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ABSTRACT

Large language models have been shown to exhibit reasoning capability. But the
ability of these models to truly comprehend the reasoning task is not yet clear.
An ideal model capable of reasoning would not be affected by the names of the
entities over which the relations are defined. In this paper, we consider an algo-
rithmically generated spatial reasoning task over the names of persons. We show
that the choice of names has a significant impact on the reasoning accuracy of
BLOOM large language models. Using popular names from different countries
of the world, we show that BLOOM large language models are susceptible to
undesirable variations in reasoning ability even though the underlying logical rea-
soning challenge does not depend on these names. We further identify that the
conditional log probability scores characterizing the uncertainty in prediction pro-
duced by BLOOM models are not well-calibrated and cannot be used to detect
such reasoning errors. We then suggest a new approach based on model self-
explanations and iterative model introspection that performs better than BLOOM
conditional log probability scores in detecting such errors, and may help alleviate

the bias exhibited by these models.

1 INTRODUCTION

Over the last four decades, cognitive psychol-
ogists and neurolingusitic studies have inves-
tigated the impact of proper names on human
cognition with interesting outcomes (Bredart
et al.| [2002). It is now widely accepted that hu-
man beings find it more difficult to recall per-
sonal names (Young et al., |1985; [1988) than
other kinds of words, including relatively rare
common nouns. Several different explana-
tions have been investigated for such a discrep-
ancy, including the semantic tag nature of per-
sonal names without being descriptive (Fogler
& James, [2007), the need to obtain a single cor-
rect label with no synonyms (Hanley, 2011),
the larger set of possible phonologies (James &
Fogler, 2007), and the frequency of word use
in daily discourse (Kittredge et al., 2008). In-
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Figure 1: A map showing the variation in performance
of the largest BLOOM model on a linear spatial reason-
ing task with 5 female names.

spired by these results in human cognition, we seek to investigate the impact of personal names
from different parts of the world on the linear spatial reasoning ability of large language models - a
task that ought to be neutral to the choice of the names themselves.

The rise of the large language models promises to revolutionize differentiable approaches to nat-
ural language processing. Models such as BERT (Devlin et al., 2018), T5 (Raftel et al., |2020),
GPT (Brown et al.| |2020), OPT (Zhang et al., 2022), PALM (Chowdhery et al., 2022) and
BLOOM (BigScience, 2022) yield results close to the state-of-the-art on popular benchmarks in
several language tasks. However, such models are susceptible to adversarial attacks (Wang et al.)
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and reduced accuracy on out-of-distribution data (Du et al.,2021). Bias and toxicity evaluations of
such models are now standard with a variety of benchmarks (Ousidhoum et al.,|2021). Inspired by
both the neurolinguistic findings about the curious case of personal names in human cognition and
the now well-established bias studies in deep learning, we study personal names as a new source
of variations in the performance of large language models even when the underlying reasoning task
ought to be independent of the choice of personal names.

2 SUMMARY OF RESULTS

We create a scalable spatial reasoning task involving n individuals with different names. In this
task, we provide the pairwise spatial relationship between entities to the BLOOM family of models,
and then ask the model to predict a new relationship among the entities. Using male names popular
in the US on the spatial reasoning task with four individuals, the accuracy of the BLOOM model
grows from 0.3 to an impressive 0.83 as the number of parameters increases from 560 million to 146
billion. Thus, an increase in the model size leads to an improvement in the accuracy of the model’s
accuracy in reasoning about the spatial relationships, and sufficiently large models exhibit very good
spatial reasoning capability.

We illustrate this set up as the intuitive System 1 (Kahneman, 201T) in Figure 2] as this is the rela-
tively fast portion of the inference process. We later show that this reasoning is prone to name bias,
and consequently, we develop a deliberative System 2 that makes the model generate explanation for
its reasoning and self-reflect on whether the inferences are consistent. We show that this deliberative
self-reflection can be used to detect errors made by System 1 due to the name bias.
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Figure 2: Overview of our approach. (top left) Beam scores from the largest BLOOM model for correct
(blue) and incorrect (red) responses. (bottom left) Variation in response from the largest BLOOM model on
personal names from different countries. (center) System 1 BLOOM model for solving the spatial reasoning
task. (right) System 2 for obtaining self-explanations from BLOOM models as a spatially ordered list of names
and multiple inferences for verifying initial facts on this list of names as a self-introspection step. Predictions
from the BLOOM models are shown using red text.

Variation due to choice of proper names: The accuracy of the BLOOM models on this spatial rea-
soning task varies significantly depending on the source countries of the proper names even though
the reasoning task is completely invariant to the choice of the names. The difference in accuracies
for popular proper names from USA, Morocco, South Africa and China are shown in Fig 2] (bottom
left). When we change the names in the reasoning task using the names common in US, the variance
is O but it increases to 0.08 for names from Morocco, 0.12 for South Africa, and 0.24 for China.

Poor calibration of BLOOM models on spatial reasoning: We observe that the conditional log
probabilities or beam scores of BLOOM predictions are not well-calibrated, and the scores do
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not discriminate between correct and wrong responses. The beam scores of 100 responses from
BLOOM-176B are shown in Fig. [2| (top left). The scores for the correct (incorrect) responses are
shown in blue (red). As shown in the figure, the distributions of the two scores can not be separated.
Thus, this approach for uncertainty quantification is not sufficient to detect when the model makes
wrong predictions due to name bias.

System 2 using self-explanations and self-introspection: In order to better understand the large
language model, we seek an explanation from the model by prompting it to list the names of the
individuals from left to right. The BLOOM model responds with such an ordering of names, and this
list serves as a self-explanation of the model’s prediction. This is illustrated in Fig. 2] (right bottom).
Then, a number of prompts are generated for the BLOOM model by coupling the generated list of
names with the earlier stated facts in the original prompt, and the model is asked to predict whether
the pair of facts is consistent (see Fig. 2] (right top). The conformance results are then used to predict
if the model response is correct.

We believe that our results show that there is an urgent need to develop training strategies and
inference algorithms that can mitigate emergent bias for large language models in such settings,
where performance in the underlying task ought to be clearly independent of the source of the bias.

3 SPATIAL REASONING IN BLOOM LARGE LANGUAGE MODELS

3.1 SPATIAL REASONING TASKS

Spatial reasoning has been a topic of sustained
interest in representational learning. Quali-  Algorithm 1: Synthesis of Spatial Problems

t?lthe reasoning .llSIIIg Spatlal .cardn.lal direc- Input: List of popular names p1, pz2, . . . Pn, Set of left-of
tional representations has been investigated for relations S; = {(pi, p;)|ps is on left of p; }, Set of
at least three decades (Frank,[1991} [Teresa Es- right-of relations .

. L - Sr = {(pi, p;)|pi is onright of p; }, Query Pair
crig & Toledo, |1998). Spatial reasoning for (D, p1)

textual data (Weston et al.| [2015) using deep 3utpuf{= Correct Respor;seER o B o
i —A{p1,p2,...pn}, Ei < ¢, Er < Graph
learning ‘models (Le et al., 2020) has made for (ps,p)) € S, e lettoot velations
such rapid progress that has led to the need do
for creating new and more challenging bench- L B BV (pisps)s Br < Er U (pj,pi)
marks (Shi et al.). for (p;,p;) €S,  // Add right-of relations
do
| Er < E-U(pi,pj), Bt < Ei U (pj,pi)

NN AW

We create a simple spatial reasoning task
where n individuals are located on a straight s Ef « FEi, E) « E,,i = 0whilei = 0or B # E; "

line. The task specifies the relative location, | d/ / transitive closure
. . 0

left or rlght, of one person Wlth respect to an- Bt = B it (pi, py) € Ej and (p;, pr) €
other. Finally, the task requires that we make then
a new hitherto undeclared inference about the 1 | BT« BTN U (piipe)
relative position of individuals. We keep the 12 | i+ i+1
reasoning problem simple because our goal is 13 ; = o whilei = 0 or E? # Ei~1 // transitive
not to evaluate the limits of the reasoning ca- closure

o1s . 14 do
pability of these larg.e lapguage models, butin- - B B it (prpy) € B and (py, pr) € BV
stead to analyze their bias with respect to the then
used proper names in defining the reasoning 16 L B =B U (pispr)
problem. 17 i+l

18 if (pi,p1) € E; then

The challenge problems in our tasks are cre- |y | R <~ py is on the left of py

ated algorithmically. Given n individuals and ;

. 20 if (pr,pi) € E; then
a query pair py, p;, we construct a 1eft-g.raph 2 | R < pyis on the right of py
G; = (V, E;) of n nodes. For every pair of ,, . (s p1) & Bi and (pr ) & ' then
nodes p;,p; € V, we add the directed edge 23 | R < Relationship between py and p; not known.
(ps, p;) to the left-graph if p; is known to be
on the left of p; according to the stated facts in the generated task. Finally, we compute the transi-
tive closure G} = (V, E}) of the left-graph.

If (pr,p1) € Ej, the given facts in the generated task are adequate to show that py is to left of
1, we keep this problem in our task and note that the correct response states that py, is to left of p;.
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Similarly, we create a right-graph where the edges denote that an individual is to the right of another,
compute its transitive closure and determine whether the stated facts are enough to conclude that py,
is to the right of p;. An illustrative automatically generated task is shown below with the correct
response from the BLOOM-176B model colored in red.

John is on the right of David. James is on the left of David. James is on the left of John. Joseph is
on the right of James. John is on the left of Joseph. Then, we can make a new inference that David
is on the left of Joseph.

3.2 BLOOM LARGE LANGUAGE MODELS

The recent increase in the size of large language models using distributed GPUs has led to impressive
performance on diverse tasks, such as finishing sentences (Zellers et al., 2019), commonsense story
cloze (Mostafazadeh et al.| 2016), physical commonsense reasoning (Bisk et al.,[2020), challenging

question answering problems (Clark et all, 2018), open book question answering (Mihaylov et al.|

2018), Turing tests based on correct word disambiguation (Levesque et al., 2012} [Sakaguchi et al.,
2021)), and more challenging general-purpose language understanding (Wang et al.).

A variety of large language models have been trained on internet-scale corpora of text in multiple
languages and code bases. These models include BERT, TS5 , GPT, OPT, PALM and BLOOM. A
few of these models, such as GPT3, are only accessible via an API while all the trained weights for
other models, such as BLOOM, are available to the public at large.

Our experimental studies have focused on BLOOM as

it is an open-science open-access model that has been
trained using data in multiple languages and is the re-
sult of an international effort. BLOOM has been trained
on the Jean Zay Public Supercomputer provided by the
French government and is readily available to the pub-
lic (BigScience, [2022). BLOOM is a family of large-
language models ranging from 560 million parameters
to 176 billion parameters, and provides an effective plat-
form for evaluating the variations in our spatial reasoning
task. As illustrated in Fig.[3] BLOOM models have been
trained on substantial text from multiple languages and
probably multiple countries.
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Figure 3: The distribution of languages used
to train the BLOOM models.

3.3 EFFICACY OF BLOOM ON LINEAR SPATIAL REASONING TASK

We observe that BLOOM is capable of solving the spatial reasoning task with zero-shot prompting in
many cases. An example can be seen in the illustration of System 1 in Fig.[2] We consider reasoning
tasks with different complexities by changing the number of individuals over which spatial reasoning

needs to be performed.
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Figure 4: Efficacy for reasoning with 3 male names using 4 different BLOOM
models. The BLOOM-176B model has a high accuracy on this task.

the 560 million parameter model to a maximum of 1.0 for the 176 billion parameter model.
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rameter model has a Figure 5: Efficacy for spatial reasoning with 4 male names popular in different parts
maximum accuracy of the world using multiple BLOOM models.

of only 0.3, which is

below random chance. However, the 176 billion parameter model has an accuracy of 0.83 for the
United States. Figure in the Appendix shows the performance of the family of the models on
tasks with 5 individuals.

4  ACCURACY VARIATIONS DUE TO COUNTRY OF PERSONAL NAMES

While the significant variation of the model accuracy on the geographical locations of the names
on an unrelated spatial reasoning task is itself a source of concern, we observe that the variation
is emergent and it generally increases in magnitude as the models grow in size. We quantitatively
evaluate the variation as the difference between the accuracy for a given geographical area and the
maximum accuracy for a model of that size. For example, for 4 individuals, names drawn from
China have an accuracy of 0.59 while names drawn from USA have an accuracy of 0.83 for the
BLOOM-176B model. Hence, the variation for China is the difference of the two accuracies, i.e.,
0.24. This high variation indicates relatively low accuracy for the corresponding subpopulation even
when the underlying reasoning task is the same and should not depend on the names being used, and
hence, indicates bias in the model.

Fig[6]shows a plot of the variation for multiple BLOOM models with four names drawn from popular
names in different countries. For names popular in USA, a rise in the size of the model reduces the
variation to 0. On the other hand, a rise in the size of the BLOOM models generally exacerbates the
variation in accuracy problem for countries, such as China, India, and South Africa.
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Figure 6: Difference between the best accuracy for a given model and the accuracy on spatial reasoning with
4 individuals for popular male names in a country. As the BLOOM models become larger, the variation for
names from China, India, and South Africa increases.

We also analyze the variation on the more challenging spatial reasoning task with 5 individuals. Fig-
ure[7] shows that the BLOOM-176B model shows a variation of 0.03 for the United States. However,
the variation for China, India, and South Africa becomes as high as 0.14, 0.17, 0.10

These variations may be explained using various reasons: (i) different term-frequency in training
data, (ii) lack of descriptive value of a personal name that can be learned using a large text corpora,
and (iii) the potentially larger set of possible phonologies in different languages. However, as classi-
cal algorithms are replaced by increasingly complex and often proprietary and closed large language
models, the variation from proper names needs to be addressed to avoid biased analyses.
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Figure 7: Difference between the best accuracy for a given model and the accuracy for popular male names
drawn from a geographical region. This spatial reasoning task uses 5 individuals.

5 ACCURACY VARIATIONS DUE TO GENDER OF PERSONAL NAMES

BLOOM models clearly demonstrate variations in their accuracy on our spatial reasoning task based
on the geographical source of the names being used in the task. Using popular female names for the
same countries, we studied how the variation in model accuracy changes. Further, we investigated if
there is a substantial difference in accuracy between popular male and female names from the same
country. The variation in the accuracy of the model on the spatial reasoning task for four female
names from different countries is shown in Figure 8] Again, a large variation is observed for the
BLOOM-176B model for female names from China. However, the qualitative nature of the plot is
now different and the difference in accuracies do not always rise with increase in model size.
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Figure 8: Difference between the best accuracy for a given model and the accuracy on spatial reasoning with 4
individuals for popular female names drawn from a geographical region.

Fig.[9] plots the difference in the accuracy of male and female names for the spatial reasoning task
with 5 individuals. A positive value indicates that the model performed better on female names,
while a negative value shows that the model did better on male names. We observe that the names of
neither of the genders produce consistently high accuracy either across countries or across models.
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Figure 9: Difference between the accuracies for male and female names with 5 individuals for popular names
drawn from a geographical region.

We conjecture that this observation is the result of two competing forces. First, female names may
have a larger or smaller phonology in different countries, and this may lead to different variations in
term frequency based on gender in different countries. Second, female names may be less frequent
in some corpora as opposed to male names, such as old telephone directories. This may lead to
different training regimes for models of different sizes learning representations of these names with
different degrees of success. Future training regimes for large language models need to explicitly
guard against gender bias.
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6 UNCALIBRATED MODEL SCORES AND DETECTING ERRORS USING
MODEL SELF-EXPLANATIONS

Since the BLOOM models produce significantly different accuracies on the spatial reasoning task for
different choice of names, it becomes even more important to understand if the model is predicting
a correct response on a given query. A natural approach to quantify uncertainty of a model is
to use the log probability of the response predicted by the model and threshold it to decide if a
response is reliable or not. We first show that the BLOOM models are not well-calibrated and
produce similar conditional log probabilities for both correct and incorrect responses. Then, we
show that the BLOOM models can produce textual self-explanations for a problem, which can then
be audited by repeatedly querying the BLOOM models with related sub-problems to decide if a
response is consistent and likely to be correct.

6.1 UNCALIBRATED MODEL SCORE PREDICTIONS

The BLOOM models, like other large language models, compute the beam score or the conditional
log probability of the response being predicted. In a well-calibrated model, a correct output will
be associated with a high probability and an incorrect output will correspond to a relatively lower
probability. This will allow the model to be deployed in a practical setting.

Fig shows the beam score or log probability corresponding to a typical response from the
BLOOM-176B model on male names from the US, China and South Africa. The horizontal axis
represents the index of the query and the vertical axis represents the beam score or the log probability
of the response.
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Figure 10: The beam score or conditional log probabilities for the top response from the model using male
names. The X axis represents the index of the query and the Y axis represent the score. Red color represents
an incorrect response, while a blue color represents a correct response.

It is clear that the correct and incorrect responses both produce similar log probability values. The
correlation coefficient between the scores or the log probabilities and the correctness of the response
is only 0.157 for names from the USA. We observe similar qualitative and quantitative results for the
male and female names from other countries. Fig.|l1|shows the variation in log probability values
for correct and incorrect responses for female names from the US, China and South Africa.
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Figure 11: The beam score or conditional log probabilities for the top response from the model when using
female names. Red color represents an incorrect response, while a blue color represents a correct response.

Based on the results observed in Fig. |10 and the conditional log probabilities do not correlate
with an intuitive sense of confidence. Hence, we seek to create a System 2 deliberative component
for large language models on this task that can help detect when the predictions from the BLOOM
models are likely to be wrong.
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6.2 ERROR DETECTION USING MODEL SELF-EXPLANATIONS

In the absence of effective model calibration for the spatial reasoning task in BLOOM large language
models, we create a new approach using model self-explanations for error detection in such models.
Our approach is presented in Algorithm 2]

Algorithm 2: System 2 for Spatial Reasoning in Large Language Models

Input: Facts: F, Fy, ... F,, Query: @, Model: M
Output: Yes, if response is correct. Otherwise, No.

P in < F +F Ut +F + // Concatenate the facts and query to create prompt
main 1 25 n
Rmain — M(Pmazn) // Query the model
/% Query the model again to determine its internal explanation as a sequence of the names
from left to right %/
Perprain < Prain + Rmain + “ because the list of names from left to right is ”
Rea:plain — M(Pewplain) // Query the model
/* Verify if the linear list of names is consistent with each known fact */
forie1,...,ndo
verify < “the list of names from left to right is ” + Reypiain + F; + “Thisis ”
// Verifying fact i
i %
verify — M( 'ue’rify)
. 7 . .
if R\, is True foralli € 1,...,n then
| Return Yes
Return No.

First, our approach uses a zero shot prompt P, ., and seeks a predictive response R, qin to the
spatial reasoning task from the model based on the n facts F through F),. This is illustrated in lines
1-2 of the algorithm and in the example below.

John is on the left of Robert. Thomas is on the left of John. John is on the left of Michael. Thomas is on the left of Robert. Robert is on the
left of Michael. Then, we can make a new inference that Thomas is on the left of

The BLOOM model responds by completing the query with a new inferred fact R, 4in, such as the
following. The response from the model is highlighted using red text.

Then, we can make a new inference that Thomas is on the left of Michael.

Second, our approach creates a prompt P,;p;qiy using the answer to the first prompt from the model
and asks the reason why the model believes in the response. The explanation for the earlier response
from the model is obtained in lines 3-4 of the algorithm by using a zero shot prompt of the following
form:

John is on the left of Robert. Thomas is on the left of John. John is on the left of Michael. Thomas is on the left of Robert. Robert is on the

left of Michael.
Then, we can make a new inference that Thomas is on the left of Michael because the list of names from left to right is

The BLOOM model responds by completing the query with a linear ordering of the names Rezpiain
in the earlier prompt Py piqirn. This enables us to gain an insight into the model’s view of the world
in terms of its perceived linear ordering of names.

Then, we can make a new inference that Thomas is on the left of Michael because the list of names
from left to right is Thomas, John, Robert, Michael.

The second prompt is indeed designed to elicit a structured textual explanation from the model that
reflects the model’s internal view of the stated facts using the vocabulary of the earlier prompt. Once
we have the linear ordering of names from the model, we generate n different verification prompts

Uie”. fy for the model consisting of this linear ordering Rc,pqin and one of the known facts Fj.
These prompts are expected to produce either true or false, and a representative example of such
reasoning is used to inductively bias the model.

The list of names from left to right is John, James, Thomas, Joseph. Then, James is on the right of Joseph. This is false.
The list of names from left to right is Thomas, John, Robert, Michael. John is on the left of Robert. This is
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The model responds with a decision R, ; #y as True if the linear ordering is consistent with each of

the facts stated in the original task prompt. Otherwise, the model responds False.

The list of names from left to right is Thomas, John, Robert, Michael. John is on the left of Robert.
This is true.

The model is also able to identify scenarios where its linear ordering explanation is inconsistent with
the original facts in the prompt.

The list of names from left to right is David, Charles, William, James. William is on the left of
Charles. This is false.

Our self-explanation based approach has two

interesting properties. First, the verification of ‘ ‘
the text explanation is only an O(n) linear time
operation while computing the right ordering
of n individuals requires looking at O(n!) per-
mutations. Hence, the text explanation pro-
duced by the second prompt is crucial in ef-
fectively verifying the consistency of the pre-
dicted model response. Second, our approach
only verifies that the internal view of the model
as documented in the textual explanation pro-
duced by the predicted response to the second
prompt is consistent with the original set of Figure 12: Fraction of p.redictior}s labeled as correct by
facts; it does not guarantee that the model’s re-  ©Ur System 2 approach in Algorithm [2|that are actually
sponse is indeed correct or that the model’s rea- correct.

soning during verification is correct. However, in practice, we observe that a significant fraction of
responses deemed correct by our approach are indeed correct, as shown in Figure [12}

Accuracy

USAS. AfricalndiaMorocco NZ Canada China
Country

7 CONCLUSIONS AND FUTURE WORK

While there has been significant work on evaluating explicit bias in the predictions from large lan-
guage models, we propose the automated synthesis of a spatial reasoning task that ought to be
independent of the choice of personal names. However, we find that the BLOOM large language
models are substantially influenced by the choice of personal names on this task.

Further, the beam score or conditional log probabilities of predicted tokens have very poor correla-
tion with the correctness of the model response on this task, and cannot be relied upon as a metric
for uncertainty quantification. We then suggest a new approach inspired by Kahneman’s System 2
model (Kahneman, [2011) that first seeks a textual explanation from the model in the form of a linear
ordering of the individuals, and then repeatedly queries the model to verify if this linear ordering
is consistent with the stated facts in the spatial reasoning task. We find that this approach performs
better than the log probabilities or beam scores from BLOOM models in detecting correct responses.

The analysis and observations in this paper open up several exciting directions for future research.
First, it will be interesting to compare the performance of BLOOM with other large language models
that were not designed by an international team of researchers. Since the trained weights of many
of the state-of-the-art models are not available to the public at large, such proprietary models need
similar internal auditing. Second, our work has focused on personal names, and it may be interesting
to pursue a wider study using different proper nouns, such as places and brand names. Third, our
model self-explanation and System 2 design using multiple model self-introspection steps may be
applied to other problems that can yield a succinct textual representation of the perceived view of
the world from the model.

Ethics: Our approach brings to light a potential concern with BLOOM and possibly other large
language models where their accuracy is affected by the choice of personal names, even on tasks that
are completely independent of the choice of names. By increasing the awareness of potential bias
of these large language models, we hope to motivate research into mitigation techniques and make
practitioners aware about challenges in social deployment of these models. Our self-explanation
method is one such mitigation approach.
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