanding (2) using (14b) we still have that:

cωads = x̃ωd↑!ωa
s xωs

↑
1

d↑ 1

∑

j↔d
j ↗=s

x̃ωd↑!ωa
s xωj . (15)

However, when expanding (2) using (14a) we have that

cωads = xωd↑!ωa
d x̃ωs

↑
1

d↑ 1

∑

j↔d
j ↗=s

xωd↑!ωa
d x̃ωj + c1 (16)

where c1 = b↑
QWKxωs

↑
1

(d≃1)

∑
j ↗=s b

↑
QWKxωj . To understand the significance of this term, note

that c1 is only a function of source tokens; it arises due to the inner products of source keys with the
constant query bias.

When determining the subspaces corresponding to signals as described in §2, we use the SVDs of
!d or !s as appropriate to the setting. Specifically, when determining PU we use

cωads ↑ c1 =
∑

1↔k↔R



xωd↑ukεkv
↑
k x̃

ωs
↑

1

d↑ 1

∑

j↔d
j ↗=s

xωd↑ukεkv
↑
k x̃

ωj



 (17)

where the SVD of !d is used. Note that we can ignore the c1 term because it only arises due to
source tokens, and so adds a constant that can be ignored when defining PU for decomposing the
destination token. The terms from (17) are chosen using same rule as in §2, namely the smallest set
that equals or exceeds cωads ↑ c1; these terms are used to define PU → RD→D in terms of the left
singular vectors {uk} of !d. When determining PV we use

cωads =
∑

1↔k↔R



x̃ωd↑ukεkv
↑
k x

ωs
↑

1

d↑ 1

∑

j↔d
j ↗=s

x̃ωd↑ukεkv
↑
k x

ωj



 (18)

where the SVD of !s is used. Here again we select the smallest set of terms that equals or exceeds
cωads and use those to determine PV in terms of the right singular vectors of !s.

To perform communication tracing as described in §4 requires the following adjustment to (7):

dωads(w) = w↑!ωa
d x̃ωs

↑
1

d↑ 1

∑

j↔d
j ↗=s

w↑!ωa
d x̃ωj (19)

and
sωads(W ) = x̃ωd↑!ωa

s Ws ↑
1

d↑ 1

∑

j↔d
j ↗=s

x̃ωd↑!ωa
s Wj (20)

With these new definitions, we still have

cωads = sωads(Xω) (21)

however, we also have
cωads = dωads(xωd) + c1. (22)

Hence to perform communication tracing on the destination token, we look for the smallest set of
upstream components whose portions of the contribution sum to cωads ↑ c1. Here again we ignore
the c1 term because it arises due to source tokens, and we are tracing inputs to the destination token.

Finally, one complication that arises is that it can happen that even though Aωa
ds ↗ 1/n for some

token pair (d, s), the quantity dωads(xωd) = cωads ↑ c1 is not positive. If this occurs, it is because
the bias term c1 is responsible for the positive value of cωads leading to Aωa

ds ↗ 1/n. In this case, we
simply ignore the fact that Aωa

ds ↗ 1/n – ie, we do not compute signals, nor trace upstream from this
(ω, a, d, s) tuple.
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C RoPE

In models using Rotary Position Encoding (RoPE) [57], before computing the attention score, each
token has a set of rotations performed that depend on the token’s position in the prompt. The result
is that for a given pair of tokens (d, s), we can capture the effect of RoPE using a rotation matrix
R(d≃s)

→ RR→R, where (d↑ s) is used to denote the relative positions of the d and s tokens in the
prompt. As a result, we must define ! with respect to (d↑ s). Specifically, we define

!(d≃s) = WQR
(d≃s)WK .

Then we can rewrite the attention score computation as

A↓
ds = xd↑!(d≃s)xs (23)

(All the work in this section we will be in the context of given head (ω, a) and we will drop the
indices for the head – so for example cωads will be written as just cds.)

Expanding (2) in terms of (23) we have that:

cds = xd↑!(d≃s)xs
↑

1

d↑ 1

∑

j↔d
j ↗=s

xd↑!(d≃j)xj (24)

in which we have dropped a constant term that is handled similarly to c1 in Appendix B.

It’s no longer possible to write (3) in its given form because cds involves multiple, different !
matrices. However, our goal is still to decompose the contribution cds in terms of the singular vectors
of !(d≃s). Hence we proceed by defining the projection matrices associated with each singular
vector of !(d≃s): Puk = u(d≃s)

k (u(d≃s)
k )↑ and Pvk = v(d≃s)

k (v(d≃s)
k )↑. Because {u(d≃s)

k } and
{v(d≃s)

k } are orthonormal bases for RD, we have that x =
∑

k Pvkx =
∑

k Pukx for any x. We
can now formulate (3) in two equivalent ways:

cds =




∑

1↔k↔R

Pukx
d




↑

!(d≃s)xs
↑

1

d↑ 1

∑

j↔d
j ↗=s




∑

1↔k↔R

Pukx
d




↑

!(d≃j)xj

=
∑

1↔k↔R



x
d↑Puk!

(d≃s)xs
↑

1

d↑ 1

∑

j↔d
j ↗=s

xd↑Puk!
(d≃j)xj



 (25a)

cds = xd↑!(d≃s)




∑

1↔k↔R

Pvkx
s



↑
1

d↑ 1

∑

j↔d
j ↗=s

xd↑!(d≃j)




∑

1↔k↔R

Pvkx
j





=
∑

1↔k↔R



x
d↑!(d≃s)Pvkx

s
↑

1

d↑ 1

∑

j↔d
j ↗=s

xd↑!(d≃j)Pvkx
j



 (25b)

When determining the subspaces corresponding to signals, we proceed with separate analyses for
source and destination (similar to the process in Appendix B). We choose the smallest set of terms of
(25a) summing to cds to define PU , and the smallest set of terms of (25b) summing to cds to define
PV .

To perform communication tracing as described in §4 requires the corresponding adjustments to (29)
and (30):

dds(w) = w↑!(d≃s)xs
↑

1

d↑ 1

∑

j↔d
j ↗=s

w↑!(d≃j)xj (26)
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and
sds(W ) = xd↑!(d≃s)Ws ↑

1

d↑ 1

∑

j↔d
j ↗=s

xd↑!(d≃j)Wj (27)

after which the tracing procedure is unchanged.

D Proof of Lemma 1

Here we prove a generalization of Lemma 1.

Lemma 1 (generalized). Let n ↘ N be equal to the number of tokens considered in self-
attention at head (ω, a) for destination token d, and cωads be defined as in (2). For 0 < ϑ < 1, if
Ads ↗ ϑ, then cωads >

↔
R

ln


ε
1≃ε


+ ln(n↑ 1)


.

Proof. Assume d > 1. (If d = 1, the destination is the first token or the BOS token, which always
places full attention only on itself.) By self-attention, we always have s ↘ d. Accordingly n is equal
to d (so by assumption, n > 1.)

Expanding the computation of attention weights from scores:

Ads =
exp(A↓

ds/
↔
R)

∑
j exp(A

↓
dj/

↔
R)

=
exp(A↓

ds/
↔
R)

∑
j ↗=s exp(A

↓
dj/

↔
R) + exp(A↓

ds/
↔
R)

So if Ads ↗ ϑ, then

exp(A↓
ds/

↔

R) ↗
ϑ

1↑ ϑ

∑

j ↗=s

exp(A↓
dj/

↔

R).

By Jensen’s inequality

1

n↑ 1

∑

j ↗=s

exp(A↓
dj/

↔

R) > exp



 1

n↑ 1

∑

j ↗=s

A↓
dj/

↔

R



 ,

so

exp(A↓
ds/

↔

R) >
ϑ

1↑ ϑ
(n↑ 1) exp



 1

n↑ 1

∑

j ↗=s

A↓
dj/

↔

R





so

A↓
ds/

↔

R > ln


ϑ

1↑ ϑ


+ ln(n↑ 1) +

1

n↑ 1

∑

j ↗=s

A↓
dj/

↔

R.

so

cωads >
↔

R


ln


ϑ

1↑ ϑ


+ ln(n↑ 1)


.

So we see that a sufficient condition for cωads to be positive is that ln(n ↑ 1) ↗ ↑ ln


ε
1≃ε


. With

positive n and ϑ, this condition is met when ϑ ↗ 1/n.

An important corollary is the contrapositive:
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cωads <
↔

R


ln


ϑ

1↑ ϑ


+ ln(n↑ 1)


=⇒ Ads < ϑ.

Thus we can place an upper bound on the attention weight ϑ as a function of cωads:

exp(cωads/
↔

R)/(n↑ 1) < ϑ/(1↑ ϑ) =⇒ Ads < ϑ

or
exp(cωads/

↔
R)

n↑ 1 + exp(cωads/
↔
R)

< ϑ =⇒ Ads < ϑ (28)

In §4, we consider the effect of upstream components on a downstream cωads. Here we note that (28)
shows the precise nature of the nonlinear impact of upstream contributions on attention weight. The
relationship (through the logistic) suggests that a more sophisticated approach (e.g., Shapley values)
may be beneficial in determining the impact of each upstream component. We leave this extension
for future work.

E Proof of Lemma 2

Lemma 2. Given vectors x and y, among all rank-1 matrices having unit Frobenius norm, the matrix
D that maximizes x↑Dy is D = x

↘x↘
y↑

↘y↘ .

Proof. Given vectors x and y, among all rank-1 matrices having unit Frobenius norm, the matrix D

that maximizes x↑Dy is D = x
↘x↘

y↑

↘y↘ .

First we show that any rank-1 matrix having unit Frobenius norm can be expressed as the outer
product of two unit-norm vectors. Consider a rank-1 matrix X having unit Frobenius norm. Since
X is rank-1, we can write X = xy↑. Now construct X̃ = x

↘x↘
y↑

↘y↘ . By construction X̃ is both
rank-1 and unit norm. Matrices X and X̃ differ by a constant factor 1

↘x↘↘y↘ . However, since they
have the same norm, we must have ⇑x⇑⇑y⇑ = 1, and so X can be expressed as the outer product of
two unit vectors.

Next consider a unit-norm, rank-1 matrix G = uv↑ for unit vectors u and v. By way of contradic-
tion, suppose x↑Gy > x↑Dy. Then x↑uv↑y > x↑ x

↘x↘
y↑

↘y↘y. The right hand side is the positive
quantity ⇑x⇑⇑y⇑. The left hand side is the product of the projections of x onto u, and y onto v.
The product is maximized when u = x/⇑x⇑,v = y/⇑y⇑, or u = ↑x/⇑x⇑,v = ↑y/⇑y⇑. In either
case, x↑Gy = x↑Dy.

F Details of the Experimental Setup

Indirect Object Identification (IOI). The Indirect Object Identification (IOI) task [45] uses
prompts that are structured as in this example: “When Mary and John went to the store, John gave
the drink to”. In this scenario, the model’s goal is to predict Mary, which is the indirect object,
rather than John. We used the authors’ code to generate 256 prompts for this task, using a mix of
the ABBA and BABA templates.

Gender Pronoun (GP). In the Gender Pronoun (GP) task [60], the model is given prompts of
the form: “So John is a really great friend, isn’t”. The objective for the model is to predict the
correct pronoun, which would be either he or she. We used the authors’ code with the 100 provided
examples.

Greater Than (GT). The Greater Than (GT) task, as described by [59], involves prompts of the
form: “The attack lasted from the year 1920 to the year 19”. In this task, the model’s objective is to
predict any two-digit number greater than 20. We utilized the authors’ provided code to generate 256
prompts for this specific task. However, Gemma-2 2B was not analyzed for the GT task. The primary
reason is that Gemma-2 2B’s tokenizer predominantly uses single-digit tokens for numerical values,
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Figure 6: Dimension of signal subspace for key heads in the GT Task: (a) GPT-2 (b) Pythia.

��� 
�
 
�� ��
 	��� 	
�


�"�������� ���"����#��!�� ����%�����
%

���

��


	��

	�


�
�
�
 
�!
$

���	�����

��������

��������

���	��	��

� 
 	� 	
 
� 



�"�������� ���"����#��!�� ����%�����
%

���

��


���

���

�
�
�
 
�!
$

������
�

��������

���	��
�

���
��		�

���		����

� 
� �� �� ��

�#��� ����!���#�� �$��"� !����&�����
&

���

��


	��

	�


�
�
�
!
�"
%

���	
����

��������

���
	����

���
��
�

���
����

Figure 7: Dimension of signal subspace for key heads in the GP task: (a) GPT-2 (b) Pythia (c)
Gemma-2.

which leads to two-digit numbers being a sequence of two separate tokens. Such a fundamental
difference in number tokenization makes direct performance comparisons on this task challenging
and potentially misleading.

Handling Layer Norm We use the TransformerLens library [64] for our experiments. To prop-
erly attribute contributions of upstream heads to downstream relative attention, we need to take
into account the effect of the (downstream) layer norm. For GPT-2 and Pythia models, the layer
norm operation can be decomposed into four steps: centering, normalizing, scaling, and translation.
Gemma-2 models apply the same steps except for centering. Centering, scaling, and translation are
affine maps, which means that they can be folded into different parts of the model with mathematical
equivalence. The TransformerLens library handles the centering step by setting each weight matrix
that writes into the residual stream to have zero mean. Moreover, it folds the scaling and translation
operations into the weights of the next downstream layer.5 The result is that centering, scaling, and
translation make changes to the matrices used to compute ! as shown in (1). The remaining step is
the normalizing step. This step does not change the direction of the residual; it only affects the mag-
nitude of the contribution to the relative attention (33). Since for any relative attention calculation,
we are considering a specific addition to the residual oi, we can simply scale its contribution by the
same scaling factor used for the corresponding token xi when it is input to the downstream layer.

G Sparse Attention Decomposition

Here we provide additional examples showing that sparse attention decomposition holds across all
tasks, models, and heads we examine. Figure 6 shows typical results for key heads in each model
on the GT task, and Figure 7 shows typical results for key heads in each model on the GP task.

Figure 8 presents typical results for key attention heads in each model, specifically for the IOI task.
For models like GPT-2 and Pythia, which have an R value of 64, attention scores for various attention
heads with distinct roles are typically computed using fewer than 20 dimensions, and sometimes
even fewer than 5. A similar trend is observed in Gemma-2, which has a larger R value of 256.

H Details of Tracing

Here we provide more detail and formal definitions to supplement §4. The functions dωads(w) and
sωads(W ) are defined as:

5See https://github.com/TransformerLensOrg/TransformerLens/blob/main/
further_comments.md for more details.
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Figure 8: Dimension of signal subspace for heads in (a) GPT-2 (b) Pythia (c) Gemma-2, IOI task.

dωads(w) = w↑!ωaxωs
↑

1

d↑ 1

∑

j↔d
j ↗=s

w↑!ωaxωj (29)

where w → RD, and

sωads(W ) = xωd↑!ωaWs ↑
1

d↑ 1

∑

j↔d
j ↗=s

xωd↑!ωaWj (30)

where W → RN→D.

The computation of upstream contributions to relative attention relies on the linearity of dωads(w)
and sωads(W ) to distribute these functions over (6). Specifically, for any given contribution (char-
acterizing an attention score) between tokens d and s at head (ω, a), we compute the portion of that
contribution due to each upstream model component’s writing into the destination token d as

cωads = dωads(xωd) =

AH outputs︷ ︸︸ ︷∑

1↔l<ω

∑

1↔h↔H

∑

1↔t↔N

dωads(olhdt)+

FFN outputs︷ ︸︸ ︷∑

1↔l<ω

dωads(f ld)+

attn. biases︷ ︸︸ ︷∑

1↔l<ω

dωads(bl
O)+

input at layer 0︷ ︸︸ ︷
dωads(x0d)

(31)
and we write the portion of that contribution due to each upstream model component’s writing into
the source token s as

cωads = sωads(Xω) =

AH outputs︷ ︸︸ ︷∑

1↔l<ω

∑

1↔h↔H

∑

1↔t↔N

sωads(Olh⇐t)+

FFN outputs︷ ︸︸ ︷∑

1↔l<ω

sωads(F l)+

attn. biases︷ ︸︸ ︷∑

1↔l<ω

sωads(1bl↑
O )+

input at layer 0︷ ︸︸ ︷
sωads(X0)

(32)
where Olh⇐t

→ RN→D is the matrix for which row d is olhdt and F l
→ RN→D is the matrix for

which row d is f ld.

By (5), (7) and the properties of the SVD, we have
cωads ≃ dωads(sωd) = dωads(PUx

ωd) and cωads ≃ sωads(Sω) = sωads(XωP↑
V ). (33)

The process of distributing (33) over (31) and (32) results in, for the destination token (repeating
(9)):

cωads ≃
∑

l<ω,h↔H,t↔N

dωadslhdt +
∑

l<ω

dωadsld +
∑

l<ω

dωadsl + dωads0 (34)

And for the source token is:

cωads ≃
∑

l<ω,h↔H,t↔N

sωadslhst +
∑

l<ω

sωadsls +
∑

l<ω

sωadsl + sωads0 (35)

Where the terms in (34) and (35) are defined as:
dωadslhdt = dωads(PUo

lhdt), dωadsld = dωads(PU f
ld), dωadsl = dωads(PUb

l
O), dωads0 = dωads(PUx

0d),

and
sωadslhst = sωads(Olh⇐tP↑

V ), sωadsls = sωads(F lP↑
V ), sωadsl = sωads(1bl↑

O P↑
V ), sωads0 = sωads(X0P↑

V ),

where Olh⇐t is the matrix for which row d is olhdt and F l is the matrix for which row d is f ld.
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Constructing Communication Graphs Communication graphs are constructed as follows. The
objective is to identify the causal communication pathways within the model that lead to a particular
output. We formalize this by first defining an “output of interest” based on the model’s final logit
predictions, y. This output is a task-specific metric, calculated as a linear combination of logits,
which can be represented as a↑y. This formulation captures common task-specific success metrics.

• For the Indirect Object Identification (IOI) task, a↑y represents the logit difference
between the indirect object (IO) and subject (S) tokens.

• For the Gender Pronoun (GP) task, it is the logit difference between the correct and
incorrect gender pronouns (e.g., “he” versus “she”).

• For the Greater Than (GT) task, it corresponds to the average logit difference between
token predictions for two-digit numbers greater than a base number YY and those for num-
bers smaller than or equal to YY.

Using the vector a and the model’s unembedding matrix WU → RD→|!| (where |”| is the vocabulary
size), we derive a “success direction” vector g = WUa → RD in the residual stream space. For
the IOI task, this would be g = W IO

U ↑ WS
U , where W t

U is the column of WU for token t. We
then analyze the model’s final residual stream output for the token position being predicted, which
we denote xout. The projection of this vector onto the success direction, xout↑g, quantifies the
model’s performance on the task for that specific prompt. We trace this value back by measuring
the contribution of each component from the residual stream decomposition (Equation (6)) to this
projection. “Seed” components are those with the largest contributions, specifically the smallest set
of components whose contributions sum to the total projection value, xout↑g. We also include any
single component whose contribution is at least half of the total. If no attention heads are present
among these seeds, tracing is not performed. The token at the output position serves as the initial
destination token d for tracing, while the source token for a seed attention head is identified from its
OV circuit decomposition.

Starting from the identified seed components, we recursively trace their upstream contributors. Typ-
ically, the terms in equations (9) and (35) will show a few large values and many small values. As a
result, it is important to filter these terms to isolate the important communication taking place in the
model. To do so, we again rely on the property ensured by Lemma 1, namely, that cωads is a positive
quantity. For each of (9) and (35), we select the smallest set of terms that sum to ϖcωads for some
0 < ϖ ↘ 1. The parameter ϖ is set based on the degree to which the less important edges should be
filtered from the communication graph. In practice, we use ϖ = 0.7 in all our results, which filters
most of the low-weight edges while preserving the largest-weight edges. Algorithm 1 outlines the
pseudocode for the complete process of construction communication graphs.

I Communication Graphs

In this section we provide details on how we construct communication graph, and we show commu-
nication graphs for example prompts from the tasks and models we study.

We generated communication graphs and circuits for specific prompts that met two key criteria:

1. The model successfully predicted the correct answer for the prompt.
2. The prompt has at least one attention head in the “seeds” components set.

The total number of prompts that satisfied these conditions and were traced for each model and task
is detailed in Table 1.

On CPU hardware (machines with 28 cores), tracing a 22-token prompt (the largest prompt size
across all tasks that we used) takes approximately one minute for GPT-2 and for Pythia, and about
one hour for Gemma-2. Our code is not highly optimized, and significant improvements are possible.

The time complexity for tracing a single prompt is O(a · L · C). In this expression, where L is
the number of layers, and C denotes the number of components in the model, ie, attention heads,
attention biases, MLPs, and embeddings (see Equation 6). The factor a represents the number of
significant attention values (i.e., those with Aωa

ds ↗
1
n ); it is upper-bounded by the number of attention

values in a auto-regressive model N2≃N
2 + N , but is in practice much less because only heads
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that make causal contributions downstream are included in the trace. Thus, model size differences
explain the increased tracing time for Gemma-2 compared to GPT-2 and Pythia.

The following figures illustrate the communication graphs used by various models to solve example
prompts from three distinct tasks:

• Indirect Object Identification (IOI): For the prompt “Then, Simon and Andrew were
working at the restaurant. Simon decided to give a basketball to”, communication graphs
are shown for GPT-2 small (Figure 9), Pythia-160M (Figure 10), and Gemma-2 2B (Fig-
ure 11).

• Gender Pronoun (GP): The communication graphs for GPT-2 small (Figure 12), Pythia-
160M (Figure 13), and Gemma-2 2B (Figure 14) correspond to the prompt: “So John is a
really great friend, isn’t”.

• Greater Than (GT): For the prompt “The consultation lasted from the year 1673 to the
year 16”, communication graphs are presented for GPT-2 small (Figure 15) and Pythia-
160M (Figure 16).

J Interventions

An intervention targets an edge connecting an upstream (signal-writing) node and a downstream
(signal-consuming) node. The intervention removes the signal from the downstream node’s com-
putation. Specifically, for a destination token edge, as characterized by Equation (9), the signal is
removed from the query computation; for a source token edge, as characterized by Equation (35),
the signal is removed from the key computation.

We implement two types of interventions: boosting, which involves adding the signal to the down-
stream attention head, and suppressing, which involves removing it. To evaluate these, we compare
interventions using signals derived from S

ωads (i.e., the singular vectors identified by our method)
against a random baseline, which is done by selecting |S

ωads
| random singular vectors that are not

in S
ωads.

The effectiveness of an intervention is measured by the error F (E,h)≃F
F , where F (E, h) denotes the

logit difference metric after the intervention, and F represents this value before the intervention. A
negative error value signifies that the model’s performance has gotten worse, while a positive value
indicates an improvement.

Figure 17 illustrates these intervention results across all three models and all three tasks. We observe
that interventions using our signals are more causal than the random baseline. We further illustrate
in Figure 18 that interventions have exactly the effect predicted by Lemma 1 – namely that signal
ablation reduces attention and signal boosting increases attention. Finally, in Figure 19 we show the
very small changes in vector norm and vector direction that result from these interventions.

In terms of time efficiency, performing an intervention requires approximately the same duration
as a single forward pass through the model. To illustrate with our largest batch—consisting of 256
prompts, each 22 tokens long—executing an intervention on a 28-core CPU machine takes a few
seconds for GPT-2 and Pythia, and around 2 minutes for Gemma-2.

K Circuits

Leveraging the observation that interventions can causally affect model performance, we use this in-
sight as a basis for identifying circuits. Our method for finding circuits from communication graphs
begins by aggregating multiple such graphs into a single graph, G. From this aggregated graph,
we first prune nodes that appear in less than 1% of the instances. Subsequently, edges are removed
based on their impact on downstream task performance. Specifically, an edge E that occurred in p

prompts is removed from G if its average intervention impact—calculated as 1
p

∑
i

Fi(E,h)≃Fi

Fi

—
falls below a threshold T . In this formula, Fi and Fi(E, h) represent the logit difference metrics
before and after the intervention for prompt i, respectively, and T is a threshold determined empir-
ically for each task and model. Figures 20, 21, and 22 shows the precision, recall, and F1-scores,
respectively, considering every possible method as a baseline for comparison.
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L Handling logit soft-capping in Gemma-2 models

Gemma-2 models have soft-capping for attention scores and logits. The soft-capping is given by

f(x) = c · tanh
x
c


,

where c is the soft-capping constant (c = 50 for attention scores and c = 30 for the final logits
in Gemma-2 [55]) and x are either the scores of the logits. To handle non-linearity in our tracing,
we used the first non-zero term of the Taylor expansion for the logit soft-capping function, yielding
the approximation f(x) ≃ x (valid when x

c is small). The Gemma 2 team observed very minor
differences when soft-capping is removed during inference [65]. Moreover, we saw empirically that
f(x) ≃ x is a good enough approximation for the soft-capping. Figure 23 shows the attention scores
and their respective values after soft-capping for an IOI prompt.

M Control Signals

Figures 24 and 25 illustrate how control signals vary across the layers of the models we study. In
these figures, the colors used for signals correspond to those in Figure 5. These control signals
were initially identified using the IOI task with a subset of the prompts. To verify their broader
applicability, Figures 24 and 25 were specifically generated using a prompt not part of this initial
set. Other prompts that are not in this initial set also have very similar behavior. The consistent
appearance of these signals on prompts that were not used to find the control signals corroborates
their data-independent nature.

We also show in Figure 26 the distribution of inner products between the V signals and zero and
non-zero token signals for GPT-2, Pythia-160M, and Gemma-2 2B. We observe that the V signals
have considerably higher inner products with zero token signals than non-zero token signals across
all the models.
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Algorithm 1: Communication Graph Construction
// Main function to find seeds and initiate tracing

1 ConstructGraph(M,P,a,ϖ)
Input : M : The transformer model.

P : The input prompt.
a: A vector defining the task metric over the logit vocabulary.
ϖ: The contribution threshold for filtering (0 < ϖ ↘ 1).

Output: G: The final communication graph.
2 G ⇓ InitializeEmptyGraph();
3 Activations,y ⇓ ForwardPass(M,P );
4 WU ⇓ GetUnembeddingMatrix(M);
5 g ⇓ WUa ϱ Calculate the ”success direction” vector
6 xout

⇓ GetFinalResidual(P,Activations);
7 PerformanceScore ⇓ x↑

outg;
// Decompose the final residual and project contributions onto the success direction

8 Contributions ⇓ DecomposeResidual(xout) ϱ Using Eq. (6)
9 ProjectedContributions ⇓ {c↑i g for each ci → Contributions};

// Identify the smallest set of components whose scores sum to the total score
10 S ⇓ FindSmallestSubsetSum(ProjectedContributions, PerformanceScore);

// Also include any single component that contributes more than half the total score
11 Shigh ⇓ {cj | c↑j g ↗ 0.5⇐ PerformanceScore};
12 Seeds ⇓ S ⇔ Shigh;
13 foreach seed component (ω, a, d, s) → Seeds do
14 if (ω, a) is an attention head then
15 RecursiveTrace(G, ω, a, d, s,ϖ);

16 return G;
17

// Recursive helper function to trace upstream contributors
18 RecursiveTrace(G, ω, a, d, s,ϖ)

Input : G: The graph (modified in-place).
(ω, a, d, s): The current component (layer, head, destination token, source token).
ϖ: The contribution threshold. We use 0.7 in the experiments.

Output: Modifies the graph G.
ϱ Base Cases: Stop recursion for all these cases or for when attention weight less than 1/n

(see Lemma 1)
19 if ω = 0 or d = 0 or d < s or Aωa

ds < 1/n then
20 return;
21 cωads ⇓ CalculateRelativeAttention(ω, a, d, s);

// Find upstream contributors to the destination token’s signal
22 U(d) ⇓ FindUpstreamContributors(d, cωads,ϖ) ϱ Using Eq. (9)
23 foreach upstream component (ω↓, h↓, d, t) → U(d) do
24 Add edge (ω↓, h↓, d, t) ↖ (ω, a, d, s) to G;
25 RecursiveTrace(G, ω↓, h↓, d, t,ϖ);

// Find upstream contributors to the source token’s signal
26 U(s) ⇓ FindUpstreamContributors(s, cωads,ϖ) ϱ Using Eq. (35)
27 foreach upstream component (ω↓, h↓, s, t) → U(s) do
28 Add edge (ω↓, h↓, s, t) ↖ (ω, a, d, s) to G;
29 RecursiveTrace(G, ω↓, h↓, s, t,ϖ) ϱ Source token is destination upstream.
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Table 1: Number of Traced Prompts per Model and Task
Model IOI GT GP

GPT-2 Small 230 166 100
Pythia-160M 159 39 99
Gemma-2 2B 206 – 94
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Figure 9: Communication graph used for GPT-2 small to solve an IOI prompt, with 247 nodes and
683 edges. The prompt used is: “Then, Simon and Andrew were working at the restaurant. Simon
decided to give a basketball to”.
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Figure 10: Communication graph used for Pythia-160M to solve an IOI prompt, with 158 nodes and
344 edges. The prompt used is: “Then, Simon and Andrew were working at the restaurant. Simon
decided to give a basketball to”.
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Figure 11: Communication graph used for Gemma-2 2B to solve an IOI prompt, with 352 nodes and
1358 edges. The prompt used is: “Then, Simon and Andrew were working at the restaurant. Simon
decided to give a basketball to”.
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Figure 12: Communication graph used for GPT-2 small to solve a GP prompt, with 87 nodes and
152 edges. The prompt used is: “So John is a really great friend, isn’t”.
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Figure 13: Communication graph used for Pythia-160M to solve a GP prompt, with 86 nodes and
172 edges. The prompt used is: “So John is a really great friend, isn’t”.
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Figure 14: Communication graph used for Gemma-2 2B to solve a GP prompt, with 38 nodes and
31 edges. The prompt used is: “So John is a really great friend, isn’t”.
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Figure 15: Communication graph used for GPT-2 small to solve a GT prompt, with 150 nodes and
412 edges. The prompt used is: “The consultation lasted from the year 1673 to the year 16”.
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Figure 16: Communication graph used for Pythia-160M to solve a GT prompt, with 94 nodes and
189 edges. The prompt used is: “The consultation lasted from the year 1673 to the year 16”.
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Figure 17: Intervention effect on GPT-2, Pythia, and Gemma-2 in the IOI, GP, and GT tasks. Green:
signal ablation; Red: signal boosting; Blue: random ablation; Orange: random boosting.
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Figure 18: Interventions effect on the attention weight. Error bars are the standard deviation.
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Figure 19: Distribution of cosine similarities and norm ratios between the intervened input residual
and the original input residual (a) SVs (b) Random (c) SVs (d) Random.

���� ��� �-*+�.�

,"���	

��,"

��,�"#'!

� ,"(���

����

���

�-*+�.�

,"���	

��,"

��,�"#'!

�
 
,
"
(
�
��

� ��
� ��

 ��
�

� � ���
 ����

� ��
� � ���


� ��
� ���� �

��+$��#(#���(� %��!),	�+&�%%

���

��


���

���

���� ����

�(+%!%�

�+()�,�

* ���	

��* &���

�
�
�
�

�
�
�
�

�
(
+
%
!%
�

�
+
(
)
�,
�

*
 
�
�
�	

�
�
*
 
&
�
��

� ���� ��
�

��
� � ���	

��
� ���� �

��)"���'���&��#���'*	�)$�##

���

���

��


���

���

���

�
�
�
�

�
�
�

�
�
!
 

�
*
-
'
#'
!

�
-
*
+
�.
�

,
"
�
�
�	

�
�
,
"

�
�
,
�
"
#'
!

� ,"(���

����

���

��! 

�*-'#'!

�-*+�.�

,"���	

��,"

��,�"#'!

�
 
,
"
(
�
��

� ��� ���� ���
 ���	

���� � ���� ��
 ���


���� ���� � ���
 ���


���� ���� ���� � �

���� ���
 ���
 ��� �

��+$��!,���(� %��!),	�+&�%%

���

���

��


���

���

���

���

Figure 20: Heatmap with Precision scores considering Method A as a baseline for comparison for
(a) IOI task (b) GP task (c) GT task.
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Figure 21: Heatmap with Recall scores considering Method A as a baseline for comparison for (a)
IOI task (b) GP task (c) GT task.
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Figure 22: Heatmap with F -scores considering Method A as a baseline for comparison (a) IOI task
(b) GP task (c) GT task.
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Figure 23: The attention scores and their respective values after soft-capping for an IOI prompt.
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Figure 24: Cosine similarity between destination control signals and the residuals of the last token.
(a) GPT-2 (b) Pythia (c) Gemma-2.
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Figure 25: Cosine similarity between source control signals and the residuals of the first token. (a)
GPT-2 (b) Pythia (c) Gemma-2.
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Figure 26: Distribution of inner products between the V signals and zero and non-zero token signals
in (a) GPT-2 (b) Pythia (c) Gemma-2.
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