
Multi-Mask Aggregators for Graph Neural Networks

Ahmet Sarıgün
Middle East Technical University
ahmet.sarigun@metu.edu.tr

Ahmet S. Rifaioğlu
Institute of Computational Biomedicine

Heidelberg University
ahmet.rifaioglu@uni-heidelberg.de

Abstract

One of the most critical operations in graph neural networks (GNNs) is the aggre-
gation operation, which aims to extract information from neighbors of the target
node. Several convolution methods have been proposed, such as standard graph
convolution (GCN), graph attention (GAT), and message passing (MPNN). In this
study, we propose an aggregation method called Multi-Mask Aggregators (MMA),
where the model learns a weighted mask for each aggregator before collecting
neighboring messages. MMA draws similarities with the GAT and MPNN but has
some theoretical and practical advantages. Intuitively, our framework is not limited
by the number of heads from GAT and has more discriminative than an MPNN.
The performance of MMA was compared with the well-known baseline methods in
both node classification and graph regression tasks on widely-used benchmarking
datasets, and it has shown improved performance. Dataset and codes are available
at https://github.com/asarigun/mma.

1 Introduction
Graph Neural Networks (GNNs) have attracted great interest in recent years due to their performance
and the ability to extract complex information [1–4]. One of the most critical operations in graph
neural networks is the aggregation operation, where the aim is iteratively exploiting information
from the neighbors of a target node to update its latent representation. [2, 5]. Several different
aggregators were used, such as mean, sum, max, min, and long short-term memory (LSTM), to
extract more meaningful information from the neighbors of a particular node. [4], [5]. According to
[6], an ideal learnable and flexible aggregation should have the following conditions: 1) permutation
invariant [7]; 2) adaptive to deal with various neighborhood information [3] [8]; 3) explainable
learned representations concerning the predictions and robustness to the noise [9] 4) discriminative to
graph structures [5].

Several methods have been proposed in the graph neural network area in recent years that use different
aggregators. For example, Graph Attention Network (GAT) borrows the idea of attention mechanisms
that perform aggregations by assigning different weights to different neighbors [3]. However, it is
not adaptive to deal with various neighborhood information at the feature level since all individual
features are considered equally [3] [8]. Learnable graph convolutional layer (LGCL) method applies
convolution operation in the aggregation process by assigning different weights to different features
[8].LGCL can deal with different neighborhood information; however, there might be loss information
on graphs during the selections since it breaks the original correspondence between node features
by selecting the d-largest feature values from the neighboring nodes [3] [8]. Dehmamy et al. [10]
empirically showed that using multiple aggregators (i.e., mean, max, and normalized mean) improves
the performance of GNNs on the task of graph moments. Principal Neighbourhood Aggregation
(PNA) method theoretically formalized this observation. The authors demonstrated that using a single
type of aggregator is insufficient to extract enough information from neighboring nodes which causes
limited learning abilities and expressive power [11].

A mask aggregator uses an auxiliary model such as multi-layer perceptrons (MLPs), which has no
requirement for size or order of the input datasets [12] [13]. To satisfy the four conditions mentioned

A. Sarıgün et al., Multi-Mask Aggregators for Graph Neural Networks (Extended Abstract). Presented at the
First Learning on Graphs Conference (LoG 2022), Virtual Event, December 9–12, 2022.

https://github.com/asarigun/mma

Figure 1: Architecture of MMA with the different aggregators: a) training auxiliary model with
a given node and its neighbors’ feature vectors; b) getting the masks for each neighbor from the
auxiliary model and multiplying with Hadamard product with node feature and Learned Mask; c)
aggregating the neighbors (after multiplying the corresponding mask) to get the central node’s new
representation. d) combining the final aggregators with scalers.

above, Learnable Aggregator for GCN (LA-GCN) was proposed, which filters the neighborhood
information with a mask aggregator before the aggregation process [6]. LA-GCN learns a specific
mask for each node’s neighbor, allowing node-level and feature-level attention by the auxiliary model.
This mechanism assigns different weights to nodes and features, providing interpretable results and
increasing the model’s robustness. However, LA-GCN is only based on a sum aggregator, which loses
its stability with the increasing average degree of a graph [11], and the other types of aggregators are
overlooked.

In this study, we propose Multi-Mask Aggregators (MMA), a novel graph neural network method that
combines trainable auxiliary models with different or the same aggregators. MMA utilizes a given
node and its neighbors to train auxiliary models to extract information in a graph where different
neighborhood information is learned using different masks. We use multiple types of aggregators (i.e.,
mean, max, and min) and create a mask for each neighbor and aggregator. MMA can learn high-level
rules (e.g., focusing on the important neighbors and features for node representation learning) to
guide the aggregators for better utilization of the neighborhood information. It is a flexible method
where different or the same kinds of multiple learnable aggregators can be used. We evaluated MMA
on well-known benchmark datasets and compared its performance with the well-known baseline
graph neural network methods. The datasets, source code, experimental settings, and user instructions
are available publicly at https://github.com/asarigun/mma.

The main contributions can be summarized as the followings: 1) It provides flexible multi-aggregators
with the mask aggregation;2) It unlocks the limitation on the number of heads; 3) It enables to extract
local information by local parameters instead of using global parameters like in MPNNs/PNA; 4) It
behaves between in GAT and MPNN/PNA; 5) It increases the performance in node classification
and graph regression benchmarks.

2 Multi-Mask Aggregators

The proposed Multi-Mask Aggregators method leverages the increased expressivity from the multi-
aggregators models such as PNA [11], and the learnable masks from LA-GCN [6]. The Hadamard
product is performed to multiply the neighbor’s feature vector with the corresponding learned masks
in the aggregation process, allowing each heuristic aggregator (e.g., min, mean, etc.) to learn different
features from the neighbors. Finally, the resulting aggregators are combined with scalers [11]. MMA
architecture is given in Figure 1.

2.1 Motivation

Several methods have been proposed in the graph neural network area. Most of them work by
aggregating neighboring node features using a permutation invariant function (PMI). One of the
most popular frameworks is the graph convolution which uses a PMI to aggregate features from
neighboring nodes nj into a given node ni (See Appendix B). Another one is the message-passing that
generates a message from each pair of nodes {ni, nj} and aggregates them via a PMI. Furthermore,
the graph attention computes the attention weight between {ni, nj} and aggregates the neighboring
features nj via a weighted sum of the attention weights.

2

https://github.com/asarigun/mma

In this work, we propose a different framework called multi-masked aggregators (MMA), where the
network learns multiple weighted masks from pairs {u, v} and aggregates them via a weighted PMI.
Hence, the aggregation mechanism lies between graph attention which learns multiple masks, and
message-passing, which uses invariant functions. Similarly to PNA [11], it benefits from increased
expressivity from having multiple independent aggregators, and contrarily to GAT [3], it is not
limited to a fixed number of heads during masking.

2.2 Flexible multi-aggregators

In recent work, it was demonstrated that using multiple uncorrelated aggregators during the message-
passing increased the expressiveness while avoiding the exponential growth of the parameter space
[11]. Their work proposed to use the mean, max, min and std operators to extract rich statistical
features.

In this work, we build on the idea by using multiple learned aggregators that can also exhibit high-
frequency filtering. We further combine the mean, max, min aggregators with multi-learned masks to
provide a more expressive framework.

Learning the Mask. The first step is to learn the mask ml+1
j , with a unique value for each layer l

and pair of neighbouring nodes of {i, j}. To do so, we employ an MLP on the pair of node features
hi, hj and optionally the edge features eij in a similar fashion to the MPNN. However, this does not
constitute the message but rather the weights that will multiply the aggregated neighboring features.
The equation is formalized in (1), with σ being the activation function, Wm a learned matrix for the
l-th layer, and || the column-wise concatenation.

ml+1
j = MLP (||hl

i, h
l
j , e

l
ij) = σ(Wm(||hl

i, h
l
j , e

l
ij)) (1)

In Equation (1), ml+1
j represents the learned mask of node j and l represents the lth layer. Let hl

i, h
l
j

and elij be in RN , and then the concatenation of these vectors are in R3XN . Wm is represented in
RTX3. The multiplication of the concatenated hl

i, h
l
j and elij with Wm results in RTXN dimension

which gives the final dimension of ml+1
j . T represents the number of hidden units.

Masked Max/Min Aggregators. Max/Min aggregators have shown to be effective for discrete tasks
and domains where credit assignment and extrapolating to unseen distributions of graphs is important
[14]. In this study, we extend max/min aggregators by adding a learned mask ml

j . This allows the
network to learn to ignore certain "undesired" nodes when propagating information.

maxl
i = maxj∈ Ni

(X l
j ∗ml

j) minl
i = minj∈ Ni

(X l
j ∗ml

j) (2)

Masked Mean Aggregator. One of the most widely used aggregators in the literature is the mean
aggregator, in which each node computes a weighted average or sum of its incoming messages. Using
a degree-scaler, it was also shown that the sum aggregation can be represented from the mean [11].
In this work, we first apply the same operation as in the LA-GCN [6] and then divide by the node’s
degree:

µi(X
l) =

1

di

∑
j∈Ni

X l
j ∗ml

j (3)

Degree Scalers. In MMA, we further use degree scalers, motivated by their ability to amplify and
attenuate signals using the node’s degrees and increase expressivity [11]. The general equation
is given below, with S being the scaling factor, d the node degree, α the amplification factor, and
delta the average degree in the training set. In our study, we use α = {−1, 0, 1}, corresponding
respectively to attenuation, no change, and amplification of the signal from its degree.

S(d, α) =

(
log(d+ 1)

δ

)α

, d > 0,−1 < α < 1 (4)

3

Combining Aggregators. We further combine multiple aggregators and degree scalers to increase
the expressivity of the network following the equation below. Here, ⊗ denotes the Tensor product
and ⊕mask the general aggregation function of the proposed MMA framework.

⊕mask =

(
I

S(D,α = 1)
S(D,α = −1)

)
⊗

(
Masked Max
Masked Min
Masked Mean

)
(5)

3 Experiments

We first evaluated the performance of MMA models on four widely-used benchmarking datasets (see
Appendix A.1) over two tasks using a combination of different masked aggregators. Subsequently,
we investigated the models’ performances when the same type of masked aggregator(s) were used.
Finally, the performance results of MMA were compared with the well-known baseline methods in
the field. These methods are Message Passing Neural Networks (MPNN) [2], Graph Convolutional
Networks (GCN) [1], GAT [3], LGCL [8], Graph-BERT [15], PNA [11], LA-GCN [6], Adaptive
kernel graph neural network (AKGNN) [16], respectively.

3.1 Results

We trained several models using the multiple aggregator(s). Here, we used two different settings:
In Setting 1 (see Table 3), we measured MMA’s performance by combining different aggregators.
In Setting-2 (see Table 5), the same type of aggregator(s) were used where each aggregator has a
different trained mask. We used the same training/validation/test settings for a fair performance
comparison with other methods. We also demonstrated some ablation studies in Appendix A.2.

Finally, we compared our best-performing results with the well-known baseline methods in the
literature. The results are given in Table 1. Our results have shown improved performance over the
compared methods in most cases.

Table 1: Benchmarking MMA on Pubmed, Citeseer, Cora and ZINC datasets. Detailed hyperparame-
ter for MMA on each dataset can be found Table 4

Models Pubmed Citeseer Cora ZINC
MPNN [2] 75.60 64.00 78.00 0.288
GCN [1] 79.00 70.30 81.50 –
GAT [3] 79.00 72.50 83.00 –

LGCL [8] 79.50 73.00 83.30 –
GRAPH-BERT [15] 79.30 71.20 84.30 –

PNA [11] – – – 0.188
LA-GCN [6] – – 81.50 –
AKGNN [16] 80.40 73.50 84.80 –
MMA (ours) 86.00 76.30 85.80 0.1562

4 Discussion and Conclusion

In this study, we propose Multi-Mask Aggregators for graph representation learning to utilize different
and same aggregators within a learning mechanism. MMA provides a flexible learning method by
integrating different or the same types of aggregator(s) where each has learnable parameters. Our
contributions can be summarized as follows: 1) It provides flexible multi-aggregators with the
mask aggregation;2) It unlocks the limitation on the number of heads; 3) It enables to extract local
informations by local parameters instead of using global parameters like in MPNNs/PNA; 4) It
behaves between in GAT and MPNN/PNA; 5) It increases the performance in node classification
and graph regression benchmarks.

4

Besides all, as shown in the ablation studies, it was observed that there is no definite consensus
on how much and which aggregator should be used. Authors believe that there is still room for
improvement for aggregation fuctions in GNNs.

Acknowledgements
The authors express their gratitude to Dominique Beaini for the valuable insights and discussions, as
well as to Hacettepe University Biological Data Analysis Laboratory for the GPU support during the
project.

References
[1] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional

networks. arXiv preprint arXiv:1609.02907, 2016. 1, 4
[2] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural

message passing for quantum chemistry. In International conference on machine learning,
pages 1263–1272. PMLR, 2017. 1, 4

[3] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017. 1, 3, 4

[4] William L Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large
graphs. In Proceedings of the 31st International Conference on Neural Information Processing
Systems, pages 1025–1035, 2017. 1

[5] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? arXiv preprint arXiv:1810.00826, 2018. 1, 10

[6] Li Zhang and Haiping Lu. A feature-importance-aware and robust aggregator for gcn. In Pro-
ceedings of the 29th ACM International Conference on Information & Knowledge Management,
pages 1813–1822, 2020. 1, 2, 3, 4, 8, 9

[7] Ryan L Murphy, Balasubramaniam Srinivasan, Vinayak Rao, and Bruno Ribeiro. Janossy
pooling: Learning deep permutation-invariant functions for variable-size inputs. arXiv preprint
arXiv:1811.01900, 2018. 1

[8] Hongyang Gao, Zhengyang Wang, and Shuiwang Ji. Large-scale learnable graph convolutional
networks. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pages 1416–1424, 2018. 1, 4

[9] Rex Ying, Dylan Bourgeois, Jiaxuan You, Marinka Zitnik, and Jure Leskovec. Gnn explainer:
A tool for post-hoc explanation of graph neural networks. arXiv preprint arXiv:1903.03894,
2019. 1

[10] Nima Dehmamy, Albert-László Barabási, and Rose Yu. Understanding the representation power
of graph neural networks in learning graph topology. arXiv preprint arXiv:1907.05008, 2019. 1

[11] Gabriele Corso, Luca Cavalleri, Dominique Beaini, Pietro Liò, and Petar Veličković. Principal
neighbourhood aggregation for graph nets. arXiv preprint arXiv:2004.05718, 2020. 1, 2, 3, 4,
10

[12] Sebastian Thrun. Lifelong learning algorithms. In Learning to learn, pages 181–209. Springer,
1998. 1

[13] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are
universal approximators. Neural networks, 2(5):359–366, 1989. 1

[14] Petar Veličković, Rex Ying, Matilde Padovano, Raia Hadsell, and Charles Blundell. Neural
execution of graph algorithms. arXiv preprint arXiv:1910.10593, 2019. 3

[15] Jiawei Zhang, Haopeng Zhang, Congying Xia, and Li Sun. Graph-bert: Only attention is needed
for learning graph representations. arXiv preprint arXiv:2001.05140, 2020. 4, 9

[16] Mingxuan Ju, Shifu Hou, Yujie Fan, Jianan Zhao, Liang Zhao, and Yanfang Ye. Adaptive kernel
graph neural network. arXiv preprint arXiv:2112.04575, 2021. 4

[17] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-
Rad. Collective classification in network data. AI magazine, 29(3):93–93, 2008. 7

5

[18] John J Irwin, Teague Sterling, Michael M Mysinger, Erin S Bolstad, and Ryan G Coleman. Zinc:
a free tool to discover chemistry for biology. Journal of chemical information and modeling, 52
(7):1757–1768, 2012. 7

[19] Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R Salakhutdinov,
and Alexander J Smola. Deep sets. Advances in neural information processing systems, 30,
2017. 8, 10

[20] Edward Wagstaff, Fabian Fuchs, Martin Engelcke, Ingmar Posner, and Michael A Osborne.
On the limitations of representing functions on sets. In International Conference on Machine
Learning, pages 6487–6494. PMLR, 2019. 10

[21] Kurt Hornik. Approximation capabilities of multilayer feedforward networks. Neural networks,
4(2):251–257, 1991. 10

6

A Experiment Details

A.1 Datasets

We trained our method on four different datasets: Cora, Citeseer, PubMed, and ZINC. The dataset
statistics and the training, validation, and test settings are given in Table 2. The benchmarking datasets
are explained below:

• Cora [17] - Cora is a citation graph dataset where each node represents a scientific publication
classified as one of 7 classes. This dataset consists of 2,708 nodes and 5,429 edges, with an edge
between two nodes if one cites the other. In this dataset, nodes are represented by binary feature
vectors where each dimension indicates the absence or presence of the word from the dictionary
containing 1,433 unique words. For the evaluation, the accuracy metric was used.

• Citeseeer [17] - Citeseer is also a citation graph dataset for node classification task where the
nodes represent publications classified into six classes. Nodes are represented as binary feature
vectors similar to the Cora dataset. In the Citeseer dataset, there are 3,327 nodes and 4,732
edges. For the evaluation, the accuracy metric was used.

• Pubmed [17] - Pubmed is another citation graph dataset where each node represents the papers
related to diabetes. Pubmed is also a dataset for node classification where one of three classes is
assigned to each node. This dataset consists of 19,717 nodes and 44,338 edges. Here, each node
is represented by a feature vector that shows TF/IDF weighted word vector from the dictionary
with 500 unique words. For the evaluation, the accuracy metric was used.

• ZINC [18] - ZINC is a graph regression dataset for constrained solubility prediction of chemical
compounds. In this dataset, each compound is represented by a graph where nodes represent
atoms and edges represent the bonds between atoms. The ZINC dataset consists of 12,000
molecules with varying atom numbers from 9 to 37. The mean absolute error (MAE) metric was
used for the evaluation.

The dataset statistics are summarized in Table 2.

Table 2: Summary of the datasets used in benchmarking
Domain & Construction Dataset #Nodes Total #Nodes Edges Features Classes Train/Val./Tes Task

Social Networks: Real-world citation graphs Cora 2,708 2,708 5,429 1,433 7 1,208/500/1,000 Node Classification
Social Networks: Real-world citation graphs Citeseer 3,327 3,327 4,732 3,703 6 1,827/500/1,000 Node Classification
Social Networks: Real-world citation graphs Pubmed 19,717 19,717 44,338 500 3 18,217/500/1,000 Node Classification

Chemistry: Real-world molecular graphs ZINC 9-37 277,864 – – – 10,000/1,000/1,000 Graph Regression

A.2 Ablation Studies

Table 3 shows the performance results of the top four best-performing models trained using different
combinations of multi-mask aggregators. As it can be observed from Table 3, there is no consensus on
types of aggregators when we consider the performance results based on different datasets; therefore,
dataset-specific aggregators should be determined empirically. For example, Masked Mean-Mean2
aggregators performed best on the Cora dataset, whereas Masked Min-Min2-Min3 aggregators
worked best on the Citeseer dataset. Similarly, using Min-Min2-Min3-Min4 and Min-Max sets of
aggregators resulted in better results in Pubmed and ZINC databases, respectively.

We also evaluated the performance of the MMA using the same multi-masked aggregators. Here,
MMA models were trained using single or multiple types of the same aggregators to investigate how
models’ performances change with the same type of masked aggregator(s). The results are shown
in Table 5. Here, we trained MMA models using up to 4 same aggregators with different learnable
masks. When the results are investigated, it can be seen that specific single multi-aggregators work
better than the remaining aggregators on different datasets. For example, on the Cora dataset mean
aggregators almost consistently worked better than the min and max aggregators. Considering the
Citeseer dataset, we can see that max aggregators work with less performance than the min and mean
aggregators.

7

Table 3: Performance of MMA using different aggregators on independent test sets (Setting-1)

Dataset Masked Aggregators Learning Rate Weight Decay Hidden Units Epoch Accuracy/MAE
Mean-Min 0.001 5e-4 128 200 85.10

Mean-Max-Min 0.001 3e-4 128 1000 84.30
Cora Mean-Max 0.001 1e-4 128 1000 84.10

Max-Min 0.01 3e-4 64 1000 83.60

Mean-Max 0.01 5e-4 128 500 75.90
Mean-Min 0.01 3e-4 64 500 75.50

Citeseer Max-Min 0.001 1e-4 64 1000 75.30
Mean-Max-Min 0.01 5e-4 64 500 75.30

Mean-Min 0.01 1e-4 64 200 85.90
Mean-Max-Min – – – – –

Pubmed Mean-Max – – – – –
Max-Min – – – – –

Mean-Min 0.0001 3e-4 10000 0.1585
Mean-Max-Min 0.00001 3e-4 – 10000 0.1606

ZINC Mean-Max 0.0001 3e-4 – 10000 0.1585
Min-Max 0.0001 3e-4 – 10000 0.1562

Table 4: Detailed hyperparameter for best performance of MMA in Table 1

Dataset Masked Aggregators Learning Rate Weight Decay Hidden Units Epoch Accuracy/MAE
Cora Mean-Mean2 0.001 3e-4 64 200 85.80

Citeseer Min-Min2-Min3 0.01 3e-4 128 500 76.30
Pubmed Min-Min2-Min3-Min4 0.01 5e-4 16 500 86.00

ZINC Min-Max 0.0001 3e-4 – 10000 0.1562

B Theoretical Background
Due to the lack of order in most real graphs, permutation invariance is an essential feature for
aggregation functions. While aggregating representations of the node’s neighbors, the neighborhood
aggregation scheme iteratively updates the representation of a node [6]. This intuition explained for
the aggregation process can be formalized as follows:

s
(k−1)
i = f (k)

ag (h
(k−1)
j , j ∈ Ni) (6)

where f
(k)
ag is aggregator in the k-th layer. The aggregation function f

(k)
ag should be a permutation

invariant function on a multiset. According to [19], definition of permutation invariant function
described as:

Definition 1: A function f is permutation-invariant if

f(h1, h2, ..., h|Ni|) = f(hπ(1)
, hπ(2)

, ..., hπ(|Ni|)
) (7)

for any permutation π and |Ni| is the length of the sequence. Π|Ni| denotes the multiset of all
permutations of the integers 1 to |Ni| and hπ,π ∈ Π|Ni|, denotes a reordering of the multiset
according to π. The relation between set and permutation invariant function can be shown in the
following theorem in [19]:

Theorem 1: A function operating on a multiset h1, h2, ..., h(|Ni|) having elements from a countable
universe is a valid set function. It is invariant to the permutation of instances in the multiset if it can
be decomposed in the form ρ(

∑
π∈Π|Ni|

ϕ(hπ)) for suitable transformation ϕ and ρ.

Theorem 1, it can be inferred that all the representations are added and then applied to nonlinear
transformation.

Mean, sum aggregation functions and aggregators in GCN and GAT can be represented in this
concept. As shown in Eq.(8) and Eq.(9), respectively, GCN and GAT add up all neighborhood with
fixed parameters or learnable parameters.

8

Table 5: Performance results of same multi-masked aggregators on independents test sets (Setting-2)

Masked Aggregators Cora Citeseer Pubmed ZINC
Mean 85.60 76.00 – 0.1631

Mean-Mean2 85.80 76.10 – 0.1763
Mean-Mean2-Mean3 84.60 74.60 – 0.1940

Mean-Mean2-Mean3-Mean4 84.80 75.20 – 0.1886

Min 83.90 76.10 85.80 0.1535
Min-Min2 84.20 75.40 85.30 0.1571

Min-Min2-Min3 84.00 76.30 85.70 0.1591
Min-Min2-Min3-Min4 84.00 75.70 86.00 –

Max 83.60 75.40 85.50 0.1519
Max-Max2 83.00 75.00 84.30 0.1653

Max-Max2-Max3 83.00 75.00 83.30 0.1717
Max-Max2-Max3-Max4 83.60 75.00 81.90 0.1604

s
(k−1)
i = f (k)

agg(h
(k−1)
j) =

∑
j∈Ni

h
(k−1)
j /

√
didj (8)

where di and dj are the node degrees of node vi and node vj respectively.

s
(k−1)
i = f (k)

aga(h
(k−1)
j) =

∑
j∈Ni

αijh
(k−1)
j (9)

where αij is a learnable attention coefficient that indicates the importance of vj to vi.

B.1 Mask Aggregator

[6] tried to use mask aggregator with sum aggregation function to assign different importance to
different neighbor’s features. In this aggregation process, they tried to use a mask aggregator, which
assigns different weights to different neighbor’s features and then aggregates by sum aggregation
function. It can be shown as the following:

s
(k−1)
i = f (k)

agm(h
(k−1)
j) =

∑
j∈Ni

h
(k−1)
j ∗m(k−1)

j (10)

where h
(k−1)
j ∈ Rdk−1 , m(k−1)

j ∈ Rdk−1 is a specific mask for each neighbor, produced by the
auxiliary model. They showed that the mask aggregator is permutation invariant as the following
theorem, which is proven by [15]:

Theorem 2: f (k)
agm is a permutation-invariant function acting on finite but arbitrary length sequence

h
(k−1)
j , j ∈ Ni.

Proof 2: Given H = h
(k−1)
1 , h

(k−1)
2 , ..., h

(k−1)
(|Ni|) a finite multiset, and h

(k−1)
j ∈ Rdk−1 , mask aggre-

gator was tried to be combined with a fixed output s(k−1)
i ∈ Rdk−1 as follows:

s
(k−1)
i = f (k)

agm(h
(k−1)
j) =

∑
j∈Ni

h
(k−1)
j ∗m(k−1)

j (11)

where m
(k−1)
j ∈ Rdk−1 is a specific mask for each neighbor produced by the auxiliary model. First,

it was tried to get mask m
(k−1)
j for each node h

(k−1)
j by using an auxiliary model given graph

information.

There exists a mapping function ϕ : Rdk−1 −→ Rdk−1 that can formulate h(k−1)
j ∗m(k−1)

j to ϕ(h
(k−1)
j),

and (11) can be written as:

9

s
(k−1)
i = f (k)

agm(h
(k−1)
j) =

∑
j∈Ni

ϕ(h
(k−1)
j) (12)

and ρ can be seen as ρ = 1. (8) can be seen as a permutation of H, according to [19].

Next, they prove there exist an injective mapping function ϕ, so that f (k)
agm(h

(k−1)
j) is unique for each

finite multiset H.

Since H is countable, each (h
(k−1)
j) ∈ H can be mapped to a unique element to prime numbers

p(H) : RM −→ P by a function p(h
(k−1)
j). ϕ(h(k−1)

j) can be represented as −logp(h
(k−1)
j). Thus,

f (k)
agm(h

(k−1)
j) =

∑
j∈Ni

ϕ(h
(k−1)
j) = logp(h

(k−1)
j) (13)

takes a unique value for each distinct H.

Besides, the dimension dd−1 of the latent space should be at least as large as the maximum number
of input elements |Ni|, which is both necessary and sufficient for continuous permutation-invariant
functions [20].

Since a neural network can approximate any continuous function, according to the universal approxi-
mation theorem [21], MLPs can be used as an auxiliary model and learn ϕ and ρ = 1.

B.2 Multi Aggregator

According to Theorem 2, it can be concluded that multi-set is a permutation-invariant function, and
mask aggregator can adapt which features or neighbors are essential and filter the noisy information.

However, [11] showed that sum aggregation does not discriminate between graphs, and they proposed
multi-aggregation to tackle this problem. They showed that the multi-aggregation can discriminate
between graphs as the following theorem and proof:

Theorem 3: In order to discriminate between multisets of size n whose underlying set is R, at least n
aggregators are needed.

Unlike the [5], [11] consider a continuous input feature space; this better represents many real-world
tasks where the observed values have uncertainty and better models the latent node features within
a neural network’s representations. Continuous features make the space uncountable and void the
injectivity proof of the sum aggregation presented by Xu et al. [5]. Hence, they redefine aggregators
as continuous functions of multisets that compute a statistic on the neighboring nodes, such as mean,
max, or standard deviation. Continuity is important with continuous input spaces, as small variations
in the input, should result in small variations of the aggregators’ output.

10

	1 Introduction
	2 Multi-Mask Aggregators
	2.1 Motivation
	2.2 Flexible multi-aggregators

	3 Experiments
	3.1 Results

	4 Discussion and Conclusion
	A Experiment Details
	A.1 Datasets
	A.2 Ablation Studies

	B Theoretical Background
	B.1 Mask Aggregator
	B.2 Multi Aggregator

