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ABSTRACT

Casting complex inputs onto tractable representations is a critical step in many
fields. Differences in architectures, loss functions, input modalities, and datasets
lead to embedding models that capture diverse information of the input. Multi-
teacher distillation seeks to exploit this diversity to create richer representations
but often remains task-specific. We extend this framework by proposing a task-
oriented setting that introduces an objective function based on the majority vote”
principle. We demonstrate that the mutual information between the student and
the teachers is an upper bound for this function, providing a task-agnostic loss
for our distillation procedure. An extensive evaluation is performed in different
domains —natural language processing, computer vision, and molecular modeling
— indicating that our method effectively leverages teacher diversity to produce
more informative representations. Finally, we use our method to train and release
new state-of-the-art embedders, enabling improved downstream performance in
NLP and molecular modeling.

1 INTRODUCTION

Casting complex inputs into tractable representations is essential for many applications in differ-
ent fields, from natural language processing (L1 & Li, 2023} |Pimentel et al.l [2023)), computer vi-
sion (Kubota et al.| 2024} Bhalla et al.| [2024; [Khandelwal et al., 2022)) to bioinformatics (Morgan,
1965} [Rogers & Hahnl 2010; [Wang et al.| 2022a). This is done using embedders that project an
object (image, text, molecules,...) into numerical representations, enabling various downstream
tasks (Murphyl, 2013} |Vilnis & McCallum, 2015).

There are a variety of architectures, training settings (unsupervised, supervised, etc.), objective
functions (masked language modeling, contrastive learning, etc.), and datasets used for embedders.
Large pretrained models have recently become a natural starting point to create embedders (Che
et al., 2024; Touvron et al., 2023} [Jiang et al., [2023; Meng et al.l [2024). Every combination of
methods has its strengths and weaknesses, leading to embedders that capture slightly different infor-
mation about the input.

To leverage the diversity of these representations, a common practice is to combine them into a single
model, a process commonly known as Multi-Teacher Knowledge Distillation (Hinton et al., 2015
Zhang et al.| [2023). Not only are these methods cost-effective (Hinton et al., 2015} [Frosst & Hinton,
2017), they are also extremely useful to pack more information into smaller models from bigger
ones (Pan et al., 2022; Wang et al., 2023 Zhang et al.| 2023), or mend the weights of models whose
architectures have been altered (Muralidharan et al., 2024). However, most of these works focus
on distilling representations to solve a single task, whereas we are interested in building general
representations.

To the best of our knowledge, there are few methods that address task-agnostic representation distil-
lation in the context of multi-teacher approaches. Aiming to fill this gap, we frame the multi-teacher
representation distillation as a task-enabling problem. Our goal is to create representations that cap-
ture as much information as possible, allowing them to be useful for a wide range of tasks, even
without prior knowledge on those tasks. We propose guiding the student model to learn representa-
tions that, when applied to downstream tasks, produce predictions aligned with the majority of the
predictions obtained from the teachers’ representations. This strategy enables our method to harness
the collective knowledge of the teachers’ ensemble.
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For a given task, we formally introduce an ensembling loss that measures the agreement of the
Bayesian predictor using the student’s embeddings and the Bayesian predictors using the teach-
ers’. We then show that it can be bounded independently of the task by the conditional entropy of
the teachers’ embedding, knowing the student’s output, providing a task-agnostic student-teachers
reconstruction loss.

Contributions. Our contributions are threefold:

1. A task-enabling distillation setting. We frame the multi-teacher distillation problem in
a task-enabling setting, in which we study the relationship between the Bayes classifiers
obtained from the students and the teachers’ embeddings. We show that the conditional
entropy of the teachers given the student’s output controls the probability of the student’s
Bayesian predictor disagreeing with the teachers’ for any task.

2. A practical implementation. We leverage a recent estimator of the differential conditional
entropy in high dimension to build an end-to-end optimization framework to minimize our
task-agnostic loss.

3. High-quality embedders. We demonstrate that our method enhances distillation capabil-
ities across three application domains: computer vision, molecular modeling, and natural
language processing, and release trained students that achieve high performance on a di-
verse range of tasks.

2 RELATED WORK

Task-oriented Distillation. Knowledge Distillation (KD) is widely used for transferring knowl-
edge from one or a set of teachers to a student model (Gou et al., |2021) in order to improve the
performance of the student on a given task (Zhang et al, [2019; |Yim et al., 2017). This is typically
done by transferring logits (Sun et al., 2024); i.e. the models’ output, features (Wang et al., 2023;
Sarkar & Etemad, 2024), relational information (Dong et al. [2024; 2021)), or a mixture of them
(Liu et al., 2021a). Similarly, (Qiu et al.,|2024) use a regularization term to distill the task-relevant
information from the large teacher to the small student. We depart from these methods by focusing
on distilling task-agnostic representations.

Task oriented Multi-Teacher Distillation. A common method for multi-teacher knowledge dis-
tillation is averaging the teachers’ logits and transferring the result to the student (Dvornik et al.,
2019; Hinton et al., 2015). However, this approach is not ideal when the performance of the teach-
ers is uncertain. Alternative methods include using gate networks (Zhu et al., [2020), reinforcement
learning agents (Yuan et al., 2020), and other methods (Ma et al., 2024a}; Borza et al., 2022; Zhang
et al., 2023)) to perform teacher selection or evaluation. Due to challenges in distilling knowledge
among diverse architectures, multi-teacher knowledge distillation research mainly focuses on logit
distillation. For feature distillation, mean squared error (MSE) is the primary loss function (Gong &
Wen| [2024; [Navaneet et al.| [2022)). Other techniques were also explored, such as multi-teacher fea-
ture ensemble (Ye et al.,|2024), contrasting feature distillation (Li et al.,[2024)), and cosine similarity-
based methods for various tasks (Ma et al.| 2024b; |Aslam et al., 2024; 2023). Although successful,
most multi-teacher feature distillation methods remain oriented to only one or a few set of tasks.
These methods are also mostly applicable among teachers and students with different architectures
only with the help of an auxiliary classifier (Yang et al., 2021).

Task-agnostic features and representations distillation. To the best of our knowledge, few
works address task-agnostic representation distillation, and none in a multi-teacher setting. Some
works induce strong limitations, such as requiring the student and teachers to have the same archi-
tecture (Liang et al., 2023} Xu et al.| |2022b)), or by requiring to fine-tune the teachers to then distill
their representations (Liu et al.;|2023). Some other work induce less requirements, notably|Gao et al.
(2022) rely on vision specific data augmentation, RoB (Duval et al.| [2023) focuses on the distilla-
tion of joint-embedding approaches, and SEED (Fang et al.| [2021)) imposes both the student’s and
the teacher’s embeddings to have the same dimension. Finally, |Abbasi Koohpayegani et al.|(2020)
proposed a method (”1-q") with almost no requirements on the student’s architecture, measuring the
similarity between different embeddings to obtain logits and minimize the KL-divergence between
the student’s and the teacher’s logits. However, all of these methods focus only on the single teacher
setting. A related line of work to build more informative representations is contrastive learning (Feng
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et al.|[2024; Liu et al.; 2022} [ Xu et al.| |2022a). However, these methods jointly train the student and
the teachers or necessitate defining positive and negative pairs, which is not trivial in some domains.

Interval estimation. Most works in distillation rely on MSE or Cosine base distillation, effectively
using point estimation methods. However, it is well known in Reinforcement Learning that these
standard regression methods are difficult to train (Farebrother et al., |2024). On the other hand,
replacing traditional regression scheme by maximum-likelihood training of Gaussian kernels is more
stable (Stewart et al., 2023)) and effective in Value learning (Bellemare et al., 2017). We extend this
idea in the context of embedder distillation by using Gaussian kernels to estimate the conditional
distribution of the teachers’ embeddings given the student embedding and show that it is directly
connected to maximizing the mutual information between the student and the teacher.

3 DISTILLING REPRESENTATION THROUGH GAUSSIAN KERNELS

3.1 BACKGROUND & NOTATIONS

We suppose that every space X is a standard Borel |Crauel|(2002), equipped with its Borel o-algebra
B(X). We denote by X any random variable taking its value onto a space X, and by P(X), the set
of all probability measures over X'. Px € P(X) will refer to the induced distribution of X over X
(push-forward measure). For Px € P(X), we suppose the existence of its density function fx.

Setting. In the following, &X', will refer to the input space (data) and X ~ Px to the input distri-
bution. We suppose we have access to a dataset D = {x;} C X of inputs, i.i.d accordingly to Px,
and different teacher embedders T;, : X — R, k € {1,..., K}, that map the inputs to different
embedding spaces.

Conditional Differential Entropy (Cover & Thomas, 2006). For a random variable U, defined
on U, the differential entropy of its distribution is defined as: h(U) = — [, fu(u)log fu(u)du,
where f is the probability density of U. For two random variables U and V, taking their values on
U and V respectively, the conditional differential entropy of U given V is defined as:

h(UIV) = — /u | Fov (i, dv)log fury (ufe).

This quantity measures how predictable is U given the value the observation V. If the two random
variables are independent, then the conditional differential entropy is equal to the differential entropy
of U, in other words, knowing V does not provide any information about U.

3.2 FROM A TASK-ORIENTED SETTING TO A TASK-AGNOSTIC LOSS

Our goal is to train a representation model capable of effectively handling any downstream task, by
leveraging diverse representations from diverse pretrained teachers. To do so, we first measure the
agreement between the student’s Bayes classifier and the teachers’ for any given task. We show that
it can be bounded by the conditional entropy of the teacher’s embedding given the student’s, which
does not depend on the considered task.

Let us consider a task characterized by a target set ) of discrete concepts and the feature space X
with joint probability measure Pyx € P() x X) induced by random variables (Y,X) € Y x
X. For every projection of the features through the different teachers, we can define the Bayes
decision rule ¢, £ argmax.,.ga, .y Exy[1[e(Tr(X)) = Y]] and similarly for the student: c§ =
argmax..ga_,y Exy [1[c(S(X)) = Y]].

Our goal is to minimize the probability that the student’s Bayesian classifier behaves in a different
way than the teachers’ on each sample. This is shown to improve the performance in most of the
cases by decreasing the bias and variance of models and increasing their robustness and generaliz-
ability (Dietterich, [2000; [Scimeca et al. 2023} |Allen-Zhu & Li, [2020; [Theisen et al.,[2024). In other
words, we want to minimize the probability of the student making a different decision than each
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Figure 1: We train our embedder in an end-to-end fashion: we update both the weights of the em-
bedder and that of the Gaussian kernel (fy) to minimize the negative log likelihood of the teachers’
embedding, given the student output.
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Where the loss depends on the label’s distribution Y, through the definition of the Bayesian classi-
fiers.

We leverage previous results on the performance of the Bayes classifiers from Darrin et al.| (2024)
to bound the probability of getting a different outcome using Bayes classifiers operating on different
projections of the input space.

Proposition 1 (Darrin et al. (2024)). Let Ct, = ct, (Tx(X)) and Cs = c§(S(X)) denote the out-
come of the Bayes classifier observing the output of the teacher T, and the student S, respectively.
Pr(Cs # Cr,) < 1—exp (— h(Ti(X)[S(X))). (2)

Corollary 1 (Upper bound). By applying[Prop. 1|to[Eq. 1} for any target set Y, and label distribution
Py, we obtain the following bound:

K
L5Y,S,Ti, ..., Tr) <1—exp ( - %Zh(Tk(XﬂS(X))). 3)

k=1

Negative log likelihood

The proof of this corollary is straightforward and relies on the concavity of t — 1 — exp(—t) (see
Appendix Al).

This bound does not depend on the specific task, but only on the conditional entropy of the
teacher embeddings given the student embeddings. Thus, optimizing the student to minimize
this loss provides a task-agnostic approach to aligning the student’s Bayes classifier predictions with
the ensemble of teachers’ predictions across any downstream task.

3.3 METHOD

Estimation of the conditional entropy. To evaluate the conditional entropy of the teach-
ers’ embeddings given the student’s, we need a kernel to learn their conditional distribution
5(T1(X)|S(X)). To estimate this distribution, we use a parametric Gaussian model whose parame-
ters 11 (S(X)) and Xx (S(X)) are learned during the training of the student (Pichler et al., 2022).
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Loss function. Following the above reasoning, we propose to train the student embedder S by
simply minimizing the negative log-likelihood (estimated using Gaussian Kernels) of the teachers
given the student.

K
£(S.Ta, - Ti) = 2 D2 h(TR(X)IS(X)) @
k=1
K
~ LY Ex s N (T (X (S(0). B )
k=1

Where N (-|p, 2) is the Gaussian distribution with mean p and covariance X. In our setting, min-
imizing the conditional entropy h(Tx(X)|S(X)), exactly corresponds to maximizing the mutual
information I(T(X);S(X)) = h(Tx(X)) — h(T(X)|S(X)) since for each teacher h(T (X)) is
constant w.r.t of the student. This also applies to the bound in

Training procedure. We train both the student and the different kernels in an end-to-end fashion
by minimizing the loss function £. It boils down to minimizing the negative log-likelihood of the
teachers’ embeddings given the student’s embedding. We use the Adam optimizer to minimize the
loss function. See[Appendix F|for the detailed training algorithm.

Baselines and Evaluation. We consider two mainly used multi-teacher feature distillation meth-
ods, MSE and Cosine similarity (see for more information). To evaluate the repre-
sentations learned by the student, for each modality, we run different benchmarks evaluating its
performance on a wide variety of downstream tasks. For classification and regression tasks, we train
a small feedforward network on top of the embeddings (the backbones are considered frozen) on
different tasks and evaluate its performance.

4  VISION
4.1 EXPERIMENTAL SETTING

Table 1: Comparison of teacher and student models’ accuracy on vision modality’s tasks with or
without different distillation methods (our method (NLL), MSE (L2), Cosine).

Method | Model CIFARI0 FMNIST MNIST STL10 SVHN QMNIST KMNIST CelebA
resnet18 81.89 86.94 96.6 9298  51.01 96.89 80.43 90.82

squeezenet 79.23 86.65 97.51 85.82  47.77 97.59 84.05 61.35

densenet 87.49 88.69 96.80 97.11 6691 97.72 86.33 93.98

googlenet 81.94 86.38 96.71 93.95 55.9 97.2 79.27 92.93

NoKD shufflenet 81.61 87.57 95.77 71.51 49.08 95.96 76.97 92.42
mobilenet 81.67 88.07 96.05 9226  48.57 97.5 85.64 91.02

mnasnet 81.41 88.76 96.09 92.79  57.63 97.00 82.35 89.01
resnext50-32x4d 83.42 87.32 95.37 9597  52.87 96.65 83.37 91.74
wide-resnet50-2 84.30 87.40 95.16 9585  57.77 96.74 76.23 90.22

Cosine | resnet18 84.57 89.90 98.58 88.34  76.34 98.95 91.97 95.00
L2 | resnet18 82.90 89.75 98.25 88.15  74.84 98.61 88.21 94.89
NLL | resnet18 87.51 90.64 99.15 88.45  81.99 99.15 95.21 95.47

Teachers and evaluations. We gather general models from available models of Torchvision, in-
cluding ResNet18 (He et al., [2016), ResNext (Xie et al., |2017), WideResNet (Zagoruyko & Ko-
modakis), 2017), SqueezeNet (landola et al.l [2016), DenseNet (Huang et al., 2017), GoogLeNet
(Szegedy et al.l 2015)), ShuffleNet (Ma et al.,|2018), MobileNet (Sandler et al.l [2018)), and MNAS-
Net (Tan et al., 2019). For more information about the models, refer to

'"https://anonymous. 4open.science/r/vision-distill-2E6C
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Figure 3: Accuracy comparison between multi-teacher (red line) and single-teacher (box-plots) dis-
tillation for all available teachers on each task.
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Comparison with Single-teacher distillation. Finally, we trained the student using our approach
in a single-teacher setting to evaluate how much incorporating multiple teachers improves the quality
of the learned representationsﬂ displays the accuracy of the student distilled from different
single teachers, compared to the multi-teacher scenario. On all tasks, using multiple teachers im-
proves the performances of the student model, with the only exception of STL 10, where the student
trained with only densenet slightly outperforms our multi-teacher baseline. For the detailed results,
refer to

Vision Transformer Experiments To further evaluate our method, we experiment with Vision

Transformer teachers (Swin [2021b), DINOv2 2023), ViT (Dosovitskiy!
[2021), BEIiT and PVTv2 (Wang et al.| [2022b))). For our students, we use
ResNet18 ( 12M parameters) and PVTv2 ( 4M parameters), a relatively smaller Vision Transformer.
We performed our evaluation on DTD (Cimpoi et al} 2014), FGVCAircraft[Maji et al] (2013)), and
CUB (Welinder et al.} [2010), in addition to CIFAR10, SVHN, STL10. As shown in [Figure 2} the
distilled students achieve the best results for models of their size, except for DTD, where the original
version of PVTv2 slightly outperforms our ViT student. Detailed results can be found in[Sec. D.3]

2All students were initialized with ResNet18
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Table 2: Average rank of each model on the ADMET and HTS downstream tasks from the
TDC (Huang et all 2021) platform. Our student outperform all baselines including teachers on
average.

| Absorption Distribution ~Metabolism ~ Excretion ~ Tox  HTS | Avg

InfoGraph 13.50 13.27 13.32 11.40 1198 940 | 12.14
ChemBertMLM-10M 10.65 11.00 10.70 13.80  11.11 14.60 | 11.98
FRAD QM9 10.57 11.13 10.38 8.33 10.04 7.80 | 9.71
ChemGPT-1.2B 9.55 11.73 11.75 1073  10.86 11.20 | 10.97
GROVER 10.43 8.33 11.25 8.53 1038 11.00 | 9.99
GraphCL® 10.89 8.53 9.45 10.13 870 9.80 | 9.58
GraphLog® 11.05 7.80 9.07 10.53 8.93 14.00 | 10.23
GraphMVP(®) 7.20 6.20 7.85 9.80 749  8.80 | 7.89

MolR gat 6.95 7.60 8.30 8.53 6.49 340 | 6.88
ThreeDInfomax (¥ 417 6.00 7.58 7.13 6.16 1040 | 6.91
ChemBertMTR-77M (") 3.50 4.27 5.75 5.00 6.03 420 | 4.79
L2 | 807 6.40 5.55 6.33 755 3.00 | 6.15

Cosine | 5.51 6.13 3.60 433 497 620 | 513
student-250k 3.55 6.20 2.70 2.40 499  3.80 | 3.94
student-2M 4.40 5.40 2.75 3.00 434 240 | 3.72

5 MOLECULAR MODELING

([EDLTON16 4642 5 3823 9 92
[Pl 3 1104 4464 9 8 6682

5.1 EXPERIMENTAL SETTING ENSTIISIVENI0N30 5.8/38| 8 8.2 8.4 7.2
SIITLY 32 FOINS8 6 8 10 115

Teachers and Architecture We use 9- STVl 2 1.813.6 6.4/34 6.4 82 10 5.2
[M={a @16 22142 56 3.2 6.8 6.6 8.4 8.4

teachers trained on different modalities: VDss EEEEET 0 B0 ERIEI
SMILES (textual representation of the molec- SRV ARICW o8] 7.6 56 8 6.2 7.4 648842 12
ular graph) (Ahmad et al.,2022)), 2D molecular GICIEICN (V2.2 6 B6]6.2 6286 7 7.6 7 56
graphs (You et al. [2020; Xu et all 2021} [GIETENICH(V)MNIN08 52 6 7 86 8 |4 8

[Liu et al| 2022; Stark et al.| 2021), and 3D Averageh<EfeRgG>
34 43 44122 5 8 84 10 86 5.7
structures (Zaidi et al) [2023; [Feng et all NN .« 56152 12 7.6 10 7. 56

2023). We identify the teachers with: () such VI3 1.4 26 55 5.8 5.4 6862 7 11

as ChemBERTaMTR®), and use a 2D-GNN RRIEN -« 5> 7 464656 9 624662
(Graph Isomorphism Network: GIN Carc'g‘l’(%:"é ﬁ 682 i; 22 6%6 22 ﬁ 32 ZZ 2 i
et al., [2020)) for our student (for more details RSBl 3.2 55 5.3 5.7 6.5 5.4 76 a3 oMl T2 o
see[Sec. B.1J°) eI 6.6 360N s | 5 84 8 86 11 7.4 8.

PAMPA X 246262 11 6.4 6.8 10 7.2 5.4
IV 3 4214 5 5886 11 64 11 5 7.6 9.

Evaluation setting We evalugted all. mpd— 095442 4.4 7 7.4 7 7.6/48 8.5 0.4
els on the ADMET (Absorption, Distribu- SITEVEIEININNE 7.4 | 4 52 52)81 8.4 7.4 6.4 5.8 8.8 7.2 0.
tion, Metabolism, Excretion, Toxicity) tasks 2:1e 461221 3 7.4 54 7.4 7.2 6.6 10
of the Therapeutic Data Commons platform SGEC R © [42(6.6/58 02 11
TDC) (]m 5021) and on hich [OPIIM 1 3 32466258 6.8 7.6 9.6 9.8 11 9.8
( g - : & [O4XY Y 1 22 44 28|74 7676 11 8852 8 12
throughput screening task (HTS), (HIV QS V192 3 4 6 9466 11 925292 11
2018)). We record the test performance OTHICH T 3| 5 42033 7.4 64 95 98 72 96 11
over 5 runs (details on the evaluation procedure g}(gggg ES; i 7.819.4) 7 WEl-2 R 7.4 [ 7.2 RRY 6'8
H ». S 3 5254 8 42327349 11 9452 11
m' (OGXTVEIM3.4 4 68 7.8/ 5 5674726274 7 10
(s)
I\ 2 28 7.4 8 8.2/5.4 12 6.6
Dataset We trained our models on two Average (cls)
datasets: the ZINC-250k (Irwin & Shoichet, DD Q@ DA Q
€ 4 CTE @R B R O
2005), consisting of 250,000 samples, and a é{é};&o@ §‘2§Q@°‘2«‘%§§6 G@};@
processed version of the ZINC Clean Leads (9@5643’&\“ i&‘@?&@@ b(%@@ég’ A
dataset (Polykovskiy et all, 2018)), containing S e

2 million samples. Both are public datasets of
commercially available compounds, designed

to be used in various therapeutic projects. Figure 4: Rank of each model on molecular re-

gression and classification tasks.

*https://anonymous.4open.science/r/mol-distill-DE87
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Figure 5: Test R2 score of the students on the regression tasks, trained with all teachers, two teachers
and one teacher (”’1-BertMTR” for ChemBertMTR and ’1-3dinfo” for 3D-infomax).

5.2 RESULTS

Overall performance. We compare the performance of the student model with the teachers and
other baseline embedders on the different tasks. We report the mean rank of every model on each
category of tasks in[Tab. 2} On average, our student model outperforms all other baselines, achieving
consistent competitive results in every task category.

Consistent performance. Results (average rank) for each task are presented in Our
student model achieves the best performance on both regression and classification tasks, delivering
the most accurate predictions across a majority of tasks. This suggests that our method generates
informative representations thereby providing high-quality molecular descriptors.

Dataset size impact. Surprisingly, the performances of the student-250k™ and ”student-2M”
models are similar on average. Specifically, the student-250k model outperforms the student-2M
model on regression datasets notably, by achieving the best performances on the FreeSolv (Mobley
& Guthrie| |2014) and Lipophilicity (Wenlock & Tomkinson| 2021)) tasks. This suggests that our
method can leverage the diversity of the teachers to learn more informative representations, even
when trained on a smaller dataset of 250k datapoints.

Single teacher vs. Multi-Teachers. To assess the impact of training a student on multiple teach-
ers, we trained students to distill the knowledge of a single teacher, and two teachers. We chose
the two of the best performing baselines as teachers, ChemBERTaMTR-77M (Ahmad et al., [2022])
and 3D-infomax (Stark et al.l 2021), and trained the student model on the 2M-molecules dataset.
displays the results on regression tasks (further details in[Sec. B.4). The students trained
with a single teacher are outperformed by the student trained with the two teachers. Besides, the
student-2M trained with all teachers outperforms all these students. Training with multiple teachers
thus appears to be beneficial as it allows it to learn more informative representations.

6 NATURAL LANGUAGE PROCESSING DISTILLATION

We apply our method to text embedders in a slightly different setting than molecular representations
and vision: we focus on distilling strong and large models into significantly smaller ones. Indeed,
modern models in NLP are extremely large and costly to trairﬂ Thus, we aim to produce the best
possible models for a given weight, pushing the size/performance of the Pareto frontier (Figure 6),
and not necessarily competing with the largest models. We trained and evaluated models of 3 dif-
ferent sizes (22M, 33M and 109M) based on the snowflakes Merrick et al. (2024) embedders. We
release SOTA models for classification and clustering tasks.

6.1 EXPERIMENTAL SETTING

*nttps://anonymous.4open.science/r/NLP-MultiTeacherDistillation
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Table 3: Performance of our distilled models compared to the best models of similar sizes from the
MTEB Benchmark on classification tasks.

= k= 2
= < = =
S35 ~ g 5 2
Sp= v & S £ 98 _E8§
55 52 g8 2§ £ £ 2z 2f 2% 323
Zs §§ 5% = g 5 © O %8 28 Fz 3E¢
2 ES E3 § E T E E &5 &8 g F5g
Task Size O <& <¢ m m =S = = = =& o] v | Ave.
Model
GIST 23M | 729 872 426 842 521 785 948 7777 732 767 729 59.9 72.7
MTEB Ivysaur 23M | 72.1 86.7 42.7 819 454 80.8 92.1 719 703 749 655 58.7 70.2
XS gte-tiny 23M | 71.8 86.6 42,6 81.7 447 805 918 699 70.1 749 710 58.6 70.3
MSE Student-xs 23M ‘ 71.6 862 423 836 575 835 945 754 743 804 66.3 59.3 ‘ 729
NLL  Student-xs 23M | 765 849 424 858 580 8LI 952 799 758 804 68.1 601 | 740
bge-small-en-vl.5 33M | 73.8 92.8 47.0 857 478 90.6 934 748 748 787 699 60.5 74.1
MTEB GIST 33M | 753 932 49.7 86.7 559 895 955 79.1 755 792 728 610 76.1
s Nolnstruct 33M | 75.8 933 50.0 864 551 902 953 79.6 760 793 694 613 76.0
MSE Student-s 33M ‘ 726 903 443 842 565 888 949 772 754 812 649 60.4 ‘ 74.2
NLL Student-s 33M ‘ 773 892 438 86.7 580 883 955 819 76.7 80.7 66.1 60.6 ‘ 75.4
bge-base-en-v1.5 109M | 76.2 934 489 87.0 519 908 942 769 762 802 71.6 59.4 75.5
MTER  OIST 109M | 760 935 505 873 547 89.7 953 78.1 760 79.6 724 593 | 76.0
n e5-base-4k 112M | 77.8 92.8 46.7 835 47.0 862 937 753 73.0 777 72.1 60.4 73.8
e5-base-v2 110M | 77.8 92.8 46.7 835 470 862 93.7 753 73.0 777 72.1 60.4 73.8
MSE Student-m 109M ‘ 76.6 89.1 447 872 60.8 88.0 957 81.6 777 822 673 60.5 ‘ 76.0
NLL Student-m 109M ‘ 79.6 895 458 88.0 59.7 883 962 839 786 82.7 67.1 61.3 ‘ 76.7

Teachers and student. We select four freely

available embedding models from the Hugging- 80 . ,dus,termg -
face hub (Wolf et al} 2020) (See u w

for a detailed list of the teachers) whose eval- 5o . 1

uations are available in the MTEB bench- 0 20

mark (Muennighoff et al] 2023). To ensure o= S sTS
having a point of comparison, we select teach- o MTER 80 i L]
ers of different sizes and performances. No- ® MSE ‘

tably, SFR-Embeddings-R_2 is more than ten w0 N o

points stronger than the other three (smaller) 25 50 75 100 25 50 75 100
teachers. Model Size (M) Model Size (M)

Embedder evaluation. Evaluating NLP Figure 6: Pareto frontier in NLP. The models dis-
models is notably challenging, and the com- ftilled using our method (blue) sit on the Pareto
mon practice of evaluating a model using frontier.

multi-task benchmarks may not be indicative

of model capabilities (Liu et al} 2024). For lack of better options and because it is currently
the most widely accepted benchmark, we rely on the evaluation provided by the MTEB bench-
mark (Muennighoff et al.| 2023)) for clustering, sentence similarities and classification tasks.

Training set. We gathered different common datasets used for training embedders and collected
6 million entries from the Huggingface Hub, including Specter |Cohan et al.| (2020), T5 Ni et al.
(2021)), Amazaon QA McAuley & Leskovec|(2013)), IMDB Maas et al.|(2011), SNLI[Bowman et al.
(2015), QQP triplets from Quora, AG News Zhang et al|(2015)), MEDI dataset |Su et al.|(2023) and
the DAIL Emotion dataset[Saravia et al] (2018). We provide the dataset statistics in The
datasets are all flattened, such that if the original had two columns (e.g., sentence 1 and sentence 2
in the SNLI dataset), we end up with twice the number of entries, one for each sentence, and we
deduplicated the dataset.

Model Architecture. We use as starting points the snowflakes |[Merrick| (2024); Merrick et al.
(2024) models xs (22M), s (33M) and m (109M) and we further train them using our distillation

method (See[Sec. C.1.4).

6.2 DISTILLATION PERFORMANCE
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Task performance. Our method produces models that

o . AmazonCount.Fact. 496 78
exhll?1t strong performance on a largg variety of .tasks, AmazonPolarity |B Bt
ranking first amongst all models of similar size in the AmazonReviews [ 86 7 9
MTEB benchmark on most of the tasks (See [Figure 7). Banking77 456867
Notably, we observe that our method produces models Emotion 4586709
that are competitive for almost all the tasks, whereas Imdb B 7 (6] 7 8

o1 : MTOPDomain 4658709

other models appear more specialized. We provide the MTOPIntent R
actual accuracy of our models on classification tasks in Massivelntent s nean
!ag. EI: We provide the full results for all model sizes in MassiveScen 4560978
ToxicConv 528 7 8 6

TweetSent.Extr. 4586 89

Pareto frontier. We show in that our method zgl‘\llg. Classif
can pack more information into fixed-size models, push- e/‘;vrs)i:ﬁ)uzps T 8 B
ing the Pareto frontier between model size and down- ArxivS2S E g5 2 B
stream performance. Our models of 22M, 33M, and Reddit 5 74081 6 @ s
109M parameters all sit on the Pareto frontier, providing RedditP2P 5 48 6 I 6 7
new state-of-the-art models in their respective size cate- StackExchP2P [C] EHEREE KX 'Sl

: StackExchange 5 |4 63 6 8
gories. .

Ave. Clustering [l EHEIEIFENEIEND
Embedding space structure. As our metric only op- e\'\éﬁk"%&b@\@x&*&é L
timizes the mutual information between the student and oINS
the teachers, it does not directly enforce any structure on b@&;@’ o } SN
the embedding space. Indeed, information is invariant ,,)o)\ﬂ?;&b @& AN
through invertible transformations. Let f; and f5 be dif- S & §
B
S

ferentiable and invertible mapping function (diffeomor-
phism), then I(X;Y) = I(f1(X); f2(Y))). As a re-
sult, our objective does not enforce the preservation of Figure 7: Global ranking on clustering
the teachers’ embedding space structural properties (such  and classification tasks for our medium-
as pairwise cosine similarity). Surprisingly, we found that = sized model (109M)

while our method does not provide structural guarantees

over the embedding space of the student, it was able to re-

tain competitive performance in both clustering (Figure 7|and|Figure 6]) and STS tasks. For example,
on clustering tasks, our largest model (109M) reaches an average V-measure of 50 while the best
model achieves 53, and most models of similar sizes fall below 45. Similarly, our models remain
on par with the SOTA models in STS tasks (82.1 against 83.5 spearmann correlation). These results
are consistent across all three model sizes (See [Sec. C.2] for full results).

7 CONCLUSIONS AND FUTURE WORK

We proposed a theoretically grounded task-agnostic distillation mechanism that leverages interval
estimation through Gaussian kernels in high dimensions to distill a more informative representation
from multiple teachers to a single student. We show theoretically that our method maximizes the
mutual information and reconstructive power of the student to the teachers and experimentally vali-
date that our method is, in fact, more stable and efficient than point estimation-based multi-teacher
feature distillation methods such as MSE or cosine-based distillation mechanisms.
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A THEORETICAL RESULT

We denote X as the random variable over X that describes the input distribution. We suppose we
have access to a dataset D = {x;} C X of inputs drawn following px and different embedders
T, : X — R¥%, k€ {1,..., K}, that map the inputs to different embedding spaces. We denote
Zy = T1(X) as the random variable over R% that describes the embedding of the input distribution
in the k-th embedding space and by U = S(X) the random variable over R? that describe the
embedding of the input distribution in the student embedding space. We denote by z¥ = T (x;) the
embedding of x; in the k-th embedding space. We are interested in learning a representation that
captures the information contained in all the embeddings.

Let us consider any target set ) of discrete concepts over the feature space X with joint probability
measure Py x € P(Y x X) induced by random variables (Y, X) € Y x X.

By applying the above proposition to all the terms in[Eq. 1| we obtain the following bound on the
loss function:

Corollary 2 (Upper bound).

L£(Y,S,Ty,...,Tg) < % g:l (1 —exp (= h(TK(X)[S(X)))) (6)
1 K
<1—eXP(—E;h(Tk(X)|S(X)))- (7)
Negative log likelihood
Proof.
1 K
LY, 8, T, Ti) < 2 kz::l (1 —exp (= h(TK(X)|S(X))))

We simply rearrange the terms and use the fact that  — — exp(—=x) is concave to interchange the
sum and the exponential. O
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B MOLECULAR MODELLING

B.1 MODEL ARCHITECTURE

We trained a 10-layer GINE neural network with a 512 hidden dimension, using a
2-layer network for the message passing process. We use the atomic number of each node as input,
as well as possible chirality information, and the nature of the bond between each pair of nodes. We
use a batch size of 256 and a learning rate of le — 4 to train the model for 400 epochs on the 250k
dataset and 200 epochs on the 2M dataset. For the teacher-specific kernels, we used a 3-layer MLP
with a hidden size of 1024.

B.1.1 CHOSEN TEACHERS

The teachers used to train our molecular modeling students are summed up in[Tab. 4 We gathered
various representation models for molecular modeling, with different pre-training objectives, input
modalities, architectures, and training datasets.

Model name | SMILES | 2D-GNN | 3D-GNN | Architecture  Out size Dataset (size)
GraphCL v GIN 300 GEOM {aselrod & G 02| (50k)
GraphLog|xu v GIN 300 GEOM (axelrod & Go 022] (50K)
GraphMVP{Liu et at. pooaf v GIN 300 GEOM {axelrod & Go 022| (50k)
3D-infomax(stirk et al. 12021 v PNA 800 QMugs {isert etal.f2021] (620k)

ChemBERT MTR{ammacraifoncf | v | \ | RoBERTa 384 PubChem [kimerat 2022 (SM, 10M, 77M)

3D-denosing{zaidi e at. 2023 v TorchMD-net 256 PCQM4MyV2{hu etat f2021{(3.7M)
3D-fractional(Feng etal. 12023 v TorchMD-net 256 PCQM4Mv2(Hu et al. (3.7M)

Table 4: Description of all teachers used in our experiments.

B.1.2 ARCHITECTURE INFLUENCE

GIN-student GIN-student GIN-student

name

—— GINE-student

—— GAT-student
split

— train

-=- val

GIN-student

name
GCN-student
—— TAG-student
—— SAGE-student
—— GIN-student
split
— train
-—- val

Train Loss

2.2

—nl 2.0

- SR iF
l-:ﬂ:"-'_':'.f: S

1.8

1.6
0 100 200 300 400 O 100 200 300 400 O 100 200 300 400
Epoch Epoch Epoch

Figure 8: Training loss of different students using different GNN architectures on the ZINC-250k
dataset.

shows the training loss of the student model with different GNN architectures on the
ZINC-250k dataset. In particular, we compared the GINE architecture with a Graph Convolutional

"Models aiming at incorporating 3D information into 2D-GNNs models.
>We used the three versions of ChemBERT-MTR models trained on 5M, 10M, and 77M.
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Network (GCN) (Morris et al., 2021), a Graph Attention Network (GAT) (Brody et al.l 2022)), a
GraphSAGE (SAGE) (Hamilton et al.,|2018)), a Toplogy Adaptative Graph Convolutional Network
(TAG) (Brody et al., [2022)), and a GIN Network, that separates from the GINE architecture by the
fact that it does not take edge features into account (Xu et al. [2019). We observe that the GINE
architectures outperform the other architectures, with a lower training loss, a faster convergence,
and a lower validation loss. The Graph attention network (GAT) is the second best performing ar-
chitecture, but it is still outperformed by the GINE architecture. These two architectures are the only
ones to use the edge embeddings in the message passing process, which could explain their better
performance.

Indeed, all other architectures perform worse, especially when considering their validation loss com-
puted on 10% of the training set. Specifically, the GIN architecture, not using edge feature, performs
significantly worse than the GINE architecture, while having a similar architecture.

For our experiments, we decided to use the GINE architecture, as it performs the best during training
and converges faster than the other architectures.

B.2 KERNEL’S PREDICTIVE POWER

Our method relies on teacher-specific

heads to distill the knowledge of each oss Pl i e i
teacher. In this section, we wish to eval- Ve T w1
uate the impact of the choice of these 0% 00 08 Y
kernels and their predictive power (in H MERG (k) TORL gy e
terms of depth) on the performance and os0 § L4 oo bo—q omfd o o) o—4
training of the student model. 079 oo 00 owrs |
CYP2C9 Carcinogens Pgp CYP1A2

We performed this experiment with ker- 1 oss 004 |
nels of depth 2, 3, and 5, and we trained 05 B g o e TS = —— Bl i |
the student model with these kernels on 0800 ors 050 oo
the ZINC-250k dataset and evaluated the crpecis SR oo L el
performance of the student model on the 0885 g ] ow ¥ ~—q ‘P po——gq 00 L S
ADMET and HTS downstream tasks. w7 s 086 oo

o PPBR Clearance (M) HIA Caco2
First, during the training, as expected, % 045 0075 L 4
the more powerful the kernel, the lower < Zz: T4 et ] e w on P94
the training loss is (see [Figure 9), even — vr e e
though the difference is significant, es- 07 00 0.90 s
pecially between the students using ker- $o-—9 Do . 92 am 4 LT
nels of depth 3 and 5. Overall, the per- o 075
formances of each student on the down- Gt vkusvsiti e S RO e
stream tasks are similar, underlining the Lo e oot~ I S s W
robustness of our method regarding the 086 o 0725
choice of the kernel’s depth (see CYP3A4 (s) CYP2D6 (s) Clearance (H) Lipophilicity
jure T0). For our experiments in the 065 b o0 L4 OB o l )|
main paper, we used a kernel of depth 3, - I S 4 ol0 P=T=—F om ‘
as it enables the best trade-off between P 2 4 R 2 4
Computational Complexity, and training n_cluster n_cluster n_cluster n_cluster
convergence while providing competi-
tive results on the downstream tasks. Figure 10: Test AUROC/R? score of the students on

the classification/regression tasks, trained with different
kernel-size on the ZINC-250k dataset.
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Figure 9: Training loss of the student model along the training with different kernel-size on the
ZINC-250k dataset.

B.3 EVALUATION DETAILS
B.3.1 BENCHMARK CHOICE

We selected a total of 32 tasks, extracted from Table 5: Tasks extracted from the Therapeutic
the Therapeutic Data Commons (Huang et al, Data Commons platform considered in our exper-
2021) platform, 8 absorption tasks, 3 distri- iments.

bution tasks, 8 metabolism tasks, 3 excretion

tasks, 9 toxicity tasks and 1 high-throughput Category Model Task | cls reg
screening task. A summary of the tasks con- P-glywpro;eiln Inhibition ;;zlé v ,
. . . . AgSolDB
sidered can be found in with their Lipaphilicity 2200 v
corresponding size (total number of samples) Absorption Caco-2 Permeability 906 v
and type (classification or regression). For all Human l“;f:‘e‘:éflVAbsorP“O“ ZE v y
tasks, we computed 5 conformations for each PAMPA Permeability 2035 | v
molecule, and used the least energetic as an in- Oral Bioavailability 640 | v
put of our 3D models. Plasma-Protein BDR 1614 v
Distribution Blood-Brain barrier 1975 v
VDss 1130
B.3.2 EVALUATION PROCEDURE CYPP450 3A4 Inhib. 12328 | v
CYPP450 1A2 Inhib. 12579 | v
. CYPP450 2C19 Inhib. 12665 | v
Fpr every tasl.<, We.opted for a random split Metabationm CYPP450 2C9 Inhib. 12002 | v
since we obtained similar results to a scaffold : CYPP450 2D6 Inhib. 13130 | v
split, with a faster computation time, with a ra- gggﬁg ggg gﬁgzgztg 22‘7‘ j
tio of 70/10/20 for the train/validation/test sets. CYPP450 2C9 Substrate 666 | v
For all tasks, we compute the embeddings gen- Clearance hepatocyte 1020 v
erated by each model on the task. We then train Excretion a Half Life ]6]6072 5
a 2 layer perceptron with a hidden size of 128 earan: n;crosome T
on the task for min(100, 200 * -22%0_) epochs o .
. o task size X hERG 13445 | v
(to limit the compute time on large tasks) with a 648 | v
: o Acute Toxicity LD50 7385 v
learning rate of 16. 3. We then.self?ct the best Toxicity Ames Mutagenicity 158 | v
checkpoint according to the validation perfor- ClinTox 1484 | v
mances and report the test metrics of this check- Carcinogens 218 | v
. Drug Induced Liver Injury 475 v
pOlIlt. Skin Reaction 404 v
HTS HIV 40000 | v/

B.3.3 EVALUATION METRICS

We repeat this process five times with different
seeds in the train-val-test splits in order to enable the establishment of robust rankings using au-
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torank 2020). We decided to report the ranks of the models to enable the comparison of
the models on both classification and regression by simply averaging the rank. To compute the rank
on all tasks, we rely on the AUROC score for classification tasks and the R? score for regression
tasks. For the excretion tasks, since the regression labels have a large variance, we decided to apply
the regression on the log-values and report the R? score on the log-values.

B.4 SINGLE-TEACHER SETTING

To assess the impact of the multi-teacher setting on the performance of the student model, we trained
students to distill the knowledge of a single teacher. We used only the two best performing teachers,
3D-infomax (Stirk et al., 2021)) and ChemBERTaMTR (Ahmad et al 2022), to train the student
model on the 2M datapoints dataset. We also train a student with both teachers, to see if those two
teachers are sufficient to achieve the same performance as the models we presented in the core of
the paper.

shows how these students underperform compared to a student trained with all teachers,
in terms of AUROC for classification tasks and R? for regression tasks respectively. These tables
also show that the student trained with both teachers performs better than each student trained with
only one teacher.
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Figure 11: Test AUROC/R? score of the students on the classification/regression tasks, trained
with all teachers (student-2M), two teachers (2-Teachers) and one teacher (1-ChemBertMTR for the
model trained with ChemBertMTR-77M and 1-teacher-3dinfomax for the model trained with 3D-
infomax).

B.5 COMPREHENSIVE RESULTS

The following tables provide the raw results of the different evaluated models on the ADMET and
HTS downstream tasks. [Tab. 6] and [Tab. 7] display the test performances of the models on the
classification and regression tasks respectively. All regression tasks are evaluated using the R?
score, while the classification tasks are evaluated using the AUROC score. We report the mean
values of the metrics over 5 runs for each task, as well as the standard deviation.

We display in the evolution of the average rank of the embedders when separating the
tasks based on the amount of samples, and the class imbalance (for classification tasks). Our student
appears robust in both setups, even though as the class imbalance becomes more important, or as
the amount of samples in the task decreases, the difference between the top-performing embedders
becomes less significant.
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AUROC of each model on the ADMET and HTS downstream classification tasks. The best

Table 6

embedder for each task is highlighted in bold and underlined, and the second best is highlighted in

bold.
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Table 7: R? score of each model on the ADMET downstream regression tasks. The best embedder
for each task is highlighted in bold and underlined, and the second best is highlighted in bold.
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Figure 12: Average ranking of our models when grouping tasks based on the number of samples in
the task and the class imbalance (for classification tasks).

C NATURAL LANGUAGE PROCESSING

C.1 TRAINING SET AND HYPERPARAMETERS
C.1.1 TRAINING SET

Dataset sources. We ran experiments with two training sets a home-made dataset combining dif-
ferent training sets of different embedders and the GISTEmbed dataset. We provide the statistics of

our dataset in[Tab. §]and the GISTEmbed dataset is described in[Solatorio| (2024).

Dataset construction. Most embedding datasets consists of positive and negative samples, ques-
tions and answers, or sentences and their labels. We flattened the datasets to have only one column
of sentences and deduplicated the dataset. For the MEDI dataset for example, given query, posi-
tive and negative samples we build a dataset with three times the number of entries, one for each
sentence. We then deduplicated the dataset to remove any duplicate entries.

Table 8: Number of samples in each dataset

Number of samples

URL

https://huggingface.co/datasets/embedding-data/SPECTER 190872
https://huggingface.co/datasets/embedding-data/Amazon-QA 3264474
https://huggingface.co/datasets/embedding-data/simple-wiki 203755
https://huggingface.co/datasets/embedding—-data/QQP_triplets 328188
https://huggingface.co/datasets/embedding-data/sentence-compression 356409
https://huggingface.co/datasets/embedding-data/altlex 223901
https://huggingface.co/datasets/fancyzhx/ag_news 120000
https://huggingface.co/datasets/stanfordnlp/sst2 67349
https://huggingface.co/datasets/dair-ai/emotion 416809
https://huggingface.co/datasets/stanfordnlp/snli 1100304
https://huggingface.co/datasets/cardiffnlp/tweet_eval 45000
https://huggingface.co/datasets/stanfordnlp/imdb 25000

6342061
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Table 9: Performance of the 4 teachers we used and of the base students. Experiments with single
teacher distillation were performed with the stronger teacher SFR-Embedding-2_R.
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SFR-Embedding-2_R 7111.0 | 927 97.3 61.0 90.0 934 968 98.6 913 86.0 90.6 91.1 79.7 89.0
Teacher stella_en_400M_v5 4350 | 924 972 595 893 788 965 988 923 852 89.6 869 73.6 86.7
UAE-Large-V1 3350 | 755 928 483 877 51.8 928 940 769 765 798 71.1 59.8 75.6
sf_model_e5 3350 | 70.8 91.8 489 846 549 931 93,6 660 735 774 712 61.5 74.0
snowflake-arctic-embed-m  109.0 | 76.8 82.8 389 803 465 741 927 652 669 728 649 56.7 68.2
Student (Base) snowflake-arctic-embed-s 33.0 712 788 383 79.1 458 695 909 586 648 700 620 589 65.7
snowflake-arctic-embed-xs 23.0 65.1 700 353 764 418 628 90.8 580 635 71.0 643 56.2 62.9

C.1.2 TEACHERS AND BASED STUDENTS PERFORMANCE

Teachers. We selected 4 teachers from the MTEB benchmark [Muennighoff et al.| (2023) as teach-
ers for our distillation method. We provide the list of the teachers and their performance in
The 4 teachers of widely different sizes (335M, 435M and 7B) have display strong but different
performances on the MTEB benchmark.

C.1.3 SINGLE TEACHER DISTILLATION

Single teacher vs. Multi-Teachers. Since some teach-
ers yield strong performance on their own, distilling only 80
from the strongest could yield similar results as the multi-

teacher setting involving weaker teachers. We applied L _ WherelsAl/UAE Large V1
our method in a single-teacher setting using the strongest e T AT N
teacher by far (SF-Embeddings-R_2) as a teacher and
compared the results to the multi-teacher setting. Con-
sistently with results in computer vision and molecular

~
w

Accuracy
~
o

representations, we found that adding weaker teachers did 65

improve our results (Figure 13), supporting our hypothe- 82T T~

sis that enforcing reconstruction capabilities for a diver- ]
. . . . -Single

sity of models indeed leads to more informative represen- Training method

tations.

Figure 13: Comparison of distilled
C.1.4 HYPERPARAMETERS small model with the performance of
the initial backbone, baselines in the
Training hyperparameters. We trained our models us- MTEB, with our teachers’ performance.
ing the Adam optimizer with a learning rate of 5.107°
and an effective batch size of 2048 for all our models us-
ing different number of accumulation steps and batch size
depending on the models’ sizes. We did not use any learn-
ing rate scheduler.

C.2 DETAILED EVALUATION RESULTS

We ran different parts of the MTEB benchmarks and report the overall results for all our models in
this section.

C.2.1 EVALUATION ON CLASSIFICATION TASKS

Small models’ performance. In[Tab. 10| and [Tab. 11| we provide the classification accuracy of
our distilled models on the MTEB classification benchmark for our smaller models xs (22M) and
s (33M). Our smallest model significantly improves SOTA performance for models of its size by
increasing the average score of 2 points compared to the previous best model.
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Table 10: Performance of our distilled models compared of models of similar

parameters from the MTEB Benchmark on classification tasks.

sizes 16M to 30M
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Model
GIST 23M | 729 872 426 842 521 785 948 77.7 732 767 729 599 72.7
Bulbasaur 17M | 719 788 393 80.6 44.8 71.5 908 687 688 738 663 59.5 | 679
Ivysaur 23M | 72.1 86.7 427 819 454 808 92.1 719 703 749 655 58.7 70.2
Squirtle 16M | 69.6 82.1 419 67.1 458 750 873 547 615 67.0 645 61.8 64.9
Venusaur 16M | 73.2 80.0 39.7 78.0 444 73.0 899 710 678 724 644 59.7 67.8
Wartortle 17M | 704 820 424 71.1 468 746 882 549 623 682 652 625 65.7
gte-micro 17M | 68.8 77.1 409 69.6 462 622 86.7 49.7 59.0 66.6 66.1 60.8 62.8
MTEB gte-micro-v2 17M | 714 777 39.0 804 445 706 90.5 675 685 735 66.7 59.3 67.5
gte-micro-v4 19M | 71.8 80.0 39.8 809 449 720 909 685 69.1 742 66.0 59.4 68.1
snowflake-arctic-embed-xs 23M | 651 70.0 353 764 418 628 90.8 580 635 710 643 562 62.9
bge-micro 17M | 66.3 754 358 80.6 425 707 90.2 680 678 73.0 69.2 56.7 66.3
bge-micro-v2 17M | 67.8 798 375 812 445 765 90.7 683 68.6 739 702 57.6 | 68.0
gte-tiny 23M | 71.8 86.6 42.6 81.7 447 805 91.8 699 70.1 749 710 58.6 70.3
slx-v0.1 23M | 61.5 643 303 80.0 405 61.8 920 633 679 739 621 540 | 62.6
multi-qa-MiniLM-L6-cos-vl 23M | 61.8 624 29.6 78.6 39.6 612 90.0 59.6 668 738 65.1 51.6 61.7
all-MiniLM-L6-v2 23M | 63.6 643 309 80.0 40.8 61.8 91.7 615 669 738 621 540 | 62.6
MSE Student-xs 23M | 71.6 862 423 83.6 575 835 945 754 743 804 663 59.3 729
NLL Student-xs 23M | 765 849 424 858 58.0 B8I.I 952 799 758 804 681 60.1 | 74.0

Table 11: Performance of our distilled models compared of models of similar sizes 30M to S0M
parameters from the MTEB Benchmark on classification tasks.
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bge-small-en-v1.5 33M | 738 928 47.0 857 478 90.6 934 748 748 787 699 605 | 74.1
GIST 33M | 753 932 497 867 559 89.5 955 79.1 755 792 728 610 | 76.1
snowflake-arctic-embed-s 33M | 712 788 383 79.1 458 69.5 909 58.6 648 700 620 589 | 65.7
bge-small-4096 35M | 68.8 813 38.6 80.0 40.1 80.1 904 665 676 735 693 576 | 67.8
Nolnstruct-small-Embedding-v0  33M | 758 933 50.0 86.4 551 902 953 79.6 76.0 793 694 613 | 76.0
MTEB LASER 43M | 76.8 61.0 287 57.8 248 57.6 754 495 479 559 540 48.7 53.2
e5-small 33M | 762 875 426 819 469 755 920 732 722 758 728 633 71.7
e5-small-v2 33M | 77.6 913 459 816 47.1 86.0 927 726 716 764 7.1 615 | 729
jina-embedding-s-en-v1 35M | 64.8 643 306 746 36.1 587 888 586 647 718 594 543 | 60.6
jina-embeddings-v2-small-en 33M | 714 829 409 782 440 73.6 940 725 676 698 715 594 | 68.8
all-MiniLM-L12-v2 33M | 653 630 30.8 804 412 598 919 628 672 746 675 54.2 63.2
gte-small 33M | 732 91.8 48.0 84.1 46.6 868 930 697 703 756 703 582 | 723
MSE Student-s 33M | 726 903 443 842 565 888 949 772 754 812 649 604 | 742
NLL Student-s 33M [ 773 892 438 867 58.0 883 955 819 767 807 66.I 606 | 754
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Table 12: Performance of our distilled models compared of models of similar sizes 100M to 120M
parameters from the MTEB Benchmark on classification tasks.
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bge-base-en-v1.5 109M | 76.2 934 489 87.0 519 90.8 942 769 762 802 716 594 | 755
GIST 109M | 76.0 935 50.5 873 547 89.7 953 781 760 79.6 724 593 | 76.0
bilingual-embedding-small 118M | 743 822 402 803 40.8 737 897 665 689 745 625 596 | 678
multilingual-e5-small 118M | 73.8 887 447 794 425 808 91.1 711 703 745 694 626 | 70.7
snowflake-arctic-embed-m 109M | 76.8 828 389 803 465 741 927 652 669 728 649 567 68.2
snowflake-arctic-embed-m-v1.5 109M | 683 903 463 80.0 437 844 914 606 66.7 73.1 66.8 539 68.8
ml-nlp-elser.htm] 110M | 742 619 321 820 46.6 650 932 71.1 685 750 682 53.6 65.9
e5-base-4k 112M | 77.8 928 467 835 470 862 937 753 730 777 721 60.4 73.8
instructor-base 110M | 86.2 884 44,6 77.0 51.8 812 937 703 675 726 718 633 72.4
bert-base-uncased 110M | 742 713 33,6 634 353 653 826 68.1 599 643 700 518 61.7
e5-base 109M | 79.7 88.0 42,6 833 494 760 932 748 722 768 741 614 72.6
e5-base-v2 110M | 77.8 928 46.7 835 47.0 862 937 753 730 717 721 604 | 73.8
MTEB jina-embedding-b-en-v1 110M | 66.7 67.6 312 84.1 447 639 915 728 711 762 662 569 | 66.1
contriever-base-msmarco 110M | 722 68.6 374 80.0 448 67.0 932 693 678 760 678 56.1 66.7
sup-simese-bert-base-uncased 110M | 758 825 39.6 758 448 735 843 63.1 660 70.8 720 59.7 67.3
unsup-simcse-bert-base-uncased 110M | 67.1 745 339 735 422 69.6 81.7 592 598 662 688 534 | 62.5
all-mpnet-base-v2 110M | 650 67.1 314 817 422 712 919 683 698 757 61.0 550 | 650
allenai-specter 110M | 58.7 578 263 66.7 248 564 745 500 51.7 586 574 455 524
gtr-t5-base 110M | 693 67.8 385 793 422 66.0 924 624 670 754 66.6 56.0 65.3
msmarco-bert-co-condensor 110M | 64.1 669 349 823 419 602 913 71.1 704 737 640 557 64.7
paraphrase-multilingual-MiniLM-L12-v2  118M | 71.5 692 351 798 423 605 87.0 655 669 715 60.1 56.1 63.8
sentence-t5-base 110M | 75.8 85.1 449 765 514 773 903 633 69.7 723 682 627 69.8
text2vec-base-multilingual 118M | 71.0 66.1 33.1 781 434 594 81.0 628 638 670 660 552 62.2
Angle_BERT 109M | 779 76.0 372 755 452 688 854 645 663 706 67.1 57.6 66.0
gte-base 109M | 742 91.8 49.0 85.1 486 86.0 930 720 715 764 716 57.0 | 73.0
ALL_862873 118M | 50.8 52.6 22.6 364 228 508 61.0 297 343 441 549 408 | 417
MSE Student-m 109M [ 766 89.1 447 872 60.8 88.0 957 816 777 822 673 605 | 76.0
NLL Student-m 109OM | 796 895 458 88.0 59.7 883 962 839 78.6 827 671 613 | 767

C.2.2 EVALUATION ON SIMILARITY AND CLUSTERING TASKS

Limited structure of our embedding spaces. Our method only seeks to pack as much (statistical)
information into the embeddings as possible without any constraints on the underlying structure
of the embedding space. It is therefore not surprising that methods that relies on metrics on the
embedding space such as similarity tasks do not perform as well as the classification tasks. However,
our embedder are still competitive on these tasks achieving average performance for their respective
size categories.

Clustering with very small model. In we show that our very small model actually out-
performs baselines and sits on the pareto frontier for clustering tasks. This is a surprising result as
we did not optimize our models for clustering tasks and the embeddings are not designed to have a
meaningful structure.

D VISION

D.1 TRAINING SET

presents the statistics, i.e. the number of training and testing samples, of the datasets we
used for vision. We use the official train sets of the datasets for the knowledge distillation part.
We split the official training part to train and validation set with 80 and 20 percents of the data,
consequently. The transformation we used on the input image was only a resize transformations to
a (225, 225) image. For training the distillation, we extract the embeddings of the train set of each
dataset, for each teacher and divide the embeddings to 80 train set and 20 percent validation set.

D.2 MODEL ARCHITECTURE

The models we used for vision as teachers and student are presented in [Tab. 19| including the
number of parameters of each of them. For the distillation we use Adam optimizer, with learning
rate of 0.001, a batch size of 128, trained for 50 epochs. For fine-tuning for down-stream tasks,
we add a two layer fully connected classifier on the frozen embedders, with the first one having the
same input dimention as the output dimension, with a leaky ReLU activation function in between.
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Table 13: Performance of our distilled models compared of models of similar sizes 16M to 30M
parameters from the MTEB Benchmark on clustering tasks.
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Model

Bulbasaur 17M 40.3 31.1 51.4 459 30.7 52.2 39.4 41.6
Ivysaur 23M | 46.4 354 56.0 475 33.6 53.9 40.8 44.8
Squirtle 16M | 33.0 24.7 43.7 31.4 29.2 39.2 28.2 32.8
Venusaur 16M 31.8 21.1 44.1 26.7 27.5 32.8 26.1 30.0
Wartortle 17M | 358 27.3 46.1 359 29.9 453 31.7 36.0
gte-micro 17M | 352 31.1 47.9 45.6 30.1 52.6 40.8 40.5
gte-micro-v4 19M 429 32.5 53.6 48.3 319 55.1 41.4 43.6
MTEB snowflake-arctic-embed-xs 23M 43.5 32.1 57.8 48.3 34.6 57.5 36.3 44.3
bge-micro 17M 44.6 34.5 54.5 453 34.7 53.1 39.4 43.7
bge-micro-v2 17M | 445 332 55.2 455 34.1 54.5 40.2 439
gte-tiny 23M | 46.6 36.0 56.5 50.2 35.7 57.5 433 46.6
GIST-all-MiniLM-L6-v2 23M 45.3 35.5 48.7 44.1 339 53.1 41.1 43.1
slx-v0.1 23M | 46.5 37.7 54.8 50.7 342 53.1 46.5 46.2
multi-qa-MiniLM-L6-cos-vl  23M 37.8 27.7 51.0 46.3 334 48.1 40.8 40.7
all-MiniLM-L6-v2 23M | 46.5 379 548  50.7 343 53.1 46.5 46.3
rubert-tiny-turbo 29M | 24.8 16.7 40.5 26.3 28.0 335 19.9 27.1
MSE Student-xs 23M 424 30.9 55.2 49.2 32.7 53.5 419 43.7
NLL Student-xs 23M | 452 339 581 521 331 59.9 443 46.7

Table 14: Performance of our distilled models compared of models of similar sizes 30M to S0M
parameters from the MTEB Benchmark on clustering tasks.
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bge-small-en-v1.5 33M | 474 40.0 60.6  52.3 353 60.8 485 | 493
snowflake-arctic-embed-s 33M 44.9 359 60.5 50.5 34.0 60.7 38.3 46.4
bge-small-4096 35M | 43.9 29.6 543 437 333 51.8 36.6 | 41.9
GIST-small-Embedding-v0 33M | 47.6 39.9 60.6 555 36.2 61.9 50.0 | 50.2
Nolnstruct-small-Embedding-v0  33M 47.8 40.1 61.2 55.4 36.6 62.0 49.9 50.4
MTEB e5-small 33M 44.1 37.1 57.2 433 30.8 59.6 37.6 443
e5-small-v2 33M | 421 34.8 597 457 32.0 58.5 411 | 448
jina-embedding-s-en-v1 35M | 342 24.0 499 380 31.5 46.4 344 | 369
jina-embeddings-v2-small-en 33M | 44.0 35.2 57.1 49.3 34.4 55.4 41.6 453
all-MiniLM-L12-v2 33M | 46.1 375 548 512 33.1 53.0 475 | 462
gte-small 33M | 479 40.3 614 556 36.3 62.6 50.0 | 50.6
MSE  Student-s 3BM | 43.1 333 571 50.8 323 55.7 28 | 45.0
NLL  Student-s 33M | 459 352 603 519 323 615 451 | 474
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Table 15: Performance of our distilled models compared of models of similar sizes 16M to 30M
parameters from the MTEB Benchmark on STS tasks.
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Model

Bulbasaur 17M | 85.0 760 695 810 77.1 854 823 88.0 64.1 833 | 79.2
Ivysaur 23M | 87.3 756 68.6 805 776 862 828 88.6 674 842 | 799
Squirtle 16M | 71.8 773 702 784 748 82.0 783 858 612 792 | 759
Venusaur 16M | 77.6 747 544 742 70.0 757 737 848 626 767 | 724
Wartortle 17M | 80.8 782 752 793 76.6 847 814 86.6 634 81.8 | 78.8
MTEB snowﬂgke—arctic—embed—xs 23M | 840 693 659 779 728 835 80.6 845 663 792 | 764
bge-micro 17M | 834 724 719 809 76.6 849 80.7 856 659 813 | 784
bge-micro-v2 17M | 829 736 719 79.8 769 848 819 86.8 654 825 | 787
gte-tiny 23M | 86.6 758 726 824 780 86.5 833 883 66.7 844 | 80.5
GIST-all-MiniLM-L6-v2 23M | 81.3 79.1 750 833 78.6 87.0 83.0 874 68.1 844 | 80.7
multi-qa-MiniLM-L6-cos-vl 23M | 79.8 70.0 644 764 693 802 79.6 812 655 76.0 | 742
all-MiniLM-L6-v2 23M | 81.6 776 724 806 756 854 79.0 87.6 672 820 | 789
MSE Student-xs 23M | 76.8 79.2 722 803 759 850 83.0 87.1 664 829 | 789
NLL Student-xs 23M | 788 77.8 716 802 770 858 828 893 658 835 ] 793

Table 16: Performance of our distilled models compared of models of similar sizes 30M to S0M
parameters from the MTEB Benchmark on STS tasks.
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bge-small-en-v1.5 33M | 838 794 774 830 81.8 873 849 872 653 859 816
snowflake-arctic-embed-s 33M | 86.3 69.7 688 79.6 756 846 824 867 69.5 812 | 784
bge-small-4096 35M | 81.6 742 722 805 762 852 819 866 655 819 786
GIST-small-Embedding-v0 33M | 870 805 756 863 823 887 853 89.0 68.5 87.1 | 83.0
Nolnstruct-small-Embedding-v0  33M | 87.2 803 758 86.1 823 889 852 887 685 87.0 | 83.0
MTEB e5-small 33M | 842 789 752 818 785 875 846 879 638 864 | 809
e5-small-v2 33M | 794 785 762 824 790 878 838 877 63.1 860 | 804
jina-embedding-s-en-v1 35M | 830 763 743 785 738 837 800 875 642 792 | 78.1
jina-embeddings-v2-small-en 33M | 80.5 767 737 833 792 873 836 882 635 84.0| 80.0
all-MiniLM-L12-v2 33M | 83.6 793 73.1 821 767 856 802 886 657 83.1| 798
gte-small 33M | 882 779 751 851 810 883 839 876 680 856 | 82.1
MSE _ Student-s 3B3M | 789 795 706 79.7 754 841 818 867 666 83.1]| 786
NLL  Students 33M | 815 793 730 814 782 863 842 900 660 84.8 | 80.5
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Table 17: Performance of our distilled models compared of models of similar sizes 100M to 120M
parameters from the MTEB Benchmark on STS tasks.
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bge-base-en-v1.5 109M | 869 803 78.0 842 823 88.0 855 864 660 864 | 82.4
bilingual-embedding-small 118M | 84.0 747 794 853 839 885 844 858 672 86.1 | 81.9
multilingual-e5-small 118M | 823 775 766 770 755 87.1 836 864 609 840 | 79.1
snowflake-arctic-embed-m 109M | 86.6 69.1 67.0 79.1 685 799 787 815 658 74.1 | 750
snowflake-arctic-embed-m-v1.5 109M | 864 699 61.8 827 690 755 773 750 69.1 69.7 | 73.6
GIST-Embedding-v0 109M | 88.0 813 762 87.8 834 894 853 886 67.8 873 | 83.5
ml-nlp-elser.html 110M | 83.8 68.8 64.8 80.1 750 83.7 805 857 675 795 | 769
e5-base-4k 112M | 814 783 758 836 80.0 88.8 845 876 64.1 86.5 | 81.0
instructor-base 110M | 823 803 77.0 86.6 813 882 849 895 665 864 | 82.3
bert-base-uncased 110M | 547 58.6 309 599 477 603 637 641 564 473 | 544
e5-base 109M | 85.1 79.7 742 833 785 883 842 872 629 86.2 | 81.0
e5-base-v2 110M | 814 783 758 83.6 800 888 845 876 64.1 865 | 81.0
MTEB jina-embedding-b-en-v1 110M | 83.6 79.1 75.1 809 76.1 855 812 89.0 662 826 799
contriever-base-msmarco 110M | 833 702 643 80.0 745 833 79.7 863 646 788 | 76.5
sup-simcse-bert-base-uncased 110M | 684 80.8 753 847 802 854 808 894 620 842 | 79.1
unsup-simcse-bert-base-uncased 110M | 723 722 66.0 815 736 79.7 78.1 83.6 59.6 765 | 74.3
all-mpnet-base-v2 110M | 804 80.6 72.6 835 780 857 800 90.6 68.0 834 | 80.3
allenai-specter 110M | 65.0 564 625 587 549 625 643 69.6 551 613 61.0
gtr-t5-base 110M | 79.0 715 68.6 79.1 746 848 8l.6 858 662 79.6 | 77.1
msmarco-bert-co-condensor 110M | 77.3 72.0 682 804 740 826 79.8 859 675 77.0 | 76.5
paraphrase-multilingual-MiniLM-L12-v2  118M | 742 79.6 76.0 80.7 788 858 81.0 86.9 62.1 844 | 79.0
sentence-t5-base 110M | 759 802 78.0 858 822 875 840 89.6 627 855 ]| 8l.1
text2vec-base-multilingual 118M | 66.2 80.0 809 829 874 883 816 858 63.0 865 | 80.2
gte-base 109M | 87.6 789 757 857 815 888 838 879 673 857 | 823
ALL-862873 118M | 21.3 485 556 184 288 292 39.0 612 445 444 39.1
MSE Student-m 109M | 834 809 745 82.8 790 86.6 852 884 664 852 81.2
NLL Student-m 109M | 852 802 752 834 804 883 860 899 662 864 | 82.1
Table 18: Number of training and testing samples in each vision dataset
Dataset Number of training samples Number of test samples
CIFAR10 Krizhevsky et al.| (2009) 50000 10000
FashionMNIST Xiao et al.|(2017) 60000 10000
MNIST |Deng| (2012) 60000 10000
STL10Coates et al.| (2011) 5000 8000
CelebA [Liu et al.[(2015) 162770 19962
SVHN Netzer et al.|(2011) 73257 26032
QMNIST |Yadav & Bottou (2019) 60000 60000
KMNIST [Clanuwat et al.|(2018)) 60000 10000
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Table 19: Number of parameters for each model (in million parameters)

Model Number of

Swin (Liu et al.| 2021} 87.7TM

DINOvV2 (Oquab et al.| {2023 86.58M
ViT (Dosovitskiy et al. 86.5TM

BEIT (Bao et al.| 2022 86.53M
PVTv2 (Wang et al.[[2022b) 3.6TM
WideResNet|Zagoruyko & Komodakis| (2017) 63.88M
DenseNet Huang et al.[(2017) 28.68M
ResNext |Xie et al.| (2017) 25.03M
ResNetllﬂquﬂWFg 11.69M
GoogLeNet|Szegedy et al.[(2015) 6.62M
MNASNet Tan et al.|(2019) 4.38M
MobileNet Sandler et al. (2018) 3.50M
ShuffleNet|Ma et al | (2018 2.28M
SqueezeNet|landola et al.[ (2016 1.25M

We use SGD optimizer, with a learning rate of 0.001, L2 penalty of 0.0001, a momentum of 0.9,
with Nesterov momentum enabled, and a batch size of 64.

D.3 COMPLEMENTARY RESULTS

Considering the limited space, we gather all the experiment for all possible student architectures in
As shown in the table, for all the possible student architecture, our method outperforms the
other multi-teacher feature distillation methods, and all the teachers, in classification of all datasets,
except for STL10 dataset. For STL10, we can see that it outperforms other multi-teacher feature-
distillation methods in general. Also, illustrates how our method outperforms other
distillation methods as well as the non-distilled teachers, for all but one architecture (squeezenet),
demonstrating the significant improvement achieved compared to other distillation baselines.

Furthermore, you can see the detailed compar-
ison of our multi-teacher feature distillation,

L. . . X resnetl8 squeezenet densenet
with its single-teacher version in for N A 951
all possible teachers, with resnet18 as the stu- § 901 - 8017 Ny 901 "
a1 _ 85 -
dent. Again except for STL10, our methgd out 801 n® 60 . »®
performs the single-teacher case, with being the googlenet shufflenet mobilenet
second best for STL10. [Tab. 22]also shows the ~ 90e ° Zg . 90 1@
detailed results of the second setting of vision Q gg: p a5l go{ ® p
modality, i.e. the Vision Transformer teachers S L 01 ¥
and students. mnasnet resnext50_32x4d wide_resnet50_2
90 1@ @ 90 1@
8 9017 .
I 801 @ . 80 - L}
NN e — oA —SoNAQ
25 % 25" % 25 %
o =2 o =2 o =2
O O O
Method Method Method

Figure 14: Comparison of accuracy of our method
(NLL), no distillation teachers, and other distil-
lation methods (L2 and Cosine), across different
student architectures and tasks.
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Table 20: Distillation results for each nine model as the student, distilled with NLL, Cosine, and
MSE, compared with their fine-tuning performance without distillation, for seven tasks.

Method ‘ Model CIFARI0 FMNIST MNIST STL10 SVHN QMNIST KMNIST
resnet18 78.01 87.02 96.71 9226  38.43 96.60 79.97
squeezenet 52.96 66.47 69.37 51.06 3495 78.29 72.28
densenet 85.45 87.99 95.55 97.06 48.44 95.44 79.17
googlenet 80.20 85.40 95.50 93.52  44.03 95.50 76.50
NoKD shufflenet 82.63 88.35 97.22 91.31 52.28 97.12 85.37
mobilenet 77.23 85.90 96.06 9247 4344 96.08 79.23
mnasnet 76.97 80.27 89.89 70.56  39.64 88.63 78.25
resnext50-32x4d 79.78 84.31 92.54 94.94  38.11 92.34 65.86
wide-resnet50-2 77.56 81.78 87.74 94.44 34.83 86.83 61.89
resnet18 84.82 90.01 98.86 86.50  53.03 98.75 88.12
squeezenet 84.16 90.83 98.98 86.98 63.74 98.93 92.00
densenet 86.60 90.53 98.82 88.54  54.99 98.80 89.28
googlenet 83.42 88.79 98.16 77.88 56.36 98.28 82.57
Cosine shufflenet 86.17 91.06 98.41 85.41 69.74 98.55 91.14
mobilenet 83.74 83.79 98.38 81.55 50.90 98.54 80.32
mnasnet 84.06 89.06 98.06 59.22  50.00 98.18 86.35
resnext50-32x4d 86.04 84.82 98.65 86.94  66.98 98.54 87.22
wide-resnet50-2 86.00 89.79 98.46 86.26  61.89 98.49 85.63
resnetl8 81.70 85.10 96.88 74.31 40.06 96.60 79.75
squeezenet 76.78 83.26 89.42 64.47  43.24 97.60 73.28
densenet 84.21 84.31 97.81 84.47  47.87 97.59 82.15
googlenet 65.60 81.70 88.28 13.75 38.06 94.52 59.22
L2 shufflenet 81.87 87.76 97.55 58.74  58.74 97.53 81.20
mobilenet 74.68 82.97 79.28 3424  39.66 88.73 66.39
mnasnet 71.57 82.99 89.03 47.64  39.36 96.93 76.61
resnext50-32x4d 82.49 84.23 97.09 60.31 42.81 97.88 82.36
wide-resnet50-2 82.87 84.40 98.29 76.42  45.08 98.07 83.37
resnetl8 86.09 91.38 99.15 86.05 83.33 99.15 90.75
squeezenet 70.74 83.59 99.21 70.46  62.06 98.93 93.86
densenet 88.07 91.75 99.17 88.60  85.15 99.13 92.65
googlenet 85.95 90.50 98.97 8594  73.03 99.04 90.16
NLL shufflenet 87.66 91.95 98.85 87.02 7348 98.93 92.85
mobilenet 86.85 91.64 99.01 86.49  79.42 99.01 92.48
mnasnet 87.55 91.39 98.88 87.60  78.16 98.85 90.88
resnext50-32x4d 87.20 91.70 99.10 87.35 84.32 99.03 91.06
wide-resnet50-2 86.71 91.01 98.87 85.99 82.89 98.95 90.76

Table 21: Comparison of single-teacher scenario with multi-teacher one for resnet18 as the student.

Method Model CIFAR10 FMNIST MNIST STL10 SVHN QMNIST KMNIST
Multi-teacher 86.09 91.38 99.15 86.05  83.33 99.15 90.75
squeezenet 77.59 88.78 97.98 77.88  56.64 97.87 85.95
densenet 86.09 90.80 98.46 86.66  73.37 98.50 89.45
NLL googlenet 82.92 89.74 98.54 85.30  68.23 98.41 88.31
shufflenet 79.54 90.38 98.68 79.50  67.56 98.61 90.09
mobilenet 78.88 89.95 98.68 80.49  66.43 98.57 88.90
resnext50-32x4d 81.67 90.39 98.47 8240  68.57 98.30 87.66
wide-resnet50-2 81.50 90.19 98.59 82.73  67.63 98.40 87.40
mnasnet 81.20 90.35 98.52 81.94 6593 98.52 90.29
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Table 22: Comparison of Vision Transformer teachers and students for second setting of vision.

Method | Model Parameters CIFAR10 DTD STL10 SVHN FGVCAircraft CUB
Swin 87.77TM 97.67 75.80  99.60 56.70 38.58 78.01

ViT 86.57M 96.90 70.59  99.40 50.14 33.60 65.65

NoKD DINOv2 86.58M 98.57 80.64 9945 57.30 30.60 81.88
0 BEiT 86.53M 97.89 75.27  99.60 62.00 49.59 23.21
PVTv2 3.6TM 88.70 63.67 95.72 62.20 25.68 39.96

resnetl8 11.69M 76.76 47.18 87.19 54.66 26.25 33.19

NLL PVTv2 3.67TM 94.76 61.33 96.51 77.87 40.35 56.99
resnet18 11.69M 95.21 46.38 94.86 77.58 32.34 23.39

E COMPUTATIONAL
COST AND COMPLEXITIY

Teachers’ embeddings.

To reduce the com-

putational cost we first embedded the entirety
of the training set using the teachers and store
them. We can then build training batches by
sampling from the pre-computed embeddings.
In NLP this amounts to around to a total of
91GB of embeddings for our 4 teachers.

Hardware. We trained our models on NVIDIA A100 GPUs with 80GB of memory. All our
models were trained on a single GPU using pytorch and pytorch lightning.

Time complexity. For our molecular experiments, training on the largest dataset took two days,
5 hours on the ZINC-250k datasets, one day for computer vision and 8 days in NLP. We display
in the evolution of the runtime of one step with a batch size of 256 with our molecular
embedders (computed over 10 runs). The complexity of our algorithm is linear with the number of
teachers, and an additional teacher increases the runtime of one training step by 1.57 ms, represent-
ing less than 1% of the total runtime.

300
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Figure 15: Evolution of the time to perform one training step with a batch size of 256 in molecular
modeling. The computational overhead induced by an additional teacher represents less than 1% of
the total runtime on a batch.
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F DETAILED METHOD

Algorithm 1 Distillation through Gaussian Kernels

Input: Dataset D = {x;}, Embedders (Tj)1<k<x, Student embedder S, Number of iterations
T, Learning rate
Initialize the parameters 65 of the student embedder F; and the parameters 6, of the parametric
Gaussian kernels
fort =1toT do

Sample a batch of inputs {x;}

Compute the embeddings {t¥ = T (x; }1<k< K

Compute the student embeddings {s; = S(xl)}
Compute the loss Ly, = — Zkl,(:l Zivzl log N (5| (s:), Sk (s:))
Update the parameters 6 and 6 using the Adam optimizer.

end for

G BASELINES

For the MSE, we will optimize the following loss function:

Lyse =— ZZHS (xi) — T(xa)[?, ®)

k=11i=1

where it calculates the summation of L2 distances between the representation produced by each
teacher and the student, for each instance of the batch.

For Cosine multi-teacher feature distillation, we optimize the summation of cosine of teachers and
the students representations of each instance of the batch, i.e.:

XL Tk(xl)
L osine — ' ?
c ZZmaxHS (x)ll2- [ Tw(xi)ll5 €) ®

k=1 1i=1
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